
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20

GIScience & Remote Sensing

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tgrs20

Remote sensing of terrestrial gross primary
productivity: a review of advances in theoretical
foundation, key parameters and methods

Wenquan Zhu, Zhiying Xie, Cenliang Zhao, Zhoutao Zheng, Kun Qiao,
Dailiang Peng & Yongshuo H. Fu

To cite this article: Wenquan Zhu, Zhiying Xie, Cenliang Zhao, Zhoutao Zheng, Kun Qiao,
Dailiang Peng & Yongshuo H. Fu (2024) Remote sensing of terrestrial gross primary
productivity: a review of advances in theoretical foundation, key parameters and methods,
GIScience & Remote Sensing, 61:1, 2318846, DOI: 10.1080/15481603.2024.2318846

To link to this article:  https://doi.org/10.1080/15481603.2024.2318846

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Feb 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tgrs20
https://www.tandfonline.com/journals/tgrs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15481603.2024.2318846
https://doi.org/10.1080/15481603.2024.2318846
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgrs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2024.2318846?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15481603.2024.2318846?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2024.2318846&domain=pdf&date_stamp=20 Feb 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2024.2318846&domain=pdf&date_stamp=20 Feb 2024


REVIEW

Remote sensing of terrestrial gross primary productivity: a review of advances in 
theoretical foundation, key parameters and methods
Wenquan Zhua, Zhiying Xie b,c, Cenliang Zhaoa, Zhoutao Zhengd, Kun Qiaoe, Dailiang Pengf 

and Yongshuo H. Fuc

aState Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing, China; bExperimental and Practical Education Innovation 
Center, Beijing Normal University at Zhuhai, Zhuhai, China; cCollege of Water Sciences, Beijing Normal University, Beijing, China; dLhasa Plateau 
Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural 
Resources Research, Chinese Academy of Sciences, Beijing, China; eSchool of Geographical Sciences, Hebei Normal University, Shijiazhuang, 
Hebei, China; fKey Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China

ABSTRACT
Accurately estimating gross primary productivity (GPP), the largest carbon flux in terrestrial ecosys-
tems, is crucial for advancing our understanding of global carbon cycle and predicting climate 
feedbacks. The advancements in remote sensing (RS) have facilitated the development of GPP 
estimation models at regional and global scales in recent decades. This article systemically reviews 
the development of RS-based GPP estimation in three main aspects: theoretical foundation, key 
parameters and methods. Regarding the theoretical foundation, RS generally excels in representing 
key characteristics during the light transmission process of photosynthesis. However, it exhibits 
a relatively weaker ability to describe the carbon reaction process, severely limiting the in-depth 
understanding of the mechanisms of RS-based GPP estimation. Concerning key parameters, the 
definition of traditional parameters, such as leaf area index (LAI), photosynthetically active radiation 
(PAR), and fraction of absorbing PAR, has been detailed in the development of RS (e.g. LAI is divided 
into sunlit LAI and shaded LAI). However, their accuracy still needs improvement. Additionally, 
researchers have developed effective parameters (e.g. photochemical reflectance index, sun- 
induced chlorophyll fluorescence, and the maximum carboxylation rate) that possess increased 
capability to represent and interpret the carbon reaction process of photosynthesis. Regarding 
estimation methods, although the four main categories of RS-based GPP estimation models (statis-
tical model, light use efficiency model, RS-based process model and machine learning-based model) 
have made significant progress in parameter optimization, the estimation accuracy and mechanism 
innovation remain less than satisfactory. Finally, we summarize the current issues of RS-based GPP 
estimation related to parameters performance and accuracy, model mechanisms and capabilities, as 
well as scale and connotation mismatch. Integrating more adequate in situ and comprehensive 
observations would enhance the interpretability of GPP estimation models, providing more reliable 
insights into the mechanisms in future studies. This article contributes to understanding of the 
photosynthetic process and RS-based GPP estimation, potentially aiding in the development of 
parameter optimization (improving the estimation accuracy of existing parameters and developing 
new ones) and model design (introducing new parameters and exploring new mechanistic models).

ARTICLE HISTORY 
Received 7 July 2023  
Accepted 9 February 2024 

KEYWORDS 
Gross primary production 
(GPP); light use efficiency 
(LUE); photosynthetic 
process; remote sensing; 
sun-induced chlorophyll 
fluorescence (SIF)

1. Introduction

Gross primary productivity (GPP) constitutes the prin-
cipal carbon cycle flux in terrestrial ecosystems, 
encompassing all carbon dioxide (CO2) absorbed by 
vegetation from the atmosphere via photosynthesis 
(Beer et al. 2010; Chapin et al. 2006; Ryu, Berry, and 
Baldocchi 2019; Xiao, Jin, and Dong 2014). Accurate 
GPP estimation serves as the foundation for compre-
hending the carbon budget, climate change, and 
ecosystem services (Anav et al. 2015; Beer et al.  
2010; Xia et al. 2015; Zhang et al. 2019).

Researchers have made significant strides in quan-
tifying terrestrial GPP at regional and global scales, 
despite the inherent challenges in directly measuring 
GPP (Welp et al. 2011). In terms of ground observa-
tions, techniques related to eddy covariance (EC) pro-
vide a dependable indirect approach for measuring 
GPP at the ecosystem scale. Presently, hundreds of 
flux sites, encompassing diverse global vegetation 
types, have undergone standardized processing and 
assessment of their records (Pastorello et al. 2020). 
The existence of EC GPP data, with a spatial scale 
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(footprint) comparable to satellite pixels, facilitates 
the implementation of vegetation GPP monitoring. 
EC GPP data serve not only as the benchmark for 
validating satellite-based GPP estimation but are 
also as a convenient tool for model optimization, 
including parameters and structures. Furthermore, in 
satellite observations, the advancement of visible, 
synthetic aperture radar (SAR), light detection and 
ranging (Lidar), and notably, sun-induced chlorophyll 
fluorescence (SIF) remote sensing, enables the estima-
tion of various plant parameters closely linked to 
photosynthesis using remote sensing (RS) methods. 
Capitalizing on the advantages of RS, including large- 
scale synchronous observation and fine temporal and 
spatial resolution, RS-based methods prove to be 
relatively more efficient in exploring the dynamic of 
GPP and its spatiotemporal variations at the regional 
scale (Sun et al. 2019; Yuan et al. 2014). RS-based 
methods are comparatively simpler when juxtaposed 
with process-oriented ecosystem models, which typi-
cally require a substantial set of input parameters (Pei 
et al. 2022; Piao et al. 2013). Consequently, RS-based 
GPP estimation methods have undergone rapid 
development over the past few decades.

In recent decades, our understanding of photo-
synthesis in terrestrial ecosystems has deepened and 
become more multidimensional (Beer et al. 2010; Ryu, 
Berry, and Baldocchi 2019; Schimel et al. 2019; Sellers 
et al. 1997) through the continuous development and 
integrated application of biochemistry, plant physiol-
ogy ecology, and RS. These advancements contribute 
to the progress of multiscale terrestrial GPP estima-
tion models. Over time, the increasing number of RS- 
based GPP estimation methods can be categorized 
into statistical models, parametric models, RS-related 
process models, machine learning approaches and 
proxy methods (Xiao et al. 2019). Meanwhile, several 
recent studies have reviewed the development of RS- 
based GPP estimation in terrestrial ecosystems from 
various perspectives (Liang and Wang 2020; Liao et al.  
2023; Pei et al. 2022; Ryu, Berry, and Baldocchi 2019; 
Siebers et al. 2021; Song, Dannenberg, and Hwang  
2013; Sun et al. 2019; Xiao et al. 2019). For example, 
Ryu et al. (2019) reviewed the history of quantifying 
global terrestrial photosynthesis, analyzing uncertain-
ties and identifying opportunities. Xiao et al. (2019) 
summarized the evolution of RS-based measures for 
monitoring carbon flux and storage over the last 50  
years, providing detailed elaborations on platforms, 

sensors, methods, breakthroughs, and challenges. 
Siebers et al. (2021) explored the development of 
cross-scale methods, from leaf to canopy scale, for 
measuring vegetation photosynthesis from the per-
spectives of RS and gas exchange. Pei et al. (2022) 
reviewed the evolution of parameters in light use 
efficiency (LUE) models, analyzed the uncertainties 
arising from different parameters, and offered new 
insights for optimizing the LUE model.

Existing reviews predominantly concentrate on 
analyzing the progress of RS-based GPP estimation 
methods, yet they lack sufficient discussion on the 
theoretical foundation and key parameters of these 
methods. Consequently, this study aims to system-
atically review the development of RS-based GPP esti-
mation, covering three main aspects: theoretical 
foundation, key parameters, and methods. This 
endeavor seeks to offer a comprehensive understand-
ing of the current development status, progressing 
from theory to parameters and subsequently to mod-
els. Initially, we provide a concise summary of the 
plant photosynthetic process and the theory behind 
RS-based GPP estimation. Subsequently, we elucidate 
the progression of RS parameters closely associated 
with the photosynthetic process and review the evol-
ving pathways of four categories of GPP estimation 
models. Lastly, we enumerate the issues and chal-
lenges in RS-based GPP estimation, offering novel 
insights for future research.

2. Theory of satellite based GPP monitoring

2.1. Photosynthesis process

Photosynthesis constitutes a complex biochemical 
process. Prior research has furnished an elaborate 
summary of plant photosynthesis (Jones 2014; Kiang 
et al. 2007; Lambers, Chapin, and Pons 2008; Porcar- 
Castell et al. 2014). In this context, we elucidate the 
photosynthetic process from the standpoint of 
remote sensing, with primarily referring to the work 
of Porcar-Castell et al. (2014). This involves simplifying 
the entire process into the light transmission stage 
and carbon reaction stage, according to the timing of 
SIF emission (Figure 1).

In the light transmission stage, photosyntheti-
cally active radiation (PAR) that reaches the leaves 
is partially reflected and absorbed, while the 
remainder traverses through the canopy. Only the 
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PAR absorbed by photosynthetic pigments 
(APARchl) is utilized for photosynthesis, whereas 
the light absorbed by nonphotosynthetic pigments 
does not directly contribute to the photosynthesis 
process. In other words, chlorophyll concentration 
determines the APAR. The APARchl undergoes three 
distinct transformations during the photosynthetic 
process (Baker 2008; Maxwell and Johnson 2000; 
Porcar-Castell et al. 2014): (1) further contribution 
to photosynthesis, driving the carbon reaction pro-
cess; (2) heat dissipation (nonphotochemical 
quenching, NPQ), a byproduct of the xanthophyll 
cycle, is more pronounced when the photosynthetic 

rate decreases under environmental stresses; and (3) 
SIF, electromagnetic radiation emitted by plants 
during daylight in the red and near-infrared wave-
lengths (650–850 nm), is also a byproduct of photo-
synthesis. These three components exhibit 
a competitive relationship under normal conditions, 
signifying that an increase in one results in 
a decrease in the other two (Maxwell and Johnson  
2000). The canopy structure can impact photosynth-
esis at the canopy scale. In other words, factors such 
as leaf area index (LAI), clumping index (CI), and 
fraction of vegetation cover (FVC), among others, 
can influence the APAR.

Figure 1. The theoretical foundation of remotely sensed GPP estimation. Photosynthesis process at leaf scale was referenced from 
Porcar-Castell et al. (2014) and Patel et al. (2018), and remote sensing monitoring was referenced from Thenkabail et al. (2011). LAI: 
leaf area index; CI: clumping index; FVC: fractional vegetation cover; Ta: air temperature; VPD: vapor pressure deficit; LST: land surface 
temperature; SM: soil moisture; PAR: photosynthetically active radiation; APAR: absorbed photosynthetically active radiation; LUE: 
light use efficiency; SIF: solar-induced chlorophyll fluorescence; [N]: nitrogen content; [cab]: chlorophyll concentration; NADPH: 
nicotinamide adenine dinucleotide phosphate; ATP: Adenosine triphosphate; H+: electrons generated by water splitting; Jmax: 
maximum electron transport rate (μmol m−2 s−1); Vcmax: maximum carboxylation rate (μmol m−2 s−1); GPP: gross primary production. 
See more symbols and acronyms in Appendix A.
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In the carbon reaction stage, electrons separated 
from H2O driven by APAR are transported to NADP+, 
converting it to nicotinamide adenine dinucleotide 
phosphate (NADPH). Concurrently, adenosine tripho-
sphate (ATP) is generated from adenosine dipho-
sphate (ADP) through phosphorylation driven by the 
electron transport chain (Kaiser et al. 2015; 
Mohammad Mahdi and Babak 2012; Porcar-Castell 
et al. 2014). The maximum electron transport rate 
(Jmax) serves as the pivotal variable influencing the 
aforementioned reaction process (Long and 
Bernacchi 2003). Subsequently, CO2 is converted to 
carbohydrates through ATP and NADPH under the 
catalytic effect of the Rubisco enzyme, and the max-
imum carboxylation rate (Vcmax) stands out as the 
crucial variable in this process (Farquhar, von 
Caemmerer, and Berry 1980; Long and Bernacchi  
2003; Walker et al. 2014).

At the leaf scale, nitrogen, chlorophyll, and leaf 
water play crucial roles in photosynthesis, serving as 
carriers and raw materials for photosynthesis (Evans  
1989). Furthermore, environmental conditions such as 
PAR, temperature, and water, can impact the overall 
conversion process by modifying stomatal states or 
restricting enzyme activity (Ahmad et al. 2023).

2.2. Satellite based GPP estimation

RS primarily derives information from the reflectance 
at various wavelengths and the emission of SIF. The 
reflectance at specific wavelengths reveals distinct 
characteristics of the vegetation (Figure 1). For exam-
ple, the reflectance at visible wavelengths is closely 
linked to chlorophyll content (Rouse 1974), and that 
at 531 nm is associated with xanthophyll content 
(Gamon, Serrano, and Surfus 1997). Additionally, the 
reflectance at 650–800 nm correlates with SIF (Meroni 
et al. 2009), and that in the short-wave infrared (SWIR) 
range is related to water content (Fang et al. 2017; 
Sims and Gamon 2003). Key parameters (e.g. LAI and 
FPAR) related to the photosynthetic process can be 
derived from the reflectance at each specific 
wavelength.

Photosynthesis at the ecosystems scale of is 
referred to as GPP (Chapin, Matson, and Vitousek  
2011). Remotely sensed GPP is an approximate esti-
mation using one or more remotely sensed indicators 
or parameters related to the photosynthetic process 
(often simplified). Remotely sensed GPP estimation 

models consist of various parameters representing 
plant status (including morphological, physiological 
and biochemical characteristics) and environmental 
conditions. The models are based on the simplifica-
tion of the real photosynthetic process and some 
special assumptions.

Importantly, the majority of current RS-based para-
meters (especially reflectance-based parameters; e.g. 
LAI and FPAR) are still inadequate to characterize the 
photosynthetic process (especially for the carbon reac-
tion) and cannot accurately quantify actual photo-
synthesis (Zhang et al. 2014). Consequently, most RS- 
based estimates could be regarded as an approxima-
tion of potential GPP rather than realized GPP.

In Figure 1, the vegetation spectral features directly 
detectable for remote sensing are primarily concen-
trated in the light transmission stage. In contrast, 
information from the carbon reaction stage cannot 
directly reach remote sensing sensors. Consequently, 
remote sensing measures excel in characterizing key 
features of the light transmission stage but demon-
strate a relatively weak ability to characterize features 
of the carbon reaction stage.

3. Key parameters in remotely sensed GPP 
estimation

Based on the theoretical foundation of GPP estima-
tion (Figure 1), we have summarized five key para-
meters (Figure 2) obtainable from RS that are closely 
linked to the photosynthetic process in terrestrial 
ecosystems. While some parameters have not been 
utilized in existing GPP estimation, we believe they 
hold significance for accurate GPP estimation. These 
include: (1) structure parameters, such as LAI, CI, FVC 
and canopy stomatal conductance; (2) biophysical 
parameters, such as chlorophyll concentration, nitro-
gen content and leaf water content; (3) biochemical 
parameters, such as FPAR, LUE, Vcmax and Jmax; (4) 
proxy indicators, such as the byproduct of photo-
synthesis (e.g. SIF) and its proxies (e.g. NIRV (near- 
infrared reflectance of terrestrial vegetation; NIR ×  
NDVI) and NIRVP (NIRV × PAR)); and (5) photosynth-
esis-related environmental parameters, such as PAR, 
land surface temperature (LST), soil moisture content 
(SMC) and vapor pressure deficit (VPD).

Several studies have provided comprehensive 
reviews of their development; for example, Fang et al. 
(2019) reviewed the LAI, Tao et al. (2020) reviewed the 
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FPAR, and Mohammed et al. (2019) reviewed the SIF. 
Consequently, in this section, our main emphasis is on 
the advancement of remotely sensed inversion techni-
ques for biochemical parameters.

3.1. Vegetation structure parameters

Vegetation structure parameters encapsulate three- 
dimensional information to some extent, influencing 
the absorption of solar light within the canopy and 
subsequently modifying the amount of absorbed 
energy to leaves. Furthermore, the structure parameter 
is a pivotal variable for remotely sensed GPP estimation 
at the canopy scale and serves as a link to facilitate the 
conversion of scales between canopy and leaf. The key 
vegetation structure parameters encompass LAI, CI, 
FVC and canopy stomatal conductance.

LAI stands out as one of the most widely utilized 
structure parameters in remotely sensed GPP estima-
tion, serving as a direct or indirect input variable in 
different models. LAI is generally defined as one half 
of the total green leaf area per unit horizontal ground 
surface area (Chen and Black 1992). Significantly, LAI 
is further categorized into LAIsun (sunlit LAI) and 
LAIshade (shaded LAI) at the canopy level (Chen, 
Chen, and Ju 2007; Chen et al. 2012). RS-based 

estimation of LAI has undergone extensive explora-
tion over the past few decades, resulting in the gen-
eration of various LAI products (Chen 2018; Fang et al.  
2019). However, concerted efforts are needed to 
advance LAI estimation algorithms, offering higher 
temporal and spatial resolution, as well as the spatial 
continuity products (Fang et al. 2019).

CI emerges as a crucial structure parameter deli-
neating the spatial pattern of canopy leaf distribution 
(clump, random, regular, etc.). Technically, CI is 
defined as the ratio of the effective LAI (LAIe, (Chen, 
Menges, and Leblanc 2005)) to the real LAI (Chen  
2018; Chen, Menges, and Leblanc 2005; Nilson 1971), 
i.e. CI = LAIe/LAI. RS-based CI products predominantly 
rely on empirical relationship with normalized differ-
ence hotspot and darkspot index; future studies 
should explore physical retrieval methods to obtain 
high-resolution CI (Fang 2021). In addition, the esti-
mation of FVC is grounded in scaled maximum/mini-
mum VI values, with key challenges lying in 
determining the appropriate VI values for full vegeta-
tion cover and bare soil (Gao et al. 2020). Similarly, 
stomatal conductance is typically calculated based on 
VI (Yebra et al. 2013), LAI (Yan et al. 2012) or specific 
models (Wang and Leuning 1998).

3.2. Vegetation biophysical parameters

Chlorophyll, nitrogen and leaf water are pivotal com-
ponents of vegetation photosynthesis, and their con-
tent or concentration represents the potential ability 
of photosynthesis. Additionally, specific RS indices 
based on specific wavelengths play a role in charac-
terizing these features.

Chlorophyll concentration (Finegan et al. 2015) is 
closely related to the photosynthetic capability 
(Gitelson et al. 2006, 2014). Researchers have devel-
oped numerous chlorophyll-related indices based on 
the “red edge” wavelengths (680–760 nm) that are 
sensitive to variations in Cab, especially those near 
700 nm (Zhang et al. 2022). Numerous studies have 
evidenced the close relationship between nitrogen 
content and Cab (Berger et al. 2020), indicating that 
remotely sensed chlorophyll-related indices serve as 
a proxy for nitrogen content (Homolová et al. 2013). 
Currently, parametric regressions, radiative transfer 
modeling and machine learning-based approaches 
are the most widely adopted methods for nitrogen 
monitoring (Berger et al. 2020).

Figure 2. Five key parameters closely linked to the photosyn-
thetic process. The size and color of the arrows depict the 
degree of correlation between these parameters and remotely 
sensed GPP estimation. See more symbols and acronyms in 
Appendix A.
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The remotely sensed estimation of leaf water con-
tent, also referred to as equivalent water thickness 
(EWT), represents the water content per unit leaf 
area (Yilmaz, Hunt, and Jackson 2008). The remotely 
sensed monitoring of leaf water content primarily 
employs indices (Fang et al. 2017; Sims and Gamon  
2003) constructed using reflectance wavelengths 
related to vegetation water content (i.e. near- 
infrared (NIR) and SWIR). Additionally, vegetation 
optical depth (VOD) measures the attenuation of 
microwave radiation caused by vegetation and thus 
correlates with total vegetation water content 
(Jackson and Schmugge 1991). VOD can be retrieved 
from both passive and active microwave data, with 
numerous estimation models and productions of VOD 
available at L (1–2 GHz), C (4–8 GHz), X (8–12 GHz), 
and K (18–26.5 GHz) bands (Frappart et al. 2020). In 
recent years, studies have proposed using VOD to 
estimate GPP (Dou et al. 2023; Teubner et al. 2019).

3.3. Vegetation biochemical parameters

The vegetation biochemical parameter is crucial for 
characterizing the absorption and conversion of 
energy during the photosynthetic process, directly 
influencing GPP. In this section, we illustrated the 
development of some key biochemical parameters, 
namely, FPAR, LUE and Vcmax.

3.3.1. Fpar
FPAR is defined as the fraction of absorbed PAR to 
incident PAR (solar light within 400–700 nm), directly 
representing the capability to intercept and absorb 
solar energy. FPAR serves as the core parameter, indi-
cating the absorbed PAR of all plant organs, encom-
passing both the photosynthetically active portion 
(PAV) and the non-photosynthetically active portion 
of the vegetation (NPV) (Goward and Huemmrich  
1992; Xiao et al. 2004). The interpretation of remotely 
sensed FPAR estimation has become more compre-
hensive and specific, including canopy-scale FPAR 
(FPARcanopy, (Goward and Huemmrich 1992)), leaf- 
scale FPAR (FPARfoliage, (Braswell et al. 1996)), green 
leaf-scale FPAR (FPARgreen, (Hall et al. 1992)), and 
chlorophyll-scale FPAR (FPARchl, (Zhang et al. 2005)). 
Theoretically, the order of these four parameters, in 
terms of magnitude, would be FPARcanopy > 
FPARfoliage > FPARgreen > FPARchl. Additionally, Xiao 
et al. (2004) considered the FPAR of PAV (FPARPAV, 

also called FPARfoliage or FPARgreen) as the only effec-
tive part for photosynthesis; He et al. (2013) divided 
the total FPAR into sun leaves FPAR (FPARsun) and 
shade leaves FPAR (FPARshade). Currently, empirical 
methods and radiative transfer models are most com-
monly used approaches in RS-based FPAR estimation 
(Tan et al. 2013; Tao, Xiao, and Fan 2020). Notably, 
cloud contamination remains the primary influencing 
factor in most optical satellite-based FPAR estima-
tions. Therefore, microwave RS, which avoids the 
influence of clouds, provides a new approach for 
remotely sensed FPAR estimation (Wang et al. 2021).

3.3.2. Lue
LUE represents the efficiency of converting absorbed 
energy into organic carbon and serves as a core para-
meter in remotely sensed GPP estimation models, 
particularly in the LUE model. To date, LUE estimation 
has become more detailed. For example, Zhang et al. 
(2009) provided redefinitions for LUEchl and LUEcanopy 

according to FPARchl and FPARcanopy; He et al. (2013) 
further categorized the LUE into sunlit LUE (LUEsun) 
and shaded LUE (LUEshade).

RS can indirectly quantify LUE through the NPQ 
generated during the photosynthesis process (Damm 
et al. 2010). The photochemical reflectance index (PRI), 
utilizing the narrow reflectance wavelengths at 531 nm 
and 570 nm (PRI = (ρ531 – ρ570)/(ρ531 + ρ570)), effec-
tively characterizes xanthophyll cycle variation, linked 
to NPQ (Gamon, Peñuelas, and Field 1992). Numerous 
studies have shown the close connection between PRI 
and LUE (Barton and North 2001; Filella et al. 1996; 
Gamon, Serrano, and Surfus 1997; Garbulsky et al.  
2011). Rahman et al. (2004) extrapolated this relation-
ship from leaf to canopy scale and utilized it (calculated 
with the moderate resolution imaging spectroradi-
ometer (MODIS) bands 11 and 12) as a proxy for LUE 
in GPP estimation. Subsequent investigations explored 
the PRI-LUE relationship using different satellite 
sources, including MODIS (Drolet et al. 2005, 2008; 
Goerner, Reichstein, and Rambal 2009; Guarini et al.  
2014; Hall, Hilker, and Coops 2011; Middleton et al.  
2016; Moreno et al. 2012; Ulsig et al. 2017), CHRIS/ 
PROBA hyperspectral (Hilker et al. 2011; Stagakis et al.  
2014), and Hyperion/EO-1 hyperspectral (Hernández- 
Clemente et al. 2016). Indices derived from PRI are also 
employed to estimate LUE (Nakaji et al. 2007; Rossini 
et al. 2010). Additionally, SIF is utilized for LUE estima-
tion. Damm et al. (2010) demonstrated that SIF’s 
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sufficiency as a proxy for LUE and its enhanced perfor-
mance when combined with PRI (Cheng et al. 2013), 
leading to significantly improved GPP estimation accu-
racy. Similar findings are reported by Kováč et al. 
(2022), enhancing the GPP estimation model perfor-
mance in both evergreen and deciduous forests using 
a combination of normalized difference vegetation 
index (NDVI, see calculation in Appendix B), PRI and SIF.

3.3.3. Vcmax and Jmax

The maximum carboxylation rate (Vcmax) and the max-
imum electron transport rate (Jmax) are key parameters 
in most models that characterize the interaction of 
carbon, energy and moisture between land and atmo-
sphere. A robust correlation exists between Vcmax and 
Jmax (Alton 2017; Beerling and Quick 1995; Domingues 
et al. 2010; Walker et al. 2014). For example, Walker 
et al. (2014) established a linear relationship between 
ln(Vcmax) and ln(Jmax). Additionally, recent studies have 
validated the calculation of leaf-scale Vcmax using 
reflectance data (Dillen et al. 2012; Serbin et al. 2012,  
2015). These studies typically utilize near-ground 
reflectance observations (e.g. 400–2500 nm) and estab-
lish the relationship between reflectance and Vcmax 

through partial least squares regression (PLSR). Serbin 
et al. (2015) also illustrated the close relationship 
between Vcmax and visible (400–700 nm), NIR (1150– 
1300 nm) and SWIR (1300–2500 nm). Furthermore, Fu 
et al. (2020) demonstrated that reflectance data within 
400–900 nm (as predicting factors) can delineate 
a spatial pattern of canopy-scale Vcmax and Jmax using 
a dataset based on a hyperspectral camera.

Concurrently, researchers have identified a strong 
linear or nonlinear relationship between Vcmax and the 
vegetation index (e.g. NDVI and enhanced vegetation 
index (EVI)) when accounting for seasonal variation in 
plants (i.e. dividing the growing season into two 
stages according to the DOY of the peak) (Muraoka 
et al. 2013; Zhou et al. 2014). At the canopy scale, 
Alton (2017) estimated the Vcmax of the top canopy 
using the MODIS LAI and the medium resolution ima-
ging spectrometer (MERIS) terrestrial chlorophyll 
index (MTCI) (Vcmax ∼ MTCI/f (LAI)) and reported the 
linear relationship between Jmax and chlorophyll 
(Jmax = a f (MTCI) + b); these findings have since 
been globally applied (Alton 2018).

The GPP observations of flux towers also provide 
a method to estimate Vcmax. Zheng et al. (2017) devel-
oped a method that combines eddy-covariance 

observations and photo response curves to derive 
Vcmax. Xie et al. (2018) proposed an assimilation 
method that integrates MODIS LAI/FPAR, flux obser-
vations, and coupled models (BEPS + photo response 
curves) to calculate Vcmax with high temporal resolu-
tion. Additionally, SIF offers a novel approach to esti-
mate Vcmax. He et al. (2019) generated a global Vcmax 

product covering terrestrial ecosystems using an 
assimilation method based on SIF. Chen et al. (2022) 
analyzed the spatial pattern of the mean Vcmax during 
the growing season, estimated by integrating GOME- 
2 SIF, MERIS leaf chlorophyll content, and TROPOMI 
SIF. Furthermore, other studies optimized the Vcmax of 
the SCOPE model (van der Tol et al. 2009) through 
observed SIF (Verma et al. 2017; Wagle et al. 2016; 
Wang and Xiao 2021; Zhang et al. 2014).

3.4. Proxy parameters of photosynthesis

SIF is highly representative of GPP across diverse spatio-
temporal scales (Li et al. 2018; Sun et al. 2017) and is 
considered as the most significant breakthrough in the 
field of remotely sensed GPP estimation in recent years, 
providing an unprecedented opportunity for research 
on vegetation photosynthesis, especially under natural 
conditions. SIF is directly related to the photochemical 
process of vegetation and holds clear advantages in the 
theory of plant physiology over traditional vegetation 
indices (Meroni et al. 2009; Zarco-Tejada et al. 2013), 
such as NDVI and EVI. Specifically, the traditional vegeta-
tion index reflects the variation in canopy greenness, 
whereas SIF reflects the variation in photosynthetic phy-
siological status. Therefore, SIF outperforms the tradi-
tional VI in reflecting the rapid response of GPP to 
environmental influencing factors. However, the rela-
tionship between SIF and photosynthesis is nonlinear 
because photosynthesis saturates at high light, whereas 
SIF exhibits an increasing tendency (Gu et al. 2019).

SIF is a spectral signal driven by solar light emitted 
by vegetation and ranges from 650 nm to 800 nm, 
with two peaks at 685–690 nm and 730–740 nm 
(Meroni et al. 2009; Mohammed et al. 2019; Porcar- 
Castell et al. 2014). Currently, many satellites can 
monitor SIF (Du et al. 2018; Frankenberg et al. 2014; 
Joiner et al. 2012, 2013, 2016; Köhler, Guanter, and 
Joiner 2015; Köhler et al. 2018; Li and Xiao 2019), 
including ERS-2 (GOME), ENVISAT (SCIAMACHY), 
MetOp-A/B (GOME-2), GOSAT (FTS), OCO-2/3, Tan 
Sat, GF-5, FY-3D and Sentinel-5 TROPOMI. The signals 
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received by the sensors encompass both the reflec-
tance and the SIF. Assuming that both surface reflec-
tance and SIF emission follow Lambert’s cosine law, 
the radiance upwelling from vegetation (L) at ground 
level can be described as L(λ) = r(λ)E(λ)/π + SIF(λ), 
where λ is the wavelength, r is the reflectance (free 
of the emission component), and E is the total solar 
irradiance incident on the target (Meroni et al. 2010).

One of main retrieval algorithms of SIF is based on 
the Fraunhofer Line Discrimination (FLD) algorithm 
(Meroni and Colombo 2006). The series of methods 
includes standard FLD (Plascyk and Gabriel 1975), 
cFLD (GomezChova et al. 2006), iFLD (Alonso et al.  
2008), pFLD (X. Liu and Liu 2015) and the spectral 
fitting method (Cogliati et al. 2015). Other widely 
used approaches include RS spectral index 
(Dobrowski et al. 2005; Perez-Priego et al. 2005; Zarco- 
Tejada et al. 2003), principal component analysis 
(Joiner et al. 2013, 2016; X. Liu and Liu 2015; Liu 
et al. 2015), singular value decomposition (Du et al.  
2018; Frankenberg et al. 2014; Guanter et al. 2012,  
2013), and spectral fitting methods (Celesti et al.  
2018). Additionally, the Soil-Canopy Observation of 
Photosynthesis and Energy (SCOPE) balance model 
has been widely used in SIF estimation (Damm et al.  
2015; van der Tol et al. 2016; P. Yang et al. 2021; 
Zhang et al. 2014). In the new version of SCOPE 
(SCOPE 2.0), the radiative transfer of fluorescence 
has been improved (van der Tol et al. 2019).

In addition, it has been demonstrated that NIRV 

(Badgley, Field Christopher, and Berry Joseph 2017), 
NIRVP (Dechant et al. 2022), and kNDVI (Camps-Valls 
et al. 2021) are closely related to SIF, concurrently 
having physiological significance. Therefore, these 
indices have been considered effective proxies for SIF 
and applied to estimate GPP (Khan et al. 2022; Liu et al.  
2020; Wang et al. 2021). It is worth noting that relation-
ships between these VIs and SIF/GPP are usually non- 
linear due to various factors (Liu et al. 2022; Wu et al.  
2022). SIF is an instantaneous representation of canopy 
status, while other VIs are relative “stable.” For exam-
ple, in a cloud condition, SIF could be very low, while 
kNDVI does not change.

3.5. Environmental factors

Environmental factors (radiation, temperature and 
water) primarily influence GPP by modulating the 
activity of stomatal conductance or (and) various 

enzymes related to photosynthesis (Kaiser et al.  
2015). These parameters are traditionally derived 
from meteorological observations and reanalysis 
data, which have limitations in spatiotemporal con-
tinuity and spatial resolution. However, some envir-
onmental parameters derived from satellite data have 
mitigated these shortcomings to some extent, includ-
ing PAR, LST, SMC and VPD.

PAR is part of solar light, generally defined as light 
within 400–700 nm, and serves as the energy source 
of photosynthesis (McCree 1971). The RS-based esti-
mation of PAR relies on physical models or empirical 
relationships. Numerous PAR products have been 
developed, with the AVHRR and MODIS global PAR 
products at 1 ~ 8 km resolution being among the 
most widely used (Huang et al. 2019; Liang et al.  
2019; Zhang and Liang 2020). For example, using 
a simplified radiation transfer model, Van Laake and 
Sanchez-Azofeifa (2004) estimated PAR with MODIS 
data. Similarly, based on Look-Up Tables, Liang et al. 
(2006), Ronggao et al. (2008), and Wang et al. (2020) 
independently estimated PAR using MODIS data. 
Additionally, GLASS utilizes multi-source RS data to 
provide global-scale PAR products (Liang et al. 2013).

LST is a crucial parameter in the physical processes 
of surface energy and water balance from local to 
global scales (Li et al. 2013). RS serves as a reliable 
tool for the global estimation of LST, ensuring spatio-
temporal continuity. Currently, researchers have 
devised numerous LST estimation methods utilizing 
multisource data associated with thermal infrared 
(Walker et al. 2006) and mid-infrared (MIR) wave-
lengths (Cheng et al. 2020; Li et al. 2013).

Significant progress has been made in RS-based 
SMC estimation. Methods relying on optical satellites 
primarily utilize the SWIR wavelength, associated with 
the light absorbing feature of water. Furthermore, 
a distinct relationship among SMC, NDVI, and LST 
has been demonstrated. Specifically, SMC can be 
characterized through a function combining NDVI 
and LST (Carlson 2007).

Microwave remote sensing offers an alternative for 
SMC estimation, leveraging the significant contrast in 
dielectric properties between liquid water and dry soil 
(Liang et al. 2020; Scholze et al. 2017; Srivastava 2017). 
For example, Shoshany et al. (2000) estimated SMC 
using the normalized backscatter moisture index, cal-
culated from the backscatter coefficients at two dif-
ferent times. In addition, researchers have developed 
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RS-based inversion methods for VPD using various 
satellite data sources, including AVHRR (Prince et al.  
1998), MODIS (Hashimoto et al. 2008; Zhang et al.  
2014), and Advanced Microwave Scanning 
Radiometer (Du et al. 2018).

4. Methods of GPP estimation

All existing RS-based GPP estimation methods can be 
categorized into four categories (Figure 3): statistical 
models, LUE models, process models integrated with 
RS parameters and machine learning approaches. 
Despite Xiao et al. (2019) regards the SIF-based 
model as a distinct category, these SIF-based models 
can be considered as input of the four categories 
mentioned earlier, particularly from the perspective 
of applying key parameters.

4.1. Statistical models based on RS index

The statistical model represents the earliest and most 
straightforward approach for GPP estimation, primar-
ily relying on the correlation between the RS indices 
and GPP. Historically, the statistical model utilized the 

aboveground biomass or net primary productivity 
(NPP) in constructing the relationships with RS indices 
(Box, Holben, and Kalb 1989; Goward, Tucker, and Dye  
1985; Paruelo et al. 1997, 2000). The statistical model 
underwent rapid developed with the establishment 
and expansion of flux observation network. Typically, 
a single index is employed in a statistical model, 
encompassing various VIs (Huang, Xiao, and Ma  
2019; Huete et al. 2008; Rahman et al. 2005; Shi et al.  
2017; Thanyapraneedkul et al. 2012), chlorophyll 
index (e.g. MTCI) (Boyd et al. 2012; Harris and Dash  
2010), LAI (Hashimoto et al. 2012; Street et al. 2007), 
and FPAR (Hashimoto et al. 2012; Jung et al. 2008). For 
example, annual GPP = 615 × annual mean LAI − 376 
(Hashimoto et al. 2012); GPP = a + ln(CGS-FPAR) + b, 
where CGS-FPAR is cumulative growing season 
FAPAR (Jung et al. 2008).

As mentioned above, SIF exhibits a strong repre-
sentation of GPP across diverse spatiotemporal scales, 
purportedly surpassing traditional VIs (Li et al. 2018; 
Sun et al. 2017). It is utilized for GPP estimation 
through a statistical model based on a linear relation-
ship (Cheng et al. 2013; Guanter et al. 2014; Liu, Guan, 
and Liu 2017; Rossini et al. 2010; Z. Zhang, Zhang, 

Figure 3. The development of remotely sensed GPP estimation. f() is linear or nonlinear equation, g() and k() are conceptual functions 
that represent different groups of models. The arrows (e.g. ANN→SVM→RF) only show the chronological order of application, without 
further meaning in model performance.
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Porcar-Castell, et al. 2020). For instance, Guanter et al. 
(2014) documented a robust linear relationship (GPP  
= -0.10 + 3.72 × SIF) between in situ GPP observations 
and SIF using flux towers in America and western 
Europe. However, certain studies identified 
a nonlinear relationship between SIF and GPP 
(Damm et al. 2015; Li, Xiao, and He 2018), illustrating 
that the nonlinear SIF model in their study area exhib-
ited superior estimation accuracy compared to the 
linear model (Li, Xiao, and He 2018). Biome character-
istics and environmental stresses serve as the primary 
drivers of spatially-heterogeneous SIF-GPP relation-
ships (Song, Wang, and Wang 2021).

The accuracy of GPP estimation in a statistical model 
is influenced not only by the intrinsic characteristics of 
the index (e.g. the saturation effect of NDVI in dense 
vegetation) but also by the growth patterns of plants 
(e.g. phenology) and environment conditions in 
a given geographic area (e.g. soil background). 
Statistical models face limitations in capturing the 
complexities of photosynthesis due to their reliance 
on a single index (or a small number of indices). 
Therefore, despite exhibiting relatively high regional 
precision, they may fall short in meeting certain 
requirements across large regions. Hence, some stu-
dies have incorporated additional factors into their 
statistical models to enhance the accuracy of GPP esti-
mation, including radiation, temperature, and moisture 
(Boyd et al. 2012; Gitelson et al. 2006; Huang, Xiao, and 
Ma 2019; Peng, Gitelson, and Sakamoto 2013; Sims 
et al. 2008; Wu, Chen, and Huang 2011).

4.2. LUE model

The LUE model is a highly utilized parametric model 
for estimating terrestrial GPP at both regional and 
global scales. This model simplifies the actual photo-
synthesis process, wherein the absorbed PAR is par-
tially converted to organic matter, and this conversion 
rate is defined as LUE (Monteith 1972). The LUE model 
formulates GPP as the product of PAR, FPAR, maxi-
mum LUE (LUEmax), and environmental stress (e.g. 
temperature and moisture, f (T, W)):

GPP = PAR × FPAR × LUEmax × f (T, W) (1)

Briefly, the LUE model consists of two parts: (1) FPAR and 
LUEmax, which represent the vegetation biochemical 
characteristics, and (2) PAR and diverse environmental 

stress parameters. The optimization of PAR, FPAR and 
LUEmax constitutes the predominant pathway in the 
development of the LUE model (Figure 4). Over decades, 
numerous models have been developed within the fra-
mework of the LUE model, including CASA (Potter et al.  
1993), MODIS GPP (S. Running and Zhao 2015; 
S. W. Running et al. 1994), GLO-PEM (Prince and 
Goward 1995), TURC (Ruimy, Dedieu, and Saugier  
1996), C-Fix (Veroustraete, Sabbe, and Eerens 2002), 
VPM (Xiao, Hollinger, et al. 2004; Xiao, Zhang, Braswell, 
et al. 2004), EC-LUE (Yuan et al. 2007), VPRM (Mahadevan 
et al. 2008), CFlux (King, Turner, and Ritts 2011), TL-LUE 
(He et al. 2013), CI-LUE (Wang et al. 2015), CI-EF (Almeida 
et al. 2018), and TS-LUE (Huang et al. 2022).

The physical meanings of FPAR used in the LUE 
model span from the canopy level to the chlorophyll 
level (see Section 3.3.1). Many existing LUE models 
incorporate the concept of canopy FPAR, computed 
using NDVI or the FPAR product of MODIS (calculated 
by LAI), as seen in models like CASA, MODIS-LUE, C-Fix, 
CFlux and EC-LUE. Xiao et al. (2004) employed FPARPAV 

in the VPM and VPRM models, while TL-LUE model 
used FPARsun and FPARshade (He et al. 2013). However, 
researchers have noticed that the PAR absorbed by 
green leaves (FPARPAV) is not entirely utilized in photo-
synthesis, whereas the PAR absorbed by chlorophyll 
(FPARchl) represents the total energy supplied for 
photosynthesis (Zhang et al. 2005). Compared to 
MODIS FPAR, FPARchl significantly enhances the accu-
racy of GPP estimation (Zhang et al. 2014). Similarly, Liu 
et al. (2017b) used EVI and NDVI to characterize FPARchl 

with a linear transformation method and discovered its 
superior performance in estimating GPP compared to 
FPARcanopy. Each FPAR product exhibits diverse ability 
in representing vegetation photosynthesis (Z. Zhang, 
Zhang, Zhang, et al. 2020).

LUEmax is the idealized conversion rate for trans-
forming absorbed light energy into organic matter 
under optimal conditions. However, the actual LUE is 
lower than LUEmax due to the environmental stress 
from factors like temperature or moisture. 
Consequently, the actual LUE is often characterized 
as the interplay of LUEmax and environmental para-
meters. Existing definition of LUEmax can be categor-
ized into three types: (1) fixed value, exemplified by 
C-Fix and EC-LUE models; (2) fixed value adjusted for 
different land covers, such as MODIS-LUE and VPRM; 
and (3) dynamic value, such as the CFlux and CI-LUE 
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models, which adapt LUEmax based on cloudiness, the 
TS-LUE model calculates LUEmax for different growing 
stages by using LAI (Huang et al. 2022), and some 
models dynamically adjust LUEmax based on EVI and 
albedo (H. Wang et al. 2010). Considering the non-
linear response of vegetation photosynthesis to solar 
radiation, Xie et al. (2023) proposed a PAR-regulated 
dynamic LUEmax.

LUEmax transitions gradually from a constant to 
dynamic value from the developmental perspective. 
The constant LUEmax was a significant source of uncer-
tainty in early terrestrial GPP estimation models (Turner 
et al. 2005; Wang et al. 2010) due to its failure to 
account for spatial difference in vegetation LUE 
(Turner et al. 2002). Models that consider such spatial 
differences notably enhance GPP estimation accuracy 
(Madani et al. 2014; Wang et al. 2010). Dynamic LUEmax 

not only enhances accuracy but also aligns more clo-
sely with the real physiological laws of vegetation. 
Additionally, RS is increasingly utilized for LUEmax esti-
mation. Wang et al. (2010) utilized the statistical rela-
tionship between flux observations and the maximum 
EVI and minimum albedo to derive spatially heteroge-
neous LUEmax. Huang et al. (2022a) designed an LAI- 
based LUEmax that varies with growth stages.

Most LUE models incorporate temperature and 
moisture as environmental stress factors. 
Temperature stress factors in LUE models encompass 
daily minimum temperature (Tmin), daily maximum 
temperature (Tmax), daily average temperature 

(Tmean) and optimum temperature for photosynth-
esis (Topt). The temperature stress parameter results 
from transforming these factors using linear or non-
linear methods, with values ranges from 0 to 1. Each 
LUE model employs a unique approach to calculate 
and apply temperature stress parameters, and the 
utilization of temperature indices derived from RS is 
limited in LUE models. Moisture-related parameters 
in LUE model encompass atmosphere moisture (e.g. 
VPD, RH), soil moisture (e.g. SWC, SM) and vegetation 
moisture (e.g. LSWI, ET and PM). Moisture stress 
parameters such as LSWI and ET, calculable using 
RS, a are often favored in LUE models (Yuan et al.  
2007; Zheng et al. 2018). In addition, the VPM and 
CFlux models consider phenology and tree age, 
respectively. C-Fix and adjusted EC-LUE model 
(Zheng et al. 2020) even account for the content of 
CO2. Notably, the content of CO2, a crucial driver of 
photosynthesis, is often overlooked in most LUE 
models (Bao et al. 2022).

In summary, due to advancements in RS and the 
establishment of flux tower observation networks, the 
LUE model has experienced rapid development (Pei 
et al. 2022). Concurrently, RS contributes significantly 
to the input parameters of the LUE model (Hilker et al.  
2008). However, considerable uncertainties persist in 
GPP estimation using the LUE model (Yuan et al.  
2014), primarily attributed to the precision of input 
variables, the scale effect, and the quality of validation 
data (Pei et al. 2022).

Figure 4. The development of each core parameter in the LUE model.
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4.3. Process model combined with remote sensing 
parameters

The process model, often termed the “physical 
model,” simulates the exchange of carbon, water 
and energy in terrestrial ecosystem by integrating 
meteorological, vegetation structure, physiological 
status and soil data. Specifically, it delineates the 
processes of photosynthesis, respiration, evapotran-
spiration, and microbial decomposition, relying on 
assumptions and prior knowledge of vegetation, 
including aspects of plant developmental physiology 
in diverse ecosystems. Numerous process models 
exist, with the photosynthetic module standing as 
the focal point for terrestrial GPP estimation. 
Predominantly, process models draw upon the 
Farquhar photosynthesis model (Farquhar, von 
Caemmerer, and Berry 1980). This model utilizes the 
assimilation rate of CO2 to characterize the photosyn-
thetic rate of vegetation and incorporates parameters 
such as Vcmax and Jmax. Initially, models relied heavily 
on meteorological data as input variables, but the 
advancement of RS introduced a novel option for 
process models. Mainstream process models, includ-
ing SIB2 (Sellers, Randall, et al. 1996; Sellers, Tucker, 
et al. 1996), BEPS (Liu et al. 1997), SCOPE (van der Tol 
et al. 2009), and BESS (Ryu et al. 2011), incorporate RS 
and notably focus on developing modules for phenol-
ogy and photosynthesis.

For phenological module optimization, SIB2 incor-
porated adjusted NDVI data to capture phenology 
information, building upon the foundation of SIB1 
(Sellers et al. 1986). Subsequent advancements led to 
the development of SIB2.5 (Baker et al. 2003) and SIB3 
(Baker et al. 2008). Similarly, You et al. (2019) con-
structed a model that substituted the meteorology- 
based phenological module in Biome-BGC (Running 
and Gower 1991; Running and Hunt 1993) with RS data.

For photosynthetic module optimization, BEPS 
model transferred the Farquhar photosynthesis mod-
ule, a part of the FOREST-BGC model (Running and 
Coughlan 1988), to the canopy scale, separately simu-
lating photosynthesis for sun leaves and shade leaves. 
Specifically, GPP in the BEPS model is expressed by 
a function incorporating variables such as LAI, canopy 
conductance, and mesophyll conductance (associated 
with Vcmax) as inputs. The BESS model integrates pro-
cesses including atmosphere and canopy radiative 
transfer, photosynthesis, and evapotranspiration. It 

utilizes multisource satellite data to characterize atmo-
sphere and ground conditions, enabling the quantifi-
cation of global GPP and evapotranspiration. The BESS 
model employs a double-leaf canopy radiative transfer 
model to differentiate FPAR between sun leaves and 
shade leaves. It calculates photosynthesis yields in sun 
and shade leaves based on the photosynthesis model 
of C3 (Collatz et al. 1991; Farquhar, von Caemmerer, 
and Berry 1980) and C4 (Collatz, Ribas-Carbo, and Berry  
1992). Furthermore, the BESS model optimizes key 
parameters Vcmax and Jmax, making them seasonally 
dynamic values correlated with LAI (Ryu et al. 2011). 
In the updated BESSv2.0, a newly developed ecosys-
tem respiration module and an optimality-based Vcmax 

model were integrated (Li et al. 2023). In the Vcmax 

module, BESSv2.0 adoptes a coordination theory and 
a least-cost hypothesis to estimate Vcmax, departing 
from the plant functional type-dependent look-up 
table approach (Jiang et al. 2020).

SIF also emerges as a viable option for optimizing 
Vcmax. Several studies have adjusted Vcmax in SCOPE by 
incorporating observed SIF (Verma et al. 2017; Wagle 
et al. 2016; Wang and Xiao 2021; Zhang et al. 2014). 
Moreover, other process models have assimilated SIF 
to enhance the accuracy of photosynthesis simulation 
(Bacour et al. 2019; Lee et al. 2015; Parazoo et al. 2014; 
Qiu et al. 2018).

4.4. Machine learning approaches

In recent times, propelled by advancements in RS, 
machine learning (ML) algorithms, and the prolifera-
tion of flux observation networks, an increasing num-
ber of studies have embraced ML for GPP estimation. 
This is particularly notable in the context of extrapo-
lating in situ flux observations to regional and global 
scales. ML approaches have demonstrated their effi-
cacy in mitigating the uncertainties associated with 
GPP estimation (Tramontana et al. 2015; Yu, Zhang, 
and Sun 2021). Their accuracy is generally equal to or 
better than that of traditional models (Ichii et al. 2017; 
Zhang et al. 2007). In addition, ML approaches, even 
when exclusively driven by RS data, exhibit compar-
ably high estimation accuracy (Tramontana et al.  
2016). Various algorithms have been employed for 
GPP estimation, including artificial neural networks 
(ANN) (Papale and Valentini 2003), support vector 
machines (SVM) (Yang et al. 2007), support vector 
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regression (SVR) (Ueyama et al. 2013), piecewise 
regression models (PRM) (Wylie et al. 2007; Xiao 
et al. 2008; Zhang et al. 2007), model tree ensembles 
(MTE) (Jung et al. 2011; Liang et al. 2017), and random 
forest (RF) (Bodesheim et al. 2018; Wei et al. 2017). 
Based on RS data and ML approaches, researchers 
have developed models such as FLUXCOM (Jung 
et al. 2020; Tramontana et al. 2016) and ETES (Zhu, 
Zhao, and Xie 2023).

In ML approaches driven by RS inputs, NDVI/EVI, 
FPAR, LAI, and land cover (or vegetation types) 
emerge as the most widely employed variables, 
while SIF, phenology, NDWI, and LST find application 
in select models (Table 1). Notably, ML algorithms 
have been extended to calculate key parameters 
within the LUE model (Wei et al. 2017) and process 
model (Wolanin et al. 2019; Yuan et al. 2022). The 
efficacy of machine learning approaches in estimating 
GPP is intricately linked to the quantity and quality of 
reference data. Despite their proficiency in achieving 
high estimation accuracy, ML methods offer limited 
insights into the physiological mechanism of photo-
synthesis. Moreover, the selection of RS parameters 
for ML approaches remains contingent upon prior 
knowledge and the statistical relationships estab-
lished between factors and GPP.

5. Challenges and prospects of remotely sensed 
GPP estimation

5.1. Challenges

Understanding vegetation photosynthesis has 
advanced significantly in recent decades. Many RS- 
based GPP estimation methods have been created, 
and the corresponding products cover regional or 
global areas (Zhang and Ye 2021). Despite these 

strides, GPP estimation still grapples with substantial 
uncertainties (Anav et al. 2015; Schaefer et al. 2012; 
Zhang and Ye 2021). These uncertainties stem from 
various sources, with a primary focus on four key 
aspects: the quality of ground observations, spatio-
temporal mismatch, accuracy of key parameters, and 
the reliability of models.

5.1.1. Quality of ground observations
Ground observations serve as the foundation for con-
structing models, optimizing parameters and validat-
ing the accuracy of GPP estimation. Measuring GPP 
directly at the ecosystem scale involves indirect assess-
ments the net exchange between the atmosphere and 
terrestrial ecosystem, facilitated by over 600 eddy- 
covariance flux towers globally. The openly accessible 
FLUXNET 2015 dataset comprises 212 sites (https:// 
fluxnet.fluxdata.org/data/fluxnet2015-dataset/), pro-
cessed with stringent quality control and standardized 
preprocessing (Pastorello et al. 2020). However, this 
processing methodology introduces an error ranging 
from 10% to 30% (Reichstein et al. 2005; Schaefer et al.  
2012). Recent studies emphasize the strong influence 
of non-thermal factors on nighttime vegetation 
respiration (Bruhn et al. 2022). This error, especially in 
temperature-based respiration estimation methods, 
may propagate into GPP estimation, particularly given 
the challenge of accurately measuring daytime respira-
tion. The existing flux observation sites are still insuffi-
cient in terms of representing various vegetation types 
and achieving distribution uniformity. Furthermore, 
variations in the quantity, quality, and reference indi-
cators (e.g. FLUXNET 2015 includes multiple reference 
GPPs, such as GPP_VUT_NT_MEAN and GPP_VUT 
_DT_MEAN) among specific sites used in different stu-
dies contribute to reduced comparability among var-
ious estimation models.

Table 1. The remote sensing data used in machine learning approaches for GPP estimation.
Methods RS data References

ANN NOAA-AVHRR NDVI, landcover Papale and Valentini (2003)
SVM MODIS LST, EVI/FPAR, SWR and landcover Yang et al. (2007)
SVR MODIS NDVI, EVI, GR, LAI, and daytime LST Ueyama et al. (2013)
PRM SPOT VEGETATION NDVI and NDVI-based phenometrics Wylie et al. (2007) and Zhang et al. (2007)

MOD09A1, MODIS LST, EVI and LAI/FPAR Xiao et al. (2008)
MTE AVHRR, SeaWiFS and MERIS FPAR and FPAR-based indictors Jung et al. (2011)

FPAR (Z. Zhu et al. 2013) based indictors Liang et al. (2017)
RF SeaWiFS-FPAR, MODIS EVI and landcover Wei et al. (2017)

MODIS NDVI, EVI, NDWI (B.-C. Gao 1996), FPAR and LST Bodesheim et al. (2018)
GOSIF, NIRV (MCD43C4) and landcover Bai et al. (2021)

Non-remotely sensed parameters are not listed. ANN: artificial neural networks; SVM: support vector machines; SVR: support vector 
regression; PRM: piecewise regression models; MTE: model tree ensembles; RF: random forest
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5.1.2. Spatiotemporal mismatch
The uncertainty of GPP estimation due to spatiotem-
poral mismatch can be delineated into three key 
issues. Firstly, varying spatiotemporal scales of input 
variables, especially in models incorporating numer-
ous parameters, pose a challenge. For example, 
a significant spatial scale disparity exists between RS 
data and meteorological data in the LUE model. 
Secondly, a mismatch arises between training and 
final simulation, exemplified by studies translating 
laboratory leaf-scale results (e.g. the relationship 
between RS indices and GPP) to canopy and land-
scape scales. Generally, the leaf-scale spectral rela-
tionships are not directly applicable at larger scales 
due to influence from canopy structure and spatial 
variations (Z. Zhang, Zhang, Porcar-Castell, et al. 2020; 
Zhang et al. 2016). The straightforward application of 
small-scale parameters to a larger scale introduces 
errors in GPP estimation. Thirdly, a mismatch occurs 
between simulation results and reference data. The 
footprint of a flux tower spatially may not perfectly 
align with one or several pixels of satellite data. The 
flux tower’s footprint is influenced by tower height, 
wind speed, wind direction, surface roughness and 
atmospheric stability (Schmid 2002). The typical foot-
print of a flux tower longitudinally extends from 100 
to 2000 m, while the spatial resolution of RS often 
ranges from 250 to 8000 m (Baldocchi et al. 2001). In 
numerous scenarios, the flux tower’s footprint does 
not align well with RS pixels, especially in areas with 
complex topography and land cover.

5.1.3. Quality of remotely sensed parameters
As crucial inputs of GPP estimation models, the qual-
ity and spatiotemporal resolution of remotely sensed 
parameters introduce significant uncertainties in GPP 
calculations (Zhao, Running, and Nemani 2006). The 
precision of widely used parameters such as VI, LAI, 
FPAR, LUE and SIF remains limited. For example, the 
precision of satellite LAI products is limited, RS- 
derived LAI products exhibit constrained precision, 
with median accuracy indicators approximately R2 =  
0.62 across all biome types (Fang et al. 2019). Despite 
evolving with an enhanced understanding of photo-
synthesis, bringing these parameters closer to the real 
photosynthesis process, their detailed accuracy 
requires further improvement. For instance, FPAR is 
divided into FPARcanopy, FPARleaf and FPARchl, LUE is 
divided into LUEsun and LUEshade, and PAR is divided 

into direct PAR (PARdirect) and diffuse PAR (PARdiffuse) 
(Figure 4). While existing parameters were designed 
to characterize the light transmission stage (e.g. FPAR, 
SIF and PRI as indicators of radiation absorption and 
transmission), parameters delineating the biochem-
ical process, such as Vcmax and Jmax, are currently 
lacking. Consequently, further research on remotely 
sensed indices that effectively represent the real GPP 
is imperative.

5.1.4. The ability to represent photosynthesis
Existing GPP estimation models simplify the intricate 
photosynthetic process to some degree based on 
different assumptions. Spatial differences in terrestrial 
ecosystems and the complexity of photosynthesis 
undermine the efficacy of these assumptions, result-
ing in substantial errors in GPP estimation. For 
instance, the early LUE model assumed a constant 
theoretical LUEmax. However, recent studies increas-
ingly view LUEmax as a spatiotemporally dynamic 
value, and different assumptions introduce varied 
environmental stress factors in the LUE model (Pei 
et al. 2022). SIF-based models also face numerous 
challenges due to the unstable relationship between 
SIF and GPP, influenced by the spatiotemporal scale, 
environmental stress, and vegetation type (Xiao et al.  
2019). Meanwhile, intricate interplay existed among 
photosynthesis, thermal dissipation, and SIF (Maxwell 
and Johnson 2000), which contributes to the unclear 
mechanistic connection between GPP and SIF (Porcar- 
Castell et al. 2014).A comparable situation is observed 
between LUE and PRI.

5.2. Prospects

5.2.1. Comprehensive observations
Comprehensive observation primarily involves the 
collaborative observation of ground multisensors 
and the “Space-Air-Ground” multiscale integrated 
observation (Figure 5). Researchers have designed 
the Spectral Network (Specnet) system (Gamon  
2015; Gamon et al. 2006; Zhang et al. 2021), effectively 
combining optical RS and flux observations to provide 
high-quality collaborative observations of the surface 
spectrum and carbon fluxes. This collaborative obser-
vation facilitates a deeper understanding of the rela-
tionship between GPP and spectral characteristics, 
offering an opportunity to construct a new RS index 
that better describes the photosynthetic process. 
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Meanwhile, this integrated observation approach 
mitigates the spatiotemporal mismatch discussed 
earlier. The “Space-Air-Ground” integrated observa-
tion system proves to be an effective solution for 
addressing the scale effect between satellite and 
ground observations.

Ground observations constitute a pivotal compo-
nent of this integrated observation system. Further 
research is imperative in three key areas: (1) optimiza-
tion of processing algorithms, construction of 
a standardized dataset based on the existing 
Specnet data, and establishment of a normalized 
high-quality dataset of reference GPP (providing stan-
dardized training and testing datasets). (2) Facilitation 
of academic cooperation and the sharing of inte-
grated observation data, coupled with an expansion 
of ground site distribution, especially in regions with 
typical vegetation. (3) Diversification of ground obser-
vation sensors. This includes the addition of SIF, COS 
(Carbonyl Sulfide) and Lidar sensors to enhance the 
Specnet framework. COS measurements are particu-
larly valuable for quantifying terrestrial photosynth-
esis and estimating GPP (Kooijmans et al. 2019; 
Maseyk et al. 2014; Stimler et al. 2010). More impor-
tantly, COS uptake in leaves is not associated with any 
respiration-like emission (Stimler et al. 2010), render-
ing it an ideal tracer for photosynthesis. Therefore, 

collaborative observations of SIF, CO2 and COS fluxes 
can contribute to the development of a new genera-
tion of vegetation GPP estimation models.

5.2.2. Advanced earth observation satellites
Recent advancements in multisource Earth observa-
tion satellites, including multispectral and hyperspec-
tral satellites, lidar, and SAR, hold the potential to 
significantly enhance existing GPP estimation meth-
ods (Ustin and Middleton 2021). New observation 
missions have introduced satellites with improved 
capabilities, such as the PlanetScope system, provid-
ing daily global imagery at a 3 to 5 m spatial resolu-
tion, even covering “red edge” wavelengths (Roy et al.  
2021). FLEX, a new-generation satellite with SIF obser-
vation capability, boasts a 100 m spatial resolution, 
complementing the observation of Sentinel-3 
(Drusch et al. 2017). EnMAP, with 30 m spatial resolu-
tion, delivers hyperspectral data with fine spectral 
resolution for capturing key biochemical signals 
(Guanter et al. 2015). These new-generation satellites, 
featuring enhanced temporal, spatial, and spectral 
resolutions, are poised to improve GPP estimation 
capabilities. High temporal resolution enables the 
studying of the diurnal cycle of ecosystem photo-
synthesis and its response to various environmental 
stresses (Li et al. 2023). High spatial resolution pro-
vides detailed spatial information, improving GPP 
simulation accuracy at high resolution (Huang et al.  
2022). Hyperspectral data allows the integration of 
xanthophyll cycle-related spectral changes, SIF, and 
other leaf trait-related information, such as chloro-
phyll and nitrogen content, to enhance GPP estima-
tion (Dechant, Ryu, and Kang 2019). Collaborative 
observation and data assimilation from these new 
satellites offer a unique opportunity for optimizing 
and estimating key photosynthetic parameters, fos-
tering a deeper understanding of photosynthesis. 
Meanwhile, these advanced observations are 
expected to further improve the performance of exist-
ing GPP estimation models (e.g. accuracy and resolu-
tion), while supporting the development of new RS 
indices representing GPP.

5.2.3. Big data and artificial intelligence
With the rapid development of earth observation 
technology (especially RS), there has been 
a profound expansion in data types and an explosive 
growth in data volume, propelling RS information Figure 5. Schematic of the comprehensive observation system.
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technology into the era of big data (Chi et al. 2016; Ma 
et al. 2015; Zhang et al. 2019). In recent decades, 
artificial intelligence (AI) methods have become per-
vasive in earth sciences. As discussed in Section 4.4, 
traditional ML-based methods (including ANN, SVM 
and RF) have found widespread applications in RS- 
based GPP estimation. However, the limited sample 
data size and the number of modeled parameters 
constrain the generalization ability of ML, hindering 
its universal applicability (Zhang et al. 2019). In the 
realm of AI, deep learning (DL), a subset of ML 
employing multilayered neural networks trained on 
vast amounts of data, has achieved breakthroughs 
across various areas (LeCun, Bengio, and Hinton  
2015). Convolutional neural network (CNN), recurrent 
neural network (RNN) and long-short term memory 
network (LSTM) are prominent DL models successfully 
implemented in RS-based vegetation monitoring and 
forecasting (Ferchichi et al. 2022; Lee et al. 2020; Lu 
et al. 2023). For example, Lee et al. (2020) compared 
the performance of multiple AI models in forest GPP 
prediction, revealing that the deep neural network 
(DNN) model surpassed other models like ANN, SVM, 
and RF. Future efforts should be directed toward 
synergizing the advantages of RS big data and AI to 
achieve automatic and real-time GPP estimation.

5.2.4. Model development
Advanced and high-quality input parameters in the 
future, encompassing both enhanced existing 
indices and newly designed indices, will play 
a pivotal role in elevating the performance of GPP 
estimation models as integrated observation sys-
tems continue to evolve. While integrating multi-
source products proves effective in enhancing GPP 
product accuracy, a more focused effort should be 
directed toward the development of GPP estimation 
models that effectively characterize the photosyn-
thetic process, thereby advancing our understand-
ing of terrestrial ecosystems. Consequently, future 
optimization endeavors should prioritize LUE, pro-
cess, and SIF-based models, given their closer align-
ment with the real photosynthetic process. Notably, 
the recent P-model (Stocker et al. 2020), with 
a framework akin to the LUE model (Qiao et al.  
2020), introduces a novel concept by adjusting 
GPP models through the incorporation of new high- 
quality parameters closely linked to photosynthesis, 
such as Vcmax and Jmax. Despite its reliance on 

reanalysis data leading to a coarse resolution and 
moderate accuracy (Zhang et al. 2022), the P-model 
sparks innovative thinking for GPP estimation 
model enhancement. The “Space-Air-Ground” inte-
grated observation system, coupled with improved 
sensors capabilities in capturing SIF, provides an 
opportunity to deepen our understanding of the 
physiological connections between SIF and GPP, 
paving the way for enhanced global SIF-based 
GPP estimation. Finally, by leveraging the comple-
mentary strengths of RS big data, AI, and physical 
process models, a hybrid modeling approach can 
be devised to yield more precise, less uncertain, 
and physically consistent GPP estimation models 
(Reichstein et al. 2019).

6. Conclusions

This paper provides a comprehensive review of 
research on remotely sensed GPP estimation, cover-
ing theoretical foundations, key parameters, and 
methodologies. Significant advancements have been 
made in all these aspects, especially in the develop-
ment of key parameters. Parameters such as LAI, PAR, 
LUE, FPAR and other parameters have been further 
segmented to accommodate diverse scenarios, while 
the emergence of SIF, PRI and NIRV has enhanced the 
precision of photosynthesis characterization. 
Nevertheless, several challenges persist in RS-based 
GPP estimation. Firstly, existing parameters often fall 
short in accurately characterizing the carbon reaction 
of vegetation photosynthesis. Additionally, the pre-
dominant emphasis in the development of most 
models lies in parameter optimization. However, the 
paramount priority should shift toward innovating 
the remotely sensed monitoring of the carbon reac-
tion in vegetation photosynthesis. This innovation is 
pivotal for advancing key parameters and mechanistic 
models. Looking ahead, the integrated observation 
system and the evolution of RS sensors present an 
opportunity for advancing RS-based GPP estimation. 
Future research should focus on enhancing collabora-
tive observations and establishing a “Space-Air- 
Ground” integrated observation system. This 
approach holds the potential to bolster the reliability 
of key remotely sensed parameters and facilitate the 
design of new RS indices and estimation models with 
an enhanced capacity to characterize vegetation 
photosynthesis.
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Appendix A. Symbols and acronyms used in the paper

[Cab]: Chlorophyll concentration
[N]: Nitrogen content
H+: Electrons generated by water splitting
Jmax: Maximum electron transport rate (μmol m−2 s−1)
Ta: air temperature
Tmax: daily maximum temperature
Tmean: daily average temperature
Tmin: daily minimum temperature
Topt: optimum temperature for photosynthesis
Vcmax: Maximum carboxylation rate (μmol m−2 s−1)
ADP: adenosine diphosphate
ANN: artificial neural networks
APAR: absorbed photosynthetically active radiation
APARchl: PAR absorbed by photosynthetic pigments
ATP: adenosine triphosphate
CI: clumping index
CO2: carbon dioxide
CNN: convolutional neural network
DL: deep learning
DNN: deep neural network
EC: eddy covariance
EVI: enhanced vegetation index
EWT: equivalent water thickness
FLD: Fraunhofer Line Discrimination
FPARcanopy: canopy-scale FPAR
FPARchl: chlorophyll-scale FPAR
FPARfoliage: leaf-scale FPAR
FPARgreen: green leaf-scale FPAR
FVC: Fractional vegetation cover
GPP: Gross primary production
LAI: Leaf area index
LAIe: effective LAI
LAIshade: shaded LAI
LAIsun: sunlit LAI
Lidar: light detection and ranging
LST: land surface temperature
LSTM: long-short term memory network
LUE: Light use efficiency
LUEcanopy: canopy-scale LUE
LUEchl: chlorophyll-scale LUE
LUEmax: maximum light use efficiency
LUEshade: shaded leaf LUE
LUEsun: sunlit leaf LUE
MERIS: medium resolution imaging spectrometer
MIR: mid-infrared
MODIS: moderate resolution imaging spectroradiometer
MTCI: MERIS terrestrial chlorophyll index
MTE: model tree ensembles
NADPH: Nicotinamide adenine dinucleotide phosphate
NDVI: normalized difference vegetation index
NIR: near-infrared
NIRV: near-infrared reflectance of terrestrial vegetation
NIRVP: NIRV multiplied by incoming sunlight
NPP: net primary productivity
NPQ: nonphotochemical quenching

GISCIENCE & REMOTE SENSING 31



PAR: photosynthetically active radiation
PARdiffuse: diffuse radiation
PARdirect: direct radiation
PAV: photosynthetically active part
PRI: photochemical reflectance index
PRM: piecewise regression models
RF: random forest
RNN: recurrent neural network
RS: remote sensing
SAR: synthetic aperture radar
SIF: Solar-induced chlorophyll fluorescence
SM: Soil moisture
SMC: soil moisture content
Specnet: spectral network
SVM: support vector machines
SVR: support vector regression
SWIR: Short-wave infrared
TIR: thermal infrared
VPD: vapor pressure deficit

Appendix B List of reflectance-based indices calculation equations

Index Equation References

EVI 2:5� RNIR � RRed
RNIRþ6�RRed � 7:5�RBlueþ1

(Huete et al. 2002)

MTCI R753:75 � R708:75
R708:75þR681:25 

where R753.75, R708.75, R681.25 are reflectance in the center wavelengths of  
band 8, 9 and 10 in the MERIS standard band setting

(Dash and Curran 2007)

NDVI RNIR � RRed
RNIRþRRed

(Goward, Tucker, and Dye 1985)

NIRV NDVI × RNIR (Badgley, Field Christopher, and Berry Joseph 2017)

NIRVP NIRV × PAR (Dechant et al. 2022)
PRI R531 � R570

R531þR570
(Garbulsky et al. 2011)
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