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Abstract— Accurate cultivated land parcels’ (CLPs) informa-
tion is essential for precision agriculture. Deep learning methods
have shown great potential in CLPs’ delineation but face chal-
lenges in detection accuracy, generalization capability, and parcel
optimization quality. This study addresses these challenges by
developing a high-generalization multitask detection network
coupled with a specialized parcel optimization step. Our detection
network integrates boundary and region tasks and designs dis-
tinct decoders for each task, employing performance-enhancing
modules as well as more balanced training strategies to achieve
both accurate semantic recognition and fine-grained boundary
depiction. To improve the network’s ability to train more gener-
alized models, our study identifies the variations in image hue,
landscape surroundings, and boundary granularity as the key
factors contributing to generalization degradation and employs
color space augmentation (CSA) and attention mechanisms on
spatial and hierarchy to enhance the generalization. In addition,
the parcel optimization step repairs long-distance boundary
breaks and performs object-level fusion of delineated regions
and boundaries, resulting in more independent and regular CLP
results. Our method was trained and validated on GaoFen-1
images from four diverse regions in China, demonstrating high
delineation accuracy. It also maintained stable spatiotemporal
generalization across different times and regions. Comprehensive
ablation and comparative experiments confirmed the rationale
behind our model improvements and demonstrated our method’s
effectiveness over existing single-task models (SegNet, modified
PSPNet (MPSPNet), DeeplabV3+, U-Net, ResU-Net, and R2U-
Net) and recent multitask models (ResUNet-a, BSiNet, and
SEANet). The implementation of our method is available at
https://github.com/BNU-zhu/CLPs-delineation.
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parcels (CLPs), deep learning, GaoFen-1 image, semantic seg-
mentation.
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I. INTRODUCTION

CULTIVATED land parcels (CLPs)—also known as crop
plots or individual arable fields—are the essential unit

of agricultural statistics that are demarcated by ridges, paths,
and ditches, and are usually planted with one crop per growing
season [1], [2]. CLPs’ delineation is not only the identification
of cultivated land areas but also the further subdivision of inter-
nal cropland units. Accurate delineation of CLPs is crucial for
parcel-level assessments, providing valuable information on
crop types, growth stages, and phenology for precision agricul-
ture. In addition, these assessment outcomes offer precise data
for agricultural insurance and policy development. In recent
years, parcel-based analysis has expanded into various remote
sensing applications, including crop-type classification [3],
[4], [5], [6], [7], phenology estimation [8], and gap filling
for time-series images [8]. These methods often outperform
pixel-based analysis by incorporating parcel boundaries’ con-
straints. Nonetheless, traditional CLP delineation methods
typically rely on time-consuming and labor-intensive man-
ual or on-site techniques. Fortunately, with advancements in
image resolution and data accessibility, remote sensing-based
delineation methods are increasingly becoming efficient and
feasible alternatives, enabling the detailed delineation of large
areas efficiently.

Current methods for delineating CLPs from remote sensing
images can be divided into handcrafted feature-based and
deep learning-based techniques based on the way of feature
learning [9]. Among these, deep learning-based methods are
generally preferred due to their superior feature description
capabilities and more accurate parcel detection [1], [10], [11],
[12], [13]. However, accurately delineating CLPs remains
challenging, as it requires not only identifying cropland
regions but also maintaining complete and accurate internal
boundaries for subdivision. Although many methods exist for
cropland region identification [14], [15], [16], they primarily
focus on distinguishing cropland from noncropland using
high-level features from multilayer convolutions. This process
often results in significant loss of internal boundaries, making
fine-grained delineation of internal parcels challenging. There-
fore, most current methods target field boundaries to detect and
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Fig. 1. Presentation of some types of field boundaries on localized images.
(a1)–(a3) Yellow boxes show three different compositions of field boundaries.
(b1)–(b3) Red boxes show three nonfield boundaries.

generate parcels [1], [12], [17], [18], [19], [20], [21]. However,
field boundaries exhibit variable characteristics, as shown in
Fig. 1, and they have complex compositions, which can be
marked by roads, rivers, and fine ridges. When these features
extend beyond croplands, they transform into nonfield bound-
aries, complicating model’s learning processes and making
direct semantic detection challenging. In response to this
duality challenge, recent research has explored dual-branch
network structures that concurrently predict cropland regions
and boundaries [22], [23], [24], [25], [26], outperforming
single-branch networks. While cropland region prediction
emphasizes semantic discernment, boundary detection neces-
sitates meticulous detail preservation. Current architectures
struggle to optimize both aspects, and even some studies
prioritize only region prediction [24], [25]. Yet, both are
critical: the region predictions suppress noncropland boundary
information, enhancing the semantic accuracy of boundary
detection, while boundary predictions refine the granularity of
region results for precise internal subdivision. Consequently,
it is necessary to enhance the model’s detection capabilities
to maximize the quality of both predictions and fuse for more
accurate CLPs.

Moreover, the model’s generalization performance is also a
significant concern. Robust generalization ability is essential
for effective performance within the training dataset and also
supports stable spatiotemporal generalization when applied to
other nontraining regions. Some studies attempt to improve
model spatial generalization by expanding the number of
training areas [22]. Others achieve stable temporal general-
ization by utilizing multitemporal imagery for training and
prediction [27], [28]. However, both multiregional and mul-
titemporal high-resolution imagery and samples are scarce.
This is primarily due to the narrow width of field bound-
aries, which imposes significant precision requirements on the
samples. Obtaining high-quality samples necessitates manual
delineation, which is both time-consuming and labor-intensive,
especially in China where small-sized parcels are predominant.
Therefore, it is necessary to enhance generalization from
the perspective of network architecture, improving network’s
ability to train more generalizable CLP recognition features
from limited samples.

Several studies have also extended the model’s transfer
capabilities through additional transfer learning. For instance,
Wang et al. [29] retrained a pretrained model with a subset of
samples from the target transfer area. This process updated the
model to achieve improved performance in the transfer region.
Similarly, Kerner et al. [27] enhanced transfer performance
by freezing the shallow layers of the model and fine-tuning
the deeper layers using samples from the transfer areas.
In addition, Liu et al. [26] applied a fine-grained domain
adaptation (FADA) module to align the features of the target
domain with the source domain, enabling the trained model to
be applicable in the transfer region. However, these methods
of achieving model transfer rely on optimizing the model
input images or updating the model weights for specific
transfer scenarios. They do not alter the original network
architecture and enhance the network’s ability to train more
generalized models. Moreover, their dependence on transfer
area information for retraining also reduces their practical
feasibility. Nevertheless, in specific transfer scenarios, these
techniques remain an excellent way to further optimize the
trained model’s transfer performance and are complementary
to the generalization-improved network architecture.

Another overlooked issue in existing research is the direct
output of field boundary detection results. However, field
boundaries in imagery often encounter challenges such as
blurriness or occlusion. Despite the powerful detection per-
formance of deep learning methods, they cannot guarantee
that the predicted boundary results are entirely continuous.
The integrity of boundaries is crucial because incomplete
boundaries can lead to parcel undersegmentation, severely
affecting subsequent parcel-based applications. Currently, few
studies have designed additional optimization steps, and those
that have attempted to address this issue typically employ
morphological dilation operations to connect boundaries [26],
[30], which can only rectify minor fractures. Therefore, a more
effective optimization step for parcel results is necessary.

Based on the considerations mentioned above, we propose
a novel CLPs’ delineation method in this study. The method
comprises a multitask detection network and a parcel optimiza-
tion step, with improvements made to enhance the network’s
generalization capabilities. Overall, this work’s contributions
are threefold.

1) We analyze the duality of CLPs’ detection and develop
a multitask network that integrates boundary and region
tasks. This network designs distinct decoder for each
task to accommodate their different characteristics and
employs some performance-enhancing modules as well
as more balanced training strategies. It makes a balance
between accurate semantic recognition and fine-grained
boundary depiction, addressing the challenge of current
research in predicting high-quality region and boundary
results simultaneously.

2) We analyze the factors influencing model generaliza-
tion. By employing hue transformation and attention
mechanisms on spatial and hierarchy, we provide a foun-
dational network architecture capable of training more
generalized models across limited samples. Compared to
existing networks, our trained models exhibit superior
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spatiotemporal generalization performance, and they
maintain this superior performance even after applying
the same transfer learning techniques for optimization.

3) We propose a novel method to further optimize parcels,
where boundary breaks are oriented repaired through
breakpoint and extension direction detection, and where
region and boundary results are fused through an object-
based approach. Compared to existing studies, our
optimization method can repair larger distance breaks
and fuse to generate more regular parcels.

The remainder of this article is organized as follows.
Section II presents some related work about the CLPs’
delineation. Section III describes the proposed delineation
method. Section IV introduces how to organize the exper-
iment. Section V shows the performance of the method in
experimental areas and the result of ablation and comparison
experiments. Section VI provides some further insights and
discussion on the CLPs’ delineation. Finally, the conclusion
and contributions are summarized in Section VII.

II. RELATED WORK

This section provides a concise overview of the existing
research on CLPs’ delineation. In general, the delineation
methods can be categorized into two primary categories
based on the way of feature learning: handcrafted feature-
based (Section II-A) and deep learning-based methods
(Section II-B). Within each detection approach, three distinct
detection objectives emerge: region-based methods, which tar-
get parcel regions; edge-based methods, which concentrate on
parcel boundaries; and hybrid methods, which aim to extract
both regions and boundaries. Furthermore, in Sections II-C
and II-D, we provide a detailed introduction of existing parcel
optimization methods and the research on further optimizing
model using transfer learning techniques.

A. Handcrafted Feature-Based Methods

1) Region-Based Methods: Region-based methods utilize
conventional image segmentation techniques, such as water-
shed, multiresolution, and mean-shift segmentation, which
directly segment the images based on spectral homogeneity
criteria, thereby yielding object-level CLPs’ results. Nev-
ertheless, the complexity of the imagery often leads to
oversegmentation of resultant regions within high internal
variation fields and undersegmentation between small adja-
cent fields [31]. In addition, the selection of segmentation
parameters heavily relies on experience. Consequently, it is
challenging to obtain accurate parcel objects directly through
region-based methods.

2) Edge-Based Methods: Edge-based methods, on the other
hand, focus on the detection of field boundaries by empha-
sizing the discontinuity (gradient) between pixels using edge
operators. Operators, such as Sobel, Canny, and Scharr, have
been employed for field boundary detection [32], [33], [34].
Nonetheless, due to the boundary detection operators solely
focusing on gradient information without possessing the abil-
ity to semantically recognize field boundaries, the resulting

boundaries may include other irrelevant boundaries. Fur-
thermore, edge-based methods still encounter a considerable
amount of boundary broken and noise information, making it
difficult to transform nonclosed boundaries into independent
and complete CLPs.

3) Hybrid Methods: There have also been studies attempt-
ing to combine the two methods, wherein region segmentation
is performed on the detected gradient layer to obtain object-
level results, thus avoiding the issue of nonclosed boundaries
faced by singular boundary detection. Mueller et al. [33]
initially applied this approach for field delineation, achieving
improved results compared to direct segmentation by utilizing
boundaries to guide the region segmentation. Watkins and van
Niekerk [35] conducted comparative experiments on different
combinations of boundary detection and region segmentation
methods and found that the Canny combined with the water-
shed segmentation method (CEWS) demonstrated the best
extraction performance, which has been applied in various
parcel-based studies [3], [34], [36].

However, overall, the detection performance of edge oper-
ators and region segmentation methods is still limited as they
rely solely on the shallowest features within the imagery. Real-
world CLPs exhibit significant complexity in terms of crop
types, terrain, cultivation practices, phenology, and imaging
conditions. Therefore, this gap in feature description capability
makes it challenging for handcrafted feature-based methods to
accurately and extensively delineate CLPs.

B. Deep Learning-Based Methods

Due to the limited performance of handcrafted feature-based
methods, more research has attempted deep learning-based
methods to achieve accurate CLPs’ identification by utilizing
its powerful feature description capability.

1) Region-Based Methods: Early studies focused on utiliz-
ing deep learning models to detect the region of agricultural
land distribution. For instance, Zhang et al. [14] employed a
modified PSPNet (MPSPNet) model to map high-resolution
croplands in four provinces in China. The added modules
in the model significantly improved the accuracy of region
identification, resulting in overall accuracies (OAs) exceeding
90% for all four provinces. In addition, architectures, such as
DeeplabV3+ and UNet, have also been employed for cropland
region recognition [16], [17].

However, the task of cropland identification primarily
concerns distinguishing between cropland and noncropland
categories, which corresponds to the high-level semantic fea-
tures with low resolution in model. Nonetheless, the field
boundaries often occupy only a few pixels in width. In the
model’s downsampling process, there is a substantial loss of
boundary information. Consequently, these methods can solely
determine the general region of croplands, failing to accurately
represent the precise delineation of internal individual parcels.

2) Edge-Based Methods: Considering the significance
of detailed boundary information in CLPs’ delineation,
an increasing number of studies have conducted delineation
from the perspective of detecting field boundaries. These meth-
ods utilize deep learning models to learn the image features
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of field boundaries for prediction. It is worth noting that
the aforementioned edge detection operators can be viewed
as models with only one convolutional layer. Therefore,
CNN-based edge detection models with multiple convolutional
layers, such as HED [37] and RCF [38], can provide more
accurate boundary results. For instance, Marvaniya et al. [39]
utilized the HED model to identify boundary information and
obtained CLPs’ results through a series of postprocessing
steps. However, the field boundaries are semantic bound-
aries. Although these edge models possess excellent boundary
awareness and can detect more potential field boundaries,
they struggle to differentiate field boundaries from other types
of boundaries (e.g., boundaries within residential areas) due
to a lack of category judgment [11]. Incorrect boundary
information can lead to the generation of incorrect parcels.

Semantic segmentation models, however, can treat field
boundaries as a feature type and link each image pixel to the
field boundary/nonfield boundary label, thus detecting them
semantically. These models have been widely adopted for field
boundary detection. FCN [10], [20], Segnet [1], U-Net [12],
[19], [40], ResU-Net [17], ResUNet-a [22], [41], and R2U-
Net [18] are extensively employed architectures. Among these,
U-Net-based architectures exhibit the highest performance,
as they incorporate high-resolution shallow features through
skip connections after each decoding step, thereby mitigating
the issue of boundary information loss in high-level features.
Nevertheless, field boundaries are not inherent land cover
types, and their complex composition poses challenges for
models to learn their precise category features, consequently
limiting the detection performance.

3) Hybrid Methods: The results of a single field boundary
detection task can be mixed with other boundaries. To mask
these irrelevant boundaries, some research has attempted to
fuse boundary results with cropland region. Xia et al. [42]
first detected boundary information based on the RCF model
and then masked the irrelevant boundaries with the cropland
region recognized by the U-Net model. Xu et al. [11], on the
other hand, reversed this process by initially identifying the
cropland region based on the U-Net model and then detecting
the boundaries within the identified regions. Nevertheless, the
two separate detection processes may result in inconsistent
information correspondence.

Taravat et al. [17] have incorporated these two detection
tasks into a multiclass network, which classified sample cat-
egories into three classes: cropland region, field boundary,
and others, thus simultaneously predicting cropland region and
boundary results, achieving good recognition results. However,
such a multiclass network needs to consider both the “cropland
recognition” and “field boundary detection” features at the
same time, which limits the performance of the network.

Therefore, Waldner and Diakogiannis [22] have employed
the multitask head model to predict the cropland region and
boundary through two distinct detection heads within the
same network. They proposed a multitask ResU-Net-a model,
which utilized multitask heads to predict the cropland regions
and boundaries within a modified U-Net model, achieving
remarkable recognition accuracy. This method is regarded as
a state-of-the-art technique for CLPs’ delineation [26].

However, this multitask head model used the same model
architecture for both tasks, which did not consider the dif-
ferences between the cropland region and boundary during
feature processing. In fact, image features of the region and
boundary differ drastically. Also, in a model, there is a
potential contradiction between the abstract semantic features
required for cropland classification and the precise location
information required for boundary detection, making ResU-
Net-a model challenging to maintain strong performance in
both tasks.

Recent studies have explored to design independent decod-
ing components for multitasks, prioritizing the region task
and utilizing the related signals from boundary task to pro-
vide boundary constraints, thereby facilitating parcel-level
region identification. For instance, BSiNet employed separate
decoding convolutions for boundary and region tasks, with
the region task being responsible for delivering parcel-level
outcomes [24]. The SEANet model advances this approach and
provides the model with stronger boundary perception, thus
enabling the region task to output higher quality parcel-level
results [25].

However, while the region output benefits from boundary-
related signals, the cropland region task, focusing on category
differentiation, struggles to retain sufficient detail, resulting in
region outcomes that lack the detail needed for internal delin-
eation, especially neglecting fine field ridges within cropland.
Boundary task results, which have higher predictive granular-
ity, are necessary to supplement this. In addition, although
these networks use independent decoding components for
multitask output, their identical structure struggles to meet
the differing semantic and detail requirements of the region
and boundary tasks, making it difficult to balance both tasks
effectively.

Therefore, in the study of parcel delineation, accurate
cropland identification and detailed internal segmentation are
equally important. This necessitates the equitable output of
boundary and region results and their integration at the result
level. However, existing networks have not yet fully exploited
the potential of these two tasks, unable to simultaneously
produce two high-quality outcomes: complete and accurate
field boundaries, and well-shaped, categorically precise crop-
land regions. Consequently, there is a need to further enhance
the network’s detection performance, achieving both accurate
semantic recognition and fine-grained boundary depiction.

C. Parcel Optimization

While deep convolutional networks can capture long-range
dependencies to aid the comprehensive assessment of chal-
lenging boundaries, they cannot guarantee that the final
predicted boundaries are entirely connected. However, the
continuity of boundaries holds particular significance in CLPs.
Therefore, the inclusion of additional parcel optimization pro-
cedures becomes indispensable to ensure boundary continuity
and parcel independence.

Early parcel optimization methods have primarily focused
on simplifying line segments. For instance, Turker and
Kok [32] applied the Gestalt rule to group line segments and
eliminate pseudo line segments. Similarly, Hong et al. [43]
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employed the Suzuki85 algorithm for simplification. How-
ever, these approaches lack active connectivity for fragmented
boundaries. Cheng et al. [30] proposed an improvement by
employing morphological dilation operations to connect minor
boundary discontinuities. Nonetheless, applying morphologi-
cal dilation directly on a boundary may cause its width to
increase and lead to attachment with adjacent field boundaries.
Liu et al. [26] introduced the connecting boundaries and filling
field (CB-FF) optimization method, where binary boundaries
were first skeletonized and, then, dilation was applied to the
one-pixel-wide skeleton lines to mitigate the aforementioned
issues. However, due to the limited size of morphological
structure operators, these methods only achieve minor repairs
of boundary breaks.

D. Additional Transfer Learning

Several studies have employed some additional transfer
learning strategies such as domain adaptation and model
fine-tuning to adjust model’s input images and weights,
thereby ensuring good generalization in the transfer areas.
These methods do not involve changes to the network archi-
tecture and can be considered additional transfer optimization
strategies.

Wang et al. [29] utilized the FracTAL-ResUNet network
architecture, obtained a pretrained model on the training
dataset, and then directly retrained this model using the labeled
dataset from the transfer area, updating the model weights to
extend its performance to the transfer region. Kerner et al. [27],
on the other hand, based on the pretrained model obtained
from the spatiotemporal U-net (ST-U-net) architecture, froze
the shallow layers and further trained the network’s deeper
layers using the labeled dataset from the transfer area. This
fine-tuning approach leverages the original shallow features,
updating only the deep layer weights related to the output,
which accelerates the retraining efficiency and achieves sim-
ilarly good performance transfer. This technique is not only
applicable in the field of CLP detection but also widely used
in other areas such as crop classification to help the model
quickly update with the transfer area samples [44], [45].

Some studies have also tried using domain adaptation
techniques to align the features of target domain with source
domain. For instance, Liu et al. [26], based on a pre-
trained model trained from a parallel network of U-Net and
DeeplabV3+, adopted the FADA technique for feature align-
ment. FADA simultaneously trains a feature extractor and a
discriminator: the feature extractor extracts features from both
the source and target domains, which are then evaluated by the
discriminator. The training aims to make the features extracted
by the feature extractor indistinguishable by the discriminator
as originating from either the source or the target domain.
Based on the trained feature extractor, the image features of the
target domain can be adapted to the source domain, enabling
the trained model to be applicable in the transfer region.
This method avoids the need for samples from transfer areas.
However, due to the lack of real samples, the gain for model
transfer is limited, especially when the transfer region has
high landscape heterogeneity compared to the source domain.

Fig. 2. Workflow of our method for delineating CLPs, which consists of a
detection network and an optimization step.

In addition, for each area, retraining the feature extractor and
discriminator for image adaptation is required, so the transfer
efficiency is low.

Although these techniques have many limitations, they
possess the potential to further enhance model transfer perfor-
mance in specific transfer scenarios. Therefore, it is necessary
to assess the need to apply these techniques additionally in
different transfer scenarios.

III. PROPOSED METHOD

Fig. 2 illustrates the workflow of our method for delin-
eating CLPs, which consists of a detection network and an
optimization step. Initially, we establish a multitask detection
network that encompasses cropland region and field boundary
tasks. The region task predicts the coverage region of CLPs
and additional distance maps to provide auxiliary constraints.
The boundary task, on the other hand, offers a more refined
prediction of the division of field boundaries. A distinct
decoder was designed for each task to accommodate their
different characteristics. Our network is designed on the image
feature of CLPs, maximizing both detection and generalization
performance. In addition, we implement an optimization step
to enhance the boundary connectivity and integrate boundary
and region results at the object level, resulting in individual
and regular CLP final results.

A. Feature Analysis of Detection Model

1) Model Detection Performance: The complexity fea-
ture of field boundaries hinders direct detection. However,
as shown in Fig. 3, we can conceptually define field bound-
aries as “boundary information within the cropland region.”
This decomposition divides the detection task into cropland
identification and boundary detection tasks, avoiding the need
for the model to learn the intricate features of field boundaries.
These two tasks are mutually beneficial: cropland regions help
constrain the presence of field boundaries, reducing irrele-
vant boundaries, while boundary information provides detailed
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Fig. 3. Presentation of (a) cropland regions and (b) boundaries within the
cropland regions, i.e., the field boundaries.

information for finer parcel delineation within cropland,
compensating for the limitations of coarse-grained analysis
inherent in region recognition. Therefore, integrating these two
tasks is essential to enhance the feature interpretability of field
boundaries and optimize the detection performance.

In contrast to typical semantic segmentation tasks such as
cropland region recognition, the field boundary task demands
a robust boundary sensing capability to identify all potential
boundaries. Therefore, using the same detection architec-
ture for both tasks is not practical. Field boundaries consist
of boundaries with different granularity levels, which cor-
respond to multilevel features in the network. High-level,
low-resolution features predict the coarse-width overall parcel
outline, such as road boundaries surrounding cropland. Low-
level features describe finer boundaries within cropland, such
as ridges. To detect all field boundaries effectively, it is
necessary to employ a side architecture for the boundary task,
enabling multiscale boundary prediction and appropriately
weighting different granularity levels of boundaries.

In addition, in boundary task, the boundary information
would be seriously lost in the low-resolution high-level fea-
tures, and such inaccurate features cause errors in results.
However, conventional supervised training methods lack suffi-
cient motivation to correct them, so more powerful supervision
needs to be imposed on boundary task. In addition, as a kind of
large-span connectivity information, field boundary detection
would benefit from the longer ranged context information.
Expanding the feature’s receptive field is also crucial for crop-
land region tasks. These long-range assistances can effectively
identify land cover types, especially when detecting parcels
with diverse shapes and sizes [25].

2) Model Generalization Performance: Spectral features of
cropland vary across time periods, which can significantly
restrict the temporal generalization ability of the model.
However, the delineation of CLPs only necessitates the dif-
ferentiation between cultivated and noncultivated areas, which
relies more on the texture features, featuring the flat texture
within the cropland, surrounded by boundaries with dramatic
spectral transitions. The flat texture of cropland clearly dis-
tinguishes it from other land cover types with rough textures
such as residential and forested regions, forming a distinct
contrast. Moreover, the temporal fluctuations in the spectral
are relatively subtle for cropland, and it consistently maintains
discernible spectral distinctions from other flat-textured non-
cropland areas, such as factory roofs and water bodies. This

Fig. 4. Analysis of the factors affecting the model generalization perfor-
mance. (a) Temporal generalization analysis. (a1) Image (June), (a2) texture
variance for image (a1), (a3) image (April), and (a4) texture variance for image
(a3). (b) Space generalization analysis (cropland region identification). (b1)
Image (plain area), (b2) land cover map of image (b1), (b3) image (mountain
area), and (b4) land cover map of image (b3). (c) Space generalization
analysis (field boundary detection). (c1) Image (complex scene), (c2) and (c5)
corase-level boundary feature map, (c3) and (c6) fine-level boundary feature
map, and (c4) image (simple scene).

pattern remains constant across different temporal images,
as demonstrated in Fig. 4(a), where the detection of two
images with different phases yielded consistent texture results.
Consequently, it is theoretically possible to improve the gener-
alization ability by modeling spectral-insensitive features with
little impact on cropland identification performance.

Moreover, recognizing the cropland region under different
image scenes is complicated by significant variations in the
surrounding landscapes, which can impede the space gen-
eralization of the model [Fig. 4(b)]. Therefore, to enhance
the generalization of region task, it is crucial to minimize
the interference of irrelevant information surrounding crop-
land during feature extraction and emphasize spatially salient
features associated with cropland classification.

In the field boundary task, the final boundary result is a
weighted aggregation of multilevel boundary prediction. The
CNN-based boundary detection networks, such as HED and
RCF, concatenated the multilevel prediction and passed them
through a single 1 × 1 convolutional layer to achieve weight
merging. However, the connection weights of each feature
layer with the 1 × 1 convolutional layer are fixed within
a single model and only represent weight allocation in the
current training scene. It can be challenging for the model
to produce desirable results when applied to different data
scenes because the weight allocation for multilevel features
differs across scenarios. As shown in Fig. 4(c), in areas where
cropland distribution is sparse and mixed with other objects,
higher level abstract features need to dominate, leading to a
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tradeoff between sacrificing boundary accuracy and identifying
accurate category information. Conversely, inner farmland
scenarios require more low-level features to provide detailed
information. Therefore, to enhance the model space general-
ization for field boundary detection, the model needs to be
able to adaptively adjust the weight combinations of multilevel
features in various scenarios.

B. Network Architecture

The architecture of our network is illustrated in Fig. 5.
It comprises a multitask head network, constructed using an
encoder–decoder structure. The encoding component employs
a sequence of convolutional layers to aggregate contextual
information and extract latent multilevel features pertinent
to the CLPs’ delineation. On the other hand, the decod-
ing component, consisting of the region decoder and the
boundary decoder, further decodes extracted features specific
to the respective tasks and generates predictions, yielding
corresponding results for the parcel regions and boundaries,
respectively.

1) Image Input: We have analyzed that spectral varia-
tions across different temporal phases significantly impact
the model’s temporal generalization. Theoretically, texture
features play a more crucial role in cropland recognition.
Thus, the color space augmentation (CSA) was adopted in
our method. By introducing random transformations within the
hue-saturation-value (HSV) color space of the input samples,
we effectively simulate the inherent heterogeneity of crop-
land’s spectral characteristics arising from diverse imaging
conditions, modeling spectral-insensitive semantic features and
enhancing the model’s temporal generalization. In addition,
geometric transformations, encompassing horizontal, vertical,
and diagonal flips, are also applied to augment the training
dataset, thereby strengthening the model’s robustness to rota-
tion invariance [46].

2) Encoder: The encoder section employs the ResU-Net
network’s VGG-like encoding backbone, which is composed
of a series of Conblock units, each stacked with a series
of 3 × 3 convolutional layers. In addition, the network adds
residual connections to alleviate the risk of gradient vanishing
or explosion. Residual connections are preceded by 1 × 1 con-
volutional layers that adjust the channel dimensions of the
original feature maps. Following each Conblock unit, squeeze-
and-excitation (SE) operations are added to recalibrate the
feature channels, thereby enhancing the focus on significant
channels [47]. These Conblock units extract multilevel features
from local to global scales.

3) Cropland Region Task: The cropland region task decodes
the region-related features, which is designed based on the
decoding component of the ResU-Net network [48]. This
decoding approach facilitates the adaptation to the CLPs with
diverse shapes and sizes through the fusion of multilevel
features [49]. Specifically, the module progressively upsamples
the feature maps through 3 × 3 convolutional units, and
a skip layer connects the feature from the encoder after
each upsample. This process yields a comprehensive feature
representation of cropland regions.

Fig. 5. Architecture of the proposed network, which has two decoders,
corresponding cropland region and field boundary feature process. The num-
bers in parentheses refer to the height, width, and dimensionality of output
channels.

In addition, we have analyzed that variations in the
surrounding landscapes severely undermine the spatial gener-
alization for cropland area recognition. Therefore, to suppress
irrelevant regions and highlight the salient features in specific
local areas, attention gate (AG) units [50] are introduced at
each skip-layer connection. These AG units utilize dual 1 ×

1 convolutions on the concatenated features to derive spatial
attention coefficients, optimizing the corresponding layer’s
feature maps. Furthermore, the atrous spatial pyramid pooling
(ASPP) [51], which consists of multiple parallel atrous convo-
lutions with varying rates, was adopted to capture multiscale
and larger range contextual information. Such information
facilitates more comprehensive identification of land cover
types and more effective detection of parcels with varying
shapes and sizes. In this study, ASPP serves as a bridge
between the encoder and decoder sections, and it is also
applied after the final decoder block. Such strategic positioning
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Fig. 6. Example of provided labeled samples of cropland regions, boundaries,
and calculated distances.

has been proven to be more effective in capturing valuable
multiscale information [50].

In addition, adding a distance (to cropland region mask)
auxiliary prediction to the region task provides information
for the topological connectivity of the segmentation regions,
which can improve cropland segmentation in the geometric
aspect and better avoids parcel undersegmentation [24], [48].
Here, we utilize the quasi-Euclidean distance transformation
to compute the distance to the closest boundary for each pixel
within the cropland region (Fig. 6). Compared to the tradi-
tional Euclidean distance that considers only diagonal pixels,
the quasi-Euclidean distance, which accounts for horizontal,
vertical, and diagonal pixels, offers a more accurate measure
of distance [52].

4) Field Boundary Task: By drawing inspiration from the
design of edge detection networks, such as HED [37] and
RCF [53], we adopt the side structure as a decoder for
field boundary task, which generates edge maps from each
stage, and weighted integrates them into the interested field
boundaries. The side structure can effectively capture multi-
level boundary features, resulting in a more comprehensive
hierarchical edge representation. Furthermore, the multilevel
predictions of side structure can also facilitate applying deeper
supervision to the boundary detection results.

To optimize feature maps at each stage, we developed a
compact dilation convolution-based module (CDCM) to enrich
the edge information before decoding the features. This mod-
ule first reduces the dimensionality of the output multichannel
features to 21 using a 1 × 1 convolutional kernel. This
parameter value aligns with RCF’s parameter setting for fea-
ture dimension reduction. Afterward, the dimension-reduced
features undergo a series of dilated convolutional kernels to
expand the receptive field of boundary features and enrich
their representation. Due to the large span of field bound-
aries, the rich long-range assistance information provided by
CDCM’s stacked dilated convolution layers provides better
preservation of the overall connectivity of the boundaries and
more precise depiction of categorical features. In addition,
this approach, without introducing downsampling, maintains
fine-grained detailed information, which is vital for boundary
objects with narrow widths.

The feature of each level was subjected to a 1 × 1 con-
volution for dimensionality reduction to a single channel.
It is then upsampled to the original size for output, while
the side loss is computed using the ground-truth map to
provide deep supervision. Multilevel boundary predictions
necessitate consolidation into a single-channel boundary result.
Conventional boundary models employ a 1 × 1 convolution

for this aggregation, featuring fixed weight allocation for
multilevel predictions, which struggles to adapt to varying
scenarios, thus limiting spatial generalizability of field bound-
ary tasks. Therefore, we design a hierarchical attention fusion
module (HAFM) to achieve adaptive weight fusion. This
attention module utilizes dual 1 × 1 convolution kernels to
simulate the nonlinear variations of attention, thereby learn-
ing the mechanism of weight fusion for different types of
pixels.

5) Multitask Loss: In semantic segmentation tasks such as
cropland region identification, the Dice loss function emerges
as a better choice compared to the cross-entropy function as
its faster training convergence and improved handling of class
imbalances [54]. Thus, we defined the loss function L reg for
the cropland region task in our study as follows:

L reg = 1−
2
∑N

i=1 Pi × G i + ε∑N
i=1 P2

i +
∑N

i=1 G2
i + ε

(1)

where N is the total pixel count, Pi represents the model’s
prediction for the i th pixel, G i represents the label value for
the i th pixel, and ε is a minute value introduced to prevent
division by zero in the denominator.

The loss for the distance auxiliary task calculates the mean
square error between the predicted distance yi

D (the shortest
distance of the pixel to the predicted cropland region) and the
ground-truth distance ŷi

D (the shortest distance to the ground-
truth region)

Ldis =
1
N

N∑
I=1

(
yi

D − ŷi
D

)2
. (2)

In addition, for the field boundary task, the classes “field
boundary” and “nonfield boundary” are highly imbalanced.
It is necessary to set a greater weight on the field boundary to
help the model training to be more focused. The weight value
is calculated from the ratio between the two classes [53]. The
loss functions are defined as (3), and the ultimate boundary
loss Lbou emerges as a composite value that sums up the losses
of multilevel boundary predictions [see (4)]

Lk
bou

=
1
N

(
−

N∑
n=1

(
|Y−|

|Y+ + Y −|
ŷk

+
logyk

+
+

|Y+|

|Y+ + Y −|
ŷk

−
logyk

−

))
(3)

Lbou =

5∑
k=1

lk
bou + lbou (4)

where k is the level of the boundary predictions; y+ and y−

are prediction positive pixels and negative pixels, respectively;
ŷ+ and ŷ− are the label category of them; and |Y+| and |Y−|

are the number of their pixels.
Multitask loss functions are usually computed as a linear

summation of individual task losses. Nevertheless, as task
importance varies, manual weight tuning for each task proves
labor-intensive. Thus, this study employs a homoscedas-
tic uncertainty-based method to autonomously adjust task
weights [55]. This technique models intertask uncertainty
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(noise) to measure the relative confidence of tasks, thereby
determining appropriate weights. Such an approach finds
extensive utility in various multitask networks [25], [56], [57].

To provide specific details, the adaptive multitask loss func-
tion is formulated based on the maximization of homoscedastic
uncertainty likelihood estimation. Let f w(x) represent the
output of a task under weight w and input data x , and
P(y| f w(x)) signifies the model likelihood. For regression
tasks, such as the distance task in our study, the probabil-
ity distribution follows a Gaussian distribution, leading to
Gaussian likelihood estimation: P(y| f w(x)) = N( f w(x), σ 2).
For classification tasks, such as region task, employing the
softmax function to normalize model outputs, the expression
becomes P(y| f w(x)) = Softmax( f w(x)). Here, the parameter
σ 2 stands as a trainable model noise parameter.

For the losses of boundary, region, and distance tasks, their
joint model likelihood is given by: p(y1, y2, y3| f w(x)) =

Softmax( f w(x), σ 2
1 ) · ( f w(x), σ 2

2 ) · N( f w(x)). Through the
logarithmic transformation of the joint likelihood, it is con-
verted into a minimization objective function, serving as the
loss L(w, σ1, σ2, σ3) for the three tasks, which can be further
reduced to the form of the following equation:

L(w, σ1, σ2, σ3)

= −logSoftmax
(

f w(x), σ 2
1

)
·
(

f w(x), σ 2
2

)
· N ( f w(x))

=
1

2σ 2
1

L reg(W )+logσ1+
1

2σ 2
2

Lbou(W )+logσ2+
1
σ 2

3
Ldis(W )

+ log

∑
′

c exp
(

1
σ 2

3
f w
c′ (x)

)
(∑

′

c exp
(
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))
1

σ2
3

≈
1

2σ 2
1

L reg(W ) +
1

2σ 2
2

Lbou(W ) +
1
σ 2

3
Ldis(W ) + logσ1σ2σ3

(5)

where L reg(W ), Lbou(W ), and Ldis(W ) represent the loss for
the region, boundary, and distance tasks, respectively. The
parameters σ1–σ3 correspond to the noise parameters of the
three tasks, reflecting their uncertainties. Higher noise values
indicate increased uncertainty and lower task weights.

C. BC-OF Optimization

Owing to potential issues such as boundary occlusion and
unclear display in the images, the delineated boundary results
may exhibit discontinuities. This can lead to incomplete divi-
sion between adjacent parcels. Furthermore, the boundary and
region results need to be fused into more regularized parcels.
In this study, a novel boundary connection and object-level
fusion (BC-OF) approach is proposed for result optimization.

The oriented connection of broken boundaries is realized
through breakpoint and junction detection, as illustrated in
the implementation process depicted in Fig. 7. Initially, the
method employs the Zhang–Suen algorithm to transform the
detected boundaries into skeletal lines with a single-pixel
width. This algorithm iteratively refines the width inward until
it reaches a pixel-wide structure. Subsequently, leveraging
the skeletonized boundaries, we directly conduct breakpoint

Fig. 7. Workflow of the proposed BC-OF optimization method.

and junction detection based on the eight-neighborhood infor-
mation of boundary points. This is facilitated by the fact
that the eight-neighbor window of a typical boundary pixel
encompasses two boundary pixels, whereas breakpoints are
singular, and junctions exceed two. The breakpoint informa-
tion localizes the existence of broken boundaries, while the
directions of connections between breakpoints and junctions
indicate the extension direction of these broken boundaries.
Finally, we establish connections between pairs of breakpoints
that satisfy the conditions delineated in (6) and (7) in terms
of distance and extension direction. After restoring the con-
nected boundaries to their original width using morphological
dilation, high-quality object-level boundaries can finally be
obtained. The dilation’s operator size is determined by the
number of iterations in the skeletonization process, which
signifies the original boundary width as each iteration only
erodes a single pixel

|BP1, BP2| ≤
|IP1, IP2|

3
(6)

π − |θBP1, θBP2| ≤
π

9
(7)

where |BP1, BP2| denotes the Euclidean distance between
two breakpoints; IP1 and IP2 denote the intersection points
corresponding to breakpoints BP1 and BP2, respectively; and
|θBP1, θBP2| denotes the angle of the predicted extension direc-
tion of the two breakpoints.

The optimized object-level boundaries are combined with
the identified cropland regions using a pixel majority voting
strategy [58]. Specifically, for each boundary-generated object
G, we count the number of pixels predicted as cultivated land
class (M) and the number of pixels classified as noncultivated
land (N ). If M is greater than N , the object is retained;
otherwise, it is discarded. This voting approach is applied to all
generated candidate objects, ultimately producing independent
and accurate results for CLPs.

IV. STUDY AREAS AND DATASETS

A. Study Sites and Image Data

This study selected four experimental regions to explore the
space–time generalization performance of the model. These
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TABLE I
SUMMARY OF THE STUDY AREAS AND IMAGES USED FOR EACH VALIDATION GOAL

chosen areas cover typical cultivated land landscapes from
north to south in China. Specifically, Bincheng and Dong’e,
situated in Shandong Province, are characterized by plain
terrain and a substantial proportion of cultivated land. Winter
wheat and summer maize are the primary crops cultivated
in these regions, with large and regular CLPs. In contrast,
the Luhe experimental area, located in Guangdong Province
in southern China, predominantly focuses on rice cultivation.
This area is, indeed, characterized by a lower cropland pro-
portion and more small and irregular parcels, as it is located
in a mountain area, forming fragmented patterns. The Funan
experimental area, situated at the crossroads between northern
and southern China in Anhui Province, combines features
of both regions, characterized by diverse crop types, and
relatively small yet relatively regular land parcels. Overall,
these study areas allow a comprehensive assessment of the
delineation performance in different topographic features, crop
types, field characteristics (Table I).

Given the prevalent small-sized CLPs in China, this study
employed high-resolution fusion imagery from Gaofen-1
(RGB) with a spatial resolution of 2 m. The utilization of
such high-resolution imagery facilitates a clear representa-
tion of the cultivated land demarcation. For model training,
we selected a single image from each of the four coun-
ties as the source domain [Fig. 8(a)–(d)]. Moreover, in the
Bincheng and Dong’e experimental areas, two temporally
distinct images were selected to systematically evaluate the
trained model’s temporal generalization performance under
various crop growth seasons (spring and winter).

In addition, using the model trained in the source domain,
we also selected two distinct sensor images located in
The Netherlands to further assess the model’s spatial gen-
eralization performance and its effectiveness across different
image resolutions acquired from various sensors. The selected
transfer area is situated in a large-scale cultivated region
of The Netherlands, encompassing approximately 3.6% of
the country’s total land area. The large size of the CLPs
in this region ensures the feasibility of delineation under
different image resolutions. The evaluation consisted of 10-m
resolution Sentinel imagery and 1-m resolution Google Earth
(GE) imagery, both acquired during the peak growing season.

Fig. 8. Geographic location of the study sites and their images. (a) Bincheng
County, Shandong; (b) Dong’e County, Shandong; (c) Luhe County, Guang-
dong; (d) Funan County, Anhui; and (e) and (f) Sentinel and GE images of
the study area of the Netherlands, respectively.

B. Reference Data and Model Training

The ground-truth CLPs data for the GaoFen-1 dataset were
manually delineated and cross-validated with situ identification
data from the National Bureau of Statistics of China, exhibiting
accuracy rates exceeding 95%, while the ground-truth
data for The Netherlands datasets were obtained from
The Netherlands’ basic registration of crop plots (BRP), which
are made available via the “Public Data on the Map” initiative
of the Dutch Ministry of Economic Affairs and Climate via
(https://www.pdok.nl/geo-services/-/article/basisregistratie-
gewaspercelen-brp-#9464039d91ac261a857ee92a9f215250).

From each GaoFen-1 image, we divided it into grids (5 ×

6 or 5 × 5) based on the bounding rectangle and selected
three of these grids (the yellow boxes in Fig. 8) to produce
the training and validation sets. The selection criterion was to
cover the majority of the landscapes within that region. The
selected areas were segmented into 256 × 256 sample sets and
subjected to geometric transformations and CSA within an 8%
fluctuation range. The augmented sample tiles were partitioned
into training and validation sets using a 0.9:0.1 random split.
For testing purposes, three grids located outside the training
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areas (red boxes in Fig. 8) were randomly selected to verify
the accuracy across each experimental region of the Gaofen-
1 dataset. The accuracy validation for The Netherlands was
conducted across the entire image domain.

The Adam algorithm [59] was used for gradient descent
optimization with an initial learning rate of 0.001, a batch
size = 8, and 80 epochs during the training process. The
momentum was set to 0.9 to regularize learning. Using an
Nvidia GTX 1080 Ti GPU, the training process took 58 h.
Subsequent ablation and comparative experiments adhered to
the same training samples, testing regions, and methodologies
as our model.

C. Accuracy Assessment

1) Boundary Accuracy: The boundary accuracy is the corre-
spondence degree between the detection and reference parcel
boundaries. Considering the narrow width of the boundary,
absolute correspondence can be difficult to achieve. Two-pixel
accuracy tolerance offsets were set in this study.

The F1 score is used as a measure, which is the summed
average of precision and recall [60]. The larger the F1 score,
the closer to the optimal delineation. The equation is given as
follows:

Boundary Presicion(BP) =
TP

TP + FP
(8)

Boundary Recall(BR) =
TP

FP + FN
(9)

Boundary F1 = 2 ×
BR × BP
BR + BP

. (10)

2) Geometry Accuracy: It can be divided into three parts:
area accuracy, position accuracy, and shape accuracy.

a) Area accuracy: This accuracy analyzes the correct-
ness and completeness of the delineated parcels. Consistent
with the boundary accuracy, the F1 score was used as a metric
for area accuracy.

b) Position accuracy: This accuracy represents the
matching degree between the centroids of the delineated and
reference parcels [41]. First, the Euclidean distance between
the two centroids is calculated, and then, it is normalized by
the diameter of equal area circle

P i
centroid = 1−

d(CT , CE )

Dcac
(11)

Dcac = 2

√
ST + SE

π
(12)

Pcentroid =
P i

centroid

N
(13)

where P i
centroid denotes the position accuracy of the i th field,

d(CT , CE ) is the Euclidean distance between the centroids,
ST + SE is the combined area of two parcels, and N is the
number of all parcels.

c) Shape accuracy: This accuracy measures the shape
similarity of the delineated and reference parcels. The nor-
malized perimeter index (NPI) [61] is applied to define the
shape factor and the accuracy was expressed by the ratio of
the two

P i
shape =

NPIEi

NPIT i
(14)

NPI =
Peac

Pobject
(15)

Pshape =
P i

shape

N
(16)

where P i
shape is the shape accuracy of the i th field; Pobject and

Peac are the perimeter of the object and its equal area circle,
respectively; and NPIEi and NPIT i are the NPI of the extracted
and reference parcels, respectively.

V. RESULT

A. Results of CLPs’ Delineation

Fig. 9 and Table II present the method’s delineation results
and their accuracies in different regions, respectively. In the
plain areas (Bincheng, Dong’e), the method achieves a remark-
able ability to discriminate cropland from other land cover
types, with area accuracies exceeding 0.95. The delineated
CLPs are continuous in boundary and regular in shape,
approaching visual interpretation standards. The boundary
accuracy of both areas surpasses 0.93. Moving to the Funan
experimental area, the method accurately identifies the cul-
tivated land areas encompassing diverse crop types, with an
area accuracy reaching 0.924. The method effectively captures
small-sized parcels within this region. Extending the method
to mountainous regions, as depicted in Fig. 9(d), it maintains a
commendable identification accuracy, with boundary accuracy
and area accuracy reaching 0.829 and 0.879, respectively.
Notably, in the vicinity of residential areas at the foothills,
the method accurately identifies cultivated land regions and
refines the delineation of intricate parcels within. Moreover,
the method exhibits a robust capability to distinguish iso-
lated cropland dispersed within forests, effectively delineating
independent and complete CLPs from spectrally similar forest
areas.

Regarding temporal generalization performance, the model,
benefiting from spectrally insensitive features, maintains good
detection performance when transferred to images from differ-
ent growing periods. Field boundaries, primarily constituted
by fixed features such as roads and internal ridges, remain
relatively stable across different growth stages. Consequently,
the post-transfer accuracy is comparable to that of the source
domain images. The slight decrease in accuracy is mainly
due to the fact that the source domain’s imageries acquired
from the peak growth period can provide finer boundary
results [Fig. 9(a) and (b)]. which can be attributed to three
factors. First, during the peak growth period, the imagery
accentuates the contrast between cultivated land crops and
their boundaries, resulting in clearer boundary information.
This facilitates the identification of more potential boundaries
within cropland. Second, during this period, the imagery effec-
tively highlights spectral disparities between adjacent parcels
cultivated with different crops, enabling a more well-defined
delineation. Third, the imagery during the peak growth period
magnifies the distinctions between cultivated and noncultivated
areas, consequently reducing misidentifications.

Even when transferring the model trained on source domain
to The Netherlands’ GE imagery, the delineation achieves
remarkable precision (F1: 0.967), surpassing accuracy from
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Fig. 9. Delineated field results in the five study areas. (a) Binchen,
(b) Dong’e, (c) Funan, (d) Luhe, and (e) The Netherlands. (a) and (b) Delin-
eation results on different phase images. (c) and (d) Results for different
regions. (e) Results on different sensor images. The red circles show areas
where images acquired from the peak growth period can provide finer
boundary results.

any study area of source domain. This underscores the
method’s robust spatial generalization across regions with
diverse sensors and image resolutions. Visually, in exten-
sive agricultural landscapes such as The Netherlands, our
approach effectively captures nearly all field boundaries, yield-
ing continuous results. The delineated CLPs exhibit notable
geometric regularity, akin to meticulous manual delineation.
Upon application to 10-m resolution Sentinel imagery, the

TABLE II
ACCURACY OF THE DELINEATED RESULTS FOR THE STUDY AREAS

Fig. 10. Detection results of different networks. The upper part shows the
results of the ablation experiment about the field boundaries detection, and
the lower part shows the results of cropland regions, The red circles show
areas where boundaries and regions are misidentified.

model similarly identifies clear, high-quality field boundaries,
attaining a boundary precision (BP) of 0.979. In comparison
to GE results, its delineations predominantly encompass large
agricultural units, as finer internal boundaries are invisible
on the 10-m resolution imagery. Considering that reference
boundaries are generated from high-resolution imagery, with
heightened granularity, the boundary recall (BR) result of
Sentinel-based identifications is constrained, impacting the
F1 score. Nevertheless, our model consistently showcases
exceptional performance, effectively depicting comprehensive
parcel divisions within the prevailing image resolution.

B. Ablation Experiments of Network

1) Ablation Experiments on Detection Performance: To
enhance the network’s detection performance, we have under-
taken three improvements: 1) we transformed the network into
a multitask network for regions and boundaries and individu-
ally designed decoder for each; 2) in the boundary detection
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TABLE III
BOUNDARY AND AREA ACCURACY OF THE DELINEATED RESULTS BY DIFFERENT ABLATION EXPERIMENTS

decoder, we introduced CDCM units to enrich the boundary
information and applied deep supervision during training; and
3) in the region recognition decoder, we incorporated ASPP
modules to capture extensive contextual information and added
distance auxiliary task to avoid parcel undersegmentation.
To validate the effectiveness of these strategies, we devised
the following ablation experiments: 1) performing single-task
detection for boundaries based on field boundary decoder
(STB); 2) performing single-task detection for regions based
on cropland region decoder (STR); 3) omitting the deep
supervision strategy in boundary decoder (nDS); 4) remov-
ing the CDCM units from boundary decoder (nCDCM); 5)
removing the ASPP module from region decoder (nASPP);
and 6) removing the distance auxiliary task from region
decoder (nDIS). The local results detected by different ablation
networks are depicted in Fig. 10 and the accuracy results of
Gaofen-1 dataset are presented in Table III.

a) Single task: Employing the same boundary/region
training samples, we performed single-task detection using
the corresponding field boundary/region task in our network.
As depicted in Fig. 10, the single task for field boundary
detection exhibited numerous erroneous boundaries extending
beyond the cropland region, given the lack of region con-
straints. Essentially, this single task can be likened to directly
employing a modified RCF edge detection network for field
boundary detection. Such network struggles to achieve precise
results due to the intricate semantic features of field bound-
aries. On the other hand, the single task for cropland region
identification, equivalent to employing a modified U-Net net-
work solely for region recognition, suffers from the loss of fine
internal boundary details within the regions, resulting in the
undersegmentation of adjacent parcels. The accuracy results of
these two single-task networks fall significantly short of our
multitask model’s performance.

b) Deep supervision: Deep supervision was employed
in the boundary task to compute corresponding losses for
multilevel predictions and provide more powerful supervision.
As illustrated in Fig. 10, this training strategy significantly
impacts result accuracy. Without deep supervision, the network
exhibits increased misidentifications in noncultivated land
areas due to low-quality feature maps. In addition, the fine
internal boundaries within cropland also suffer fragmentation.

c) Compact dilation convolution-based module: On the
other hand, the added CDCM module, as depicted in Fig. 10,
effectively enhances the connectivity of field boundary results,
leading to improved boundary accuracy in each experimental

area. The larger feature receptive field empowers field bound-
ary predictions with comprehensive semantic understanding,
mitigating the issue of boundary fragmentation arising from
image blurriness and other objective conditions. Simultane-
ously, the enriched boundary features significantly reduce
detection confusion, rendering the results with clearer and
more explicit boundaries, devoid of noise information.

d) Atrous spatial pyramid pooling: The ASPP modules
were integrated into region task to provide longer ranged
context information. As illustrated in Fig. 10, the inclusion
of this module effectively enhances the accuracy of recog-
nition, enhancing area accuracy in each experimental area.
Particularly in the areas of Funan and Luhe, characterized by
complex land types, the accuracy gains are notable, reaching
0.035 and 0.047, respectively. The accuracy improvement
primarily stems from reduced misidentifications outside the
cropland regions and fewer internal holes.

e) Distance auxiliary task: The added distance auxiliary
task, as depicted in Fig. 10, significantly addresses the issue of
inadequate segmentation between parcels by providing topo-
logical connectivity information for the segmentation mask.
This results in more individual and regular CLP results.
Compared to the network without this auxiliary task, our
network exhibits a noticeable improvement in area accuracies
across all experimental areas.

2) Ablation Experiments on Generalization Performance:
To enhance our network’s generalization, we implemented
three design strategies: 1) CSA for the input imagery to
model weakly spectral sensitive features; 2) integration of
AG units in region identification decoder to emphasize salient
characteristics of specific local regions and suppress irrele-
vant areas; and 3) adoption of an HAFM in the boundary
detection decoder for adaptive weight merging the multilevel
predictions. A series of ablation experiments were conducted
to analyze the effectiveness of these strategies.

a) Color space augmentation: Table IV demonstrates the
significant negative impact of missing CSA on the model’s
generalization ability, leading to a noticeable decrease in accu-
racy when transferred to different time phases or regions. This
is primarily due to the model without CSA relying on more
spectral-related features, which are susceptible to variations
in color across different study areas and temporal imageries.
As a result, such a model has insufficient generalization
performance, especially the temporal generalization. More-
over, the inherent color disparities in different sensor images
also hinder model transfer across sensors. In contrast, our
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TABLE IV
BOUNDARY AND REGION ACCURACY OF THE RESULTS BY EMPLOYING DIFFERENT COLOR FLUCTUATION RANGES FOR CSA

applied color augmentation on samples effectively simulates
these spectral differences, capturing more robust features, thus
enhancing the model’s space–time generalization capacity and
performance when applied to imagery from different times and
regions.

In addition, when the color fluctuation range remains
below 8%, the model consistently maintains robust extraction
performance, with larger fluctuations leading to improved
generalization. This can be attributed to the distinctive texture
characteristics of cultivated land, featuring flat interiors and
abrupt boundaries, which enables the model to differentiate
it from spectral-similar forest areas, which have rough image
texture due to the alternation of shadowed and bright spots.
Moreover, other flat-textured land cover types in the imagery,
such as factory roofs and water bodies, with significant color
differences compared to cropland, exceeding the color range
we set. Thus, such color transformations do not significantly
weaken the model’s ability to discriminate cultivated land.
However, it should be noted that when the fluctuation range
exceeds 20%, it still leads to a drastic decline in extraction
performance.

b) Attention gate: In the region decoder, AGs were
introduced at the skip-layer connections to overcome the
heterogeneity of surrounding land types and maintain the
network’s focus on class-relevant areas. As shown in Table V,
the model without this module exhibits a noticeable reduction
in detection performance on the source domain’s Gaofen-1
images, particularly in the complex land area of Funan, where
the area accuracy decreased by 0.098. This impact becomes
even more pronounced when the model is transferred to
The Netherlands. On its GE and Sentinel images, incorporating
the AG module results in area accuracy improvements of
0.114 and 0.158, respectively.

c) Hierarchical attention fusion module: In the boundary
decoder, our network incorporates the HAFM module to
achieve pixel-level adaptive fusion of multiscale boundary
features. We compare this approach to the conventional 1 ×

1 convolution-based fusion method. The latter assigns fusion
weights in terms of the learning weights between features from
different layers and 1 × 1 convolution kernel, which is fixed
in a single model.

Fig. 11 counts the average of the boundary pixels’ feature
assignments in each region for the two methods. It can be

TABLE V
BOUNDARY AND AREA ACCURACY BY THE MODEL WITHOUT AG AND

OUR MODEL

found that the conv 1 × 1 method applies uniform weight
allocation across various regions, and such inflexible distribu-
tion limits its generalization ability and restricts accuracy in
some areas (Table VI). Only in the plain regions of Binchen
and Dong’e, does the conv 1 × 1 method come close to
the attention-based method in terms of assigning weights,
achieving similar and competitive accuracy. However, in hilly
regions such as Luhe, which demand more high-level features
for semantic boundary recognition, the conv 1 × 1 method
falls short, resulting in a BP of only 0.701, 0.128 lower than
our attention-based approach. In contrast, our HAFM module
computes the merging weights dynamically for each pixel,
enabling it to dynamically balance semantic recognition and
detail depiction across diverse scenes, yielding excellent delin-
eation accuracy in all experimental areas of Gaofen-1 dataset.
From a spatial transfer experiment perspective, the accuracy
enhancement brought by the HAFM module to the boundary
task is equally remarkable. When the model is transferred to
The Netherlands, the HAFM module outperforms the conv 1 ×

1 module in boundary F1 score improvements by 0.068 (GE
image) and 0.063 (Sentinel image).

d) Feature separability of target domains: To further
elucidate the model’s spatial generalization performance,
we assessed the feature separability of various ablation net-
works within the target domain (The Netherlands) through
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Fig. 11. Average of the boundary pixels’ feature assignments in each region
for the fixed weighted (1 × 1) and our hierarchical attention methods.

visualization techniques. The examined models included the
model trained without CSA, the model with AGs removed,
and the model with the HAFM module removed and only
1 × 1 convolution applied. The t-distributed stochastic
neighbor embedding (t-SNE) algorithm [62] was employed
for visualization. For the t-SNE visualization, we randomly
selected 4000 field/nonfield boundary points and 4000 crop-
land/noncropland region points from the GE image of
The Netherlands.

As shown in Fig. 12, despite being trained exclusively on
the source domain’s Gaofen-1 images, our model demonstrated
remarkable class separability in the target domain, across
both boundary delineation and regional classification tasks.
In contrast, ablation models without CSA, AGs, and the
HAFM module exhibited varying degrees of class overlap,
highlighting the integral role each module plays in bolstering
the model’s generalization performance. The combined model
(our model), integrating all three modules, showcases profound

TABLE VI
BOUNDARY AND AREA ACCURACY BY THE MODEL USING FIXED

WEIGHTED (1 × 1 CONVOLUTION) FOR MULTISCALE BOUNDARY
FUSION AND OUR HAFM

generalization capabilities, maintaining distinct differentiation
between cropland areas and boundaries in our studied target
domain.

3) Ablation Experiments on Network Settings:
a) RGB versus four-channel image: A further experiment

on imagery from Funan County was conducted to evaluate
the role and necessity of the near-infrared (NIR) band in the
detection network.

We compared models trained on RGB imagery with those
using RGB imagery supplemented with NIR (RGB + NIR).
The experiments employed identical training settings, includ-
ing sample areas and optimization methods. Surprisingly, the
results from both RGB and RGB + NIR images were nearly
indistinguishable in visual effect (Fig. 13) and accuracies in
Funan County (Table VII).

This outcome can be attributed to the distinct spectral
and textural differences between cultivated and noncultivated
areas. The RGB band alone proved sufficient for effectively
distinguishing these areas, resulting in remarkably high area
accuracy. In addition, our research required delineating parcels
with different growing periods and crops. The significant
disparities in NIR responses between these parcels also under-
scored that the additional NIR band did not provide substantial
benefits for cropland recognition. Furthermore, the limitations
for boundary detection from RGB images mainly come from
the unclear boundary presentation caused by thin widths or
crop occlusion, However, introducing the NIR band did not
alleviate this situation.

b) Multitask loss: In this study, we employ a
homoscedastic uncertainty-based method to autonomously
adjust the weights of multitask loss. To validate the effec-
tiveness of this approach, two ablation experiments were
conducted. In one experiment, we removed the homoscedastic
uncertainty-based method, and the total loss was simplified
to a straightforward summation of multitask losses (denoted
as multitask summation). On the other hand, only the region
and distance tasks were included within the homoscedas-
tic uncertainty-based loss framework, with the boundary
task being additionally summed. As shown in Table VIII,

Authorized licensed use limited to: Beijing Normal University. Downloaded on December 16,2024 at 05:45:06 UTC from IEEE Xplore.  Restrictions apply. 



4410525 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 12. Visualized feature separability of different ablation models in the target domain.

Fig. 13. Presentation of the delineation results from RGB images and
four-band (RGB + NIR) images on a local region.

TABLE VII
BOUNDARY AND AREA ACCURACY OF THE RESULTS DELINEATED FROM

RGB IMAGES AND FOUR-BAND (RGB + NIR) IMAGES

we calculated the average boundary and region accuracy for
both methods across six study areas. The results show that
the utilization of the homoscedastic uncertainty-based method
facilitated the learning and improved accuracies for both tasks
compared to the multitask summation method. Moreover,
incorporating all tasks into this framework allowed for a better
balance among them, improving the quality of boundary task
results without compromising the area accuracy.

c) Network depth: Deeper network architectures facil-
itate the extraction of more abstract features, but they also
introduce a greater computational burden to the model.

TABLE VIII
AVERAGE BOUNDARY AND REGION ACCURACY OF THE RESULTS USING

THE DIFFERENT MULTITASK LOSS STRATEGIES

TABLE IX
AVERAGE ACCURACIES AND COMPUTATIONAL EFFICIENCY OF THE

RESULTS USING THE NETWORK WITH DIFFERENT DEPTHS (G : 109)

To investigate this tradeoff, we conducted ablation experi-
ments. As illustrated in Table IX, augmenting the network
depth substantially increases both the floating-point oper-
ations per second (FLOPs)—a metric indicative of model
complexity—and the average time required to predict each
scene. While deeper networks enhance model precision, it was
observed that when utilizing five resolution levels in the
model, the accuracy gain from further increasing the network
depth became very minimal (Table IX). Consequently, when
balancing computational efficiency and performance, a five-
depth network structure becomes the optimal configuration.

C. Comparison Experiments of Network

1) Comparison in Cropland Region Identification: To
assess the performance of our network in identifying cropland
regions, we conducted a comparative analysis with four com-
monly employed networks for cropland identification, which
are described as follows.
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TABLE X
AREA ACCURACY RESULTS FOR CROPLAND REGION IDENTIFICATION COMPARISON MODELS AND BOUNDARY ACCURACY

FOR BOUNDARY COMPARISON MODELS

a) MPSPNet: It is a modified PSPNet network that has
achieved more than 90% OA for cropland identification in four
provinces of China [14].

b) DeeplabV3+: It is a widely used network that has
been identified as the optimal method in a comprehensive
model comparison study for recognizing cropland areas [26].
This network has also been applied for high-resolution
cropland extraction [16].

c) U-Net: It is a network known for preserving fine
details through shallow-level features and has been adopted
in many works for cropland region recognition [17].

d) ResU-Net: It is an enhanced variant of U-Net network
with improved cropland identification performance compared
to the U-Net network [15].

These comparative networks were trained using the same
cropland region labels as our model. Table X presents the area
accuracy results of these networks on the GaoFen-1 dataset.

As indicated in Table X, our method exhibits superiority in
area accuracy compared to all comparative approaches. Specif-
ically, as shown in Fig. 14, both MPSPNet and DeepLabV3+

present clear region recognition results. However, due to insuf-
ficient high-resolution detail features, a considerable amount
of internal boundary information is omitted in the identified
results. This limitation hampers the direct applicability of
these models for CLPs’ delineation. In addition, the defi-
ciency in boundary localization capability leads to irregular
shapes of the recognized regions, negatively affecting the area
accuracy. The UNet-based networks, benefiting from enriched
high-resolution shallow-level information through skip-layer
connections, are able to retain more detailed information.
This enables them to depict partial internal boundaries and
present more regular parcel shapes. Nonetheless, these inter-
nal boundaries remain fragmented. Furthermore, the limited
type recognition capability of UNet-based networks introduces
ambiguity in certain areas, resulting in low area accuracies.
In contrast, our model, facilitated by the integration of bound-
ary detection signals, produces continuous and comprehensive
internal boundary segmentation. The clearer boundary con-
straints also yield remarkably regular parcel shapes. Moreover,
our approach capitalizes on ASPP and AGs to significantly
improve semantic recognition, thereby minimizing misidentifi-
cations. Consequently, our network achieves a notable average
region accuracy of 0.942.

2) Comparison in Field Boundary Detection: To validate
the performance of our network in field boundary detection,
we conducted a comparative analysis with four commonly
employed networks for field boundary detection, which are
described as follows.

a) SegNet: It is a deep encoder–decoder network that has
been used to detect the field boundaries from high-resolution
WorldView-3 images [1].

b) U-Net: It is a U-shaped network with sufficient detail
information for boundary preservation, which has been widely
used in field boundary detection [12], [40].

c) ResU-Net: It is an enhanced variant of U-Net network
with residual blocks and has been recently used to detect
field boundaries from Sentinel-2 satellite images, with higher
accuracy than U-Net [17].

d) R2U-Net: It is a U-shaped network with recurrent
residual blocks, which improves feature representation by
recurrently accumulating semantic features of multiscales
and has been recently used to detect field boundaries from
Sentinel-2 satellite images [18].

All comparative networks were trained using the same field
boundary labels as our network. Table X presents the boundary
accuracy results of these networks on the GaoFen-1 dataset.

As indicated in Table X, our method exhibits superiority
in boundary accuracy compared to all comparative networks.
Specifically, as shown in Fig. 14, The SegNet network pro-
duces fragmented boundary results, ignoring some internal
boundaries within the fields. The U-Net architecture that has
stronger descriptive capabilities can yield narrower boundary
results. However, it exhibits substantial boundary omissions
with an average boundary accuracy of only 0.780 due to its
limited semantic recognition capability. The ResU-Net and
R2U-Net networks enhance feature extraction by replacing
more effective units and capture more abstract field boundary
features. This greatly improved the boundary recognition rate,
resulting in average boundary accuracies of 0.829 and 0.859,
but they still suffered from some boundary breaks. Compar-
atively, our model identifies clear and continuous boundaries,
achieving an average boundary accuracy of 0.915. This high-
lights that signals from the cropland region task can greatly
improve the semantic recognition performance for boundary
task. Furthermore, our employment of deep supervision and
the CDCM module further ensures boundary quality.
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Fig. 14. Cropland region identification and field boundary detection results of different comparison networks. The red circles show areas where regions or
boundaries are misidentified.

Fig. 15. Region and boundary results of our network and other recent multitask networks. The red circles show areas where boundaries and regions are
misidentified.

3) Comparison Experiments With Recent Multitask Models:
We further compare our method with three recent multi-
task networks: ResUNet-a, BSiNet, and SEANet, which are
described as follows.

a) ResUNet-a: It is an augmented ResU-Net-based
architecture for concurrently predicting field boundaries and
regions, representing the first multitask model deployed for
field boundary detection and achieving high detection accu-
racy. It is considered the state-of-the-art method by several
studies.

b) BSiNet: It is a recent multitask model derived from
PsiNet, which utilizes distinct decoding convolutions to gen-
erate region and boundary outputs. This network prioritizes
region predictions as parcel outcomes.

c) SEANet: Similar to BSiNet in directly using region
predictions as parcel outcomes, SEANet is renowned for its
exceptional boundary awareness capability, thereby provid-
ing high-quality parcel-level region predictions that surpass
BSiNet in terms of area accuracies.

All comparative networks were trained using the same
cropland region and field boundary labels as our network and
employed identical parcel optimization steps to generate the
CLP results. Fig. 15 shows the predicted region and boundary
results of different networks. Table XI presents the area and
boundary accuracies (F1 score) of the final generated CLPs
of these networks.

As shown in Fig. 15 and Table XI, ResUNet-a’s region
results ignore some internal boundaries and exhibit voids
inside the cropland, leading to its area accuracy (F1)
being 0.035 lower than our method. Similarly, its boundary

detection produces slight discontinuities, resulting in a bound-
ary accuracy gap of 0.036 compared to our method. This
difference largely stems from ResUNet-a’s unified decoder
architecture for both boundary and region prediction tasks,
ignoring their inherent heterogeneity. This renders the model
relatively lacking in performance on individual tasks compared
to our approach, struggling to achieve both accurate-type
recognition and detailed boundary localization simultaneously.

Both BSiNet and SEANet demonstrated superior region
accuracy but inferior boundary accuracy relative to ResUNet-
a. Their identified regions appear more isolated with visibly
wider separations; however, boundary inaccuracies were more
frequent, aligning with their design philosophy that empha-
sizes region prediction as the core task. Despite this, their
area accuracy remains below our network, missing some
internal fine boundaries, with average area accuracy gaps
of 0.024 and 0.009. This is primarily due to our network’s
design enhancements, such as AGs, SE blocks, and ASPP,
which optimize semantic features from both spatial and chan-
nel dimensions and capture extended contextual information,
enabling accurate identification across various cropland sizes
and conditions. In boundary detection, BSiNet and SEANet
significantly lagged behind our model, with average boundary
accuracy gaps of 0.042 and 0.047, respectively. BSiNet only
utilizes different decoding convolutional kernels to differ-
entiate boundary and region tasks and essentially retains a
U-Net-shaped architecture for boundary prediction, leading
to insufficient boundary finesse. SEANet while enhancing
boundary perception and identifying more potential bound-
aries fails to adequately balance region and boundary tasks,
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TABLE XI
BOUNDARY AND REGION ACCURACY OF THE DELINEATED RESULTS USING OUR MODEL AND OTHER RECENT MULTITASK MODELS

resulting in numerous recognition errors. In addition, its use
of conventional 1 × 1 convolutions to aggregate multiscale
boundary features and the fixed weight allocation result in
overemphasized coarse-resolution features, leading to overly
thick boundaries. In contrast, our network not only employs
a side architecture for boundary tasks, leveraging its supe-
rior boundary perception capabilities, but also standardizes
the boundary and region task losses at a unified scale and
integrates them into an adaptive multitask loss function. This
balances the learning of both tasks, achieving more accurate
boundary results. Furthermore, our developed HAFM adap-
tively adjusts the weights of multiscale boundary features
across various scenarios, predicting boundaries that more
closely match actual widths. Our model also incorporates a
CDCM module, enriching boundary features through stacked
dilated convolution layers and capturing more long-distance
dependencies, effectively aiding in producing more continuous
boundary results.

It is important to note that solely outputting region predic-
tions, as done by BSiNet and SEANet, exhibits limitations.
Semantic tasks, such as cropland region prediction, do not
offer the high predictive granularity of boundary tasks. Even
our model, while excelling in region predictions, may omit
boundaries that are fully presented in boundary predictions
(illustrated by yellow circles in Fig. 15). Therefore, focusing
solely on parcel-level region predictions limits the potential
for further optimization. A more balanced approach involves
simultaneously predicting high-quality cropland regions and
boundaries, followed by result-level integration.

From a transfer experiment perspective, the lack of spe-
cialized design for transfer performance in ResUNet-a,
BSiNet, and SEANet networks caused that when models
trained on the source domain are transferred to the tar-
get domain, these comparative models exhibit significantly
lower area and boundary accuracies compared to our model
(Table XI).

Finally, in terms of network computational efficiency,
our network demonstrates lower complexity and reasoning
time per scene compared to SEANet, with a significantly
reduced parameter count relative to the ResUNet-a network
(Table XII).

TABLE XII
FLOPs, THE AVERAGE REASONING TIME FOR EACH SCENE, AND THE

PARAMETERS OF THE THREE RECENT MULTITASK MODELS (G :
109 and M :106)

D. Comparison Experiments on Parcel Optimization

To validate the performance of the proposed BC-OF
optimization method, we conducted a comparison with the
CB-FF optimization method. The CB-FF method is known
for its ability to better connect broken boundaries than
other methods by performing morphological dilation on
skeleton lines. This method then utilizes the repaired bound-
ary to clip the identified region results and obtain the
final CLPs.

However, as depicted in Fig. 16, our optimization method
has noticeable progress in both boundary connection and
result fusion over the CB-FF method. First, our method effec-
tively addresses the boundary breaks with larger distances.
Although the CB-FF approach can extend the boundary line
through morphological dilation, it faces limitations in repairing
long-distance breaks due to its restricted operator radius.
In contrast, our boundary optimization approach identifies
breakpoint and predicts the extension direction of the broken
boundary, establishing directional connectivity between two
breakpoints, thus achieving the connection of long-distance
boundary breaks.

Second, our approach produces more regular parcels. The
CB-FF method, which utilizes boundaries to clip region
results, struggles to adapt to the situation where the identified
cropland region is small, resulting in undersized and irreg-
ular parcels (black circles in Fig. 16). In fact, compared to
the detailed boundary results, cropland region identification
places more emphasis on semantic information, which may
not accurately represent the transition between the cropland
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Fig. 16. Implementation process of our BC-OF optimization method and
the CB-FF method used for comparison. Yellow circle indicates the limited
distance extended by the CB-FF method and black circles indicate parcel
irregularities resulting from inaccuracy region results.

and noncropland regions. In contrast, our method takes the
boundary-generated objects as a reference, and the region
results are only used to remove some noncultivated objects.
The boundary results, with more detailed localization informa-
tion, facilitate a more accurate and regular parcel delineation.

E. Effects of Addition Transfer Learning

Transfer learning can further optimize the transfer perfor-
mance of the trained model in specific transfer regions by
updating weights or adjusting input images, complementing
our generalization-improved network architecture. To evalu-
ate the effectiveness of different transfer learning techniques
across various network architectures and compare the gen-
eralization performance of different network structures when
applying these techniques, we conducted a cross-comparison
experiment. The networks compared include our network,
a variant without generalization-enhancement modules (Non-
GEM), the parallel network of U-Net and DeeplabV3+

(Para-UNet-DeeplabV3+), and the recent SEANet network.
The transfer learning strategies used include FADA [26] and
fine-tuning techniques [27]. The transfer regions extended
beyond The Netherlands to include China’s Huaitai, Pingyuan,
and Haifeng County (Fig. 17). Each transfer region indepen-
dently trained a feature extractor based on FADA and updated

Fig. 17. Images of transfer regions that were used to validate additional
transfer learning techniques. (a) and (b) Sentinel and GE images of the
Nertherlands; (c) Huaitai County, China; (d) Pingyuan County, China; and
(e) Haifeng County, China.

a new model based on fine-tuning with the target region’s
sample. Table XIII shows the delineated CLPs’ area accuracy.

1) Domain Adaptation: As shown in Table XII, for our
network, employing FADA to achieve image adaptation for
transfer regions brought limited improvements in transfer
accuracy. This indicates that our network architecture has
already well generalized the recognition features, helping the
model achieve stable performance on most untrained images
during transfer. Therefore, in practical applications, the FADA
module can serve as an optional plugin to optimize the model.
However, the domain adaptation process involves the feature
extractor and discriminator training, which is time-intensive.
Thus, a balance must be struck between computational effi-
ciency and performance gains in practical applications.

For the Non-GEM network, employing FADA for image
adaptation brought significant accuracy gains. However, even
so, the transfer performance of the Non-GEM + FADA was
still far inferior to our network + FADA and it is even
weaker than using our network alone without FADA for image
adaptation. This demonstrates that the model trained by our
network has stronger spatiotemporal generalization perfor-
mance, which also maintains this enhanced performance when
applying the same additional transfer learning optimizations.
The cross-comparison, where our network-trained model out-
performs the Non-GEM network-trained model optimized with
FADA, highlights that our network’s enhancements provide
stronger transfer performance gains than FADA alone. This
is primarily due to our improved network’s ability to learn
more generalizable CLP recognition features from limited
samples, while FADA primarily adapted the features of a
specific transfer region to the source domain. In addition,
for SEANet and Para-UNet-DeeplabV3+, since there was
no specialized enhancement of generalization performance in
the network architecture, similar to Non-GEM, FADA also

Authorized licensed use limited to: Beijing Normal University. Downloaded on December 16,2024 at 05:45:06 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: DEEP LEARNING METHOD FOR CULTIVATED LAND PARCELS’ DELINEATION 4410525

TABLE XIII
AREA ACCURACIES OF TRANSFER AREAS USING FOUR NETWORK-TRAINED MODELS AND THE MODELS UPDATED

WITH ADDITIONAL TRANSFER LEARNING

brought significant transfer accuracy improvements but still
fell short compared to our network + FADA.

It is noteworthy that for transfer regions with agricultural
landscapes that are very inconsistent with all regions in the
training set, such as Haifeng County, which is dominated
by paddy fields, the transfer performance of all models was
poor, regardless of the addition of FADA. This highlights that
both our generalization-enhancement strategies and domain
adaptation technique have their limits.

2) Fine-Tuning: We further evaluated the effectiveness of
fine-tuning the pretrained model based on labeled data from
the transfer regions. Here, we adopted the same fine-tuning
technique as Kerner et al. [27], which involves freezing the
shallow layers and updating the weights of the deeper layers
using labeled data. In this study, the labeled data wwere
manually delineated and covered approximately 10% of each
transfer image area.

As shown in Table XIII, fine-tuning the pretrained model
by incorporating more accurate labeled data from the targeted
transfer region significantly enhances the transfer performance,
surpassing the FADA technique. This is particularly evident
in areas such as Haifeng County, which exhibit significant
landscape heterogeneity. For instance, in our network, after
fine-tuning the model weights, the area accuracy improved
from 0.763 to 0.901.

Overall, compared to existing networks, our network has
ability to train more generalized models and consistently main-
tains superior performance when the same transfer learning
techniques are applied. Based on our generalization-improved
network architecture, some transfer learning strategies can be
used to optimize the model performance for specific trans-
fer scenarios. For instance, in cases without computational
efficiency burdens, zero-sample domain adaptation techniques
can be used to align the features of the target domain with
the source domain. In situations where the transfer region
possesses extremely heterogeneous landscapes, the pretrained
model can be fine-tuned using manually delineated samples.

VI. DISCUSSION

In this article, we propose a high-precision, high-
generalization method for delineating CLPs, validated on
high-resolution imagery and medium-resolution imagery from
different regions and time phases. Specifically, our method
comprises a multitask detection network and a parcel
optimization step. In the detection network, we constrain the

concept of field boundaries as “boundaries within the crop-
land region,” breaking down the complex detection into two
conventional tasks: cropland region recognition and boundary
detection. This enhances the feature interpretability of CLPs,
significantly improving detection accuracy.

Combining these two detection tasks in the same network
and detecting them simultaneously, i.e., multitask learning,
better generalizes their respective tasks and improves accuracy
through shared training signals and mutual constraints [63].
The results demonstrate that our multitask network signif-
icantly outperforms the accuracy of individual single-task
networks, highlighting the mutual benefit of these tasks.
Region signals help suppress boundary information outside
cropland regions, while boundary signals assist in obtaining
finer parcel results. In addition, we address conflicts between
cropland region recognition and boundary detection tasks
within a model. Our approach, distinct from the ResUnet-
a network, employs separate decoders for two tasks. The
boundary task uses a side architecture to capture multiscale
edge semantics, improving the field boundary detection.

To further optimize the detection performance, we incorpo-
rate ASPP modules for richer spatial context in region task and
add distance auxiliary prediction to constrain the region shape.
In the boundary task, CDCMs enlarge the feature receptive
field to better preserve the connectivity of large-span field
boundaries. We opt for CDCM rather than the traditional
approach of deepening the network to enlarge the receptive
field because the latter tends to result in boundary details loss.
In addition, an adaptive multitask loss function based on inter-
task uncertainty was adopted to better coordinate the weights
of different tasks and enhance result accuracy. In future
research, strategies, such as replacing the ResNet backbone
with more advanced transformer-based backbones, could fur-
ther improve the detection performance. Introducing more aux-
iliary tasks could also provide more constraints for the model.

The scarcity of CLP samples places high demands on
network’s ability to train more generalized CLP recognition
features from limited samples. To enhance it, we analyze fac-
tors affecting model generalization. We adopt CSA to simulate
cultivated land’s spectral heterogeneity under diverse imaging
conditions (such as different times or sensors). We also employ
attention mechanisms to enhance generalization. In the region
task, we add AGs at skip-layer connections to highlight spatial
salient features, ensuring generalization performance across
different cropland landscapes. In the boundary task, we utilize
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the HAFM to adaptively weight-fuse multilevel boundary
predictions in various scenarios. Our experiments demonstrate
that these modules effectively enhance the network’s ability to
train a more generalized model, which achieves higher identifi-
cation accuracy in the source domain and maintains stable spa-
tiotemporal generalization when transferred to untrained target
domains. In addition, transfer learning can further optimize the
performance in specific transfer scenarios. It is important to
note that these transfer learning techniques do not contradict
the generalization-enhancing modification of our network. Our
network provides a foundational framework capable of training
highly generalized models, focusing on achieving the highest
possible generalization with a limited sample size. On this
foundation, transfer learning can optimize the model perfor-
mance for specific transfer scenarios. However, the application
of these transfer learning techniques comes with certain condi-
tions. For example, zero-sample domain adaptation techniques
require a balance between limited accuracy improvement and
significant computational burden, while fine-tuning techniques
need labeled samples from the transfer area. Thus, practical
application necessitates a careful tradeoff.

Compared to two recent multitask networks, BSiNet and
SEANet, which prioritize the region task as the core and the
boundary task as auxiliary to enhance the model’s boundary
perception, thereby outputting parcel-level region results, our
method exhibits three advantages. First, the region task alone
struggles to provide detailed internal delineation, necessitating
the high granularity prediction offered by the boundary task to
supplement its missing fine boundaries. Our strategy of simul-
taneously outputting regions and boundaries and integrating
them at the result level is more rational. Second, to pre-
dict high-quality region and boundary results simultaneously,
we design distinct decoders for each task to accommodate
their different characteristics, adopting a side architecture for
the boundary task to leverage its superior boundary perception
capabilities. In addition, we employ an adaptive multitask loss
to provide more balanced training, achieving both accurate
semantic recognition and fine-grained boundary depiction.
Third, based on the feature analysis of cropland regions and
boundaries and improvements over existing models, our model
maximizes detection performance through more effective fea-
ture encoding, introducing several performance-enhancement
modules to enrich and optimize region and boundary features.
It also employs CSA, distance auxiliary tasks, and other
strategies to provide training constraints. These advancements
help our network achieve accuracy superior to state-of-the-art
methods. Furthermore, benefiting from the innovative enhance-
ment of the network’s ability to train more generalized models,
our trained model can achieve a notable accuracy advantage
over those trained on existing networks when transferred to
the target domain.

It is essential to recognize that despite our detection model
achieving sufficiently continuous boundary results, in chal-
lenging scenarios such as when boundaries are occluded or
blurred, detection results may still exhibit discontinuities.
Discontinuous boundaries lead to incomplete separation of
neighboring parcels. Our study designed a method for further
optimization, based on two observations concerning field

boundaries. First, broken boundaries always possess two cor-
responding breakpoints, which can be easily identified based
on neighborhood information of skeleton line. Second, due
to the straightness of field boundaries, two breakpoints have
opposite extension directions. Based on breakpoint positions
and extension directions, oriented connections can be eas-
ily achieved. Compared to morphology-based optimization
methods, our approach can repair longer distance breaks.
In future research, the parcel optimization process could also
be integrated into the network, achieving CLP delineation in
an end-to-end model.

Numerous studies have proposed methods for delineating
CLPs. However, a direct comparison with the reported accu-
racies of relevant studies remains challenging owing to the
heterogeneous factors that must be considered. First, there
were significant differences in the experimental setup among
methods, such as image data (e.g., resolution, spectral bands,
and sensors) and landscape complexity. Second, there is no
standard method for assessing delineation accuracy, so the
accuracies reported in previous studies cannot be directly
compared. Existing studies have used numerous accuracy
metrics, including mean absolute error [34], [35], [64], F1
score [10], [19], [65], [66], [67], OA [12], [41], [68], boundary
displacement error [21], [69], and the Jaccard index [17], [70].
This highlights the need to develop a scientific accuracy vali-
dation system to provide comprehensive and fair comparisons.
Furthermore, a common validation dataset would enable the
systematic benchmarking of methods for future studies.

Regardless of the model’s performance, deep learning-based
delineation methods remain data-driven. Achieving both high
accuracy and broad applicability necessitates abundant, high-
quality parcel samples. However, this proves challenging
within China’s agricultural system, where small, frequently
rotated parcels predominate. High-resolution remote sens-
ing images can clarify land division in smaller parcels,
but such images are scarce, especially in cloudy south-
ern China. Frequent crop rotation causes field boundary
changes, undermining sample consistency across imaging
phases. Moreover, China has complex agricultural landscapes,
and a comprehensive model requires diverse samples reflecting
various topographies and agricultural patterns. Addressing
sample scarcity could involve sample-free approaches such as
graphical operators. For example, we can utilize traditional
graphical operators (e.g., Canny and watershed) for parcel
delineation, yielding a subset of usable training samples for
model training. In addition, establishing a shared repository
wherein individuals can contribute samples could also facili-
tate model development.

VII. CONCLUSION

This study developed a multitask and high-generalization
detection network and an effective optimization method to
delineate CLPs. Compared with the existing methods, notable
improvements in detection accuracy, generalization perfor-
mance, and optimization quality were achieved. The network
enhances the feature interpretability of CLPs through multitask
detection, and the network architecture accommodates the dis-
tinctions between boundary detection and region identification,
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maximizing their individual performance through distinct
decoders and some performance-enhancing modules. In addi-
tion, a homomorphic uncertainty-based multitask loss was
adopted to coordinate intertask weights, balancing accurate
semantic recognition and fine-grained boundary depiction.
The developed network also improves the trained model’s
generalization by applying the CSA and attention mechanisms
on spatial and hierarchy, providing a network architecture
capable of training more generalized models. In addition, the
designed optimization method can directionally repair larger
distance boundary breaks, and object-level fuse boundary and
region result in more regular and independent parcels. In sum-
mary, our method has robust performance and practical utility,
which was validated across various temporal and geographical
contexts, as well as diverse sensor imageries.
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