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A B S T R A C T   

High precision precipitation products are the basis of precipitation-related research. Based on 27 global climate 
models (GCMs) in the Coupled Model Intercomparison Project phase 6 (CMIP6), we designed eight schemes for 
comprehensively using the empirical quantile mapping (EQM) method and data ensemble method to conduct 
precipitation bias correction; then, we selected the scheme with the highest accuracy as the final bias correction 
scheme. Using the selected bias correction scheme, we created a monthly precipitation dataset with a 1◦ spatial 
resolution, which spans the historical period of 1961–2014 and the future period of 2015–2099 under three 
shared socioeconomic pathway (SSP) scenarios: SSP126, SSP245, and SSP585. The corrected precipitation data 
were validated using the CN05.1 grid precipitation dataset from the China Meteorological Data Sharing Network 
and were compared with the ERA5 precipitation data from the European Centre for Medium-Range Weather 
Forecasts. The dataset was also utilized for future prediction of alternating drought and flood events in China. 
The results show that this best bias correction scheme is the first to integrate precipitation simulation data from 
27 GCMs using the random forest (RF) model and then the EQM method to further correct the integrated pre-
cipitation data. The corrected precipitation data are better than the original GCM precipitation data in terms of 
both the monthly precipitation and extreme precipitation. From the perspective of the monthly precipitation, the 
difference between the ERA5 and RF-EQM is small, but the extreme precipitation of the RF-EQM clearly out-
performs the ERA5 extreme precipitation. For the annual maximum (minimum) monthly precipitation, the 
correlation coefficient, the RMSD (standardized), and the STD (standardized) between the ERA5 and CN05.1 are 
0.925 (0.743), 0.474 (1.223), and 1.207 (1.765), respectively; the correlation coefficient, the RMSD (stan-
dardized), and the STD (standardized) between the RF-EQM and CN05.1 are 0.947 (0.735), 0.337 (0.837), and 
0.849 (1.226), respectively. The occurrence frequency of DF (an abrupt change from drought to flood) events is 
continuously increasing in all scenarios, with the highest frequency observed under the SSP585 scenario. The 
increase in FD (an abrupt change from flood to drought) event frequency is not pronounced. This study expands 
the method for bias correction of meteorological data and provides a reference for other climate parameters and 
precipitation bias correction in other regions.   

1. Introduction 

Precipitation is a key meteorological and climatic parameter 
(Kukulies et al., 2020; Michelson, 2004; Morin et al., 2020), with spatial 
distribution having a certain impact on meteorological, hydrological, 
and related processes (Baez-Villanueva et al., 2020; Chen and Chung, 
2015; Gat and Airey, 2006; Niu et al., 2017). Changes in precipitation 
affect agriculture, animal husbandry, hydropower, and water conser-
vancy (Mukhamedjanov et al., 2021; Seo and Mendelsohn, 2008; Tabari, 

2020; Wei et al., 2020). Therefore, obtaining reliable and accurate 
precipitation data is of great significance for analyzing and predicting 
hydrological processes, allocating and managing water resources, and 
predicting drought and flood disasters. 

Global climate models (GCMs) have been widely used in related 
research on the impact of past, present, and future climate changes 
(Taylor et al., 2012; Fu et al., 2013; Huang et al., 2014; Ta et al., 2018; 
Jiang et al., 2020a; Guo et al., 2021; Jiang and Zhou, 2021; Yao et al., 
2021). The Coupled Model Intercomparison Project (CMIP) has now 
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reached its sixth phase (CMIP6). The number of GCMs included in the 
project has increased with each successive phase, and the resolution of 
the GCMs has improved. Compared with the CMIP3 and CMIP5, the 
performances of the GCMs in CMIP6 are significantly better (Chen et al., 
2020a, 2021; Gusain et al., 2020; Jiang et al., 2020b; Wang et al., 2020; 
Wu et al., 2019; You et al., 2021; Harvey et al., 2020; Cannon, 2020; He 
et al., 2019; Xin et al., 2020; Fernandez-Granja et al., 2021; Bock et al., 
2020; Zhu et al., 2020). In general, the GCMs can effectively reflect 
large-scale climate conditions, but they have limitations in describing 
regional climate processes and cannot be directly used in regional 
climate prediction and impact research. To solve this problem, we need 
to correct the bias of the GCMs' simulation data. 

In recent years, GCM bias correction has become an important 
research topic. GCM bias correction includes the correction of the mean, 
variance, and quantile of the data. Relevant research has shown that the 
performance of quantile mapping bias correction is better than those of 
the bias correction methods that only correct the mean or the mean and 
variance of the precipitation data series (Gudmundsson et al., 2012; 
Taylor et al., 2012; Chen et al., 2013). Many studies have used quantile 
mapping to correct the bias of GCM data (Supharatid et al., 2022; Song 
et al., 2021; Lim Kam Sian et al., 2022; Shrestha et al., 2020; Piao et al., 
2022; Xiang et al., 2022; Oruc, 2022; Babaousmail et al., 2022). Jose and 
Dwarakish (2022) used six bias correction methods, including the delta 
change (DC), linear scaling (LS), empirical quantile mapping (EQM), 
adjusted quantile mapping (AQM), Gamma-Pareto quantile mapping 
(GPQM), and quantile delta mapping (QDM) methods, to correct tem-
perature data for the Netravati Basin in India. Their results demonstrate 
that these methods can significantly reduce data bias, except for the LS 
method. Li et al. (2010) developed the equidistant cumulative distri-
bution function (EDCDF) method to adjust the cumulative distribution 
function (CDF) of model predictions based on the differences between 
the model outputs and observations in historical periods. The EDCDF 
method is very efficient in reducing model deviation (Yang et al., 2018; 
Sachindra et al., 2014) but does not have an ideal effect on simulating 
the precipitation field; EDCDF also produces a negative precipitation 
bias after correction. Based on the EDCDF method, Wang and Chen 
(2014b) proposed the equi-ratio cumulative distribution function 
(ERCDF) method. The ERCDF can solve the problem that the negative 
bias of the corrected precipitation produced by the EDCDF method 
(Wang and Chen, 2014; Baran et al., 2019); however, it cannot retain the 
dependence between the variables and introduces additional errors in 
the spatial gradient of the variables (Colette et al., 2012; White and 
Toumi, 2013). In addition, the ERCDF was developed for the correction 
of a single model dataset, and the uncertainty of a single model dataset 
can be large. 

In recent years, some studies have also used methods based on a 
multi-model ensemble for bias correction, but often only a simple 
arithmetic average is used to achieve the fusion of multi-model data. 
Compared with single-model data, the accuracy of the multi-model 
ensemble results is improved, but the results of the multi-model 
ensemble based on a simple arithmetic average reduce the ability to 
capture extreme weather events to a certain extent. Some studies have 
optimized the multi-model ensemble based on a simple arithmetic 
average. For example, Zarrin et al. (2022) used the independent 
weighted mean method to assemble precipitation data for Iran from five 
GCMS and significantly improved the reliability of the simulation re-
sults. Several studies have combined the quantile mapping and multi- 
model ensemble methods to correct the bias of GCM data (Li et al., 
2020a; Xu et al., 2021; Carvalho et al., 2021; Dike et al., 2022; Mondal 
et al., 2021). For example, Yue et al. (2021) and Supharatid et al. (2021) 
took China and Southeast Asia as their study areas, respectively. First, 
the single GCM simulation data were corrected using the empirical 
quantile mapping method; then, the outputs of the empirical quantile 
mapping method were fused using the mean based multi-model 
ensemble (MME) bias correction method. Song et al. (2022) first used 
the quantile mapping (QM) method to correct the bias of 11 GCM 

datasets, then used the technique for order preference by similarity to 
ideal solution (TOPSIS) method to determine the weights of the 11 
corrected GCM dataset, and obtained the final correction result via 
weighted summation. However, the number of GCMs used in this study 
was small, and the results of the TOPSIS method are heavily dependent 
on the selected evaluation index, leading to some uncertainty. In recent 
years, some studies have employed machine learning methods for multi- 
model integration of GCM data (Ahmed et al., 2020; Wang et al., 2018; 
Dey et al., 2022; Jose et al., 2022). Li et al. (2021a, 2021b) utilized three 
methods, namely arithmetic mean, linear regression, and random forest, 
for multi-model integration of temperature and precipitation data in 
China, demonstrating the superiority of the random forest approach in 
this work. Yang et al. (2022) compared the application effects of deci-
sion tree algorithm, random forest algorithm, and adaptive boosting 
algorithm in the multi-model integration of precipitation data in China. 
The results indicated that the random forest algorithm had the smallest 
error. However, this study only employed four model datasets and did 
not incorporate bias correction methods. Shetty et al. (2023) applied the 
EQM for calibration of 13 GCM model datasets, followed by the utili-
zation of eight methods for multi-model data integration. Nevertheless, 
this study employed a relatively limited number of models and did not 
evaluate extreme precipitation events. Currently, the use of machine 
learning methods for multi-model integration often faces challenges 
such as a limited number of GCMs, lack of incorporation of bias 
correction methods, and insufficient consideration of extreme precipi-
tation events. Due to the impact of large-scale climate variability, pre-
cipitation in China is vulnerable to climate change (Held and Soden, 
2006). In addition, China's complex terrain also increases the uncer-
tainty of China's precipitation. Several studies have conducted bias 
correction on China's precipitation data, but these studies tended to 
focus on local areas of China or only focused on the applicability of the 
correction method to the monthly precipitation, without paying atten-
tion to the ability of the correction method to capture extreme precipi-
tation events. 

In summary, taking China as the research area, we designed eight 
fusion correction schemes by comprehensively using the empirical 
quantile mapping method and data ensemble method, corrected and 
assembled all of the available GCM simulated precipitation datasets in 
the CMIP6, compared the accuracy of the multi-model ensemble pre-
cipitation products obtained from the eight schemes, and selected the 
scheme with the highest accuracy. Using the selected scheme, we pro-
duced a monthly precipitation fusion product corrected for China with 
1◦ spatial resolution from January 1961 to December 2099 using the 
multi-model ensemble (MME) bias correction method. The product 
satisfactorily reflects both the average state of the precipitation and 
extreme precipitation events. The future precipitation dataset produced 
in this study provides basic data for research on future precipitation- 
related events and can also be used as input data for dynamic down-
scaling models to improve the reliability of future precipitation-related 
research. 

2. Data 

The data used in this study included monthly precipitation data from 
1961 to 2014 from the CN05.1 gridded dataset, monthly simulated 
precipitation data from 27 GCMs in the CMIP6 (detailed information can 
be found in Table 1) for historical and future periods (1961–2099), and 
the ERA5 reanalysis monthly precipitation summary dataset for 
1979–2014. 

The CN05.1 gridded dataset was obtained from the China Meteoro-
logical Data Sharing Network and was used as the observation data (Wu 
and Gao, 2013), with a resolution of 0.25◦ × 0.25◦. This dataset was 
produced via interpolation of precipitation observations at 2416 Na-
tional Meteorological Center stations in China (New et al., 2002; Xie 
et al., 2007). All CN05.1 grid data files have undergone strict quality 
inspection control, data verification, data correction, and 
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supplementary recording, and have been widely recognized and applied 
in China. The CN05.1 has been widely used for verifying and correcting 
GCM simulations in China in relevant research (Yi-Yang et al., 2021; Zhu 
et al., 2021; Dong et al., 2015; Yang et al., 2020). The CN05.1 precipi-
tation data from 1961 to 1994 were used as the training set to build the 
bias correction models, and the data from 1995 to 2014 were used as the 
validation data to evaluate the accuracy of the corrected precipitation 
data. 

The GCM data were obtained from the CMIP6 models (https://esgf 
-node.llnl.gov/projects/cmip6). The basic information about the GCMs 
is presented in Table 1. The GCM data from 1961 to 2014 were used to 
train the bias correction models, and the GCM data from 2015 to 2099 
under three shared socioeconomic pathway (SSP) scenarios (SSP126, 
SSP245, and SSP585) were used to produce the corrected future pre-
cipitation data. Because the spatial resolution of each GCM is different, 
before the correction, bilinear interpolation was conducted to uniformly 
interpolate all of the GCM data to 1◦ × 1◦. 

The ERA5 data were obtained from the European Centre for Medium- 
Range Weather Forecasts (ECMWF). The ERA5 is the fifth-generation 
reanalysis product launched by the ECWMF after the ERA-Interim, and 
it provides a large number of marine climate and hourly climate vari-
ables. The ERA5 has a resolution of 0.25◦ × 0.25◦ and provides a large 
number of hourly atmospheric, land, and marine climate variables. 
Significantly, ERA5 data's enhanced temporal and spatial resolution has 
been widely acknowledged in various studies, establishing it as a 
preferred tool for global climate research (Zou et al., 2022; Wang et al., 
2022). Additionally, its ability to accurately depict annual and seasonal 
precipitation patterns in China has been demonstrated, albeit with a 
slight overestimation during summer months (Jiao et al., 2021). Here, 
the ERA5 reanalysis monthly precipitation data for 1979–2014 were 
used as the comparison data to assess the differences between the cor-
rected precipitation data, ERA5 precipitation data, and reference pre-
cipitation data (CN05.1). Before conducting the comparison, we used 
bilinear interpolation to uniformly interpolate all of the GCMs of the 
ERA5 data to 1◦ × 1◦. 

3. Methods 

3.1. Quantile mapping method 

The EQM method uses the transfer function to correct the distribu-
tion of simulation data to match the distribution of the observation 
dataset (Déqué, 2007). This method uses the empirical nonparametric 
CDF without any assumptions about the precipitation distribution. The 
specific calculation formula is as follows: 

PBC = F− 1
obs(Fsim(x) ),

where PBC is the simulated precipitation after bias correction; Fsim is the 
CDF of the simulated data; F− 1

obs is the inverse function of the CDF of the 
observed data; and x is the simulated precipitation value of the GCM. 

3.2. Ensemble methods 

In this study, four GCM ensemble methods were used for the com-
parison, including the average, independent weighted mean, kernel 
density function, and random forest methods. 

The average method is the most widely used GCM ensemble method. 
It directly averages the GCM data to achieve the fusion of multi-model 
data. This method has simple calculations, does not require a training 
dataset, and has been widely used in related research (Yue et al., 2021; 
Li et al., 2020b; Xu et al., 2021; Song et al., 2022; Lovino et al., 2021). 

The purpose of the independent weighted mean (IWM) method is to 
find the linear fit of the model simulations that minimizes the mean 
square deviation (MSD) relative to the observations (Bai et al., 2021; 
Bishop and Abramowitz, 2013; Zarrin and Dadashi-Roudbari, 2021). 
More details about this method have been described by Bai et al. (2021). 

Nonparametric kernel density estimation (KDE) is a nonparametric 
estimation method and can obtain the probability density function of 
data without prior knowledge (Sheather, 2004). 

f(P) =
1
nh

∑n

i=1
K
(

P − Pi

h

)

,

where f( • ) is the probability density function of the precipitation data 
of each model in a given grid within a pre-determined period; n is the 
number of samples (27 GCMs were used in this study, so n = 27); h is the 
window width; K( • ) is a kernel function; and P is precipitation. 

The kernel function is a weighting function or smoothing function. 
The common kernel functions are the Gaussian kernel function, Epa-
nechnikov kernel function, triangular kernel function, and quartic 
kernel function. Relevant research has shown that the smaller the 
sample size of the data used is, the greater the possibility that the 
Gaussian kernel function is optimal (Scott, 1992; Duda et al., 2001). 
Because the sample size in this study was only 27, the Gaussian kernel 
function was used to calculate the probability density function. Based on 
the calculated probability density function, we calculated the precipi-
tation value with the highest occurrence probability and took it as the 
precipitation value corrected using the kernel density function method. 

The random forest regression model is a supervised ensemble sta-
tistical learning algorithm (Breiman, 2001). The random forest model is 
composed of multiple regression trees, and each decision tree is inde-
pendent of the others. The final output of the model is determined by all 
of the decision trees. The random forest regression model mainly in-
cludes the following steps. First, the original data training sample set is 
recorded as A, and a new A1, A2, …, Am sub-training set is obtained by 

Table 1 
Basic information about the GCMs used in this study.  

Model Country Resolution (longitude× latitude) Model Country Resolution (longitude× latitude) 

ACCESS-CM2 Australia 1.675◦ × 1.25◦ GFDL-ESM4 United States 1.25◦ × 1◦

ACCESS-ESM1–5 Australia 1.875◦ × 1.25◦ IITM-ESM India 1.875◦ × 1.875◦

AWI-CM-1-1-MR Germany 0.9375◦ × 0.9375◦ INM-CM4–8 Russia 2◦ × 1.5◦

BCC-CSM2-MR China 1.125◦ × 1.125◦ INM-CM5–0 Russia 2◦ × 1.5◦

CAMS-CSM1–0 China 1.125◦ × 1.1125◦ IPSL-CM6A-LR France 2.5◦ × 1.26◦

CanESM5 Canada 2.8125◦ × 2.8125◦ KACE-1-0-G Korea 1.875◦ × 1.25◦

CAS-ESM2–0 China 1.406◦ × 1.389◦ KIOST-ESM Korea 1.875◦ × 1.875◦

CESM2-WACCM United States 1.25◦ × 0.9375◦ MIROC6 Japan 1.406◦ × 1.389◦

CMCC-CM2-SR5 Italy 1.25◦ × 0.9375◦ MPI-ESM1–2-HR Germany 0.9375◦ × 0.9375◦

CMCC-ESM2 Italy 1.25◦ × 0.9375◦ MRI-ESM2–0 Japan 1.125◦ × 1.124◦

EC-Earth3 10 European countries 0.703◦ × 0.703◦ NESM3 China 1.875◦ × 1.865◦

EC-Earth3-Veg 10 European countries 0.703◦ × 0.703◦ NorESM2-MM Norway 1.25◦ × 0.9375◦

FGOALS-f3-L China 1.25◦ × 1◦ TaiESM1 China 1.25◦ × 0.9375◦

FIO-ESM-2-0 China 1.25◦ × 0.9424◦

Note: The temporal resolution of the model data in the table is month, and the data used is from China. 
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randomly extracting m sample points from training sample set A. Second 
for each sub-training set, a classification and regression tree (CART) is 
trained. In the training process, the segmentation rule for each node is to 
randomly select k features from all of the features, to select the optimal 
segmentation point from the k features, and then to divide the tree into 
the left and right subtrees. 3) Through the second step, many CARTs can 
be generated f(A1), f(A2), …, f(Am), and the final prediction result is the 
average of all of the CART prediction results. The random forest model 
used in this study was built using the sklearn package in Python, and the 
gridsearchcv program was used to select the optimal parameters. 

3.3. Design and optimal selection of bias correction scheme 

In this study, we designed eight schemes for comprehensively using 
the EQM method and data ensemble method to conduct a precipitation 
bias correction, and we selected the scheme with the highest accuracy as 
the final bias correction scheme. The eight schemes were as follows: 
empirical quantile mapping followed by the multi-model ensemble 
method based on the simple arithmetic average method (EQM-Mean), 
empirical quantile mapping followed by independent weighted mean 
method (EQM-IWM), empirical quantile mapping followed by the kernel 
density function method (EQM-KDE), empirical quantile mapping fol-
lowed by the random forest method (EQM-RF), the multi-model 
ensemble based on the simple arithmetic average method followed by 
empirical quantile mapping (Mean-EQM), the independent weighted 
mean method followed by empirical quantile mapping (IWM-EQM), the 
kernel density function method followed by empirical quantile mapping 
(KDE-EQM), and the random forest method followed by empirical 
quantile mapping (RF-EQM). 

For each bias correction scheme, we used the CN05.1 data from 1961 
to 1994 as the training set and the data from 1995 to 2014 as the vali-
dation set. The verified precipitation data included the monthly pre-
cipitation, annual maximum monthly precipitation, and annual 
minimum monthly precipitation. The validation indexes included the 
Pearson correlation coefficient, root mean square error (RMSE), mean 
absolute error (MAE), and comprehensive evaluation index Ms (Table 2) 
(Schuenemann and Cassano, 2009). The scheme with the highest Ms was 
used to produce a monthly precipitation fusion product under three 
climate scenarios (SSP126, SSP245, and SSP585) for January 2015 to 
December 2099. 

3.4. Identification of DFAA events based on the corrected precipitation 
data 

This study employs the Standardized Precipitation Index (SPI) to 
quantify variations in floods and droughts (McKee et al., 1993). The 
Standardized Precipitation Index (SPI) is an indicator that characterizes 
the probability of precipitation occurrence, and it uses Γ probability 
distribution to describe the distribution of precipitation, and then 
normalized to obtain the SPI value, which is suitable for drought 
monitoring and evaluation on a monthly or above scale. Droughts and 
floods are common natural disasters (Bruce, 1994; Zhou et al., 2002). 
Drought-flood abrupt alternation (DFAA) refers to the alternating 
occurrence of drought and flood events within a short period (Wu et al., 
2006; Shan et al., 2018; Chen et al., 2020b; Shi et al., 2021), usually 
resulting from the complex interplay between drought and heavy rain-
fall, forming compound events (Chen et al., 2020b). While adequate 
precipitation can alleviate drought (Chen et al., 2020a), the abrupt 
alternation between drought and flood can cause more severe damage 
than individual disaster. In this research, as shown in Fig. 1, DFAA 
events are defined from a perspective of event compounds, signifying 
abrupt transitions between drought (SPI ≤ − 0.5) and flood (SPI ≥ 0.5) 
conditions in consecutive months (Chinese Academy of Meteorological 
Sciences, National Meteorological Center, Division of Disaster Predic-
tion and Mitigation, Chinese Academy of Meteorological Sciences 
2017). As shown in the figure, two types of DFAA events are defined in 
this paper: (1) an abrupt change from drought to flood (DF); (2) an 
abrupt change from flood to drought (FD). 

4. Results 

4.1. Selection of bias correction scheme 

The evaluation results of the eight bias correction schemes are shown 
in Table 3. Regarding the monthly precipitation, the EQM-RF had the 
highest correlation coefficient with the CN05.1, and the lowest MAE and 
NRMSE values. Regarding the annual maximum monthly precipitation, 
the correlation coefficient between the EQM-Mean and CN05.1 was the 
highest performance, and the MAE and NRMSE values between the RF- 
EQM and CN05.1 were the lowest performance. Regarding the annual 
minimum monthly precipitation, the EQM-Mean had the highest cor-
relation coefficient with the CN05.1, and the MAE and NRMSE values 
between the Mean-EQM and CN05.1 were the lowest performance. Ac-
cording to the comprehensive evaluation index Ms, the RF-EQM was the 
best correction method. Therefore, the RF-EQM was selected to produce 

Table 2 
Validation indexes.  

Statistical indicators Calculation equations Value 
range 

Optimal 
value 

Pearson correlation 
coefficient (R) 

R =
∑N

i=1(Ei − E)(Gi − G)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Ei − E)2 ∑N
i=1(Gi − G)2

√

[− 1,1] 1 

Normalized Root 
mean square error 
(NRMSE) 

NRMSE =
1
G

*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Ei − Gi)
2

N

√ [0, +
∞] 

0 

Mean absolute error 
(MAE) MAE =

∑N
i=1 |Ei − Gi|

N 
[0, +
∞] 

0 

Comprehensive 
evaluation index 
(Ms) 

Ms = 1 −

∑m
i=1ranki

1 × m × n  
[0,1] 1 

Note: N is the number of samples; Ei is the precipitation after bias correction; E is 
the average value of the corrected precipitation; Gi is the precipitation value 
from the CN05.1; G is the average value of precipitation from the CN05.1; n is 
the number of correction schemes (n =8); m is the total number of validation 
indexes (m=9, three validation indexes for each precipitation parameter, and 
three precipitation parameter, i.e., the monthly precipitation, annual maximum 
monthly precipitation, and annual minimum monthly precipitation); and ranki is 
the rank of the corrected GCM precipitation under the ith evaluation index. R, 
NRMSE and Ms are dimensionless, and MAE is in mm/month.  

Fig. 1. Schematic diagram of DFAA event.  
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a monthly precipitation fusion product under three climate scenarios 
(SSP126, SSP245, and SSP585) from January 2015 to December 2099. 
The corrected precipitation dataset based on the best correction scheme 
is hereinafter referred to as the RF-EQM precipitation. 

4.2. Performance evaluation of corrected precipitation based on the best 
correction scheme 

4.2.1. Comparison with CN05.1 monthly precipitation 
Taking CN05.1 as the reference dataset, the monthly precipitation 

data before and after correction were verified. The results are shown in 
Fig. 2. This is a standardized Taylor plot, where the standard deviation 
(STD) and root mean squared difference (RMSD) are both divided by the 
standard deviation of the CN05.1 precipitation data. The closer the STD 

Table 3 
Evaluation results for the different correction schemes.   

Monthly precipitation Annual maximum monthly precipitation Annual minimum monthly precipitation Ms 

R MAE (mm/month) NRMSE R MAE (mm/month) NRMSE R MAE (mm/month) NRMSE 

EQM-Mean 0.856 0.643 0.728 0.878 1.400 0.477 0.739 0.198 2.576 0.528 
EQM-IWM 0.852 0.639 0.736 0.862 1.237 0.432 0.681 0.157 2.239 0.528 
EQM-KDE 0.704 0.959 1.087 0.778 1.531 0.526 0.540 0.120 1.726 0.153 
EQM-RF 0.865 0.607 0.708 0.877 1.404 0.485 0.737 0.243 3.196 0.500 
Mean-EQM 0.830 0.697 0.802 0.844 1.290 0.422 0.568 0.106 1.544 0.556 
IWM-EQM 0.815 0.719 0.849 0.819 1.404 0.461 0.543 0.113 1.612 0.389 
KDE-EQM 0.700 0.982 1.081 0.818 1.405 0.461 0.525 0.122 1.746 0.181 
RF-EQM 0.856 0.621 0.730 0.861 1.212 0.418 0.670 0.116 1.693 0.667  

Fig. 2. Comparison of precipitation between RF-EQM and CN05.1(The research area of this paper is the mainland of China (excluding Taiwan), the same below.)  
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(standardized) is to 1, the better the data performs on the standard de-
viation indicator. The validation results show that the accuracy of the 
monthly precipitation was significantly improved. Before the correction, 
the correlation coefficients between the precipitation data simulated 
using the GCMs and CN05.1 were 0.526–0.708, and the correlation 
coefficients of only six of the 27 models were >0.65. The correlation 
coefficient between the corrected precipitation based on the best 
correction scheme (i.e., the RF-EQM precipitation) and the CN05.1 was 
0.856, which was much higher than that before the correction. The 
RMSD (standardized) before and after the correction were 0.817–1.426 
and 0.518, respectively. 

There are certain spatial variations in the accuracy of the correction. 
The correlation coefficient between the RF-EQM and CN05.1 was the 
highest performance on the Qinghai-Tibet Plateau (mostly ≥0.9), fol-
lowed by northeastern China (mostly between 0.8 and 0.9), and it was 
lower performance in northwestern China (mostly ≤0.6). The NRMSE 
between RF-EQM and CN05.1 is relatively low in the Qinghai Tibet 
Plateau region (mostly ≤0.5). The MAE values between the RF-EQM and 
CN05.1 increased from the northwest to the southeast coast. The 
calculation of MAE is affected by the size of the reference value (real 
value). When the relative error was the same, the greater the reference 
value was, the greater the absolute error of the estimated value was. The 
precipitation increased gradually from northwest to southeast, which 
may have caused the MAE between the RF-EQM and CN05.1 to increase 
from the northwest to the southeast coast. 

4.2.2. Comparison with CN05.1 extreme precipitation 
Fig. 3 presents the Taylor diagram between the extreme precipitation 

(annual maximum/minimum monthly precipitation) of the CN05.1 and 
RF-EQM. Overall, the simulation results of the annual maximum 
monthly precipitation are better than those of the annual minimum 
monthly precipitation. The RF-EQM correction greatly improved the 
simulation data's ability to depict extreme precipitation. According to 
the correlation coefficient, the R value between the annual maximum 
monthly precipitation (annual minimum monthly precipitation) simu-
lated using the GCMs in the CMIP6 and the maximum (minimum) 
monthly precipitation of the CN05.1 before correction is between 0.745 
and 0.900 (0.336–0.677), while the correlation coefficient between the 
annual maximum (minimum) monthly precipitation of the RF-EQM and 
the annual maximum (minimum) precipitation of the CN05.1 is 0.946 
(0.735). From the perspective of the standard deviation, the standard 

deviation of the extreme monthly precipitation simulated using the 
CMIP6 GCMs before correction is generally large. The standard devia-
tion (standardized) of the simulated annual minimum monthly precip-
itation is between 0.948– 3.290 and is generally greater than that of the 
simulated annual maximum monthly precipitation (0.873–1.631). The 
STD (standardized) of the annual maximum monthly precipitation of the 
RF-EQM is 0.849. The STD (standardized) of the annual minimum 
monthly precipitation of the RF-EQM is 1.226. According to the RMSD 
(standardized), the RMSD (standardized) of the annual maximum 
(minimum) monthly precipitation simulated using the CMIP6 GCMs 
before correction is 0.503–1.108 (0.954–2.795), while the RMSD 
(standardized) of the annual maximum (minimum) monthly precipita-
tion of the RF-EQM and CN05.1 is 0.337 (0.837). 

4.3. Comparison with ERA5 precipitation 

Fig. 4 shows the Taylor diagram of the precipitation products (ERA5 
and RF-EQM) and precipitation observation data (CN05.1). Regarding 
the monthly precipitation, the difference between the ERA5 and RF- 
EQM is small. The correlation coefficient between the ERA5 and 
CN05.1 is 0.857, which is close to the correlation coefficient between the 

Fig. 3. Taylor diagram of CMIP6 models, RF-EQM, and reference dataset for the annual maximum precipitation and annual minimum precipitation.  

Fig. 4. Taylor diagram of precipitation products (ERA5 and RF-EQM) and 
precipitation observation data (CN05.1). 
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RF-EQM and CN05.1 (0.856). The RMSD (standardized) between the RF- 
EQM and CN05.1 is 0.518, which is slightly smaller than that between 
the ERA5 and CN05.1 (0.640). The ERA5 overestimates the STD (stan-
dardized) of the precipitation, while the RF-EQM slightly un-
derestimates the STD (standardized) of the precipitation. Regarding the 
annual extreme precipitation, the RF-EQM is significantly better than 
the ERA5. For the annual maximum monthly precipitation, the corre-
lation coefficient, the RMSD (standardized), and the STD (standardized) 
between the ERA5 and CN05.1 are 0.925, 0.474, and 1.207, respec-
tively; the correlation coefficient, the RMSD (standardized), and the STD 
(standardized) between the RF-EQM and CN05.1 are 0.947, 0.337, and 
0.849, respectively. For the annual minimum monthly precipitation, the 
correlation coefficient, the RMSD (standardized), and the STD (stan-
dardized) between the ERA5 and CN05.1 are 0.743, 1.223, and 1.765, 
respectively; and the correlation coefficient, the RMSD (standardized), 
and the STD (standardized) between the RF-EQM and CN05.1 are 0.735, 
0.837, and 1.226, respectively. 

4.4. Spatiotemporal variations of alternating drought and flood events 

Fig. 5 and Fig. 6 presents box plots depicting the frequencies of DF 
and FD events during the reference period (1995–2014) and the short- 
term (2021–2040), mid-term (2041–2060), and long-term 
(2080–2099) under the SSP126, SSP245, and SSP585 scenarios. It can 
be observed that in the future, the frequency of DF events is consistently 
increasing across all scenarios, with the SSP585 scenario exhibiting 
higher DF event frequencies than the other two scenarios. The median 
DF event frequency during the reference period is 3.05, which increases 
to 3.90, 4.30, and 4.60 under SSP126 scenario in the short-term, mid- 
term, and long-term respectively; 3.85, 4.20, and 5.15 under SSP245 
scenario; and 3.95, 4.70, and 6.35 under SSP585 scenario. Compared to 
the historical reference period, the median DF event frequency in 
SSP585 during the long-term is expected to increase by 2.08 times. In 
contrast to DF events, the increase in FD event frequency in the future is 
not significant. The median FD event frequency during the reference 
period is 2.40, which rises to 2.65, 2.70, and 2.70 for SSP126 in the 
short-term, mid-term, and long-term respectively; 2.65 for SSP245 
across all three terms; and 2.65, 2.65, and 2.50 for SSP585. In the long- 
term, unlike DF events, the median FD event frequency in SSP585 does 
not show an increase, but rather exhibits a slight decrease. 

Fig. 7–9 illustrate the spatial distribution of the yearly frequency of 
historical and future DF and FD events. Overall, the frequency of DF 
events is higher than that of FD events during the historical period 

(1995–2014). The frequency of DF events is slightly higher in the 
Qinghai-Tibet Plateau region, while there is no significant spatial clus-
tering of FD events (Fig. 7). In general, the frequency of DF events in the 
Northwestern region of China is continuously increasing in all future 
scenarios, while the frequency of DF events is expected to decrease in 
some southeastern areas (Fig. 8). Furthermore, as the events progress, 
the regions experiencing an increase in DF event frequency are gradually 
expanding, while those with a decrease in DF event frequency are 
shrinking. Among them, under the SSP585 long-term scenario, the in-
crease in DF event frequency is the most significant, and the number of 
grids with increased DF frequency accounts for 94.88% of the total 
number of grids in the entire study area. Unlike DF events, FD events 
also exhibit an irregular spatial distribution in the future (Fig. 9). The 
frequency of FD events does not exhibit clustering characteristics in 
different scenarios or at different times, and there is no apparent regular 
trend in their variations. 

5. Discussion 

In this study, four GCM ensemble methods were used for the com-
parison, including the average, independent weighted mean, kernel 
density function, and random forest methods. we compared eight 
schemes for comprehensively using the EQM method and data ensemble 
method to conduct a precipitation bias correction:EQM-Mean，EQM- 
IWM，EQM-KDE，EQM-RF，Mean-EQM，IWM-EQM，KDE-EQM and 
RF-EQM. Base on Table 3, from the perspective of monthly precipitation, 
the performance of the empirical quantile mapping followed by the 
multi-model ensemble methods is better than that of the multi-model 
ensemble methods followed by empirical quantile mapping. Specif-
ically, the R of EQM-Mean is higher than that of Mean-EQM, while MAE 
and NRMSE of EQM-Mean is lower than that of Mean-EQM. Similar 
conclusions can also be obtained from the other six methods. However, 
when considering the mean, maximum, and minimum values of pre-
cipitation simultaneously, the ranking of Ms for the 8 methods from 
largest to smallest is RF-EQM (0.667) > Mean-EQM (0.556) > EQM- 
Mean (0.528) = EQM-IWM (0.528) > EQM-RF (0.500) > IWM-EQM 
(0.389) > KDE-EQM (0.181) > EQM-KDE (0.153). This indicates 
different methods have different abilities in restoring the mean and 
extreme values of precipitation. When testing the accuracy of bias 
correction methods, it is not only important to consider the correction 
effect on monthly precipitation, but also the correction effect on extreme 
precipitation. Among the four ensemble methods, KDE has the worst 
performance. KDE is a method of estimating the probability density 

Fig. 5. The box plot of the frequency of DF events.  
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function of independent and identically distributed samples through non 
parametric methods. For a given grid, we considered the precipitation 
values of 27 GCM as 27 samples, and used KDE to calculate the proba-
bility density function of precipitation, thereby obtaining the value of 
precipitation with the highest probability as the corrected precipitation 
value. This indicates that the precipitation values of the 27 models do 
not satisfy the assumption of independent and identically distributed. 
Both Mean-EQM and EQM-Mean show good correction performance 
which further confirms that the averaging method is feasible and the 
simplest method. Compared to EQM-Mean, Mean-EQM has a much 
smaller workload, a higher correction accuracy (Ms) and therefore more 
recommended to be used. EQM-RF and RF-EQM also demonstrated good 
correction performance, especially RF-EQM, which has the highest ac-
curacy among all methods. RF utilizes a bootstrapping method to sample 
the training data, which reduces the redundancy of explanatory vari-
ables and makes the prediction model (decision tree) more diverse (He 
et al., 2016). This reduction in correlation among decision trees can 
minimize the possibility of overfitting. The overall correction effect of 
RF-EQM on monthly precipitation and extreme precipitation is the best. 
Although this study only validated and applied the RF-EQM on precip-
itation datasets, this method is also applicable to other climate variables, 
such as temperature. 

Climate warming leads to changes in the water cycle, increased 
evaporation, and higher atmospheric water vapor content (You et al., 
2022). In such conditions, on one hand, the duration of non-rainy pe-
riods may lengthen, leading to drier surface conditions during rainless 
periods (You et al., 2022). On the other hand, when it rains, the intensity 
of rainfall may also increase (You et al., 2022). Besides, DFAA events are 

more likely to increase both globally and regionally (Gao et al., 2022; 
Qiao et al., 2022; Swain et al., 2018; Zhang et al., 2021). Due to the rapid 
fluctuations in precipitation, vegetation may experience both water 
shortages and excess water in the short-term during DFAA events. This 
can potentially lead to ecosystem degradation and crop yield losses 
(Adnan et al., 2021; Huang et al., 2019; Shi et al., 2022; Zhu and Yang, 
2020). This study provides predictions of future DFAA events under 
different emission scenarios based on a long-term (1961–2099) monthly 
corrected precipitation dataset with a 1◦ resolution. Our results indicate 
that the frequency of DF events will increase in all emission scenarios in 
the future, while the frequency of FD events shows no significant 
change. Therefore, we need to pay more attention to the mitigation 
measures for DF events. Due to different datasets or indicators used, 
there may be differences in the DFAA events identified by different 
studies. This study used a bias corrected precipitation dataset obtained 
by integrating 27 GCMs to identify DFAA events, theoretically reducing 
uncertainty. 

6. Conclusions 

In this study, a long-term (1961–2099) 1◦ resolution monthly pre-
cipitation dataset was produced, which was highly correlated with the 
CN05.1 data; the correlation coefficient increased from 0.526-0.708 to 
0.856 after correction; the RMSE (standardized) decreased from 0.817- 
1.426 to 0.518 after correction. The NRMSE and MAE between the 
corrected precipitation and the CN05.1 were 1.176, and 0.621, respec-
tively. Although the accuracy of the corrected extreme precipitation was 
lower than the accuracy of the corrected monthly precipitation, the 

Fig. 6. The box plot of the frequency of FD events.  

Fig. 7. The historical distribution map of the yearly frequency of DF and FD events.  
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accuracy of the corrected extreme precipitation was better than that of 
the ERA5 extreme precipitation. In addition, the overall accuracy of the 
corrected precipitation in the southeastern coastal region of China was 
lower than other region, which may be due to the large amount of 

precipitation in this region; the simulation effect of the GCMs was worse 
for high precipitation than for low precipitation. This study also utilized 
the produced precipitation product to project the future occurrence 
frequencies of DFAA events. The results indicate that the frequency of 

Fig. 8. Distribution of DF event yearly frequency differences between different future scenarios and historical scenarios.  

Fig. 9. Distribution of FD event yearly frequency differences between different future scenarios and historical scenarios.  
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DF events is consistently increasing across all scenarios, with the SSP585 
scenario exhibiting higher DF event frequencies than the other two 
scenarios. Unlike DF events, the increase in FD event frequency in the 
future is not significant. The Qinghai-Tibet Plateau region, northeastern 
region, and certain areas in the northwest exhibit higher future occur-
rence frequencies of DF events. However, the spatial distribution of 
future FD event frequencies does not display noticeable clustering. This 
study expanded the method of bias correction of meteorological data 
and provided a reference for other climate parameters and precipitation 
bias correction in other regions. The precipitation products generated in 
this study could provide data support for future precipitation-related 
studies as well as be used as input data for dynamic downscaling 
models to improve the reliability of regional climate simulations in the 
future. 
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