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Abstract: The Priestley–Taylor model of the Jet Propulsion Laboratory (PT-JPL) evapotranspiration
(ET) model is relatively simple and has been widely used based on meteorological and satellite data.
However, soil moisture (SM) constraints include a vapor pressure deficit (VPD) that causes large
uncertainty. In this study, we proposed a PT-SinRH model by introducing a sine function of air
relative humidity (RH) to replace RHVPD to characterize SM constraints, which can improve the
accuracy of ET estimations. The PT-SinRH model is validated by eddy covariance (EC) data from
2000–2020. These data were collected by AmeriFlux at 28 sites on the conterminous United States
(CONUS), and the land cover types of the sites vary from croplands to wetlands, grasslands, shrub
lands and forests. The validation results from daily scale-based on-site and satellite data inputs
showed that the PT-SinRH model estimates fit the observations with a coefficient of determination
(R2) of 0.55, root-mean-square error (RMSE) of 17.5 W/m2, bias of −1.2 W/m2 and Kling–Gupta
efficiency (KGE) of 0.70. Additionally, the PT-SinRH model based on reanalysis and satellite data
inputs has an R2 of 0.49, an RMSE of 20.3 W/m2, a bias of −8.6 W/m2 and a KGE of 0.55. The
PT-SinRH model showed better accuracy when using the site-measured meteorological data than
when using reanalysis meteorological data as inputs. Additionally, compared with the PT-JPL model,
the results demonstrate that our approach, i.e., PT-SinRH, improved ET estimates, increasing the R2

and KGE by 0.02 and decreasing the RMSE by about 0.6 W/m2. This simple but accurate method
permits us to investigate the decadal variation in regional ET over the land.

Keywords: evapotranspiration; Priestley–Taylor model; PT-SinRH model; RH; soil moisture constraint

1. Introduction

Terrestrial evapotranspiration (ET)—the sum of soil evaporation, water evaporation
and plant transpiration—is critical for understanding energy budgets, hydrological cycles
and earth system science [1,2]. Regarding energy budgets, over half of the solar energy
absorbed by land surfaces is used by ET [3]. Regarding the water cycle, approximately more
than 60% of precipitation is returned to the atmosphere by ET [4]. Accurate ET estimation
plays an important role in understanding the characteristics of water cycle evolution and
its climate, resource and environmental effects and optimal resource allocation under the
background of global warming and intensified human activities [5–8].

Consequently, well-known flux models have been developed by using surface obser-
vations (e.g., FLUXNET, AmeriFlux) and satellite data from fields to regional scales [3,9,10].
Generally, three categories can be used to categorize the various methods that have been
offered up to estimate ET: (1) Physical models with satellite data, such as land surface
temperature-derived surface energy balance models [11–13], including Penman–Monteith
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(PM), based on surface conductance [14–16], and the Priestley–Taylor (PT) method [7,17,18];
(2) machine learning methods that build a relationship between eddy covariance (EC)-
observed ET and remote sensing (RS)-based key biophysical variables [19,20]; and (3) data
assimilation methods that assimilate RS-based variables into the models [21,22]. However,
each model has different merits and disadvantages, and the spatiotemporal dynamics of
ET estimation appear highly inconsistent [23,24]. Additionally, there are discrepancies
and uncertainties of up to 50% in these ET models based on different data sources [25,26].
Therefore, exploring ET estimation is still needed.

Recently, the Priestley–Taylor model of the Jet Propulsion Laboratory (PT-JPL) has
been widely used, derived from RS retrieval, and many studies have shown that the PT-JPL
model is relatively simple and has proven to be remarkably accurate and theoretically robust
for estimates of ET compared to other models [17,25,27]. Despite reliable performance
in the abovementioned research, the PT-JPL model is restricted by soil moisture (SM)
control, depending especially on a combination of atmospheric conditions and vegetation
characteristics to represent surface conditions [28]. SM in the PT-JPL model is highly
consistent with the vapor pressure deficit (VPD), whereas the VPD has errors comparing
temperature and relative humidity (RH) [28]. These limitations become especially evident
in regions where the VPD deviates from the underlying surface soil water availability at fine
temporal frequencies in areas with highly heterogeneous land covers [28]. Thus, improving
SM estimation has the potential to address these limitations and improve regional ET
estimates, but there are many challenges to overcome.

In this study, we proposed a PT-SinRH model by introducing a sine function of air
relative humidity (RH) to replace RHVPD to characterize SM constraints, which can improve
the accuracy of ET estimation across seven different land-cover types. Our objectives here
were to (1) validate the PT-SinRH model to optimize the accuracy of ET estimation based
on satellite data combining site-measured inputs and Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA2) observations, respectively; (2) compare
the accuracy of the PT-SinRH model and PT-JPL model using 28 flux tower EC sites from
AmeriFlux measurements; and (3) generate PT-SinRH-based average annual ET (2003–2005)
over the CONUS with a 0.05◦ spatial resolution driven by GLASS vegetation and surface net
radiation (Rn) datasets and Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA2) datasets.

2. Methods
2.1. PT-JPL Model

Priestley and Taylor [18] proposed a general framework for the PT-JPL model, which
has proven to be remarkably accurate and theoretically robust for estimating potential
evapotranspiration. Taking advantage of recent advances in eco-physiological theory,
which allows detection of multiple stresses on plant function using biophysical remote
sensing metrics, Fisher et al. [17] developed the simplified version of the PT-JPL model
using a bio-meteorological method. The PT-JPL model is applied per-pixel and requires no
ground measurements for the calculation of aerodynamic and surface resistance and uses
no site calibration [17].

In the PT-JPL, the soil moisture constraint (fsm) has been determined as follows:

fsm = RHVPD/β (1)

where RH is relative humidity, VPD is vapor pressure deficit and β = 1.0 kPa.
We used input variables to produce the daily PT-JPL ET, including vapor pressure

I, average temperature (Ta), maximum air temperature (Tmax), RH, soil heat flux (G), net
radiation (Rn) and wind speed (WS) from the MERRA2 dataset, and Leaf Area Index (LAI),
normalized difference vegetation index (NDVI) and FPAR from the Global Land Surface
Satellite (GLASS) datasets.
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2.2. PT-SinRH Model

Similar to the PT-JPL model, the PT-SinRH model of ET is partitioned into three
components (ETc, ETs and ETi), and the total ET is expressed as

ET = ETc + ETs + ETi (2)

where ETc, ETs and ETi are canopy transpiration, soil evaporation and interception evapo-
ration, respectively.

In the PT-SinRH model, we introduced a sine function of air relative humidity (RH)
and Pi (π) to calculate the SM constraint (fsm), namely,

fsm = RH − sin(2πRH)/(2π) (3)

Table 1 presents the extended PT-SinRH model controlled by eco-physiological constraints.

Table 1. PT-SinRH model parameters and formulas [17]. Rn is net radiation, Rnc is net radiation to the
canopy (Rn − Rns), Rns is net radiation to the soil (Rnexp(−kRnLAI)), LAI is total (green + non-green)
leaf area index (−ln(1 − fc)/kPAR), fwet is the fraction of time when the surface is wet, G is ground
heat flux, Tmax is maximum air temperature, RH is relative humidity, fAPAR is the green fraction
of the land surface, fAPARmax is maximum fAPAR, fIPAR is the vegetated fraction of the land surface,
VPD is saturation vapor pressure deficit, ∆ is slope of saturation-to-vapor pressure curve, and γ is the
psychrometric constant (~0.066 kPa ◦C−1). α = 1.26, β = 1.0 kPa, kRn = 0.6, kPAR = 0.5, m1 = 1.2 × 1.136,
b1 = 1.2 × (−0.04), m2 = 1.0, b2 = −0.05 (assumes 0.05 < NDVI < 1.0 and 0 < fIPAR < 0.95), λ = Topt, and
Topt is an optimum Tmax.

Parameter Description Formula

ET Evapotranspiration ETs + ETc + ETi

ETc Canopy transpiration (1 − fwet)αfgfMfT
∆

∆+γRnc

ETs Soil evaporation (fwet + fSM(1 − fwet))α
∆

∆+γ (Rns − G)

ETi Interception evaporation fwetα
∆

∆+γRnc

fwet Relative surface wetness (RH)4

fg Green canopy fraction fAPAR
fIPAR

fT Plant temperature constraint exp[−(
Tmax−Topt

λ )
2
]

fM Plant moisture constraint fAPAR
fAPARmax

fSM Soil moisture constraint RH − sin(2πRH)/(2π)

fAPAR Fraction of PAR absorbed by green vegetation cover m1SAVI + b1

fIPAR Fraction of PAR intercepted by total vegetation cover m2NDVI + b2

fc Fractional total vegetation cover fIPAR

Topt Optimum plant growth temperature Tmaxat max{PARfAPARTmax/VPD}

3. Study Domain and Data
3.1. Study Domain

The conterminous United States (CONUS) encompasses a vast range of climates,
landscapes and ecosystems and is chosen as the study domain to assess the performance of
the PT-SinRH model. The study domain, the CONUS, is located between 70 and 130◦W
and 25 and 49◦N (Figure 1). As the topography changes, the climate of the CONUS ranges
from the humid subtropics of the southeast to the arid deserts of the southwest and the
temperate forests of the Pacific Northwest to the polar climate of Alaska.



Remote Sens. 2024, 16, 2783 4 of 17

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 17 
 

 

and 25 and 49°N (Figure 1). As the topography changes, the climate of the CONUS ranges 
from the humid subtropics of the southeast to the arid deserts of the southwest and the 
temperate forests of the Pacific Northwest to the polar climate of Alaska. 

 
Figure 1. Locations of the 28 sites used in this study. 

The CONUS has diverse land-cover types, including coniferous forests, broadleaf 
forests, grasslands, deserts and semi-arid areas, wetlands and montane vegetation. These 
ecosystems are distributed in different geographical and climatic regions, such as north-
ern, western, eastern and central-western regions, which provide various effects on cli-
mate and ET. In addition, the CONUS boasts an extensive network, the AmeriFlux 
(https://ameriflux.lbl.gov, accessed on 1 May 2024), which offers high-quality observa-
tions of key variables relevant to ET estimation. We selected 28 flux stations evenly dis-
tributed in the study area. These flux tower sites cover seven major International Geo-
sphere-Biosphere Programme (IGBP) land-cover types: cropland (CRO; seven sites), de-
ciduous broadleaf forest (DBF; four sites), evergreen needleleaf forest (ENF; four sites), 
grass (GRA; six sites), mixed forest (MF; one site), shrubland (SHR; two sites), and wetland 
(WET; four sites). Details of these flux sites are shown in Table 2. 

Table 2. Information for the 28 EC flux tower sites over the CONUS, including the Identity (ID), site 
name, latitude (Lat), longitude (Lon), and International Geosphere-Biosphere Programme (IGBP) 
land-cover types. 

ID Site Name Lat (N), Long (E)  IGBP ID Site Name Lat (N), Long (E)  IGBP 
1 US-AR1 36.4267, −99.4200 GRA 15 US-Snf 38.0402, −121.7272 GRA 
2 US-Bi1 38.0992, −121.4993 CRO 16 US-Ton 38.4309, −120.9660 SHR 
3 US-CMW 31.6637, −110.1777 DBF 17 US-Tw3 38.1152, −121.6469 CRO 
4 US-IB1 41.8593, −88.2227 CRO 18 US-Var 38.4133, −120.9508 GRA 
5 US-KL1 42.4847, −85.4422 CRO 19 US-Wpp 44.1369, −123.1824 DBF 
6 US-KM1 42.4376, −85.3287 CRO 20 US-WPT 41.4646, −82.9962 WET 
7 US-Me6 44.3233, −121.6078 ENF 21 US-xAB 45.7624, −122.3303 ENF 
8 US-MWA 42.2143, −84.8539 CRO 22 US-xAE 35.4106, −99.0588 GRA 
9 US-MWW 42.6689, −86.0229 WET 23 US-xBL 39.0603, −78.0716 DBF 

10 US-Myb 38.0503, −121.7652 WET 24 US-xCL 33.4012, −97.5700 GRA 
11 US-ORv 40.0201, −83.0183 WET 25 US-xDL 32.5417, −87.8039 MF 
12 US-Ro6 44.6946, −93.0578 CRO 26 US-xJE 31.1948, −84.4686 ENF 
13 US-Rws 43.1675, −116.7132 SHR 27 US-xKA 39.1104, −96.6129 GRA 
14 US-Slt 39.9138, −74.5960 DBF 28 US-xTA 32.9505, −87.3933 ENF 

Figure 1. Locations of the 28 sites used in this study.

The CONUS has diverse land-cover types, including coniferous forests, broadleaf
forests, grasslands, deserts and semi-arid areas, wetlands and montane vegetation. These
ecosystems are distributed in different geographical and climatic regions, such as northern,
western, eastern and central-western regions, which provide various effects on climate
and ET. In addition, the CONUS boasts an extensive network, the AmeriFlux (https:
//ameriflux.lbl.gov, accessed on 1 May 2024), which offers high-quality observations of
key variables relevant to ET estimation. We selected 28 flux stations evenly distributed in
the study area. These flux tower sites cover seven major International Geosphere-Biosphere
Programme (IGBP) land-cover types: cropland (CRO; seven sites), deciduous broadleaf
forest (DBF; four sites), evergreen needleleaf forest (ENF; four sites), grass (GRA; six sites),
mixed forest (MF; one site), shrubland (SHR; two sites), and wetland (WET; four sites).
Details of these flux sites are shown in Table 2.

Table 2. Information for the 28 EC flux tower sites over the CONUS, including the Identity (ID), site
name, latitude (Lat), longitude (Lon), and International Geosphere-Biosphere Programme (IGBP)
land-cover types.

ID Site Name Lat (N), Long (E) IGBP ID Site Name Lat (N), Long (E) IGBP

1 US-AR1 36.4267, −99.4200 GRA 15 US-Snf 38.0402, −121.7272 GRA

2 US-Bi1 38.0992, −121.4993 CRO 16 US-Ton 38.4309, −120.9660 SHR

3 US-CMW 31.6637, −110.1777 DBF 17 US-Tw3 38.1152, −121.6469 CRO

4 US-IB1 41.8593, −88.2227 CRO 18 US-Var 38.4133, −120.9508 GRA

5 US-KL1 42.4847, −85.4422 CRO 19 US-Wpp 44.1369, −123.1824 DBF

6 US-KM1 42.4376, −85.3287 CRO 20 US-WPT 41.4646, −82.9962 WET

7 US-Me6 44.3233, −121.6078 ENF 21 US-xAB 45.7624, −122.3303 ENF

8 US-MWA 42.2143, −84.8539 CRO 22 US-xAE 35.4106, −99.0588 GRA

9 US-MWW 42.6689, −86.0229 WET 23 US-xBL 39.0603, −78.0716 DBF

10 US-Myb 38.0503, −121.7652 WET 24 US-xCL 33.4012, −97.5700 GRA

11 US-ORv 40.0201, −83.0183 WET 25 US-xDL 32.5417, −87.8039 MF

12 US-Ro6 44.6946, −93.0578 CRO 26 US-xJE 31.1948, −84.4686 ENF

13 US-Rws 43.1675, −116.7132 SHR 27 US-xKA 39.1104, −96.6129 GRA

14 US-Slt 39.9138, −74.5960 DBF 28 US-xTA 32.9505, −87.3933 ENF

https://ameriflux.lbl.gov
https://ameriflux.lbl.gov
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3.2. Data
3.2.1. Eddy Covariance Measurements

We used the ET measurements from the ground-measured EC flux tower to validate
the performance of the PT-SinRH model. The data were collected by 28 flux tower sites
from AmeriFlux. The locations of these flux sites are evenly spread over diverse terrain
across the CONUS, so the climate varies from snowy to dry. These datasets were combined
with half-hourly or hourly ground-measured meteorological data, including Ta, Tmax, RH,
G, Rn and ET. To present a consistent temporal resolution of ET, the observation of daily
ET was combined with half-hourly observations by using the approach developed by
Reichstein et al. [29]. If the percentage of missing data in the daily data exceeded twenty-
five percent, the data were considered missing. The energy closure imbalance [30] of the
EC measurements was corrected using the Bowen ratio closure approach.

3.2.2. Satellite and Reanalysis Data

The satellite data we used were the NDVI and LAI products of the GLASS with a
spatial resolution of 0.05◦ and a temporal resolution of 8 days. The GLASS products [31]
employed the deep neural network (DNN) method from advanced very high-resolution
radiometer (AVHRR) data (denoted as GLASS-AVHRR).

We also used Ta, Tmax, RH, G and Rn from the MERRA2, which is generated by
NASA’s Global Modelling and Assimilation Office (GMAO), utilizing atmospheric reanaly-
sis from the satellite. This sophisticated atmospheric reanalysis dataset incorporates vast
satellite data, encompassing novel observation categories like aerosols, microwaves, and
hyperspectral radiation. To make better use of the data, we synthesized hourly data from
MERRA2 into daily data, which were extracted from the pixels covering the EC sites with a
spatial resolution of 1/2◦ × 2/3◦.

4. Model Evaluation
4.1. Model Validation Based on Site-Measured and Satellite Data Inputs

To assess the simulation performance of the PT-SinRH model, we conducted temporal
validation as well as site validation. Compared with ET observations, estimated ET captures
the variations of the observations on daily, seasonal, and annual scales (Figure 2). The
validation results on the daily scale show that the PT-SinRH estimates fit the observations
with an R2 of 0.55, an RMSE of 17.5 W/m2, a bias of −1.2 W/m2 and a KGE of 0.70. The
accuracy of seasonal estimates of PT-SinRH (R2 = 0.71, RMSE = 13.3 W/m2, bias = −4.5 W/m2,
KGE = 0.78) seems better than that of daily estimates. Our PT-SinRH model can capture the
interannual variation, and the KGE and R2 of the estimated annual anomalies are 0.43 and
0.44, and the RMSE and bias are 5.1 and 0.01 W/m2, respectively. At the same time, PT-SinRH
estimates fit the among-site variations. The KGE and R2 of site average estimates are 0.71 and
0.61, and the RMSE and bias are 9.1 and −3.4 W/m2, respectively.

To evaluate the PT-SinRH model, we validated the ET estimates against the observations
at all 28 AmeriFlux sites (Figure 3). The R2 and KGE range from 0.31 to 0.73 and from 0.40
to 0.73, respectively. The RMSE and bias range from 5.7 to 30.0 W/m2, and from −20.2 to
12.0 W/m2, respectively. Among all the sites, PT-SinRH performs best at the US-MWA site
with an R2 of 0.73, KGE of 0.73, RMSE of 9.3 W/m2 and bias of −4.3 W/m2. Simultane-
ously, the model has the lowest accuracy at the US-Rws site (R2 = 0.38, RMSE = 16.9 W/m2,
bias = −11.5 W/m2 and KGE = 0.40). The PT-SinRH model demonstrates different perfor-
mances for various vegetation types. The model has an optimal performance in MF, with
an average R2 of 0.61, RMSE of 19.0 W/m2, bias of 8.6 W/m2 and KGE of 0.63, followed by
DBF (average R2 = 0.51, RMSE = 12.6 W/m2, bias = −1.7 W/m2 and KGE = 0.63). PT-SinRH
performs worst in SHR, with as average R2 of 0.46, RMSE of 17.6 W/m2, bias of −9.3 W/m2

and KGE of 0.51. The KGE descending order of all vegetation types is MF (0.63), DBF (0.63),
ENF (0.62), CRO (0.60), WET (0.60), GRA (0.56) and SHR (0.51).



Remote Sens. 2024, 16, 2783 6 of 17
Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. The estimated ET (vertical axis) versus the ground-measured ET (horizontal axis) based 
on site-measured and satellite data inputs for all ET, seasonal ET, among-site ET variability and 
annual ET anomalies. 

To evaluate the PT-SinRH model, we validated the ET estimates against the observa-
tions at all 28 AmeriFlux sites (Figure 3). The R2 and KGE range from 0.31 to 0.73 and from 
0.40 to 0.73, respectively. The RMSE and bias range from 5.7 to 30.0 W/m2, and from −20.2 
to 12.0 W/m2, respectively. Among all the sites, PT-SinRH performs best at the US-MWA 
site with an R2 of 0.73, KGE of 0.73, RMSE of 9.3 W/m2 and bias of −4.3 W/m2. Simultane-
ously, the model has the lowest accuracy at the US-Rws site (R2 = 0.38, RMSE = 16.9 W/m2, 
bias = −11.5 W/m2 and KGE = 0.40). The PT-SinRH model demonstrates different perfor-
mances for various vegetation types. The model has an optimal performance in MF, with 
an average R2 of 0.61, RMSE of 19.0 W/m2, bias of 8.6 W/m2 and KGE of 0.63, followed by 
DBF (average R2 = 0.51, RMSE = 12.6 W/m2, bias = −1.7 W/m2 and KGE = 0.63). PT-SinRH 
performs worst in SHR, with as average R2 of 0.46, RMSE of 17.6 W/m2, bias of −9.3 W/m2 
and KGE of 0.51. The KGE descending order of all vegetation types is MF (0.63), DBF 
(0.63), ENF (0.62), CRO (0.60), WET (0.60), GRA (0.56) and SHR (0.51). 

Figure 2. The estimated ET (vertical axis) versus the ground-measured ET (horizontal axis) based on
site-measured and satellite data inputs for all ET, seasonal ET, among-site ET variability and annual
ET anomalies.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. Comparison of the daily ET observations for all 28 sites and the corresponding ET estima-
tions from PT-SinRH based on site-measured and satellite data inputs. 

4.2. Model Validation Based on Reanalysis and Satellite Data Inputs 
To evaluate the model based on reanalysis and satellite data inputs, we compared 

ground-measured and estimated ET across days, seasons, sites and years at all 28 sites 

Figure 3. Cont.



Remote Sens. 2024, 16, 2783 7 of 17

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 3. Comparison of the daily ET observations for all 28 sites and the corresponding ET estima-
tions from PT-SinRH based on site-measured and satellite data inputs. 

4.2. Model Validation Based on Reanalysis and Satellite Data Inputs 
To evaluate the model based on reanalysis and satellite data inputs, we compared 

ground-measured and estimated ET across days, seasons, sites and years at all 28 sites 

Figure 3. Comparison of the daily ET observations for all 28 sites and the corresponding ET estima-
tions from PT-SinRH based on site-measured and satellite data inputs.

4.2. Model Validation Based on Reanalysis and Satellite Data Inputs

To evaluate the model based on reanalysis and satellite data inputs, we compared
ground-measured and estimated ET across days, seasons, sites and years at all 28 sites
(Figure 4). Figure 4 shows that the model has relatively accurate estimations for daily and
seasonal ET. For daily ET estimates, the PT-SinRH model based on reanalysis and satellite
data inputs has a KGE of 0.55, R2 of 0.49, RMSE of 20.3 W/m2 and bias of −8.6 W/m2.
The PT-SinRH based on reanalysis and satellite data inputs has the best performance in
predicting seasonal variation ET, with the highest KGE value of 0.61, R2 of 0.63 and RMSE
and bias of 17.0 W/m2 and −9.5 W/m2, respectively. In forecasting the variability among
sites, the PT-SinRH model exhibits a commendable performance. Its KGE is 0.54, and R2,
RMSE and bias values are 0.39, 13.4 W/m2, and −7.5 W/m2, respectively. Meanwhile,
the PT-SinRH model can reproduce the interannual variation. Compared with the ground
measurements, the KGE, R2, RMSE and bias of the annual anomalies estimated by PT-SinRH
are 0.36, 0.38, 5.0 W/m2 and 0.01 W/m2, correspondingly.
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We contrast the corresponding ET estimates derived from PT-SinRH based on rea-
nalysis and satellite data inputs with daily ET observations from all 28 sites (Figure 5). For 
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We contrast the corresponding ET estimates derived from PT-SinRH based on reanaly-
sis and satellite data inputs with daily ET observations from all 28 sites (Figure 5). For the
28 sites, the estimated values range from 0.22 to 0.66 for the KGE of daily ground-measured
ET, R2 ranges from 0.28 to 0.77, RMSE ranges from 6.0 to 33.5 W/m2 and bias ranges from
−28.3 to 14.3 W/m2. From the 28 sites, PT-SinRH based on reanalysis and satellite data
inputs at the US-MWA site has excellent simulation accuracy, with a KGE performance
of 0.65, R2 of 0.6, RMSE of 12.1 W/m2 and bias of 1.0 W/m2. However, the estimation
performance of ET of PT-SinRH at the US-Rws site is poor, with the lowest KGE of 0.22,
R2 of 0.37, RMSE of 19.8 W/m2 and bias of −15.7 W/m2. In addition, Figure 5 reflects the
accuracy of the PT-SinRH model based on reanalysis and satellite data inputs for daily ET
estimation under different land-cover types. The PT-SinRH model performs best in ENF,
with an average KGE of 0.52, R2 of 0.42, and RMSE of 20.3 W/m2 and bias of −1.3 W/m2.
However, PT-SinRH performed the worst in CRO, with an average KGE of 0.33, R2 of 0.55,
RMSE of 20.8 W/m2 and bias of −12.17 W/m2. The KGE of the seven land-cover types was
ranked in the following order: ENF (0.52) > DBF (0.51) > MF (0.48) > WET (0.47) = GRA (0.47)
> SHR (0.36) > CRO (0.33).
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4.3. Comparison with the PT-JPL Model

We compared daily ET observations at all 28 sites and ET estimates for the different
models driven by tower-specific data inputs (Figure 6). The results demonstrate that our
approach improved ET estimates, increasing the KGE and R2 by 0.02 and decreasing the
RMSE by 0.6 W/m2 (3.4%). Specifically, for daily ET estimates, the KGE of PT-SinRH is
0.70, whereas that of PT-JPL is 0.68. Furthermore, the R2 for PT-SinRH is 0.55 (p < 0.01),
with a corresponding bias of −1.2 W/m2 and RMSE of 17.5 W/m2. For PT-JPL, the R2 is
0.53 (p < 0.01), accompanied by a bias of −1.8 W/m2 and RMSE of 18.1 W/m2. Notably,
the results of PT-JPL have more outliers than the other.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 17 
 

 

approach improved ET estimates, increasing the KGE and R2 by 0.02 and decreasing the 
RMSE by 0.6 W/m2 (3.4%). Specifically, for daily ET estimates, the KGE of PT-SinRH is 
0.70, whereas that of PT-JPL is 0.68. Furthermore, the R2 for PT-SinRH is 0.55 (p < 0.01), 
with a corresponding bias of −1.2 W/m2 and RMSE of 17.5 W/m2. For PT-JPL, the R2 is 0.53 
(p < 0.01), accompanied by a bias of −1.8 W/m2 and RMSE of 18.1 W/m2. Notably, the results 
of PT-JPL have more outliers than the other. 

 
Figure 6. Comparison of the daily ET observations for all 28 sites and the corresponding ET estima-
tions from PT-sinRH (left) and PT-JPL (right) based on site-measured and satellite data inputs. 

The 8-day ET observations and estimates of PT-SinRH, as well as PT-JPL, for all veg-
etation types demonstrate similar seasonal variations during the year (Figure 7). How-
ever, they also have differences. Seasonal ET variations and magnitudes of both models 
are comparable. Both ET models have abilities to capture ET seasonal variations for all 
vegetation types. 

 
Figure 7. Time series example of 8-day ET as ground-measured and estimated using PT-sinRH and 
PT-JPL models based on site-measured and satellite data inputs at seven validation sites. 

Figure 6. Comparison of the daily ET observations for all 28 sites and the corresponding ET estima-
tions from PT-sinRH (left) and PT-JPL (right) based on site-measured and satellite data inputs.

The 8-day ET observations and estimates of PT-SinRH, as well as PT-JPL, for all vegetation
types demonstrate similar seasonal variations during the year (Figure 7). However, they also
have differences. Seasonal ET variations and magnitudes of both models are comparable.
Both ET models have abilities to capture ET seasonal variations for all vegetation types.
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Consistent with the preceding findings, PT-SinRH demonstrates enhanced efficacy in
estimating daily ET driven by reanalysis and satellite data inputs (Figure 8). The outcome
shows that our approach yields improved ET estimates, with an increase both in KGE and
R2 of 0.02, and a reduction in RMSE of 0.6 W/m2 (2.9%). For daily ET estimation, the
KGE of the PT-SinRH model is 0.55, slightly higher than the KGE of the PT-JPL model at
0.53. Furthermore, PT-SinRH exhibits an R2 of 0.49 (p < 0.01), with a bias and RMSE of
−8.6 W/m2 and 20.3 W/m2, respectively. In contrast, PT-JPL yields an R2 of 0.47 (p < 0.01),
with a bias and RMSE of −9.1 W/m2 and 20.9 W/m2, respectively. Overall, the improved
model performs better than PT-JPL.
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The 8-day ET time series example as ground-observed and estimated using PT-SinRH
and PT-JPL models based on reanalysis and satellite data inputs showed similar and clear
seasonal trends at seven sites with different land-cover types (Figure 9). However, despite
the similar seasonal patterns, the specific values of ET for each land-cover type may vary
throughout the year. Both the PT-SinRH and PT-JPL models are capable of capturing the
seasonal changes of ET in the seven vegetation types.
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4.4. Mapping of PT-SinRH-Based Terrestrial ET Over CONUS

Figure 10 displays the spatial distribution of the average annual ET over a multiyear
period (2003–2005). In the CONUS, the PT-SinRH model’s estimation of the annual mean ET
from 2003 to 2005 is 41.81 W/m2. Specifically, the region with lower ET is primarily found
in the western United States, from 100◦W to the west, where grasslands and shrublands
make up the majority of the land-use type. Additionally, we discovered that the eastern
CONUS, from 100◦W eastward, was where the majority of the regions with higher ET
were found. This region was also home to densely populated forests and croplands. More
significantly, there was also a fair amount of precipitation in this area, which may have an
impact on the moisture content of the surface soil and further regulate ET in this area.
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5. Discussion
5.1. Model Performance
5.1.1. Ability of the PT-SinRH Model to Simulate ET

Based on the improved strategy of sinusoidal RH, the PT-SinRH model not only raised
the accuracy of ET simulation but also yielded more robust estimates on the timescale,
capturing especially well the seasonal variations of ET for all seven land-cover types. The
model validation for all 28 sites showed that PT-SinRH could obtain higher R2 and KGE
and lower RMSE and bias, whether based on site-measured or reanalysis and satellite data
inputs. Thus, PT-SinRH provided a better modeled system than the original PT-JPL model
in the simulation of ET.

The PT-SinRH model has different abilities to simulate ET for sites with different
land-cover types. ET estimations are more accurate at ENF and DBF sites, with the bias
values between −10.8 W/m2 and 5.2 W/m2 based on site-measured inputs, and the
seasonal variances of ET were also captured well, with consistent curves with ground
measurements, which might result from less water stress of the energy-driven ET for
high-latitude coniferous forests due to slower vegetation transpiration [32]. However, the
performance of the PT-SinRH model trends to be worse for CRO sites (e.g., US-Bi1, US-IB1
and US-KM1) with a negative bias and lower R2, which can be explained by the actual
high ET resulting from agricultural activities such as irrigation [33]. On the other hand,
the underestimation at GRA sites is probably attributable to the fact that the high SM and
low vegetation cover on the grassland lead to reduced vegetation transpiration but also
enhanced soil evaporation [34].

The soil moisture constraint is one of the variables that contributed most to the uncer-
tainty of the PT-JPL model in ET estimations [35]. According the hypothesis of Bouchet [36],
SM can be reflected by atmospheric humidity near the surface. The introduction of VPD
in the equation is meant to quantify the evaporation response, and the relative sensitivity
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of SM to VPD is defined by the β parameter [17]. However, the acquisition of VPD data,
whether through the measurements derived from flux towers or retrieval derived from
remote sensing products, presents a large error [37]. Additionally, the relationship between
SM, RH and soil evaporation follows a distinctive pattern. Initially, soil evaporation in-
creases rapidly with the rise in SM and RH. This is followed by a phase where the increase
in soil evaporation becomes linear with the continued rise in SM and relative humidity [17].
Eventually, the increase in soil evaporation slows down, becoming more gradual as SM
and RH continue to rise. Consequently, the relationship between soil evaporation and the
changes in SM and RH can be described by an S-shaped function. We have successfully
captured the relationship between soil evaporation and RH using Equation 3, which en-
ables us to accurately estimate soil evaporation. Undoubtedly, the PT-SinRH model has
improved the accuracy of ET estimations compared with the original PT-JPL model.

In addition, due to the mismatch of spatial scales, the model based on site measure-
ments can estimate ET more reliably than those based on reanalysis data [38]. Comparing
the evaluation metrics in Figure 8, the PT-JPL and PT-SinRH validated by daily ET obser-
vations for all 28 sites in Figure 6 yield a better performance, with KGR increased by 0.15
and RMSE decreased by 2.8 W/m2. Further comparison of model performance based on
different inputs at each site revealed a consistent result, with the largest KGE increase (0.22)
at the US-Me6 site and the largest decrease in RMSE (6.1 W/m2) at the US-Tw3 site.

5.1.2. Uncertainty in the PT-SinRH Estimates

PT-SinRH still has considerable uncertainty in the estimation of ET, although the
parameters of the model have been improved. These uncertainties are mainly caused by
three aspects: data sources, scaling effects and model structure.

The uncertainties caused by data sources are attributed to EC measurements derived
from in situ sites and meteorological variables derived from reanalysis data. EC measure-
ments suffer from various errors and an ambiguous interpretation of flux values, although
they are relatively accurate in general [39]. When it comes to energy imbalance, the mea-
surement errors of the energy balance equation’s component parts typically range from
5% to 20% [30]. The method of Bowen ratio correcting EC flux [40] was applied in the
study to achieve energy balance closure, but there still remains at least a 10% error in
measured ET [41]. Furthermore, the absence of ground-measured data also affects the
stability of the model and accuracy of time series analysis. At the 28 AmeriFlux tower sites,
these otherwise available measurements were lost due to the interference of anomalies
in sensor status or weather conditions. In addition, a large deviation of meteorological
reanalysis data from in situ measurements and the inaccurate estimation of surface energy
budgets also make the PT-SinRH model inherit more uncertainty through the input of
datasets [42–44].

Scaling effects are the second problem introducing uncertainty, caused by the mis-
matched spatial scale between the in situ sites and the grid of reanalysis and satellite
data [45]. The size and shape of the footprint of flux towers is generally only a few hundred
meters, depending on different facilities and environmental conditions [46]. Due to the
limited spatial representation of in situ measurements, it is difficult to accurately evaluate
EC estimates at the pixel scale of remote sensing products, especially over heterogeneous
landscapes and vegetation covers [13]. The scaling effects can produce relative errors of
5–25% in model validation based on EC measurements [47].

PT-JPL is considered as a simplified version of the Penman equation [17]. We im-
proved the characterization of soil water constraints in PT-SinRH, but the new model
retained certain limitations in ET estimations. In fact, the PT-SinRH model keeps constant
parameters for all land-cover types, although some are space-varying, which could reduce
the reliability of the model over complex underlying surfaces [48]. Meanwhile, the PT-
SinRH model does not consider aerodynamic and surface resistance, which avoids the
propagation of uncertainties but may be error prone in areas with strong winds and low
surface roughness [49]. In terms of canopy transpiration, the uncertainty of vegetation



Remote Sens. 2024, 16, 2783 14 of 17

characteristics (e.g., height and density) is also not considered, resulting in more errors in
ET estimations [50].

5.2. Merits and Limitations of the PT-SinRH Model

The PT-SinRH model has two advantages compared to PT-JPL. Firstly, PT-SinRH
is based on RH rather than VPD to characterize soil moisture constraints, which can
improve the estimation accuracy of ET because RH is easier to obtain and more accurate
than VPD. A strong correlation between VPD and near-surface air temperature has been
confirmed [51,52]. Near-surface air temperature and RH are two key parameters for
calculating VPD, and their accuracy will determine the estimation accuracy of VPD [37].
At the same time, the model characterizes the nonlinear effect of RH on ET by introducing
a sine function, which further improves the accuracy of remote sensing models. Therefore,
the model has higher reliability and robustness. Secondly, the model greatly enhances the
feasibility of estimating ET because PT-SinRH introduces RH to characterize soil moisture
constraints, which requires only RH rather than SM data. At present, reliable SM datasets
in many models are unavailable [53]. Therefore, the model only needs four input variables:
Ta, Rn, RH and NDVI, which is highly operable and can be widely used in ET estimation.

Nonetheless, the PT-SinRH model also has distinct limitations. Firstly, although the
new model has a strong performance, PT-SinRH uses RH to reflect SM constraints, while
the actual SM is not considered in our model. Purdy et al. [28] showed that RMSE and
bias could be reduced by 22.7% and 29.9%, respectively, when SM was considered in soil
evaporation. Therefore, the model has certain limitations in estimating the contribution
of accurate soil evaporation to ET. Secondly, the PT-SinRH model does not consider the
changes in the Priestley–Taylor coefficient α during the vegetation growth season on the
underlying surface. Several studies have shown that the Priestley–Taylor coefficient α
varies both diurnally and seasonally [54] and is related to the underlying surface and
vegetation growth [55]. Therefore, there may be certain limitations in the application of
the model, and the determination of α is particularly important. Thirdly, the influence of
aerodynamic roughness length on ET is not considered in PT-SinRH. Several studies have
shown that aerodynamic roughness length is very sensitive to remote sensing calculation
of ET, and its accuracy directly affects the accuracy of surface flux calculation [56–58].
Therefore, the model still has certain limitations.

6. Conclusions

The purpose of this study was to improve the PT-JPL method to obtain more accurate
ET estimates. The method (PT-SinRH) was developed by making use of RH instead of VPD
in the calculation of soil moisture constraints. We collected 28 EC sites from 2000 to 2020 to
validate PT-SinRH by using site and MERRA2 meteorological data as input. Additionally, we
compared PT-SinRH with the PT-JPL model. The main conclusions in the study are as follows:

(1) The validation results showed that PT-SinRH ET estimates have a suitable accuracy
based on ground-measurements across days, seasons, sites and years at all 28 sites.

(2) The validation results of PT-SinRH that were based on site-measured and satellite
data inputs outperformed those which were based on reanalysis and satellite data inputs.

(3) The PT-SinRH method outperformed the PT-JPL method, both based on reanalysis
and combing site-measured satellite data inputs, and both methods could capture the trend
variation in different land-cover types.
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