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A B S T R A C T   

Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial 
for many basic and applied research. Yet current Landsat-derived LE products were developed using single al-
gorithm with large uncertainties and discrepancies. Here we proposed a convolutional neural network-long 
short-term memory (CNN-LSTM)-based integrated LE (CNN-LSTM-ILE) framework that integrates five Landsat- 
derived physical LE algorithms, topography-related variables (elevation, slope and aspect) and eddy covari-
ance (EC) observations to estimate 30-m global terrestrial LE. CNN-LSTM-ILE not only conserves good perfor-
mance of LE estimation from pure deep learning (DL) algorithm, but partially inherits physical mechanism of the 
individual physical algorithms for improving the generalization of the integration algorithms for extreme cases. 
CNN-LSTM is an algorithm that combines two deep learning structures (CNN and LSTM) to effectively utilize the 
spatial and temporal information contained in the forcing inputs. The data were collected from 190 globally 
distributed EC observations from 2000 to 2015 and were provided by FLUXNET. The cross-validation results 
indicated that the CNN-LSTM integration algorithm improved the LE estimates by reducing the root mean square 
error (RMSE) of 5–8 W/m2 and increasing Kling-Gupta efficiency (KGE) of 0.05–0.16 when compared with the 
individual LE algorithms and the results of three other machine learning integration algorithms (multiple linear 
regression, MLR; random forest, RF; and deep neural networks, DNN). The CNN-LSTM integration algorithm had 
highest KGE (0.81) and R2 (0.66) compared to ground-measured and was applied to generate the Landsat-like 
regional and global terrestrial LE. An innovation of our strategy is that the CNN-LSTM-ILE model integrates 
pixel proximity effects and daily LE variations to enhance the accuracy of 16-day LE estimations. This approach 
can produce a more reliable Landsat-like global terrestrial LE product to improve the representativeness of 
heterogeneous regions for monitoring hydrological variables.   

1. Introduction 

The terrestrial latent heat flux (LE) is a key variable in land surface 
energy and hydrological processes, as well as for management of natural 

resources and ecosystem modeling (Allen et al., 1998; Fisher et al., 2017; 
Kool et al., 2014; Liang et al., 2010; Yao et al., 2017a). The accurate 
estimation of LE remains challenging due to the large heterogeneity of 
the land surfaces and complex forcing mechanisms (Fisher et al., 2017; 
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Kalma et al., 2008; Li et al., 2009; Tang et al., 2010; Wang and Dickinson 
2012). Eddy covariance (EC) flux towers represent the gold standard in 
ground-based LE estimation, but it still has large uncertainty as a 
reference data to simulate regional LE, especially in areas where the 
landscape heterogeneity are high (Baldocchi, 2008; Kalma et al., 2008). 
This may be attributed to the fact that EC have typical 20 % errors in LE 
measurement and topography (e.g., elevation, slope and aspect) affects 
the redistribution of solar energy, surface water and microclimate fac-
tors that directly controls terrestrial LE (Shang et al. 2021). Additionally, 
the distribution of EC flux tower sites is sparse and cannot represent the 
LE on a large scale (Kessomkiat et al., 2013; Kustas and Anderson 2009; 
Liu et al., 2016; Perez-Priego et al., 2017; Yao et al., 2015). 

Satellite Remote Sensing has provided an effective approach to 
produce spatially continuous LE products over large areas because it can 
obtain terrestrial information with broad spatial coverage (e.g., 
normalized difference vegetation index, NDVI; fractional vegetation 
cover, FVC; land surface temperature, LST; and surface net radiation, Rn) 
(Anderson et al., 2008; Fisher et al., 2008; Fisher et al., 2017; Mu et al., 
2007; Mu et al., 2011; Yao et al., 2013). Since the launch of Landsat-4 in 
1982, the multispectral Landsat sensors acquire a quantity of data that 
can be used to estimate LE at high spatial resolution (30 m) and 
reasonable temporal resolution (16 day) (Wulder et al., 2019). Accurate 
simulations of LE at Landsat-like scale are critical for monitoring 
field-level water resources and indirectly evaluating coarse-resolution 
LE products (Yao et al., 2017a). Consequently, various Landsat-based 
LE models had been widely used, which can be divided into two cate-
gories (1) temperature -based models (Allen et al., 2007; Anderson et al., 
1997; McVicar and Jupp, 2002; Norman et al., 1995; Yang and Shang, 
2013; Yao et al., 2017b) and (2) vegetation-based models (Amazirh 
et al., 2017; Fisher et al., 2008; Fisher et al., 2020; McCabe et al., 2017; 
Ke et al., 2017; Khaldi et al., 2014). Temperature-based models typically 
calculate LE as a residual of the surface energy balance and use LST to 
simulate the sensible heat flux (H). Temperature-based models, such as 
Surface Energy Balance Algorithm for Land (SEBAL) model (Bas-
tiaanssen et al., 1998a; Bastiaanssen et al., 1998b), Surface Energy 
Balance System (SEBS) (Su, 2002), Two-Source model coupled with 
Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al., 
1997) and Mapping Evapotranspiration with high Resolution and 
Internalized Calibration (METRIC) model (Allen et al., 2007), estimate 
LE via surface energy balance using visible and thermal Landsat data. 
Vegetation-based models use various eco-physiological constraints 
derived from remotely sensed vegetation indices to estimate LE. 
Vegetation-based models link LE to Landsat-derived vegetation param-
eters (e.g., normalized difference vegetation index, NDVI; Leaf Area 
Index, LAI) and other meteorological variables (e.g., relative humidity, 
RH; and air temperature, Ta) using empirical equations or process-based 
methods. These empirical equations are established through statistical 
methods or machine learning approaches, enabling the upscaling of LE 
values from eddy covariance (EC) flux tower sites to regional scales. 
Although these models can produce acceptable LE products using 
Landsat data, they still have considerable discrepancies and un-
certainties in their LE estimations due to the different model parameters 
and model structures (Anderson et al., 2021; Ershadi et al., 2014; Khaldi 
et al., 2014). The discrepancies between these models are mainly due 
they are designed to satisfy different purposes, such as vegetation-based 
models are more suitable than temperature-based methods for rainforest 
where LE is tightly coupled to vegetation characteristics (Ershadi et al., 
2014), but they cannot estimate exactly LE over irrigated vegetation. 

Integrating satellite LE algorithms and ground-measured observa-
tions is an effective strategy to improve the accuracy of LE estimations 
because the integration methods can make full use of the merits of 
multiple LE algorithms and the prior information of ground-measured 
observations over different land cover types (Chen et al., 2015; Elna-
shar et al., 2021; Yao et al., 2014). Previous studies have demonstrated 
that statistical and machine learning integration methods are better than 
individual models for producing LE products (Feng et al., 2016; Yao 

et al., 2014; Yao et al., 2017a). For example, Yao et al. (2017a) applied a 
statistical Taylor skill integration (STS) method to integrate five LE 
models and generated a reliable global LE product with 30-m spatial 
resolution and found that the accuracy of the LE estimates based on the 
STS method improved by 3 % to 8 % compared to individual LE models. 
Kraft et al. (2021) introduced a hybrid hydrological model that com-
bines machine learning and physical principles to effectively simulate 
global water cycle components, demonstrating its capability to enhance 
global hydrological modeling by integrating data-driven methods with 
traditional modeling frameworks. Unfortunately, these algorithms for 
integrating LE products did not engage a full use of the spatial and 
temporal information as the forcing inputs for improving LE estimates 
(Yao et al., 2021; Yuan et al., 2020). Integrating multiple LE models 
should consider more factors, such as the influence of adjacent pixels on 
the central pixel, or the effect of daily LE on the multi-day average LE. 
Clearly, a spatial and temporal integration framework to ensemble all 
available information from Landsat-derived physical models, EC obser-
vations and topography-related variables is required for improving 
regional and global LE estimation. 

Deep convolutional neural network (CNN) and long short-term 
memory (LSTM), as state-of-the-art deep learning algorithms, have 
achieved great success in many applications (e.g., precipitation fore-
casting, crop yield prediction, and air temperature estimates) because 
CNN can use convolutional layer or pooling layer to capture spatial- 
spectral information and LSTM can extract the temporal dependency 
of time series data through structure of forget gate, input gate and 
output gate. (Esteva et al., 2019; Guo et al., 2016; LeCun et al., 2015; 
Shen et al., 2020; Shi et al., 2020; Sun et al., 2019; Tsagkatakis et al., 
2019; Zamani Joharestani et al. 2019). Substantial previous studies have 
illustrated the ability of CNN-LSTM in predicting a variety of land sur-
face environmental variables (Chang and Luo, 2019; Shen et al., 2020). 
We are convinced that CNN-LSTM has great potential for estimating 
Landsat-like global terrestrial LE by integrating multiple 
Landsat-derived LE models, topography information and EC ground 
observations. 

In this study, we proposed a deep CNN-LSTM-based integrated LE 
(CNN-LSTM-ILE) framework for integrating five Landsat-derived phys-
ical LE algorithms (RS-PM, SW, PT-JPL, MS-PT, and UMD-SEMI), 
topography-related variables (elevation, slope and aspect), and EC ob-
servations to improve Landsat-like global terrestrial LE estimations. Our 
objectives are to (1) develop a CNN-LSTM-ILE framework for integrating 
multiple LE algorithms; (2) evaluate the performance of the CNN-LSTM- 
ILE framework based on global long-term (2000–2015) EC observations 
from 190 EC flux tower sites and compare its performance with other 
integration algorithms; and (3) estimate Landsat-like global terrestrial 
LE with 30-m spatial resolution and 16-day temporal resolution using 
the CNN-LSTM-ILE framework. 

2. Methodology 

2.1. CNN-LSTM-ILE framework 

The deep convolutional neural network-long short-term memory 
(CNN- LSTM)-based integrated LE (CNN-LSTM-ILE) framework that in-
tegrates five Landsat-derived physical LE algorithms, topography data 
and EC observations using a deep CNN-LSTM integration algorithm is 
shown in Fig. 1. First, the five Landsat-derived physical LE algorithms 
used the daily forcing data (Landsat and reanalysis data) to estimate LE. 
Second, the daily LE estimations using five physical algorithms (SW, MS- 
PT, PT-JPL, RS-PM and UMD-SEMI), topography-related variables 
(elevation, slope and aspect) and the corresponding training EC obser-
vations were extracted as input features for algorithm development. 
Third, the CNN-LSTM algorithm and three other machine learning al-
gorithms (multiple linear regression, MLR; random forest, RF; and deep 
neural network, DNN) were used to integrate the input features to es-
timate the 16-day Landsat-like LE. Then, different integration 
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algorithms were evaluated by using the 16-day ground-observed LE 
based on the 10-fold cross validation method. Finally, based on the deep 
CNN-LSTM integration algorithm, we estimated Landsat-like global 
terrestrial LE with 16-day temporal resolution for 2013–2015. 

2.2. Five landsat-derived physical LE algorithms 

The daily LE values were estimated based on five classic physical LE 
algorithms that are driven by remote sensing data and meteorological 
variables. Previous studies showed that vegetation-based algorithms are 
superior to the temperature-based algorithms for estimating terrestrial 
LE (root mean square error (RMSE) of 18 W/m2 for the vegetation-based 
algorithm versus 25 W/m2 for the temperature-based algorithm) (Glenn 
et al., 2011). Thus, we only select five traditional vegetation based LE 
algorithms to estimate terrestrial LE in this study. Each of LE algorithm 
is described below. 

(1) RS-PM LE algorithm. The Remote-Sensing-Based Pen-
man–Monteith (RS-PM) LE algorithm was simplified from the PM al-
gorithm described in (Mu et al., 2007). To reduce the effects of 
misclassification of plant functional types, RS-PM algorithm was revised 
as the invariant model parameters across different land cover types 
(Yuan et al., 2010). RS-PM algorithm can be computed as follows: 

LE =
Δ(Rn − G) + ρCpVPD

/
ra

Δ + γ(1 + rs/ra)
(1)  

where Δ is the slope of the saturation water vapor pressure curve; γ is the 
psychrometric constant; ρ is the density of the air; ra is the aerodynamic 
resistance and rs is the surface resistance. The forcing variables of the 
RS-PM LE algorithm include the air temperature (Ta), air relative hu-
midity (RH) and vapor pressure (e), leaf area index (LAI) and land sur-
face net radiation (Rn). To obtain rs, we modified the moisture constraint 
(mVPD) by setting VPDclose and VPDopen as 650 Pa and 2900 Pa for all 

ecosystem types, respectively. 

mVPD

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.0 VPD ≤ VPDopen

VPDclose − VPD
VPDclose − VPDopen

VPDopen < VPD < VPDclose

0.1 VPD ≥ VPDclose

(2)  

where close refers to nearly complete inhibition and open refers to no 
inhibition to transpiration. 

(2) SW LE algorithm. The Shuttleworth-Wallace dual-source (SW) 
LE algorithm separately considers vegetation transpiration and soil 
evaporation, and the individual LE components are calculated from the 
Penman–Monteith formula (Shuttleworth and Wallace 1985), which 
uses a scientific hypothesis of aerodynamic mixing arising at the canopy. 
The SW LE algorithm can be presented as: 

LE = CsLEs + CsLEv (3)  

LEs =
Δ(Rn − G) +

(
ρCpVPD − ΔrasRnc

)/
(raa + ras)

Δ + γ[1 + rss/(raa + ras)]
(4)  

LEv =
Δ(Rn − G) +

[
ρCpVPD − Δrac(Rns − G)

]/
(raa + rac)

Δ + γ[1 + rsc/(raa + rac)]
(5)  

Cs =
1

1 + [RsRa/(Rc(Rs + Ra))]
(6)  

Cv =
1

1 + [RcRa/(Rs(Rc + Ra))]
(7)  

Ra = (Δ+ γ)raa (8) 

Fig. 1. Our CNN-LSTM-ILE framework integrates five Landsat-derived physical LE algorithms, topographic data and EC observations using a deep CNN-LSTM 
integration algorithm. 
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Rs = (Δ+ γ)ras + rssγ (9)  

Rc = (Δ+ γ)rac + rscγ (10) 

Where Cs and Cv are the surface resistance coefficients for soil and 
vegetation, respectively. LEs and LEv are the soil evaporation and 
vegetation transpiration, Rns and Rnc are Rn into soil and vegetation, 
respectively. raa is aerodynamic resistances from vegetation canopy. ras 

and rac are aerodynamic resistances from the soil surface to canopy and 
leaf to canopy height, respectively. rss and rsc are the surface resistance 
for soil and vegetation, respectively. The SW LE algorithm requires the 
wind speed (WS), e, Ta LAI, soil moisture (SM) and Rn. We used SM to 
calculate rss and it can be expressed as, 

rss = exp(8.206 − 4.255SM) (11)  

(3) PT-JPL LE algorithm. The Priestley-Taylor-Based (PT-JPL) LE al-
gorithm was designed by Fisher et al. (2008) based on the 
Priestley-Taylor algorithm. The LE algorithm uses the atmospheric and 
eco-physiological variables to characterize the soil and vegetation con-
straints by reducing the model input parameters. PT-JPL downscales the 
potential LE to actual LE using the Fraction of Absorbed Photosynthet-
ically Active Radiation (FPAR), vapor pressure deficit (VPD), RH, LAI 
and NDVI. The PT-JPL LE algorithm can be presented as: 

LE = LEs + LEc + LEi (12)  

LEs = α
[
RH4 +

(
1 − RH4)RHVPD] Δ

Δ + γ
(Rns − G) (13)  

LEc = α
(
1 − RH4)fgfT fM

Δ
Δ + γ

Rnc (14)  

LEi = αRH4 Δ
Δ + γ

Rnc (15) 

Where LEs, LEc and LEi are soil evaporation, vegetation transpiration, 
and evaporation of canopy interception. fg, fT and fM are green canopy 
fraction, plant temperature constraint and plant moisture constraint. 
The input variables of PT-JPL LE algorithm include Ta, e, RH, Rn, FPAR, 
LAI and NDVI. 

(4) MS-PT LE algorithm. The Modified Satellite-Based Priestley- 
Taylor (MS-PT) LE algorithm was developed by Yao et al. (2013) and 
uses the apparent thermal inertia (ATI) calculated from the diurnal 
temperature range (DT) to reflect the soil moisture constraints. The 
MS-PT algorithm estimates the LE via four components, namely, vege-
tation canopy transpiration (LEv), saturated soil evaporation (LEas), 
unsaturated soil evaporation (LEs) and vegetation interception evapo-
ration (LEic). The MS-PT LE algorithm can be presented as: 

LE = LEv + LEas + LEs + LEic (16)  

LEv = α(1 − fwet )fcfT
Δ

Δ + γ
Rnc (17)  

LEas = αfwet
Δ

Δ + γ
(Rns − G) (18)  

LEs = α(1 − fwet )fsm
Δ

Δ + γ
(Rns − G) (19)  

LEic = αfwet
Δ

Δ + γ
Rnc (20)  

fsm =

(
1

DT

)DT/DTmax

(21)  

fwet = f 4
sm (22) 

The inputs of the MS-PT algorithm include DT and Ta, NDVI and Rn. 
(5) UMD-SEMI LE algorithm. The Semi-empirical Penman LE al-

gorithm of the University of Maryland (UMD-SEMI) was proposed by 
Wang et al. (2010) and is based on the basic Penman formula (Penman 
1948). The UMD-SEMI LE algorithm considers the influence of SM on LE 
by introducing the air relative humidity deficit (RHD). The UMD-SEMI 
LE algorithm can be presented as: 

LEE =
Δ

Δ + γ
⋅Rs⋅[a1 + a2⋅NDVI +RHD⋅(a3 + a4⋅NDVI)] (23)  

LEA =
γ

Δ + γ
⋅WS⋅VPD⋅[a5 +RHD⋅(a6 + a7NDVI)] (24)  

LE = a8⋅(LEE +LEA) + a9⋅(LEE + LEA)
2 (25)  

RHD = 1 − RH (26) 

Where ai (i=1…,9) are empirical coefficient. This algorithm relates 
the incident solar radiation (Rs), VPD, Ta, RH and NDVI to the LE vari-
ability and introduces the contribution of wind speed (WS) to LE. 

2.3. Deep CNN-LSTM integration algorithm 

Convolutional neural network (CNN) was proposed to handle mul-
tiple arrays (LeCun et al. 1998), such as satellite images comprised of 
several 2D arrays. A CNN is composed of convolutional layers and 
pooling layers with four advantages (including pooling, shared weights, 
local connections and multi-layer use) to process row data (LeCun et al., 
2015). These advantages give CNN an excellent ability to extract crucial 
spatial feature from the row data. Therefore, CNN exhibit first-class 
performance in the field of image segmentation and recognition. For 
the integration of Landsat-derived LE products, the LE value of each 
Landsat pixel is related to the LE values of the surrounding pixels, and 
CNN can capture the spatial feature information of LE variations. The 
spatial relationships for the LE value of the target pixel and the LE values 
of the surrounding pixels are obtained through various perceptual do-
mains of multi-layer CNN. The CNN can be described as follows: 

hi,j = relu

[
∑K

k=1

(
hi− 1,k ∗wi,kj

)
+ bi,j

]

(27)  

h′
i,j(l) = relu

[
hi,j(ml),…, hi,j(ml+ n − 1)

]
(28)  

where hi,j is the j feature map from the i convolutional layer, wi,kj is the 
kernel, K is the number of feature maps, m is the step number, and n is 
the number of outputs. “relu” represents the activation function of the 
CNN and can be written as follows: 

f (x) =
{

0 for x < 0
x for x ≥ 0 (29) 

Long short-term memory (LSTM) is a variant of a recurrent neural 
network (RNN), which is a type of artificial neural network that can 
process time-sequential data (Hochreiter and Schmidhuber 1997; 
Rumelhart et al., 1986). To process sequential data, such as language 
and time series data, RNN is a better choice. However, RNN has a van-
ishing gradient problem that decreases their performance (Graves and 
Schmidhuber 2005). To improve the performance of RNN, the LSTM was 
proposed by Hochreiter and Schmidhuber (1997) to learn the long-term 
dependency of sequential data. LSTM includes three gates (input gates, 
output gates and forget gates) to extract information. After LSTM obtains 
the input data x = [x1,…,xN], the input gate ik determines the rate of the 
input information. ̃ck is reserved to this cell state. Then, the forget gate fk 

decides how much information from the last cell state is preserved in this 
one. Finally, the output gate ok can provide new information for the next 
cell state ck. The formulas for an LSTM are as follows: 
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fk = σ
(
Wfxxk +Wfhhk− 1 + bf

)
(30)  

ik = σ(Wixxk +Wihhk− 1 + bi) (31)  

ok = σ
(
Woxxj +Wohhk− 1 + bo

)
(32)  

c̃k = tanh
(
Wcxxj +Wchhk− 1 + bc

)
(33)  

ck = fk ∗ ck− 1 + ik ∗ c̃k (34)  

hk = ok∗tanh(ck) (35)  

σ(x) = 1
1 + e− x (36)  

tanh(x) =
ex − e− x

ex + e− x (37)  

where Wfx, Wixxk, Woxxj, Wcxxj, Wfhhk− 1, Wihhk− 1, Wohhk− 1, and Wchhk− 1 
represent the weight matrices and bf , bi, bo, and bc represent the biases. 
For Landsat-derived LE integration, the LSTM can obtain the time 
dependence of LE information from the daily LE values and provide 16- 
day LE results. 

To find the temporal and spatial relationships among the EC obser-
vations and Landsat-derived LE products, CNN and LSTM were used to 
capture the spatial characteristics and time dependences, respectively. 
Thus, a CNN-LSTM-ILE framework was constructed by combining CNN 
with LSTM to integrate the Landsat-derived LE algorithms, topography 
and EC observations. Fig. 2 shows the framework of the CNN-LSTM 
integration algorithm. The CNN-LSTM algorithm has two modules: 1) 
the CNN spatial information extraction module and 2) the LSTM tem-
poral dependency information module. The CNN module (including 
convolutional layers and pooling layers) was used to extract the infor-
mation that is related to the LE values of subpixel center points from the 
Landsat-derived LE products. For LE estimations, each LE pixel value is 
not independent and is associated with the surrounding pixel values. 
Similarly, the LSTM was used to obtain the relationships among the LE 
products at different times to improve the 16-day LE estimates. 

To implement the CNN-LSTM integration algorithm, we extracted 11 
× 11 pixels (330×330 m) that were centered on each EC flux tower site 
(Fig. 3). This provides a conservative and consistent comparison, though 

a more rigorous approach would include a detailed tower footprint 
analysis and matchup (Fisher et al., 2020). Considering that the pixels 
contain 16 daily Landsat-derived LE values (RS-PM, SW, PT-JPL, MS-PT 
and UMD-SEMI) and topography-related variables (elevation, aspect 
and slope), the shape of the input features for the CNN-LSTM algorithm 
is 16 × 8 × 11 × 11 (day × features × shape of pixels). Thus, the training 
datasets (input features and EC observations) for the CNN-LSTM algo-
rithm were established. 

Fig. 4 shows the structure and hyperparameters of the deep CNN- 
LSTM integration algorithm. It characterizes the entire process of pro-
ducing 16-day LE estimates from the input features to the results. The 
rounded rectangles represent the input features, intermediate results 
and LE estimates. The rounded rectangles represent the shapes of the 
input features and feature types. The rectangles indicate the layers of the 
deep CNN-LSTM integration algorithm and their parameters. Con-
volution2D is the convolutional layer, which is followed by the convo-
lution kernel size and number of output layers. The global average 
pooling layer obtains the average value of each layer. The concatenate 
layer connects these two vectors into one. 

2.4. Other integration algorithms 

(1) Multiple linear regression (MLR). MLR is a statistical algo-
rithm that obtains the simple linear relationships between several input 
features and the target variable by using the least squares algorithm. 
Previous studies have reported that linear regression can express the 
relationship between multi-model LE estimates and actual LE (Shang 
et al., 2020; Yao et al., 2017a). The MLR algorithm is simple and effi-
cient but cannot simulate nonlinear relationships. 

(2) Random forest (RF) model. RF was proposed by Breiman 
(2001) and is an ensemble learning algorithm that is used for classifi-
cation and regression. The RF model consists of multiple decision trees, 
and each tree is trained by using a bootstrap sampling algorithm. For the 
regression task, the result of the RF is the average prediction of the in-
dividual decision trees. Due to the ensemble algorithm of the RF, it has a 
strong simulation ability and can effectively avoid overfitting. 

(3) Deep neural network (DNN). DNN was developed based on 
multilayer perceptron (MLP) (Hornik 1991). The difference between 
DNN and MLP is that DNN has more layers (ten or more layers) and 
effective nonlinear fitting abilities. DNN uses the backpropagation 

Fig. 2. Framework of the CNN-LSTM integration algorithm.  

X. Guo et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 349 (2024) 109962

6

algorithm, which is the key factor that improves the model training ef-
ficiency, to optimize the model parameters. Overfitting is a critical issue 
for DNN because DNN has a very large number of parameters. Therefore, 
we used the dropout algorithm to avoid overfitting. The DNN contains 
input layers, hidden layers and an output layer. 

2.5. Evaluation methods 

We used the coefficient of determination (R2), root mean square 
error (RMSE), bias and Kling-Gupta efficiency (KGE) to evaluate the 
performances of different algorithms. R2 is used to obtain the consis-
tency between estimations and observations by calculating their corre-
lation coefficient; RMSE represents the closeness between estimations 
and observations; bias quantifies the difference between estimations and 
observations; and KGE is used to comprehensively evaluate the algo-
rithm performance (Gupta et al., 2009). The KGE combines the corre-
lation coefficient (r), mean value ratio (β) and relative variability ratio 
(α) to represent the algorithm performance. The mathematical equations 
of the performance metrics can be expressed as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Xi − Yi)

2

√

(38)  

Bias =

∑n
i=1(Xi − Yi)

n
(39)  

R2 =

( ∑n
i=1(Xi − X)(Yi − Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1(Xi − X)(Yi − Y)
√

)2

(40)  

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σe

σo
− 1
)2

+

(
μe

μo
− 1
)2

√

(41) 

Where Xi and Yi are the estimated and observed LE, respectively; X 
and Y are the average of Xi and Yi and n is the total number of the data, 
σe is the standard deviation of the estimations, σo is the standard 

deviation of the observations, μe is the average of the estimations and μo 
is the average of the observations. 

3. Data 

3.1. Eddy covariance observations 

The LE algorithms were integrated and evaluated using a long-term 
dataset of EC observations. The EC observations were provided by 
FLUXNET (https://fluxnet.org/), which integrated the different net-
works, including AmeriFlux, ChinaFlux, AsiaFlux, LathuileFlux, Asian 
Automatic Weather Station Network (ANN) Project, Chinese Ecosystem 
Research Network (CERN) and the work of individual principal in-
vestigators (PIs). We used 190 global EC flux tower sites from FLUXNET 
that are mainly distributed in America, Europe and East Asia, with only 
two flux tower sites in Australia, five flux tower sites in South America 
and two flux tower sites in Africa (Fig. 5). The EC flux tower sites cover 
eight land cover types, including cropland (CRO, 27 towers); deciduous 
broadleaf forest (DBF, 25 towers); evergreen broadleaf forest (EBF, 14 
towers); evergreen needleleaf forest (ENF, 55 towers); grassland (GRA, 
47 towers); mixed forest (MF, 7 towers); savanna (SAW, 5 towers); and 
shrubland (SHR, 10 towers). These ground-measured data span the 
period from 2000 to 2015 and recorded one or more growing seasons. 

The FLUXNET EC observations consist of half-hourly or hourly soil 
heat flux (G), sensible heat flux (H), incident solar radiation (Rs), Rn and 
LE data. The hourly or half-hourly LE, H, G and the meteorological 
variables were aggregated into daily means using the gap-filling method 
proposed by (Reichstein et al., 2005). If more than 25 % of the data were 
missing on a given day, the values of that day were considered missing. 
Since the EC method has an energy imbalance problem, we used the 
formula proposed by Twine et al. (2000) to correct the ground-measured 
LE. The formula can be written as: 

LEcor = (Rn − G)/(H + LE) × LE (42)  

where LEcor is the corrected LE. 

Fig. 3. Diagram of pixel data extraction.  

X. Guo et al.                                                                                                                                                                                                                                     

https://fluxnet.org/


Agricultural and Forest Meteorology 349 (2024) 109962

7

Fig. 4. Structure of the deep CNN-LSTM integration algorithm.  

Fig. 5. The distribution of 190 EC flux tower sites for different land cover types.  

X. Guo et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 349 (2024) 109962

8

We assessed the performance of the CNN-LSTM-ILE framework by 
using a 10-fold cross-validation method. The EC observations were 
stratified into 10 folds and each fold contained 10 % of the EC obser-
vations (Jung et al., 2011). Entire sites were assigned to each fold. A 
total of 91,125 site-16-days of EC data were used, randomly divided into 
10 parts according to the spatial distribution and land cover types. The 
LE values for each of the 10 parts are estimated based on the trained 
algorithm by using the remaining nine parts. 

3.2. Satellite and reanalysis data 

Satellite and reanalysis data to drive five physical LE algorithms are 
listed in Table 1. The datasets include NDVI, fractional vegetation cover 
(FVC), LAI, Rs, Rn, SM and fraction of absorbed photosynthetically active 
radiation (FAPAR) from High-spatial-resolution Global LAnd Surface 
Satellite (Hi-GLASS) products and meteorological data. We used the 
daily Hi-GLASS NDVI product from Landsat data with a 30 m spatial 
resolution. This product was generated using the Savitzky–Golay (SG) 
method, as detailed in Lin et al. (2022).. The Hi-GLASS daily LAI and 
FPAR products with 30 m spatial resolution generated by the ensemble 
multiscale filter (EnMsF) approach were also used to drive LE algorithms 
(Jin et al., 2019; Jin et al., 2022). We also used the daily Hi-GLASS FVC 
product with 30 m spatial resolution through integrated use of Landsat 8 
and Gaofen 2 data (Song et al., 2022). Additionally, both the daily 
Hi-GLASS SM Rs, and Rn products with 30 m spatial resolution were also 
used to estimate daily LE. The ensemble learning method was applied to 
generate daily Hi-GLASS SM product from Landsat data (Zhang et al., 
2022) and the daily Hi-GLASS Rs and Rn products were yielded using RF 
model (Jiang et al., 2023). 

When estimating regional and global terrestrial LE, the five Landsat- 
derived physical LE algorithms were driven by daily Modern-Era 
Retrospective Analysis for Research and Applications, version 2 
(MERRA-2) meteorological data with spatial resolution of 0.5◦× 0.625◦. 
MERRA-2 variables used in this study include Ta, DT, RH, e, and WS 
(Gelaro et al., 2017). To match Landsat pixels, we used the algorithm 
developed by Zhao et al. (2005) to interpolate coarse-resolution 
MERRA-2 data to 30 m Landsat pixels. Theoretically, this interpola-
tion algorithm enhances the accuracy of meteorological data for each 30 
m pixel because the four MERRA-2 cells surrounding a given pixel 
remove sharp variations from one side of a MERRA-2 boundary to the 
other using a cosine function (Zhao et al., 2005). 

3.3. Topography data 

We used the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) data (https://asterweb.jpl.nasa.gov/gdem.asp) as 
the topography information to improve the robustness of the CNN- 
LSTM-ILE framework. The ASTER Digital Elevation Model (DEM) has 
a 30-m spatial resolution that is consistent with the spatial resolution of 
the Landsat-derived LE products. It spans from 83◦ north latitude to 83◦

south latitude, which encompasses 99 % of the Earth’s landmass. The 

Ministry of Economy, Trade, and Industry (METI) of Japan and the 
United States National Aeronautics and Space Administration (NASA) 
jointly released ASTER DEM version 3 on August 5, 2019. The ASTER 
DEM version 3 has been processed to fill data voids, and it has higher 
precision. The elevation, aspect and slope information were extracted 
from the ASTER DEM data using ArcGIS v10.7 software. 

4. Results 

4.1. Validation of five landsat-derived physical LE algorithms 

The estimated daily LE using five Landsat-derived physical algo-
rithms were validated based on the EC observations at 190 flux tower 
sites for different land cover types. Fig. 6 shows that the five Landsat- 
derived physical LE algorithms exhibit large discrepancies among the 
different land cover types at flux tower site scale. For the CRO, DBF and 
SHR flux tower sites, the UMD-SEMI algorithm has the highest KGE of 
more than 0.74 and R2 of more than 0.54 (p < 0.01) and the lowest 
RMSE of less than 31 W/m2 compared to the other LE algorithms. For the 
GRA flux tower sites, the MS-PT algorithm exhibits the smallest RMSE 
(25.9 W/m2) and bias (0.6 W/m2). The MS-PT LE algorithm also exhibits 
the highest KGE of more than 0.72 and R2 of more than 0.51 (p < 0.01), 

Table 1 
Description of the satellite and reanalysis data.  

Products Spatial 
Resolution 

Variables 
acquired 

Refs. 

MERRA-2 
reanalysis 
product 

0.5◦× 0.625◦ RH, WS, Ta, e Gelaro et al. (2017) 

Hi-GLASS 
vegetation 
products 

30m NDVI, LAI, 
FPAR, FVC 

Lin et al. (2022), Jin et al. 
(2019), Jin et al. (2022),  
Song et al. (2022) 

Hi-GLASS 
radiation 
products 

30m Rs, Rn Jiang et al. (2023) 

Hi-GLASS soil 
products 

30m SM Zhang et al. (2022)  
Fig. 6. Bar graphs of the statistics (KGE, R2, bias and RMSE) of the comparisons 
between the daily LE from five physical LE algorithms and ground-measured 
data at 190 EC flux tower sites for different land cover types. 
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with a RMSE of less than 24.2 W/m2 for both the EBF and ENF flux tower 
sites. For the SAW flux tower sites, the PT-JPL algorithm exhibits a 
higher R2 (0.67) and bias (5 W/m2) than the other four LE algorithms, 
whereas the SW LE algorithm exhibits better KGE (0.83) and R2 (0.69, p 
< 0.01). According to the KGE (0.83) and R2 (0.65, p < 0.01) values, the 
accuracy of the RS-PM LE algorithm is the highest for all the MF flux 
tower sites and it has a smaller RMSE (16.5 W/m2). 

Comparison of the ground-measured and estimated 16-day 
composited LE estimations for the different land cover types shows 
similar performance with daily LE estimations (Fig. 7). The UMD-SEMI 
LE algorithms have the highest KGE of more than 0.75 for the CRO and 
SHR flux tower sites. For EBF and ENF flux tower sites, the MS-PT LE 
algorithm shows better performance. According to RMSE, the RS-PM LE 
algorithm has highest accuracy. The PT-JPL and SW LE algorithms have 
better performance for SAW and DBF, respectively. This indicates that 
16-day composited LE estimations has better accuracy than daily LE 
estimations and no single Landsat-derived physical LE algorithm can 
yield best LE estimation for all land cover types. 

Overall, all five Landsat-derived physical LE algorithms provided 
reasonable 16-day LE estimations for all land cover types, with KGE 
ranging from 0.65 to 0.74, R2 ranging from 0.43 to 0.54 (p < 0.01), bias 
ranging from 2.2 W/m2 to 12.1 W/m2 and RMSE ranging from 25.1 W/ 

m2 to 29.8 W/m2 (Fig. 8). Generally, the UMD-SEMI LE algorithm shows 
the best performance with the highest KGE and R2 values and lowest 
RMSE and is followed by the MS-PT, PT-JPL, SW and RS-PM LE algo-
rithms. Compared with the worst-performing RS-PM algorithm, the 
UMD-SEMI algorithm reduces the RMSE by 4.7 W/m2 and increases the 
KGE by approximately 0.10 and R2 by 0.11. In general, the resistance- 
based LE algorithms (SW and RS-PM) have large biases due to the 
complex physical mechanisms and accumulated errors due to excessive 
numbers of input variables. In contrast, the PT-based LE algorithms (MS- 
PT and PT-JPL) exhibit higher accuracies in their LE estimations than 
the SW and RS-PM algorithms, which is due to their partitioning of the 
total LE and the smaller errors present in the required inputs (Ershadi 
et al., 2014; Fisher et al., 2005). Since the UMD-SEMI LE algorithm has 
been calibrated using EC ground observations at 64 flux tower sites 
across globally different land cover types, it obtains the best perfor-
mance for LE estimations when compared to the other four LE 
algorithms. 

4.2. Integration of the five landsat-derived physical LE algorithms 

Considering that none of the LE algorithms can provide a consistently 
best LE estimation across all land cover types, we used the CNN-LSTM 
algorithm along with the MLR, RF and DNN algorithms to improve the 
LE estimations by integrating five Landsat-derived physical LE algo-
rithms, topography-related variables (elevation, aspect and slope) and 
EC observations. Fig. 9 shows the performances of the CNN-LSTM, MLR, 
RF and DNN integration algorithms when using the 10-fold cross- 
validation method for all 190 flux tower sites among different land 
cover types. It is notable that the estimated LE using the CNN-LSTM 
algorithm for different land cover types have higher KGE and R2 and 
lower RMSE values compared to the MLR, RF and DNN integration al-
gorithms. For the GRA flux tower sites, the CNN-LSTM algorithm pro-
vides better values of KGE of 0.76 and R2 of 0.57 (p < 0.01) and a smaller 
RMSE of 22.1 W/m2 than the other integration algorithms, although it 
has the worst performance compared to the other land cover types. For 
the ENF flux tower sites, the CNN-LSTM algorithm also exhibits the best 
capability among all of the integration algorithms, with the highest KGE 
of 0.77 and R2 of 0.59 (p < 0.01) and the smallest RMSE of 20.9 W/m2. 
The CNN-LSTM algorithm produces higher KGE (0.86) and R2 (0.75, p <
0.01) values with an RMSE of 21.5 W/m2 than the other integration 
algorithms for the CRO flux tower sites, and it exhibits better perfor-
mance than the other land types. Similarly, the CNN-LSTM algorithm 
also performs better than the other integration algorithms for the MF 
flux tower sites, with an R2 of 0.74 (p < 0.01) and RMSE of 15.1 W/m2. 

The overall performances of the CNN-LSTM, MLR, RF and DNN 
integration algorithms using the 10-fold cross-validation method are 
demonstrated in Fig. 10 for all 190 flux tower sites among all land cover 
types. It is clear that the estimated LE using all four integration algo-
rithms are exhibit better performance than those of the individual 
Landsat-derived LE products. The integration algorithms provide reli-
able LE estimations with KGE values ranging from 0.76 to 0.81, R2 

values ranging from 0.58 to 0.66 (p < 0.01) and RMSE values ranging 
from 21.5 W/m2 to 23.3 W/m2. The best performance for LE estimation 
is provided by the CNN-LSTM algorithm with the highest KGE and R2 

values and the smallest RMSE value and is followed by the DNN, RF and 
MLR algorithms. Compared with the DNN algorithm, with the second- 
highest performance for LE estimations, the KGE yielded by the CNN- 
LSTM algorithm increased by approximately 0.04, R2 increased by 
0.06 (p < 0.01) and the RMSE decreased by approximately 1.6. Fig. 11 
shows that the error histograms of the MLR, DNN and RF algorithms are 
biased toward large compared to ground-measured LE, whereas the 
CNN-LSTM algorithm biases are closer to zero, which indicates that the 
CNN-LSTM algorithm achieves the best LE estimates because it considers 
the influences of neighboring pixels and temporal dependency of the LE. 
In contrast, the MLR algorithm exhibits the worst performance, which 
demonstrates that linear combinations may not accurately simulate the 

Fig. 7. Bar graphs of the statistics (KGE, R2, bias and RMSE) of the comparisons 
between the 16-day LE from five physical LE algorithms and ground-measured 
data at 190 EC flux tower sites for different land cover types. 

X. Guo et al.                                                                                                                                                                                                                                     
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Fig. 8. Density scatter plots of the ground-measured LE and 16-day estimated LE from five physical LE algorithms at all 190 flux tower sites.  
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complex relationships among the ground-measured LE and input vari-
ables. The RF algorithm has better performance than the MLR because 
the RF, as an ensemble algorithm of machine learning, is a nonlinear 
model that fits complex relationships by using multiple decision trees to 
improve LE estimations. Similarly, the DNN algorithm has a more 
advanced nonlinear model structure and exhibits better performance 
than the MLR and RF integration algorithms. 

Fig. 12 shows a time series of the 16-day EC observations and esti-
mated LE from CNN-LSTM integration algorithm along with the physical 
LE algorithms for eight typical land cover types. Seasonal variation in LE 
is highly correlated with land cover types and phenological change due 
to the changes in vegetation and meteorological variables. The inte-
grated LE estimates for cropland show multiple peaks, which may be 
caused by frequently agricultural irrigation activities. Compared with 
the individual Landsat-derived physical LE algorithms, the estimated LE 
obtained by using the CNN-LSTM integration algorithm provide obvi-
ously seasonal LE curves that are closest to the EC observations. Overall, 
the errors in the individual Landsat-derived physical LE algorithms 
product are approximately 26–35 %, and the errors in estimated LE 
based on the CNN-LSTM algorithm in this study are less than 20 %. 

Therefore, the CNN-LSTM integration algorithm can be applied to esti-
mate Landsat-like LE with high accuracies at the global scale. 

4.3. Case studies of mapping terrestrial LE 

4.3.1. Agricultural field LE mapping 
We chose an example of a 54×54 km agricultural field area (39.15◦N 

- 39.64◦N and 116.35◦E - 116.83◦E) in China on August 23, 2018, from 
Landsat data to estimate the 16-day LE using the CNN-LSTM integration 
algorithm (Fig. 13). The agricultural field area has high vegetation cover 
in most areas. In the northeastern part of this example area, the vege-
tation cover is relatively low. Fig. 13 shows the spatial LE patterns ob-
tained from different LE products and from the CNN-LSTM integration 
algorithm along with the histograms of the frequency distribution of the 
LE values and the frequency distributions of the differences between 
each LE product and the CNN-LSTM algorithm results. The estimated LE 
have shown spatial variations across whole images, which are consistent 
with the large spatial changes in vegetation cover. This may be attrib-
uted to the fact that high vegetation transpiration occurs in agricultural 
field areas. 

Fig. 9. Bar graphs of the statistics (KGE, R2, bias and RMSE) of the comparison between the 16-day LE estimates using four integration algorithms and the ground- 
observed LE using the 10-fold cross-validation method at 190 EC flux tower sites for the different land cover types. 
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There are large differences among the estimated LE when using the 
CNN-LSTM integration algorithm and the five Landsat-derived physical 
LE algorithms. Generally, the CNN-LSTM algorithm exhibits interme-
diate LE values with a frequency histogram that is mainly concentrated 
at approximately 120 W/m2, which is lower than those of the PT-JPL 
and RS-PM algorithms but is higher than those of the MS-PT, SW and 
UMD-SEMI algorithms. In contrast, the PT-JPL algorithm generates high 
LE estimates, and the LE values spans a full range from 110 to 132 W/ 
m2. The SW algorithm generates low LE values, and LE values spans a 
full range from 75 to 116 W/m2. The UMD-SEMI algorithm and CNN- 
LSTM algorithm have the most similar spatial patterns and magni-
tudes of their values because the UMD-SEMI algorithm has the highest 
accuracy and more influence on the CNN-LSTM integration algorithm 
for LE estimates. The discrepancies in the LE estimates mainly stem from 
the different physics principles that are used by the different LE algo-
rithms. For instance, the different parameterizations of the aerodynamic 
and surface resistances for both the RS-PM and SW algorithms will affect 
the accuracy of LE estimates (Mu et al., 2011; Shuttleworth and Wallace 
1985). 

4.3.2. Global terrestrial LE mapping 
We applied the CNN-LSTM integration algorithm by integrating five 

physical LE algorithms, topography-related variables (elevation, aspect 
and slope) and EC observations to produce 16-day Landsat-like global 
terrestrial LE product (except for Antarctica) at 30-m spatial resolution 
for the 2013–2015 period. Fig. 14 shows the multiyear (2013–2015) 
average annual LE, and the estimated LE exhibit large regional varia-
tions and latitudinal gradients based on global climate patterns. The 
highest annual LE occurs in the tropical rainforests of South America, 
Central Africa, and Southeast Asia, while the lowest annual LE occurs in 
the Arctic and desert regions (e.g., Sahara Desert) due to SM limitations 
and short growth seasons. Intermediate annual LE occurs in boreal and 
temperate forests. However, the global LE maps have stripping phe-
nomenon due to the different Landsat images mosaic. The global 
terrestrial average annual LE is 36.4 W/m2, which falls within the range 
of 34.1–42.7 W/m2 that was inferred from 17 global terrestrial LE 
products (Wang and Dickinson, 2012). 

The average seasonal LE patterns from 2013 to 2015 obtained using 
the CNN-LSTM integration algorithm exhibit distinct global seasonality 
(Fig. 15). The tropical rainforest regions maintain high LE values 
throughout the year, while savanna and tropical sparse forest regions 
have alternating dry and wet seasons. Strong seasonal LE variations 
occur in the high northern latitudes, where the LE has large variations 
with increases in summer and decreases in winter. 

Fig. 10. Density scatter plots of the ground-measured LE and 16-day estimated LE from four integration algorithms using the 10-fold cross-validation method for all 
190 EC flux tower sites. . 
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5. Discussion 

5.1. Performance of the CNN-LSTM-ILE framework 

5.1.1. Capability of the CNN-LSTM algorithm for LE estimations 
The validation results for 190 EC flux towers demonstrated that the 

CNN-LSTM integration algorithm, when used for estimating LE is ac-
curate and can yield a reliable 16-day LE product at 30-m spatial reso-
lution. These results also show that the accuracy of the estimated LE 
when using the CNN-LSTM algorithm is significantly improved when 
compared with single-physical LE algorithms and other integration al-
gorithms (MLR, RF and DNN). However, the CNN-LSTM algorithm 
shows the large inter-biome differences, performs better for the CRO, 
MF, DBF and SAW flux tower sites but performs worse for the EBF and 
ENF flux tower sites. For instance, the CNN-LSTM algorithm can account 
for more than 70 % of the LE variability for the CRO and DBF flux tower 
sites. Many satellite-based LE algorithms accurately simulate the LE via 
the NDVI or LAI, which accurately characterize the strong seasonality of 
vegetation variations (Yao et al., 2015; Yebra et al., 2013). Thus, the 
CNN-LSTM algorithm for integrating five vegetation-based LE algo-
rithms improves the LE estimations. In contrast, the CNN-LSTM algo-
rithm along with five Landsat-derived physical LE algorithms provides 
poor LE estimates for the ENF sites (average KGE of 0.77 and average 
RMSE of 20.9 W/m2 for the CNN-LSTM algorithm). This may be 
attributed to the fact that the seasonal variations are weak in the ENF, 
where the saturation of NDVI to acquire the LE variations in this land 
cover type is limited (Huete et al., 2002; Yebra et al., 2013). 

Our study found that the using CNN-LSTM integration algorithm for 
LE estimates provides not only superior results to the MLR, RF and DNN 
algorithms but also performs better than the CNN algorithm or LSTM 
algorithm alone (Table 2). The overall KGE of the 16-day LE estimations 
obtained from the CNN-LSTM algorithm is approximately 4–6 % higher 
than those of the above five integration methods. In the process of 

integrating the LE products, the CNN-LSTM algorithm makes the best 
use of the spatial and temporal information of the forcing inputs 
(Masolele et al., 2021; Wu et al., 2020). For an LE window of Landsat 
images, the surrounding pixel values affect the inner pixel values due to 
the horizontal transfer of energy and water between adjacent areas 
(Widlowski et al., 2006). Thus, the CNN window partially captures this 
spatial information of LE variability. Additionally, the LSTM has loops 
and allow the information of LE variability to persist to deal with time 
series LE data. Thus, the LSTM improves the accuracy of LE estimates 
from daily to 16-day values. By combining CNN with LSTM, the 
CNN-LSTM algorithm performs best for LE estimates among all of the 
integration algorithms used in this study. In contrast, although other 
machine learning integration algorithms also decrease the uncertainties 
in LE estimates by adjusting the linear or nonlinear weights of each LE 
product, the ability of these machine learning algorithms to estimate LE 
is limited because they do not fully consider the spatial and time series 
information contained in the samples (Bai et al., 2021; Bhattarai et al., 
2016; Wagle et al., 2017). 

5.1.2. Effects of the CNN-LSTM window size on LE estimations 
To investigate the effects of the model window size on the LE esti-

mations, we used different window sizes to train the CNN-LSTM inte-
gration algorithm. Fig. 16 shows that as the window size of the CNN- 
LSTM algorithm increases, the performance of the CNN-LSTM algo-
rithm improves significantly. When the window size of the CNN-LSTM 
algorithm reaches 11 pixels, the CNN-LSTM algorithm provides the 
best performance with the largest R2 of 0.66 (p < 0.01), largest KGE of 
0.81 and smallest RMSE of 21.5 W/m2. Window sizes larger than 11×11 
pixels would lead to large errors in LE estimations when using the CNN- 
LSTM algorithm. This may be caused by the spatial mismatches between 
the footprints of the EC flux towers and the pixels of the Landsat-derived 
LE estimates (Baldocchi, 2008; Rienecker et al., 2011; Yao et al., 2017a). 
The footprints of the EC flux towers are approximately varying from tens 

Fig. 11. Error histograms for the LE estimates from four integration algorithms for all 190 flux tower sites.  
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Fig. 12. Time series example of 16-day LE as ground-measured and estimated using physical LE algorithms (including CNN-LSTM integration algorithm) at eight 
validation sites. 
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of meters to several hundred meters for different land cover types, while 
the spatial resolution of the Landsat-derived LE estimates is approxi-
mately 30 m. The use of a suitable window size (330×330 m) in the 
CNN-LSTM algorithm can effectively characterize the footprints of the 
EC flux towers to improve LE estimations. 

Fig. 17 presents an example of the EC flux tower footprints that were 

calculated using a Eulerian analytic flux footprint model (Kormann and 
Meixner 2001) of the flux source areas of the Daxing EC site (116.25◦ E, 
39.53◦ N) on different dates. It is clear that the weight value contributed 
by the center pixel that corresponds to location of the EC flux tower is 
the largest, and the weight values are smaller toward the outside. 
Although the spatial distributions of the EC flux tower footprints vary 

Fig. 13. Example of agricultural field area of a Landsat image with a false-color composite and NDVI on August 23, 2018, along with the 16-day LE spatial patterns of 
five LE algorithms and the CNN-LSTM integration algorithm results with the frequency histograms of the LE mappings and the differences among the LE products 
with the CNN-LSTM integration algorithm results. 
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greatly for different dates (caused by wind direction and speed) (Bal-
docchi, 2008; Jia et al., 2012; Liu et al., 2016), the main contribution 
from the footprints of these flux tower sites to the LE values is confined 
to approximately 330 m, and a 11×11 (330×330 m) window size con-
tains the pixels with the main weights for driving the CNN to obtain 
more valuable information for improving LE estimations. In contrast, if 
the window size is greater than 330×330 m, the more redundant 

information in the forcing data will lead to large errors in LE estima-
tions. Meanwhile, the LSTM uses time series of the forcing data to extract 
the temporal dependency of this information to characterize the LE 
variations in the EC footprints. Therefore, the CNN-LSTM algorithm can 
utilize the space and time information of the LE products and 
topography-related variables to improve LE estimations. 

5.1.3. Importance of input variables to LE estimations 
Analyzing the importance of the forcing variables (RS-PM, SW, PT- 

JPL, MS-PT, UMD-SEMI, elevation, aspect and slope) to integrate the 
LE is crucial for understanding the impacts of these variables on the 
performance of the CNN-LSTM integration algorithm (Masolele et al., 
2021). To evaluate the contribution of each variable to the CNN-LSTM 
algorithm, we removed one of the individual forcing variables in the 
CNN-LSTM algorithm and replicated the cross-validation process for 
testing algorithm performance. If a forcing variable was removed and 

Fig. 14. Maps of the annual global terrestrial LE averaged for 2013–2015 at spatial resolution of 30-m that were obtained from the CNN-LSTM integration algorithm.  

Fig. 15. The seasonality of the global terrestrial LE averaged for 2013–2015 at spatial resolution of 30-m that were obtained from the CNN-LSTM integra-
tion algorithm. 

Table 2 
Comparison of the LSTM, CNN and CNN-LSTM integration algorithms.  

Algorithm RMSE (W/m2) R2 KGE 

LSTM 23.2 0.59 0.74 
CNN 22.9 0.60 0.75 
CNN-LSTM 21.5 0.66 0.81  
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the larger the value of the decreased KGE was, the more important that 
variable was to the estimated LE. 

The UMD-SEMI LE estimate is the most critical variable (KGE 
decreased by approximately 7 % when it is removed) due to its higher 
accuracy relative to the other four LE estimates (Fig. 18), which was 
calculated based on the Penman equation with empirically calibrated 
coefficients from 64 global EC sites (Wang et al., 2010). As PT 
algorithm-based LE estimates (Fisher et al., 2008; Yao et al., 2013), both 
the MS-PT and PT-JPL LE estimates also had relatively high importance 
(KGE decreased by approximately 5 % and 3 % when they are removed, 
respectively, due to their abilities to partition the total LE using by 
eco-physiological constraints (Ershadi et al., 2014; Talsma et al., 2018a, 
b; Wang and Dickinson, 2012). Additionally, both the SW and RS-PM LE 
estimates are also the key variables that directly lead to changes in the 
LE simulation (KGE decreased by approximately 4 % and 3 % if they are 
removed, respectively), which helps to improve the integrated LE. 

Topography-related elevation, slope and aspect are also identified as 

valuable variables with respect to LE variations due to their effects on 
the redistribution of surface energy (Wei et al., 2017). When the 
elevation, slope and aspect were removed, the KGE decreased by 2 %, 1 
% and 1 %, respectively (Fig 18). Increased elevation will result in a 
decrease in air temperature, which causes the LE to decrease signifi-
cantly as the elevation increases (Goulden et al., 2012). In addition, both 
the aspect and slope will alter the received solar radiation, which in turn 
affects LE estimations due to the energy exchange between the earth and 
atmosphere (Allen et al., 2011; Cascone et al., 2019). 

5.1.3.1. Generalization of the integration and upscaling LE estimations. 
Previous studies have focused on upscaling the LE values from EC flux 
tower sites to regional scales by using machine learning algorithms 
driven by satellite and meteorological variables as direct inputs (Jung 
et al., 2011; Wang and Dickinson 2012; Yamaç and Todorovic 2020). 
However, our study highlighted the integration of multiple 
Landsat-derived physical LE algorithms and topography-related 

Fig. 16. Variations in RMSE, R2 and KGE values of the estimated 16-day LE obtained from the CNN-LSTM algorithm with different window sizes (unit: pixel) at 190 
EC sites. 

Fig. 17. Footprints of the Daxing EC flux tower site on different dates. The pixel values represent the contribution weights of the pixels to the EC flux tower ob-
servations. The red box indicates the 11×11 (330×330 m) window size of the Landsat images. 
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variables by using the CNN-LSTM integration algorithm. To compare the 
generalization differences between the integration of LE and upscaling 
of LE, we used the CNN-LSTM algorithm to implement the upscaling of 
LE that was directly driven by all of the forcing data of the five 
Landsat-derived physical LE models and topography data and then 
validated the upscaled LE estimates based on a 10-fold cross-validation. 
Fig. 19 shows that with the same satellite, meteorological variables, 
topography-related variables and EC observations, the upscaled LE es-
timates showed comparable performance with the integration of LE 
estimates (KGE of 0.79 and 0.81 for the upscaling and integrated LE, 
respectively). 

Although the overall performances of the above two strategies are 
relatively similar, substantial discrepancies appear in areas where the 
vegetation is particularly sparse or dense. For the extreme cases of 
NDVI<0.20 or NDVI>0.80, the accuracies of the LE estimates that are 
obtained by integrating five Landsat-derived physical LE algorithms are 
systematically higher than those obtained by upscaling the LE from the 
flux tower sites to regional scales. This may be partially explained by the 
fact that the five Landsat-derived LE estimates used in the CNN-LSTM- 
ILE framework would be constrained by physical process-based LE al-
gorithms that generalize more effectively under extreme cases (Shang 
et al. 2021; Zhao et al., 2019). For example, the MS-PT LE estimate that 
was used in the CNN-LSTM-ILE framework was generated by the 

physical process-based PT algorithm and outperformed the upscaled LE 
without physical constraints (KGE of 0.46 or 0.78) when NDVI<0.20 or 
NDVI>0.80. The upscaling strategy relies on the training samples, and 
the estimated LE under extreme cases may contain large errors (Chen 
et al., 2014; Shirmard et al., 2022). Therefore, our CNN-LSTM algorithm 
improves the generalization of the integration algorithms for extreme 
cases by coupling deep learning algorithms with model physics to 
maintain the extrapolation capacity that is inherited from the original 
Landsat-derived LE estimates. 

5.2. Uncertainties in LE estimations 

Although the proposed CNN-LSTM-ILE framework can improve LE 
estimations by capturing the spatial and temporal information related to 
the LE, the biases of the EC observations, errors in the individual 
physical LE algorithms, spatial mismatches between the source areas of 
the EC towers and Landsat pixels, and the CNN-LSTM integration algo-
rithm itself could introduce uncertainties into LE estimations. The EC 
technique is currently considered the to be most accurate LE method 
that uses ground observations, but it still contains errors of approxi-
mately 5 %~20 % (Foken 2008; Twine et al., 2000). The filling of LE 
gaps from half-hour intervals to daily and 16-day periods is required to 
eliminate some invalid values, which will also introduce errors at levels 

Fig. 18. Algorithm performance when removing different variables.  

Fig. 19. Comparison of KGE of the MS-PT LE, upscaling LE and integrated LE estimates by using the CNN-LSTM algorithm for different NDVI cases.  
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of 5 % (Yao et al., 2021). Moreover, EC observations are affected by an 
energy imbalance problem that may be caused by the fact that the EC 
technique only acquires small eddies and ignores the large eddies pre-
sent in the lower boundary layer, and the average energy closure ratio is 
approximately 0.80 for the global FLUXNET EC observations (Wilson 
et al., 2002). Although we have used the methods proposed by Twine 
et al. (2000) to correct the observed LE, there are still errors of 5–10 % 
(Mahrt 2010; Twine et al., 2000). 

The errors in the individual Landsat-derived physical LE algorithms 
would also lead to uncertainties in the estimated LE when using the 
CNN-LSTM integration algorithm. The individual physical LE estimates 
are generated from the meteorological variables from the MERRA-2 
datasets and vegetation structure variables (e.g., LAI and FVC) ob-
tained from Landsat data. Previous studies have indicated that there are 
large biases for the meteorological variables in the MERRA-2 datasets 
when compared to ground observations (Gelaro et al., 2017; Rienecker 
et al., 2011). Recent studies have found that MERRA-2 tends to under-
estimate the Rn levels by 5–10 % compared to the ground-measured Rn 
values (Gelaro et al., 2017; Guo et al., 2020). Additionally, the spatial 
resolution of the MERRA-2 data is relatively coarse (0.5̊×0.625̊), which 
will also cause certain errors when these data are spatially resampled to 
Landsat-like scales. Meanwhile, large biases are also present in the LAI 
and FVC that are derived from Landsat NDVI data (Demarty et al., 2007; 
Kandasamy et al., 2013). Eklundh et al. (2003) reported that there are 
errors of approximately 20–50 % for the LAI retrieved from Landsat 
NDVI data. Thus, input errors of the MERRA-2 and Landsat data and 
error propagation through the calculations, including LAI retrieval, 
gridded resampling and different data integrations, all affect the un-
certainties of the integrated LE product. 

The selection of the optimal window size in the CNN-LSTM inte-
gration algorithm may have partially solved the mismatch between the 
estimated LE and EC ground observations. However, there is still a small 
nonoverlapping spatial region between the optimal window size (11×11 
pixels) and the EC footprint. The spatial ranges of the footprints of 
different EC towers vary from 100 to 400 m depending on the wind 
direction and speed. Thus, using a fixed window size in the CNN-LSTM 
integration algorithm can capture only approximately 92 % weights of 
the source areas of most of the EC flux towers (Burchard-Levine et al., 
2021; Oishi et al., 2008). This may compromise the spatial representa-
tiveness of the integrated LE and ground observations and thereby 
introduce errors of 7–10 % into the validation results (Yao et al., 2021). 
Although the CNN-LSTM algorithm is an effective method, some issues 
in the CNN-LSTM integration algorithm itself may affect the accuracy of 
the estimated LE. The CNN-LSTM algorithm requires a large amount of 
training data and a limited amount of labeled data may lead to inferior 
performance (Ren et al., 2017). In addition, the CNN-LSTM algorithm is 
complicated and requires many hyperparameters, and the performance 
of the CNN-LSTM algorithm depends strongly on careful tuning (Ham 
et al., 2019; Lecun et al., 1998). 

5.3. Algorithm merits and limitations 

Compared to other LE algorithms, the CNN-LSTM integration algo-
rithm has two merits. First, it has inherited the partial physical mech-
anisms of the individual process-based LE models and retains the high 
performance of deep learning algorithms for LE estimations. Relative to 
the individual process-based LE models, the CNN-LSTM algorithm 
improved the accuracy of LE estimations because it calibrated the 
multiple physical process-based LE products by using EC observations 
(Yuan et al., 2020). Similarly, the CNN-LSTM integration algorithm 
improved the generalization of integration algorithms for LE estimations 
under extreme cases when compared to the upscaled LE when using pure 
deep learning algorithms (Shang et al., 2021). Second, compared with 
other integration algorithms (MLR, RF and DNN), the CNN-LSTM inte-
gration algorithm has taken advantage of the spatial and temporal in-
formation contained in the forcing variables to improve the LE 

estimates. The inputs of this algorithm include the 16-day LE values of 
both the central Landsat pixels and those of the surrounding pixels, as 
well as the corresponding values of the topography-related variables and 
EC observations. Thus, both the CNN and LSTM exhibit high perfor-
mance for LE estimates by processing these spatial and time series input 
data, respectively (Boulila et al., 2021). 

Like other integration algorithms, the CNN-LSTM integration algo-
rithm has three distinct limitations. First, the CNN-LSTM algorithm is a 
deep learning method that relies on a sufficient number of training 
samples to improve the robustness of the algorithm (LeCun et al., 2015). 
When sampling the LE products, the topography-related variables and 
EC observations are not representative and the CNN-LSTM algorithm 
introduces substantial errors into LE extrapolations. Second, the 
CNN-LSTM algorithm requires relatively lengthy processing times 
(about 5.2 s for 100 samples) to train the algorithm. Moreover, for 
generating a Landsat-like LE images, the CNN-LSTM algorithm is 15 
times slower than the DNN algorithm. Future research will focus on 
improving the deep learning algorithms by coupling with a 
physical-based LE model to generate high-spatial-resolution global 
terrestrial LE products. Third, our current study does not include 
temperature-based models like the Surface Temperature Initiated 
Closure (STIC) model (Bai et al., 2022; Mallick et al., 2015), which have 
shown potential in improving flux estimations in varied ecosystems. 
Future research could benefit from integrating such models, enhancing 
estimation accuracy, especially under extreme moisture conditions. 

6. Conclusions 

We developed a deep CNN-LSTM-based integrated LE (CNN-LSTM- 
ILE) framework by integrating five Landsat-derived physical LE algo-
rithms (RS-PM, SW, PT-JPL, MS-PT, and UMD-SEMI LE algorithms), 
topography-related variables (elevation, slope and aspect) and EC 
ground observations to improve the global terrestrial Landsat-like LE. 
The five Landsat-derived physical LE algorithms driven by the MERRA-2 
meteorological datasets and Landsat data were assessed using the EC 
ground observations at 190 global EC flux tower sites during 
2000–2015. We found large discrepancies for the five Landsat-derived 
physical LE algorithms for LE estimation among the different land 
cover types. 

A series of cross-validations demonstrates that the CNN-LSTM inte-
gration algorithm yields better performance for LE estimates with KGE 
ranging from 0.76 to 0.81, R2 values ranging from 0.58 to 0.66 (p <
0.01) and RMSE ranging from 21.5 W/m2 to 23.3 W/m2, for different 
land cover types than the other machine learning integration algorithms 
(MLR, RF and DNN) and the individual physical LE algorithms. 
Compared with the upscaling of LE from site to regional scales, the CNN- 
LSTM algorithm that combines deep learning algorithm and physical 
process-based LE model has improved the generalization of integration 
algorithms for extreme cases. 

The CNN-LSTM integration algorithm was also applied to estimate 
the global terrestrial Landsat-like LE by using five Landsat-derived 
physical LE algorithms, elevation, slope and aspect data. The annual 
mean global terrestrial Landsat-like LE during 2013–2015 that were 
estimated by the CNN-LSTM-ILE framework was approximately 36.4 W/ 
m2, which is consistent with the results of other studies. Our study has 
provided a valuable bridge between the finer scale (several decades 
meters) and large pixel scales of the coarse-resolution LE products 
(several kilometers). Future work will consist of decreasing the inte-
gration algorithm complexity and its dependence on training data and to 
produce a long-term series of global high-spatial-resolution LE products. 
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