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ABSTRACT  
Accurate digital data on agricultural fields are crucial for various 
agriculture applications. While deep learning methods have shown 
promise in delineating fields from high-resolution imagery, there is a 
lack of research evaluating key techniques for field boundary detection. 
Challenges also exist in converting detection results into high-quality 
fields. This study addresses these issues and proposes a generalized 
framework for agricultural field delineation (GF-AFD). First, we identify 
three key techniques for field boundary detection and apply them to 
MPSPNet model. Ablation and comparison experiments demonstrate 
significant performance enhancements due to techniques. They also 
prove effective for DeeplabV3+ model, which shares a similar 
architecture. The modified models outperform U-Net-based models and 
approach the state-of-the-art models. Second, we show that performing 
region segmentation on boundary results yields improved field shapes. 
To address weak boundary loss and unstable parameters issues in 
existing segmentation-based methods, we introduce the OWT method 
to enhance weak boundaries directionally before segmentation. We also 
develop a hierarchical merging method, leveraging the observational 
hierarchy of fields, resulting in stable parameters across regions and 
models. The proposed GF-AFD framework was validated cross three 
diverse Chinese counties. The results demonstrate the framework’s 
robust performance, providing a valuable solution for delineating 
agricultural fields.
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1. Introduction

Agricultural field shapes agricultural landscapes, and their accurate distribution information can 
assist many agricultural applications, such as crop type identification, growth monitoring, and 
yield prediction, in obtaining field-level data (Blaschke 2010). These field-level statistics are critical 
for agricultural resources management and policy-making, supporting precision agriculture (Musat 
et al. 2018). However, the existing high-precision field data acquisition mainly relies on field 
investigation and manual visual outlining, which are time-consuming and costly (García-Pedrero, 
Gonzalo-Martín, and Lillo-Saavedra 2017). Acquiring agricultural field data based on high-resol-
ution satellite images has become more feasible in recent years as image resolution and accessibility 
have increased.

The agricultural field delineation methods can be classified into region-based and edge-based 
approaches. The region-based approach (RBA) focuses on cropland regions through image seg-
mentation methods such as watershed segmentation, Mean-Shift algorithm (Belgiu and Csillik  
2018; García-Pedrero, Gonzalo-Martín, and Lillo-Saavedra 2017; Ming et al. 2016; Watkins 
and Van Niekerk 2019a, 2019b). Nevertheless, due to the complexity of the imagery, the result-
ing regions are often over-segmented within the high internal variation field and under-segmen-
ted between small adjacent fields (Belgiu and Csillik 2018). The deep learning approaches have 
also adopted for cropland identification. For instance, D. Zhang et al. (2020) proposed a 
modified PSPNet model for high resolution cropland areas mapping in four provinces of 
China. However, these methods can only capture the overall extent of the cropland regions 
but may not capture the fine internal boundaries due to the lack of detailed information in 
the high-level category features. Therefore, directly delineating agricultural fields using 
region-based methods is challenging.

Due to the importance of detailed boundary information for cropland division, an increasing 
number of studies have used edge-based approaches (EBA) to detect field boundaries in the past 
decade (Cheng et al. 2020; Turker and Kok 2013; Yan and Roy 2014; 2016). Generally, EBA inte-
grative field boundary delineation consists of two parts: field boundary detection (F-BD), and agri-
cultural field generation (A-FG) (Figure 1). The F-BD method determines the correctness and 

Figure 1. The steps of the edge-based approaches for field boundary delineation and the current state of research, as well as the 
objective of our study.
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completeness of the field boundary, while the A-FG method further transforms the detected pixel- 
level boundary probabilities into object-level agricultural fields, emphasizing their independence 
and closure. Notably, the A-FG step has often been overlooked in prior studies, yet object-level 
results hold greater practical utility.

F-BD can also be divided into graphical operator-based and deep learning-based 
approaches (S. Liu et al. 2022). The graphical operator-based approach utilizes the edge oper-
ators such as Canny, Sobel to detect linear objects. But due to their limited capability, the 
results usually suffer from noticeable boundary breakage and misclassification. Deep learn-
ing-based methods have more powerful feature description capability and can detect accurate 
results, and thus are widely adopted (Crommelinck et al. 2019; Fetai, Račič, and Lisec 2021; 
H. Zhang et al. 2021; Masoud, Persello, and Tolpekin 2020). According to the accuracies 
reported in these studies, deep learning-based methods exhibit superior performance for 
field boundary detection.

The most suitable deep learning model for field boundary detection still needs further research. 
The edge detection models like RCF and DexiNed have excellent boundary awareness and can 
detect more potential field boundaries, yet they struggle to distinguish field boundaries from 
other types of boundaries due to a lack of category judgment (Xu et al. 2022). Semantic segmenta-
tion models, however, can treat field boundaries as a feature type and linking each image pixel to the 
field boundary/non field boundary label, thus detecting them semantically. FCN (Masoud, Persello, 
and Tolpekin 2020; Xia, Persello, and Koeva 2019), Segnet (Persello et al. 2019), U-Net (Fetai, Račič, 
and Lisec 2021; Gopidas et al. 2021), ResU-Net (Taravat et al. 2021), ResUNet-a (Waldner et al.  
2021; Waldner and Diakogiannis 2020), and R2U-Net (H. Zhang et al. 2021), are widely adopted 
architectures. Among them, The U-Net-based architectures are most effective due to their rich 
low-level features, which are more suitable for recognizing linear objects with only a few pixels 
width (Taravat et al. 2021). Nevertheless, these U-Net-based models lack sufficient high-level fea-
ture for boundary type determination. Recently, some multitasking-based networks such as BsiNet 
(Long et al. 2022) and SEANet (M. Li et al. 2023) have been used for field boundary detection, and 
surprisingly, these models have achieved better detection results through the constraints of the 
additional region task signals. However, the existing models are modified on various benchmark 
models, and no study has yet conducted an in-depth analysis of the model design based on the 
characteristics of field boundaries, so as to assess the key techniques in the model that most 
affect the detection accuracy, and provide a baseline reference for more robust detection model 
design.

Most existing studies directly transform the detected continuous-valued field boundary 
probabilities into binarized boundaries with thresholds (Fetai, Račič, and Lisec 2021; Gar-
cia-Pedrero et al. 2019; Marvaniya et al. 2021; Masoud, Persello, and Tolpekin 2020; Xia, Per-
sello, and Koeva 2019). However, the direct binarization may produce many discontinuous 
boundaries and noisy information. Some studies have applied the gestalt rule (Turker and 
Kok 2013) and Suzuki85 method (Hong et al. 2021) to remove some broken boundaries. 
Yet, these methods can only provide a delineation of field boundary rather than object- 
level field results of more practical value. Recent multitask models, benefiting from the con-
straints of boundary signals, can help the region identification task to achieve parcel-level pre-
dictions and thus obtain object-level fields, which can be further optimized by morphological 
thinning and Douglas-Peucker method (M. Li et al. 2023). Some multitask models attempted 
to intersect the identified cropland regions with the detected boundaries (S. Liu et al. 2022; Xu 
et al. 2022). However, cropland region recognition tasks focus more on semantic information 
and may not effectively represent the transition boundaries between cropland and non-crop-
land areas compared to boundary tasks, potentially resulting in an inaccurate correspondence 
between the fields obtained from these region-based methods and the real ones. Some studies 
have attempted to directly obtain object-level fields from boundary detection results. For 
example, Watkins (Watkins and van Niekerk 2019a) performed region segmentation method 
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on the detected boundary layers and carried out a comparative analysis of different segmenta-
tion methods, showing that watershed segmentation is most effective in generating clear 
boundaries. Similarly, Waldner and Diakogiannis (Waldner and Diakogiannis 2020) used 
watershed segmentation to convert detected boundary information into object-level fields. 
However, this segmentation method can only create boundaries along high gradient, neglect-
ing weaker boundary parts, which can lead to under-segmentation of adjacent parcels (D. Li 
et al. 2010). Therefore, further exploration is needed to address weak boundary loss during 
region segmentation.

The choice of segmentation parameters is unavoidable when using segmentation methods to 
transform the pixel-level boundaries results into object-level fields. One method involves 
additionally predicting the distance transformation of cropland and applying a threshold to 
obtain field-level seeds and implement the field-level segmentation (Waldner and Diakogiannis  
2020). Nevertheless, the binarized seed points heavily depend on the threshold choices and do 
not always correspond to the fields one-to-one, which may result in over-segmentation and 
under-segmentation. Watkins (Watkins and Van Niekerk 2019b) served all local minima as 
seed points for watershed segmentation and obtained completely over-segmented regions. The 
final fields can be merged by removing the common edges with a given boundary strengths 
threshold. However, the optimal strength threshold varied across regions, and such unstable 
and heavily manual-dependent parameter are hardly of practical value. Therefore, it is necessary 
to explore a more parameter-stable region consolidation method that minimizes manual 
intervention.

In general, there is a lack of research assessing the key techniques for field boundary detection 
and challenges related to weak boundary loss and unstable parameters persist in converting detec-
tion results into high-quality fields (Figure 1). Based on feature analysis, this study aims to address 
these issues and develop a generalized framework for agricultural field delineation (GF-AFD). The 
representative study area and extensive comparison experiments were set to validate the suggested 
framework and conclusions. Overall, this study’s contributions lie in: 

(1) Summarizing and evaluating three key techniques in field boundary detection models, includ-
ing multi-tasking for regions and boundaries, balancing lowest-level detail features with high- 
level category features, and emphasizing boundary-focused training, which provides a baseline 
reference for model design.

(2) Demonstrating that performing region segmentation on boundary detection results produces 
more regular fields compared to the region-based methods. The adopted oriented watershed 
method can enhance the weak boundary parts, addressing the neglected problem of weak 
boundary loss and yielding more independent results.

(3) Analyzing that agricultural fields exhibit an observational hierarchy and developing a hierar-
chy-based method for merging over-segmented regions. This method proves to maintains par-
ameter stability across large-scale scenes and different detection models, reducing the need for 
manual intervention in parameter selection.

2. GF-AFD delineation framework

The GF-AFD delineation framework covers the F-BD and A-FG two parts, where the A-FG part 
consists of a two-step process of field region segmentation and consolidation (Figure 2). Initially, 
the detection model is employed to detect field boundary and region information. Subsequently, 
a segmentation method is applied to transition pixel-level boundaries into object-level regions, 
followed by a consolidation step to merge over-segmented regions into field-level results. The 
final field results were derived after removing a few error regions using the detected cropland 
masks.
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2.1. Field boundary detection (F-BD)

2.1.1. Feature analysis of field boundaries
Field boundary is a semantic boundary which can be marked by various objects, such as roads 
or ditches, exhibiting complex features that are difficult for models to learn. Therefore, a simple 
field boundary/non-field boundary classification has limitations in generalizing features. How-
ever, incorporating cropland extent information significantly enhances the interpretability of 
field boundaries, conceptually constraining them as ‘boundaries within cropland regions’. Figure 
3 illustrates two types of field boundaries: outer boundaries demarcating cropland from non- 
cropland, often marked by wide features like roads, rivers, or drastic feature changes; and 

Figure 2. The flowchart of the proposed GF-AFD delineation framework.

Figure 3. The conceptual and visual presentation of some types of field boundaries.
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internal boundaries, typically fine field ridges dividing field units. Identifying outer boundaries 
corresponds to cropland region identification task, while detecting internal boundaries relates to 
boundary detection. Therefore, the detection model needs to be adapted to multi-tasking for 
regions and boundaries, with rich semantic information for region recognition, and powerful 
boundary perception capability.

In fact, these two tasks have a mutually reinforcing relationship. Cropland extent can constrain 
the presence of field boundaries, suppressing irrelevant boundaries, and field boundaries offer 
detailed information for finer parcel delineation within cropland, compensating for the limitations 
of coarse-grained analysis inherent in cropland extent identification.

Powerful high-level semantic features are necessary for cropland recognition and 
boundary type differentiation. However, field boundaries can be extremely narrow, some-
times as thin as one pixel, necessitating the inclusion of fine-grained, lowest-level features 
to maintain their integrity. Therefore, the model needs to effectively balance these two 
types of features.

In addition, the field boundaries occupy a very small percentage in the image, which 
requires the model to set a higher misclassification penalty on them and thus focus more 
on the boundary training. Hence, based on the feature analysis of field boundaries, it can 
be summarized that ‘multi-tasking for regions and boundaries,’ ‘balancing lowest-level detail 
features with high-level category features,’ and ‘emphasizing boundary-focused training’ are 
critical for detection.

2.1.2. Modifying MPSPNet model for assessment
In order to verify the impact of the summarized three key techniques, we adapted a common 
semantic segmentation network, MPSPNet, according to the techniques. This is a typical net-
work applied for cropland region identification, consisting of the original PSPNet benchmark 
network (Zhao et al. 2017) and an added single convolutional layer, which has been proven to 
achieve high-precision cropland extent identification in four Chinese provinces (D. Zhang 
et al. 2020).

We adapted the MPSPNet model to multitasking for regions and boundaries, but this model 
requires more lowest-level features to enhance its boundary-awareness and detail-preserving 
capabilities. The boundary information is the first-order feature in the image, describing the 
discontinuity between pixels. In fact, most of the edge operators, such as Sobel, Prewitt, Scharr, 
etc., are designed to detect the boundary gradient by the operation of a single convolution kernel, 
and multi-convolution will instead weaken the integrity of boundaries. Therefore, we utilize the 
single convolutional layer that has been added in the MPSPNet for the boundary detail preserving 
in detection. Compared the original MPSPNet network, we increase the channels fusion ratio of 
the lowest-level features and the original deep features to 1/16, i.e. 32 and 512, to enhance the 
representation of the boundary information in the network, and this ratio is validated by the 
ablation experiments in this study (Figure 4).
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In addition, the classes ‘field boundary’ and ‘non-field boundary’ are highly imbalanced in field 
boundary detection task. It is necessary to set a greater weight on the field boundary in the loss func-
tion to help the model training to be more focused on boundary. The weight value is calculated 

Figure 4. Modified MPSPNet network architecture. The top half is the Conceptual illustration of the network, and the bottom half 
describes the detailed components. (i) The ResNet with the dilated convolution; (ii) the spatial pyramid pooling module; (iii) the 
addition low-level information module.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7



from the ratio between the two class (Y. Liu et al. 2017). The loss functions are defined as follows:

L(bou) =
1
N
−
N

n=1

|Y− |
|Y +<Y− |

y+′ log y+ +
|Y+|

|Y +<Y− |
y− ′ log y−

  

(1) 

L(reg) =
1
N
−
N

n=1
(y+′ log y+ + y− ′ log y−

 

(2) 

Loss = L(bou)+ L(reg) (3) 

where L(bou) and L(reg) are the loss values of the field boundary detection and cropland 
identification, N is the number of image pixels of image, y+ and y− are prediction positive pixels 
and negative pixels, y+′ and y− ′ are the label category of them, and |Y+| and |Y− | are the number 
of their pixels, respectively.

2.1.3. Ablation experiments setting
The following four ablation experiments were conducted to assess the performance enhancement 
effect results from the key techniques: (1) Detection using the PSPNet benchmark network without 
the lowest-level feature connection. (2) Detection using a single field boundary detection task 
(denoted as MPSPNet-sin). (3) Detection using a model without boundary-focued training 
(denoted as MPSPNet-NW). (4) An ablation experiment of the fusion ratio of the added low- 
level feature channels and the original feature channels.

2.1.4. Comparison with other detection models
Modified MPSPNet model was compared with existing models to assess its performance and the 
impact of the modified key techniques. The comparison models in this study include a modified 
DeeplabV3+ model, an edge detection networks DexiNed, three UNet-based networks ResU- 
Net, R2U-Net and ResU-Net-a, and two recent multitasking models BsiNet and SEANet. These 
seven methods are described below and the architectures of these models are presented in Figure 5.

DeeplabV3+ model (Chen et al. 2018): A widely-used model in cropland region recognition, it 
employs a similar strategy as MPSPNet model for fusing high-level features with lowest-level 
features. It was adapted in this study by increasing the number of lowest-level feature channels 
and incorporating multi-tasking for regions and boundaries, as well as loss function tuning for 
boundary-focused training. This comparison assesses the generalizability of the performance 
improvements resulting from the three key techniques.

DexiNed (Soria, Riba, and Sappa 2020): An edge detection network based on side structure, 
providing stronger boundary awareness compared to other edge models. This comparison helps 
evaluate the advantages of semantic segmentation models over edge detection networks.

R2UNet: A U-Net-based network utilizing recurrent residual blocks to enhance feature 
representation, recently used for field boundary detection from Sentinel-2 satellite images 
(H. Zhang et al. 2021).

ResUNet: A U-Net-based network with residual blocks that maintain good segmentation 
performance while reducing the number of parameters (Taravat et al. 2021).

ResUNet-a: An adaptation of ResU-Net for multi-tasking in region and boundary detection, 
known for high accuracy in field boundary detection (Waldner and Diakogiannis 2020).

The comparison with these three U-Net-based models helps to assess whether a more balanced 
feature allocation can lead to better performance.

BsiNet: A multi-task network based on PsiNet, using a single decoder to produce region, bound-
ary, and distance information. BsiNet has achieved higher accuracy than ResUNet-a (Long et al.  
2022).
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SEANet: A recently proposed multi-task network designed with separate decoding modules for 
region and boundary detection, known for state-of-the-art accuracy in field boundaries from high- 
resolution satellite images (M. Li et al. 2023).

The comparison with these two recent multitasking models helps to assess whether some com-
mon semantic segmentation models can achieve comparable accuracy to the state-of-the-art 
method after modification with key techniques.

Figure 5. The architectures of ResU-Net, R2U-Net, DexiNed, DeeplabV3+, SEANet and BsiNet.
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2.2. Agricultural field generation (A-FG)

2.2.1. Feature analysis of field region segmentation
Due to the blurred image boundary or the detection error, there will be some boundary parts with 
low probability in the detection result (Figure 6(b)). Although performing the watershed segmenta-
tion on the probability can yield object-level boundary results, the method only creates boundaries 
along the high-value gradients and ignores the weak boundary part, resulting in extracted adjacent 
parcels that are not completely separated.

It can be found that the field boundary is directional, and the detected high-value probability is 
also extended along the boundary direction. Therefore, the directional information can be helpful 
to orientationally strengthen the weak boundaries.

Figure 7. The presentation of different observation scale of fields.

Figure 6. The presentation of some weak boundaries. (a) a local image; (b) the detected boundary probability; (c) the oriented 
boundary signal according to the gradient orientations. The circle shows where the weak boundary is located.
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2.2.2. Oriented watershed transformation
This paper adopted the oriented watershed transformation for region segmentation (Arbeláez et al.  
2011), which additionally considers the gradient direction during segmentation. This method 
recursively subdivides the arcs and obtains the orientations by approximating the arcs with line 
segments. Then estimates the orientation of each pixel by the orientation of the arc where the 
pixel lies. The watershed transformation was performed on the oriented boundary signal (Figure 6 
(c)), where the weak boundary is significantly strengthened and thus will be preserved in the 
segmentation process. To a certain extent, this method functions as a boundary connection.

2.2.3. Feature analysis of field region consolidation
The fully over-segmented regions after segmentation need to be further merged into a complete 
field object. However, the optimal merge parameters may vary across different regions in the 
image, which makes the consolidation process complex.

It can be found that fields exhibit an observation scale in the image (Figure 7). The process of 
outlining individual field typically involves first observing the entire image to identify the large 
cropland area, and then focusing on individual fields. Within each field, further subdivision 
attempts may be necessary to determine the optimal outline level. Thus, there is a hierarchical 
progression and level selection process for visual identification. In the same image, the optimal 
observation scale of fields is kept consistent. Therefore, it can help to achieve more stable regions 
merging by constructing a hierarchy for the segmented regions and simulating this observation 
scale.

2.2.4. Hierarchical merging
The hierarchy can be constructed by iterative greedy merging of regions (Cousty et al. 2009), and it 
is crucial to choose the appropriate merge weights. In this study, the strength values of common 
edges are calculated to measure the dissimilarity between two adjacent regions and decide the mer-
ging order. Specifically, a greedy graph G = (R, E, W(Ei)) was defined, where the finest regions R is 
the nodes of the graph, and E and W(Ei) are the common edges and their weight of the adjacent 
regions. by iteratively merging the adjacent regions with the lowest common edge weights, a hier-
archical tree structure with different segmentation levels is finally built. Figure 8 shows the con-
struction process.

The leaf nodes of the constructed hierarchy represent all the initial segmentation regions, while 
the root node depicts the full image. The structure is a nested sequence of coarse to fine-segmented 
objects. The hierarchy levels reflect the different scales of segmentation. In this way, the local mer-
ging parameter selection is transformed into the global hierarchical-level selection for the whole 

Figure 8. The process of constructing the hierarchy.
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image. Figure 9 illustrates the extraction results at various levels within a local image. By selecting 
the optimal level of the image, the merged field object can be obtained, and the final results were 
derived after removing a few irrelevant boundaries located in non-cropland areas using the detected 
cropland masks.

2.2.5. Comparison with other agricultural field generation methods
This paper adopted the oriented watershed transformation (OWT) to transform the detected 
boundary probability to object-level boundary and used a hierarchy-based merge method 
(Higra) to obtain the final field results. To demonstrate its (OWT + Higra) effectiveness, four 
comparison experiments are conducted: 

(1) Comparison with a threshold-based binarization approach, known as local adaptive threshold-
ing (LAT). This method calculates an independent threshold for each pixel and generates field 
boundary results (Graesser and Ramankutty 2017).

(2) Comparison with the field results identified by the region task of a multi-task model, where the 
field boundaries were additional simplified by morphological thinning and Douglas-Peucker 
method (denoted as Region task-based method).

(3) Comparison with the method of clipping identified cropland region with boundary results. 
This method is commonly used in multi-task models to generate agricultural fields (denoted 
as Region-Boundary Fusion).

(4) Comparison with watershed segmentation (WS) method (D. Li et al. 2010), which assesses 
the advantage of the additional orientation information provided by the OWT method. 
The over-segmented regions of the WS segmentation were subsequently merged by the 
Higra method to allow a direct comparison of the field boundaries (denoted as WS + Higra).

Figure 9. The delineation results at different levels in a local image.
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(5) Comparison with local merging-based method (LM), which provides an evaluation compared 
to our hierarchy-based merging method. local merging-based method merges objects by 
removing common edges whose strengths is lower than a specified height threshold, which 
is calculated based on local standard deviation (Watkins and Van Niekerk 2019b). This 
merge method was performed on the same over-segmented regions produced by the OWT 
method (denoted as OWT + LM).

2.4. Accuracy assessment

2.4.1. Field boundary accuracy
The boundary accuracy is the correspondence degree between the detection and reference bound-
aries. Considering the narrow width of the boundary, absolute correspondence can be difficult to 
achieve. Two pixels accuracy tolerance offsets were set in this study. True positive (TP), false posi-
tive (FP), and false negative (FN) confusion matrix metrics are used to assess the accuracy of cor-
rectly identified, incorrectly identified, and unidentified field boundaries, respectively. These 
metrics are computed based on the buffer polygons shown in Figure 10.

The F1 score calculated from the confusion matrix metrics is used as a measure, which is the 
summed average of precision and recall. The larger the F1 score, the closer to the optimal delinea-
tion. The equation is as follows:

F1 = 2×
recall× precision
recall+ precision

(4) 

boundary precision(BP) =
TP

TP+ FP
(5) 

boundary recall(BR) =
TP

TP+ FN
(6) 

2.4.2. Field geometric accuracy
Field geometric accuracy can be divided into three parts: area accuracy, position accuracy and shape 
accuracy. 

Figure 10. Schematic representation of TP, FP, and FN boundaries: (a) extracted boundary overlaid on the buffer area around the 
reference boundary; (b) reference boundary overlaid on the buffer area around the extracted boundary.
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a. area accuracy

This accuracy analyzes the correctness and completeness of the delineated fields. Consistent with 
the boundary accuracy, The F1 score was used as a metric for area accuracy. 

b. position accuracy

This accuracy represents the match degree between the centroids of the extracted and reference 
fields. First, the Euclidean distance between the two centroids is calculated, and then it is normal-
ized by the diameter of equal area circle:

Pi
centroid = 1 −

d(CT , CE)
Dcac

(7) 

Dcac = 2
���������
ST + SE

p



(8) 

Pcentroid =
Pi

centroid
N

(9) 

where Pi
centroid Pcentroididenotes the position accuracy of the ith field, d(CT , CE) is the Euclidean 

distance between the centroids, ST + SE is the combined area of two fields. and N is the field 
number. 

c. shape accuracy

This accuracy measures the shape similarity of the delineated and reference fields. The normal-
ized perimeter index (NPI) is applied to define the shape factor and the accuracy was expresses by 

Figure 11. Study area and training area: (a) is the Pingyuan County, (b) is the Funan County, and (c) is the Conghua County.
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the ratio of the two.

Pishape =
NPIEi
NPITi

(10) 

NPI =
Peac

Pobject
(11) 

Pshape =
Pishape

N
(12) 

where Pi
shape is the shape accuracy of the ith field, Pobject and Peac are the perimeter of the object and 

its equal area circle, NPIEi and NPITi are the NPI of the extracted and reference fields.

3. Study site and data

3.1. Study site

The GF-AFD delineation framework was evaluated utilizing three study sites, covering typical 
regions of China from north to south (Figure 11). Table 1 summarizes the region characteristics 
of each area. The first site is Pingyuan County, Shandong Province, a plain area with 1181.7 km2 

in North China. This area has a flat topography with pure crops planted, mainly summer corn 
and winter wheat. In addition, the fields in this region are regular in shape and large in size, 
with minimum field complexity. The second one is a 30 × 24 km area of large-scale agricultural pro-
duction in Funan County, Anhui Province. This area also has a plain terrain, but since it is located 
in the transition zone between temperate and subtropical zones, the cropping structure is more 
complex and the fields are smaller, with some cash crops mixed. The third one is Conghua County, 
Guangdong Province, where the main terrain is hilly and the area is 3,724 km2, with only 17% crop-
land shared and mixed with forests. This is produced in a small and irregularly shaped agricultural 
fields, exhibiting the most complex field characteristics of the three sites. Overall, these three study 
sites allow for the assessment of the framework’s performance in different topographies, crop types, 
and field characteristics.

3.2. Data processing

The base data for the Pingyuan County was acquired from Gaofen-1 satellite, featuring a 2-meter 
panchromatic band and 8-meter multispectral bands (RGB + NIR). In this study, we utilized 2- 
meter fusion images with three bands (RGB). The cloud-free image of the entire county was 
mosaicked from GaoFen-1 images acquired in July 2018. The second study site utilized the Gao-
Fen-2 RGB fusion image with 1 m resolution, acquired on 29 January 2021. GaoFen-2 image 
includes a 1 m panchromatic band and 4 m multispectral bands. This choice allowed us to assess 
the method’s applicability on different resolution and winter images. Additionally, the base data 
for Conghua County is also the GaoFen-1 fusion image acquired from September 2019. Further 

Table 1. The details of selected study sites and their images.

Study site Common crops Topography
Field geometric 
characteristics

Cropland 
percentage Image data

Image acquisition 
time

Pingyuan corn, wheat, beans plain large and regular 63.9% GF-1 (2 m) July 2018
Funan rice, wheat, fruit, 

rapeseed
plain small and regular 55.3% GF-2 (1 m) January 2021

Conghua rice, citrus, tea, 
pummelo

hilly small and irregular 17.2% GF-1 (2 m) September 2019
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information about the Gaofen satellites can be found at (http://www.cheos.org.cn/n6084429/ 
n6084446/n6084504/n6128357/index.html). Overall, the experimental images provide an assess-
ment of the method’s performance in different image resolutions and growing seasons.

In all experimental areas, the agricultural field sample was obtained manually, and it also uses the 
situ identification data to validate the outlined fields, and all the areas exceeded 95% accuracy. We 
divided the extent of each study area into 25 equal-sized tiles and randomly selected five of them in 
each area for training.

The outlined vector polygons of cropland parcels were converted into rasterized region samples, 
assigning a pixel value of 255 to cropland and 0 to non-cropland types. This dataset was utilized for 
training the cropland region recognition task. Concurrently, the vector lines demarcating field 
boundaries were rasterized with a width of 3 pixels using a multi-ring buffer. This rasterized 
data was employed as the sample for field boundary task.

The Adam optimizer is used for gradient descent optimization with an initial learning rate of 
0.001, a batch size = 16, weight decay = 1e-5, and 80 epochs during the training process. Momentum 
was set to 0.9 to regularize learning. All experiments in this article were executed with python 3.6, 
and pytorch 1.6, an Nvidia GTX 1080 Ti for GPU acceleration.

Figure 12. The delineation results of the three counties.
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4. Result

4.1. Large-scale delineation results

The visual inspection of the delineation results confirms the good performance of the proposed 
method (Figure 12). In the plain areas (Pingyuan and Funan), the method can accurately dis-
tinguish cropland from other land types such as residential land, rivers and roads. Notably, the 
method demonstrated an ability to effectively identify fallow land in Funan. In mountainous 
area (Conghua), the method also effectively delineated fields from the forested areas that have simi-
lar spectral characteristics. The identified field boundaries in three areas were also accurate, includ-
ing internal boundaries that are challenging to identify, and the field exhibited regular shapes. 
Furthermore, the method was able to identify some small and fragmented fields completely.

4.2. Statistical accuracy assessment

The paper then evaluates the accuracy of the results in the three regions (Table 2), where the bound-
ary accuracy (F1) and area accuracy of all areas exceed 0.8, indicating a strong ability for boundary 
detection and cropland identification. Additionally, the method performs well in maintaining the 
location and shape of the identified agricultural fields, with an average location and shape accuracy 
of 0.913 and 0.854, respectively.

Of the three study areas, Pingyuan County yielded the best results, with the highest accuracy in 
all metrics. Although the GF-2 image in Funan County has a higher resolution and provides more 
detailed information, its accuracy still decreased compared to that of Pingyuan County. It was 
observed that under the premise of boundary clarity, a higher resolution does not result in an 
improvement in recognition accuracy, but rather may introduce more potential misleading due 
to the finer detail information. In addition, all accuracy metrics in Conghua County, located in a 

Table 2. The accuracy of the delineated results for the three study areas, the bolded values represent the highest accuracies.

Area

Field boundary accuracy Field geometric accuracy

F1 BP BR Area accuracy Position accuracy Shape accuracy

Pingyuan 0.923 0.915 0.931 0.963 0.936 0.889
Funan 0.883 0.862 0.905 0.922 0.903 0.871
Conghua 0.817 0.793 0.842 0.879 0.899 0.802
average 0.874 0.856 0.892 0.921 0.913 0.854

Figure 13. Detection results of different ablation experiments. The circles for regions with boundary blurring and irrelevant 
boundaries.
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mountainous area, were lower than those in the other two areas. However, all of these metrics were 
still higher than 0.8. This is because, despite the similarity in spectral features between the moun-
tainous forest and farmland, the deep learning model can extract abstract category features, such as 
texture patterns, which are sufficient for cropland recognition. However, the junction between 
cropland and mountainous forest in this region is not clear, which is the primary reason for the 
accuracy gap.

4.3. Field boundary detection performance

4.3.1. Model ablation experiments
The local results detected by different ablation models are depicted in Figure 13. The detection 
results were transformed into the field boundary and processed for accuracy verification, and the 
accuracy results are presented in Tables 3 and 4. 

(1) Comparison with PSPNet. Due to the lack of low-level detailed features, the PSPNet will mis-
identify some image pixels around the boundary, yielding ambiguous and unclear boundary 
results. In terms of accuracy, the detection results of the original PSPNet network exhibit a 
noticeable decrease in accuracy compared to the modified PSPNet (MPSPNet) network 
which incorporates a shallow feature module.

(2) Comparison with single-task detection. the complexity of field boundary types made it challen-
ging to generalize accurate and comprehensive features for a single ‘field boundary detection’ 
task, as a result, the model exhibited confusing recognition in some areas. However, by incor-
porating the feature signals obtained during the ‘cropland extent identification’ task, the multi- 
task network was able to facilitate boundary category determination, leading to significant 
improvements in model accuracy and recognition performance.

Table 3. The accuracy of the delineated results for different ablation experiments, the bolded values represent the highest 
accuracies and italicized values represent the accuracies of the MPSPNet.

Area Method

Field boundary accuracy Field geometric accuracy

F1 BP BR Area accuracy Position accuracy Shape accuracy

Pingyuan MPSPNet 0.938 0.915 0.962 0.963 0.936 0.876
PSPNet 0.867 0.893 0.842 0.908 0.939 0.859
MPSPNet-sin 0.904 0.896 0.912 0.941 0.932 0.871
MPSNet-NW 0.902 0.889 0.914 0.932 0.933 0.833

Funan MPSPNet 0.889 0.873 0.905 0.922 0.903 0.871
PSPNet 0.827 0.854 0.801 0.902 0.912 0.878
MPSPNet-sin 0.863 0.831 0.897 0.893 0.897 0.863
MPSNet-NW 0.852 0.842 0.861 0.908 0.883 0.853

Conghua MPSPNet 0.817 0.793 0.842 0.879 0.899 0.802
PSPNet 0.804 0.812 0.796 0.863 0.907 0.799
MPSPNet-sin 0.779 0.763 0.795 0.848 0.881 0.787
MPSNet-NW 0.808 0.791 0.826 0.874 0.864 0.795

Table 4. The accuracy results by the model with different number of low-level feature channels, the bolded values represent the 
highest accuracies.

Number of low-level feature channels

F1 accuracy Area accuracy

Pingyuan Funan Conghua average Pingyuan Funan Conghua average

8 0.879 0.826 0.795 0.833 0.943 0.897 0.873 0.904
16 0.923 0.883 0.826 0.876 0.949 0.930 0.882 0.919
32 0.938 0.889 0.817 0.881 0.963 0.922 0.879 0.921
64 0.946 0.847 0.789 0.860 0.916 0.889 0.836 0.880
128 0.916 0.811 0.756 0.827 0.874 0.842 0.769 0.828
256 0.893 0.760 0.721 0.791 0.832 0.807 0.728 0.789
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(3) Comparison with the model without boundary-focused training. The implementation of 
assigning higher misclassification cost to field boundary was found to effectively address the 
class imbalance issue in boundary recognition. This approach directed the model’s focus 
toward field boundary class and extracting more accurate field boundary features during 
model training. This is reflected in the results as more distinct and clear boundaries.

(4) Feature channel assignment experiment. To enhance the model response to the boundary, we 
fused 32 additional low-level feature channels with the PSPNet model’s 512 high-level feature 
channels, rather than the 16 channels used in the original MPSPNet model. To determine the 
optimal fusion configuration, we conducted an ablation experiment and evaluated the bound-
ary and area accuracy of models with varying numbers of low-level feature channels (8, 16, 32, 
64, 128, and 256). The results are presented in Table 4. In mountainous regions (Conghua) with 
scarce cropland, a higher number of high-level semantic features are required for accurate 
cropland recognition, whereas in plains with abundant cropland, shallower information is 
more beneficial. Ultimately, the 32 low-level channels provide a balanced representation of 

Figure 14. Detection results of different comparison experiments. The circles for regions with boundary omission and 
misidentification.
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the model’s category recognition and boundary localization abilities, resulting in a maximum 
average boundary and area accuracy of 0.881 and 0.921, respectively.

4.3.2. Comparison with other detection models
Based on the same field boundary/region training samples, the detection results and accuracy of the 
different comparison models are presented in Figure 14 and Table 5. 

(1) Comparison with modified DeeplabV3+ architecture. The results demonstrate that the 
modified DeeplabV3+ method yields accurate and clear field boundary detection with high 
precision. Additionally, the utilization of Atrous Convolution and the ASPP module in the 
DeeplabV3+ model enhances its capability to recognize different land types. This enhancement 
is evident in complex areas such as Funan and Conghua, where the DeeplabV3+ model 
achieves even higher boundary accuracy than the MPSPNet model.

(2) Comparison with edge detection model (DexiNed). Although the DexiNed method has a 
powerful boundary-aware network structure and detects clear boundaries, it lacks the ability 
to differentiate boundary types effectively. As a result, it may detect incorrect boundary signals, 
such as weak linear noise within the cropland. Despite being trained on the same field bound-
ary samples, DexiNed models are designed for generic boundary detection and struggle to 
extract high-level semantic features for class judgment, making it challenging to directly detect 
semantic boundaries like field boundaries. Consequently, the accuracies of this model are lower 
than those of all the semantic segmentation models adopted in this study.

(3) Comparison with three U-Net-based architectures. While U-Net-based models generate extre-
mely fine boundary results due to abundant shallow features, the modified MPSPNet outper-
forms them in terms of continuous detection, fewer misclassifications, and omissions, 
particularly in complex land types. This is because the MPSPNet model allows for a more 
balanced representation of both lowest-level detail features and high-level abstract semantic 

Table 5. The accuracy results for the study areas of different detection model, the bolded values represent the highest accuracies 
and italicized values represent the accuracies of the our modified MPSPNet.

Area Method

Field boundary accuracy Field geometric accuracy

F1 BP BR Area accuracy Position accuracy Shape accuracy

Pingyuan Modified MPSPNet 0.938 0.915 0.962 0.963 0.936 0.876
Modified DeeplabV3+ 0.918 0.933 0.903 0.942 0.914 0.891
DexiNed 0.801 0.753 0.855 0.873 0.864 0.807
ResU-net 0.833 0.873 0.796 0.909 0.882 0.831
R2U-net 0.907 0.912 0.902 0.951 0.917 0.857
ResU-Net-a 0.922 0.928 0.916 0.955 0.921 0.863
BsiNet 0.942 0.937 0.947 0.949 0.905 0.877
SEANet 0.951 0.956 0.946 0.961 0.930 0.896

Funan Modified MPSPNet 0.889 0.873 0.905 0.922 0.903 0.881
Modified DeeplabV3+ 0.903 0.891 0.915 0.916 0.915 0.906
DexiNed 0.719 0.674 0.771 0.798 0.876 0.723
ResU-net 0.762 0.819 0.712 0.839 0.885 0.786
R2U-net 0.811 0.858 0.769 0.874 0.911 0.807
ResU-Net-a 0.864 0.871 0.857 0.897 0.917 0.822
BsiNet 0.882 0.869 0.895 0.911 0.891 0.877
SEANet 0.909 0.901 0.917 0.931 0.922 0.904

Conghua Modified MPSPNet 0.817 0.793 0.842 0.879 0.899 0.802
Modified DeeplabV3+ 0.839 0.846 0.832 0.906 0.913 0.824
DexiNed 0.731 0.689 0.778 0.759 0.853 0.738
ResU-net 0.754 0.781 0.729 0.807 0.883 0.797
R2U-net 0.773 0.792 0.753 0.843 0.902 0.811
ResU-Net-a 0.786 0.798 0.774 0.859 0.907 0.817
BsiNet 0.799 0.806 0.792 0.881 0.902 0.829
SEANet 0.843 0.845 0.841 0.901 0.910 0.833
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features, while the U-Net architecture fused the all features from low to high, which will affect 
the representation of the important features and lack balanced feature allocation. In fact, some 
middle-level features with low detail accuracy for boundary location and poor semantic infor-
mation for category judgement have little benefit for model. Despite the efforts of ResU-Net 
and R2U-Net to enhance feature extraction by adopting more powerful convolutional units, 
ResU-Net-a further bolsters its performance by imparting interpretability to field boundaries 
via cropland region related tasks. However, the allocation of feature channels in these models 
remains unchanged, resulting in an insufficient representation of critical high-level category 
features and lowest-level detail features. Consequently, ResU-Net-a shows a lower boundary 
F1 accuracy compared to the modified MPSPNet model in three study areas.

An additional ablation experiment on ResU-Net for multi-level feature fusion was conducted, 
with results in Table 6 showing that connecting the lowest-level features from the encoder to the 
decoded features (S1) yields the best delineation performance. This approach outperforms the 
method without any skip-layer connections (no connection) and the method that connects more 
features, reinforcing the necessity of ensuring balanced feature allocation of lowest-level detailed 
features and high-level semantic information for field boundary detection. 

(4) Comparison with two recent multi-task networks. Both networks produce clear and accurate 
field boundary results. In terms of accuracy, the modified MPSPNet model performs compar-
ably with them. The modified MPSPNet model achieves higher boundary and area accuracies 
than the BSiNet model in Funan and Conghua. When compared with the state-of-the-art SEA-
Net model, the average boundary and area accuracies of the modified MPSPNet model in the 
three areas only differ by 0.019 and 0.009.

Specifically, SEANet employs dedicated decoding modules for field boundaries and cropland 
regions. The boundary module adopts the side structure of HED to generate boundary outputs 
and weighted merge the multi-scale boundary predictions through a 1 × 1 convolution. This weight 
assignment is adaptive and differs from U-Net, where merging is done with equal weights. Statisti-
cally, we averaged the weights of multiscale boundary features in the three study areas, showing that 

Table 6. The accuracy results for the ResU-net models with different skip connection layers, the bolded values represent the 
highest accuracies.

Area
The skip connection 

layers

Field boundary 
accuracy Field geometric accuracy

F1 BP BR
Area 

accuracy
Position 
accuracy

Shape 
accuracy

Average (Pingyuan, Funan, 
Conghua)

No connection 0.701 0.743 0.663 0.821 0.843 0.798
S1 0.815 0.819 0.811 0.855 0.879 0.831
S1 + S2 0.811 0.827 0.796 0.848 0.885 0.825
S1 + S2 + S3 0.794 0.818 0.771 0.836 0.874 0.813
S1 + S2 + S3 + S4 0.783 0.824 0.746 0.852 0.883 0.805

Table 7. The boundary accuracies (F1 score) of different types of predictions based on DeeplabV3+ 
model in Pingyuan county.

Area
The type of prediction 

(DeeplabV3+)
Boundary accuracy 

(F1 score)

Pingyuan Multi-task model’s boundary 0.918
Multi-task model’s region 0.879
Single-task model’s boundary 0.836
Single-task model’s region 0.549
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lowest-level and high-level features carry significant weights. This observation validates the pro-
posed technique of accommodating and balancing lowest-level detail features and high-level cat-
egory features and offers a potential theoretical explanation for SEANet’s substantial accuracy 
improvement over existing U-Net-based networks. Additionally, SEANet incorporates other tech-
niques like task-dependent uncertainty and ASPP, contributing to its improved accuracy compared 
to the modified MPSPNet model.

4.3.3. Comparison with region and boundary detection results
Given our model’s transformation for multitasking in predicting field boundaries and regions, it is 
crucial to validate which results possesses superior granularity and can offer more accurate and 
comprehensive cropland delineation information, thus serving as a benchmark reference for sub-
sequent field generation. Employing the modified DeeplabV3+ model, we compared the boundary 
granularity of four predictions: multitasking model’s region and boundary predictions, and single- 
task model’s region and boundary predictions. Both single-task models were trained using the same 
field region or boundary labels. All results were transformed into boundary-level representations 
for accuracy assessment. Table 7 displays their boundary accuracies in the Pingyuan image.

As shown in Figure 15, applying a single-task semantic segmentation model directly to predict 
field boundaries (Figure 15(d)) leads to significant fragmentation, struggling to extract object-level 
parcels. Similarly, direct application of the model for cropland region prediction leads to region 
results lacking fine-grained delineation of internal boundaries and only roughly describing the 
overall cropland distribution (Figure 15(g)). In contrast, the multitasking network, integrating 
both region and boundary tasks, conceptually constrains field boundaries as ‘boundaries within 
cropland regions.’, significantly enhancing interpretability and producing more accurate and con-
tinuous boundaries (Figure 15(c)). The multitasking model’s region prediction (Figure 15(f)) also 
outperforms the single-task model.

However, it is challenging to take multitasking model’s region prediction directly as field results. 
As shown in the red-circled area of Figure 15, some internal field boundaries exhibit noticeable 
fragmentation, leading to parcel under-segmentation. In contrast, boundary predictions are 

Figure 15. The boundary and region results detected by multi-task and single-task DeeplabV3+ models: (a) the local image, (b) 
the ground truth of field boundary, (c) the field boundaries detected by multi-task model, (d) the field boundaries detected by 
single-task model; (e) the ground truth of cropland region, (f) the cropland region detected by multi-task model; (g) the cropland 
region detected by single-task model. The circles show areas where boundary predictions can provide more fine-grained parcel 
delineation information than region predictions.
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more refined and provide more complete and clear fields delineation, which is also reflected in their 
superior boundary accuracy. Therefore, multi-task model’s boundary prediction is a better baseline 
reference choice for generating field results.

4.4. Agricultural field generation performance

Tables 8 and 9 show the accuracy results of the different field generation methods performed on the 
boundary layer detected from the modified MPSPNet and the state-of-the-art SEANet model 
respectively. Figure 16 shows the field results generated by different methods, while Figure 17 illus-
trates the generation process of Region-Boundary Fusion, WS + Higra, and our OWT + Higra 
methods. 

Table 8. The field accuracies of different agricultural field generation methods on a boundary layer detected from modified 
MPSPNet model, the bolded values represent the highest accuracies.

Area Method

Field boundary accuracy Field geometric accuracy

F1 BP BR Area accuracy Position accuracy Shape accuracy

Pingyuan LAT 0.848 0.871 0.826 0.903 0.929 0.771
Region task-based 0.881 0.868 0.894 0.908 0.927 0.795
Region-Boundary 0.893 0.872 0.915 0.917 0.921 0.804
WS + Higra 0.907 0.886 0.928 0.938 0.918 0.845
OWT + LM 0.817 0.811 0.823 0.907 0.897 0.798
OWT + Higra 0.938 0.915 0.962 0.963 0.936 0.876

Funan LAT 0.793 0.775 0.811 0.821 0.899 0.764
Region task-based 0.837 0.834 0.840 0.883 0.906 0.817
Region-Boundary 0.849 0.841 0.857 0.893 0.915 0.833
WS + Higra 0.854 0.823 0.887 0.908 0.912 0.869
OWT + LM 0.802 0.796 0.809 0.864 0.875 0.796
OWT + Higra 0.889 0.873 0.905 0.922 0.903 0.881

Conghua LAT 0.782 0.763 0.802 0.826 0.859 0.767
Region task-based 0.795 0.786 0.804 0.836 0.897 0.768
Region-Boundary 0.801 0.794 0.808 0.842 0.901 0.772
WS + Higra 0.809 0.793 0.826 0.853 0.906 0.793
OWT + LM 0.743 0.751 0.735 0.783 0.819 0.727
OWT + Higra 0.817 0.793 0.842 0.879 0.899 0.802

Table 9. The field accuracies of different agricultural field generation methods on a boundary layer detected from SEANet 
model, the bolded values represent the highest accuracies.

Area Method

Field boundary accuracy Field geometric accuracy

F1 BP BR Area accuracy Position accuracy Shape accuracy

Pingyuan LAT 0.869 0.892 0.847 0.893 0.912 0.786
Region task-based 0.921 0.917 0.926 0.926 0.917 0.849
Region-Boundary 0.928 0.914 0.942 0.933 0.929 0.857
WS + Higra 0.936 0.906 0.947 0.942 0.918 0.872
OWT + LM 0.811 0.825 0.797 0.914 0.905 0.826
OWT + Higra 0.945 0.932 0.958 0.957 0.927 0.891

Funan LAT 0.822 0.796 0.849 0.843 0.891 0.757
Region task-based 0.872 0.862 0.882 0.902 0.903 0.861
Region-Boundary 0.879 0.868 0.889 0.909 0.909 0.868
WS + Higra 0.886 0.879 0.893 0.917 0.907 0.882
OWT + LM 0.795 0.806 0.784 0.871 0.883 0.806
OWT + Higra 0.897 0.903 0.891 0.929 0.919 0.887

Conghua LAT 0.806 0.778 0.836 0.849 0.873 0.747
Region task-based 0.819 0.811 0.827 0.871 0.901 0.794
Region-Boundary 0.824 0.819 0.829 0.878 0.907 0.797
WS + Higra 0.829 0.817 0.841 0.881 0.902 0.809
OWT + LM 0.756 0.749 0.763 0.796 0.849 0.744
OWT + Higra 0.838 0.827 0.849 0.885 0.911 0.816
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(1) Comparison with threshold-based boundary binarization (LAT). The results of the local adap-
tive threshold (LAT) method exhibit some boundary breaks and noise within the field, as indi-
cated by the yellow circle area. This occurs because the LAT method retains part of the detected 
linear signals after binarization. Since LAT operates on a pixel-by-pixel basis, it cannot elim-
inate all points on the ‘fake boundaries’ comprehensively. In contrast, the adopted region seg-
mentation-based method identifies all potential boundary lines and subsequently determines 
whether to retain or remove the boundaries. This approach allows for the removal of fake 
boundaries as a whole or the preservation of entire boundaries when necessary, resulting in 
fields with continuous and internally pure boundaries.

(2) Comparison with Region task-based method. As depicted in Figure 16, the field results pre-
dicted by region task still exhibit noticeable internal boundary fragmentation or loss. These 
boundaries are completely preserved in the results obtained through the Region-Boundary 
Fusion method. This is also evident in terms of accuracy across all three study areas (Pingyuan, 
Funan, and Conghua) and for both boundary layers (detected by the modified MPSPNet and 
SEANet). The field results derived from the Region task-based method consistently yielded 
lower accuracies compared to the Region-Boundary Fusion method. This underscores the 

Figure 16. The results of different agricultural fields generation methods. The circles for regions with boundary breakage and 
misidentification.
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potential for enhancing result quality to a certain extent by optimizing the identified region 
results with finer and more complete boundary information.

(3) Comparison with Region-Boundary Fusion method. Across all three study areas and for both 
boundary layers, the Region-Boundary Fusion method exhibited lower boundary and geo-
metric accuracies compared to the two segmentation-based methods (WS + Higra and 
OWT + Higra). This can be attributed to the method’s implementation process. As depicted 
in Figure 17, the Region-Boundary Fusion method relies on identified cropland regions as a 
reference and integrates the boundary results to segment the fields. Consequently, the gener-
ated results are dependent on the quality of the identified regions. However, in comparison 
to the boundary detection task, the Region task has a weaker ability to precisely locate bound-
aries. This limitation makes it challenging to accurately represent the transformed boundary 
between cropland and non-cropland, resulting in difficulty achieving a complete correspon-
dence between the generated fields and the real ones. Additionally, the shapes of the generated 
fields are not sufficiently regular. In contrast, in segmentation-based methods, the final field 
results are entirely derived from the detected boundary information, with region information 
primarily used to eliminate non-cultivated objects. Therefore, these methods produce more 
accurate and regular results with higher accuracies.

(4) Comparison with watershed segmentation (WS). The results obtained from watershed segmen-
tation exhibit a noticeable issue of field under-segmentation. This problem arises because the 
boundary probabilities detected for pixels along the same boundary are not identical, leading to 
some weak gradient boundary parts being unsegmented when only considering gradient 
strength in segmentation. However, through the incorporation of orientation information 
using the OWT method, these weak boundaries can be effectively reinforced. 

Figure 17. The generation process of Region-Boundary Fusion, WS + Higra and our OWT + Higra method. The black circles show 
obvious inaccurate boundary correspondence and field under-segmentation.
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This orientation-based approach functions as boundary repair, resulting in field boundaries 
that are continuous and more accurate across all three regions.

(5) Comparison with local merging-based method (LM). The local merging-based method is 
affected by the issue of suboptimal calculations of local parameters in certain regions, leading 
to noticeable boundary misclassifications and omissions in the results. Although both merging 
methods aim to remove common edges with weak strength for merging, the hierarchical mer-
ging method leverages the relative relationship of strengths at the scale of the entire image, thus 
possessing stronger generalization capabilities. Consequently, the challenge of locally selecting 
unstable parameters is transformed into a stable optimal hierarchical-level selection for the 
entire image. This transformation results in a reduction of local errors and an improvement 
in boundary accuracy, as measured by the F1 score, by 0.121, 0.087, and 0.074 in the three 
regions. These findings underscore the effectiveness of the hierarchical merging method.

(6) Effect of different detection results. The performance-enhancing effect of the developed OWT +  
Higra method is evident when applied to boundary layers detected by different models (the 
modified MPSPNet and SEANet), proving its generalizability. Moreover, a more powerful model 
can yield higher-quality field results. The SEANet + OWT + Higra method achieves the highest 
accuracy across all areas, indicating that this field generation method can serve as a generic frame-
work and is compatible with stronger detection models, exhibiting extensibility. Additionally, it is 
worth noting that the accuracy enhancement effect of OWT + Higra diminishes with more power-
ful detection models. Compared to the region task-based method, OWT + Higra shows an average 
boundary F1 improvement of 0.04 on the MPSPNet layer and 0.02 on the SEANet boundary layer.

4.5. Stability validation of segmentation parameters

To further verify the threshold stability of the hierarchical merging method, two supplementary 
experiments were conducted. The first experiment involved dividing the Pingyuan County image 
into 100 smaller blocks and calculating the optimal hierarchical level that maximizes boundary accu-
racy for each block, as well as the optimal height parameter under the local merging method. As seen 
from Figure 18(a), the optimal hierarchy level for all region blocks of the hierarchical merging method 
is concentrated around 0.65, with a standard deviation of only 0.042, demonstrating greater stability 
compared to the local merging method with discrete data, which had a standard deviation of 0.21. 
This confirms the stability of the hierarchical merging method across different image localities.

Figure 18. (a) Scatter plot of the optimal parameters for different region blocks, (b) The accuracy curve at different hierarchy 
levels for different methods.
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The second experiment aimed to verify the threshold stability across different detection 
methods. As shown in Figure 18(b), all methods exhibit a pattern of initially increasing and then 
decreasing F1 scores as the level increases. The optimal level for all techniques is approximately 
0.65, remaining unchanged across different detection methods. This is because, despite variations 
in the probability values detected by different methods, the relationship between boundary 
strengths remains constant. The hierarchical structure allows for relatively fixed global threshold 
across various detections in the same image. This method can be used to explore the range of opti-
mal thresholds for different types of agricultural landscapes and establish a set of empirical 
threshold rules, potentially leading to significant improvement in detection efficiency.

5. Discussion

This study primarily focuses on two aspects of agricultural field delineation: field boundary detec-
tion and agricultural field generation. Specifically, we summarize three key techniques for the field 
boundary detection model. It’s important to note that our contribution lies in providing a baseline 
reference for model design rather than developing a new detection model. Two common semantic 
segmentation models, MPSPNet and DeeplabV3+, achieves an area accuracy of over 0.9 in the 
plains in the plains after modified by the key techniques. Among the techniques, multitasking pro-
vides significant accuracy effect as it greatly improves the interpretability of field boundaries. 
Another crucial aspect was the balance between lowest-level detail features and high-level category 
features, which is often overlooked in current research but proved to be vital in our study. By opti-
mizing the allocation of these two features in the model and reducing mid-level features, our model 
surpassed all existing U-Net-based models. This observation also partly explains why the current 
state-of-the-art SEANet outperforms the ResU-Net-a model. Furthermore, boundary-focused train-
ing also significantly influences detection performance, which can be achieved by assigning a larger 
misclassification penalty to field boundaries or employing some category-imbalance loss functions, 
but most existing studies have overlooked this technique (Crommelinck et al. 2019; Fetai, Račič, and 
Lisec 2021; H. Zhang et al. 2021; Taravat et al. 2021; Xia, Persello, and Koeva 2019; Yang et al. 2020).

Additional techniques may be available to further enhance model performance. For instance, 
replacing the commonly used VGG16 and ResNet backbones with more advanced self-attention 
transformer-based backbones could be considered. Incorporating more additional auxiliary tasks 
may provide more relevant task constraints. Moreover, some attention mechanisms-based modules 
and atrous convolutional layers can be integrated into the model to enhance feature description 
capabilities. Overall, within the proposed GF-AFD framework, the detection model component 
acts as an interface that is adaptable to future, more robust detection models.

This study combines the OWT segmentation method with a hierarchy-based merging method to 
convert detection results into object-level agricultural fields. In contrast to certain end-to-end 
methods, such as outputting the identified result of region task or refining identified cropland 
regions using detected boundaries, our method does involve parameter setting, which may intro-
duce some inconvenience. Parameter selection is a necessary aspect of using segmentation methods 
to transform pixel-level boundary results into object-level fields. However, our method can produce 
more regular and accurate field delineations since the boundary results provide a finer depiction of 
field shapes compared to region results. Based on detected results with the currently most powerful 
SEANet model, employing our segmentation-based generation method still yields noticeable per-
formance improvements. Therefore, a trade-off must be considered between delineation accuracy 
improvement and human involvement in real-world applications. In the future, if detection models 
can maintain continuous detected field boundaries and accurately correspond identified cropland 
regions to real cropland, the accuracy enhancement effect of our method will be weakened, and the 
parameter-less region-based methods may be more practical.

Some automatic parameters calculation methods deserve further exploration. For instance, 
Pareto optimization methods could offer the optimal balance between over- and under- 
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segmentation and potentially provide the best segmentation parameters. However, it’s important to 
note that these optimization methods can be computationally intensive. In this study, we developed 
a hierarchy-based merging approach and demonstrated that the parameters of our merging method 
remained stable across a wide range of imagery and different detection models. Therefore, 
constructing a lookup table of empirical thresholds may be a more efficient and advantageous 
approach from an application standpoint, as it minimizes the need for manual intervention.

Due to the heterogeneous factors that must be considered, it is difficult to make a direct com-
parison with the relevant studies’ reported accuracies. First, there were significant differences in 
the experimental setup among methods, such as image data (e.g. resolution, spectral bands, and 
sensors), landscape complexity, and training sets. Second, there is no standard method for assessing 
field boundary delineation accuracy. Therefore, the results reported in previous studies cannot be 
directly compared, as they used numerous statistical metrics, including mean absolute error (Meyer 
and Van Niekerk 2016; Watkins and van Niekerk 2019a; Watkins and Van Niekerk 2019b), F1 score 
(Crommelinck et al. 2019; Graesser and Ramankutty 2017; Masoud, Persello, and Tolpekin 2020; 
Wagner and Oppelt 2020; Yang et al. 2020), overall accuracy (Fetai, Račič, and Lisec 2021; Vlacho-
poulos et al. 2020; Waldner et al. 2021), boundary displacement error (Freixenet et al. 2002; Garcia- 
Pedrero et al. 2019), and the Jaccard Index (Taravat et al. 2021; Tetteh, Gocht, and Conrad 2020). 
Furthermore, a comprehensive accuracy assessment of the delineated field results should include 
both boundary and geometric levels. The area, location, and shape accuracies comprise the geo-
metric accuracy evaluated in this study. In addition, the number of field vertices and the subdivision 
rate are also potential evaluation metrics that can be considered. Although the selected comparison 
models are representative in our study, there is always a limited number of models that can be com-
pared through an experiment. This highlights the need for common data sets and a shared set of 
evaluation metrics to enable systematic benchmarking of methods.

In addition, only single-date image was used in this study, as high-resolution images are not 
easily available, yet their detailed information is more suitable for field delineation in China. It 
is recommended to use multi-temporal images in the further study when the images are 
sufficient, as they can better highlight some potential boundaries (Cheng et al. 2020). The 
choice of image resolution for the agricultural field delineation is also a potential research 
topic. Existing studies have adopted various spatial resolutions for delineation, including 
30 m(Graesser and Ramankutty 2017), 10 m (Gopidas et al. 2021; H. Zhang et al. 2021), and 
≤2 m (S. Liu et al. 2022; Persello et al. 2019). The choice of image resolution was mainly to 
provide a clear representation of cropland division. For instance, high-resolution images are 
typically applied in smallholder farming regions like China, while 10-meter images are com-
monly used in areas such as the United States and Australia. However, in cases where both 
10-meter and 2-meter resolution images clearly show the boundaries, the 10-meter resolution 
image may result in better delineation performance because lower resolution can lead to 
smoother and more uniform textures within cropland areas. It is worth noting that no study 
has quantitatively assessed the impact of image resolution on delineation accuracy, indicating 
a potential avenue for future research.

6. Conclusions

This article presents a framework for agricultural field delineation, which summarizes and validates 
three key techniques for the field boundary detection model and addresses issues related to weak 
boundary loss and unstable parameters in the agricultural field generation process. The delineation 
framework demonstrates strong performance across three counties in China, surpassing compari-
son methods. Experimental results allowed us to conclude that: (1) The three key techniques for the 
detection model are multi-tasking for regions and boundaries, balancing lowest-level detail features 
with high-level category features, and boundary-focused training. These techniques were validated 
by modifying the MPSPNet model, whose ablation experiments validate the significant 
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performance improvement resulting from the techniques, and the comparison experiments validate 
the generalization of the techniques and the performance that surpasses the U-Net-based network 
and approaches the state-of-the-art model. (2) Performing region segmentation on detected prob-
abilities yields more accurate field results compared to the method of clipping region results with 
detected boundaries. Additionally, the oriented watershed transformation provides more individual 
fields with continuous boundaries. (3) The developed hierarchical merge method transforms locally 
unstable segmentation thresholds into global stable thresholds, and yields more regular and accu-
rate field results. In general, the proposed GF-AFD framework provides a valuable solution to the 
challenges of agricultural field delineation.
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