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A B S T R A C T   

In the context of global climate change and increasing human activities, grassland drought has become 
increasingly severe and complex. The monitoring of grassland drought is crucial for reducing drought-related 
losses and ensuring national ecological security. This study used the coupled PROSPECT and SAIL radiative 
transfer models (PROSAIL) to simulate canopy reflectance, considering factors such as grassland growth stages 
and varying drought conditions. Our objective was to reveal the spectral response characteristics of grasslands to 
varying drought conditions and identify sensitive spectral bands suitable for drought monitoring during different 
grassland growth stages. We aligned commonly available satellite bands from moderate resolution imaging 
spectroradiometer (MODIS), Sentinel 2, Landsat 8, WorldView 2, and Gaofen 2 (GF 2) with these sensitive bands 
to assess the capabilities of existing satellite data for drought monitoring. Furthermore, this research evaluated 
the suitability of 16 commonly used remote sensing vegetation indices for grassland drought monitoring, 
including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Ratio Vegetation 
Index (RVI), Difference Vegetation Index (DVI), Modified Soil Adjusted Vegetation Index (MSAVI), Atmo
spherically Resistant Vegetation Index (ARVI), Modified Normalized Difference Water Index (MNDWI), Global 
Vegetation Moisture Index (GVMI), Land Surface Water Index (LSWI), Visible and Shortwave Infrared Drought 
Index (VSDI), Water index(WI), Moisture Stress Index(MSI), Normalized Difference Water Index(NDWI), 
Normalized Difference Infrared Index (NDII), Photochemical Reflectance Index (PRI), and Optimized Soil- 
Adjusted Vegetation Index (OSAVI). The simulation and analysis results revealed: 1) Grassland in different 
growth stages exhibit similar sensitivities to certain spectral bands, namely those within the ranges of 540 
nm–720 nm, 1250 nm–1690 nm, 1805 nm–2190 nm, and 2264 nm–2500 nm, which are more sensitive to various 
drought conditions. 2) Suitable vegetation indices for both growing and stable stages include NDII, MSI, PRI, 
LSWI, and GVMI, with silhouette coefficients exceeding 0.6 for the growing stage and 0.7 for the stable stage. The 
least suitable vegetation index is DVI, with an average silhouette coefficient of 0.15 over the entire growth stage. 
3) From the spectral band perspective, among the five assessed satellites, MODIS Band 7 exhibits the highest 
sensitivity to water content across all satellite bands. MODIS's band configuration is most suitable for monitoring 
grassland drought during different growth stages, while WorldView 2's band configuration is the least suitable.   

1. Introduction 

Grasslands, as one of the most widely distributed vegetation types in 
the world, represent a significant ecosystem type with crucial ecological 
importance in terms of windbreaks, sand fixation, regional ecological 
balance maintenance, and climate regulation (Li et al., 2021a). 
Compared to other ecosystems, grasslands are more susceptible to 
drought (Ding et al., 2020; Henchiri et al., 2020; Peng et al., 2012). 

Drought in grasslands not only directly impacts livestock and agriculture 
but also triggers a range of ecological issues, such as grassland degra
dation and dust storms (Liu et al., 2022). The increasing frequency and 
severity of droughts due to global warming further exacerbate this sit
uation (Mpelasoka et al., 2008). Additionally, the impacts of drought on 
grassland ecosystems become more complex when coupled with human 
activities (Zhang et al., 2018). Therefore, improving the monitoring and 
early warning systems for grassland drought is crucial for effectively 
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mitigating its effects and minimizing associated losses. This is of para
mount importance for achieving national ecological security. 

Remote sensing data, characterized by multitemporal, multispectral, 
and multiangle attributes, facilitates the acquisition of extensive, long- 
term surface information series such as soil, vegetation, and tempera
ture (Duarte et al., 2014; Li et al., 2021b; Li et al., 2023). This data 
enables both qualitative and quantitative analyses of soil water deficits 
and vegetation water stress from diverse perspectives, proving invalu
able in drought monitoring applications. According to previous statis
tics, the moderate resolution imaging spectroradiometer (MODIS), 
Landsat, Sentinel, Gaofen (GF), and WorldView are currently the five 
most influential satellites in various remote sensing related research 
(Zhao et al., 2022). Among freely available datasets, Landsat and MODIS 
stand out for their extensive temporal coverage, making them particu
larly suitable for long-term drought monitoring (Gessner et al., 2023; 
Sall et al., 2021), while Sentinel data, characterized by its higher tem
poral, spatial, and spectral resolutions, has been also extensively utilized 
in drought monitoring across various ecosystems such as forests and 
agricultural fields (Varghese et al., 2021; West et al., 2019). For 
example, Zhao et al. (2023) assessed the capability of MODIS-derived 
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 
Index (EVI), and Gross Primary Productivity (GPP) products respond to 
different levels of drought severity in Inner Mongolia grasslands from 
2002 to 2020. Yu and Guo (2023) proposed a revised vegetation health 
index (VHI) to monitor drought severity of mixed grasslands in the 
Grasslands National Park of Canada using historical Landsat imagery. 
Kowalski et al. (2022) quantified drought effects in a Central European 
grassland region from 2017 to 2020 based on the Sentinel-2 time series 
data. 

Drought monitoring based on remote sensing often relies on various 
remote sensing indices (Alahacoon and Edirisinghe, 2022; Liu et al., 
2020). For instance, indices reflecting water stress in vegetation leaves 
or canopy temperature, such as the Moisture Stress Index (MSI) (Hunt Jr 
et al., 1987), the Water Index (WI) (Peñuelas et al., 1997), the 
Normalized Difference Water Index (NDWI) (Gao, 1996), the Global 
Vegetation Moisture Index (GVMI) (Ceccato et al., 2002), the Normal
ized Difference Vegetation Index (NDVI) (Tucker, 1979), the Vegetation 
Condition Index (VCI) (Kogan, 1990), the Ratio Vegetation Index (RVI) 
(Zhou et al., 2021), and the Atmospherically Resistant Vegetation Index 
(ARVI) (Perry and Roberts, 2008) are commonly employed. Therefore, 
the development of new remote sensing indices (Chang et al., 2021) and 
the performance evaluation of existing remote sensing indices in 
drought monitoring (Behifar et al., 2023; Liu et al., 2020; Wei et al., 
2021) have become two key directions in remote sensing index research 
on drought monitoring. The essence of developing remote sensing 
indices is to identify sensitive spectral bands affected by drought and 
then derive remote sensing indices through combinations of these sen
sitive bands (Zhang et al., 2013). Evaluating the capabilities of existing 
remote sensing indices in drought monitoring often relies on remote 
sensing datasets. Various remote sensing indices are calculated as 
extensively as possible, followed by the analysis of the correlation be
tween these indices and other existing indicators of drought, such as 
meteorological drought indices and soil moisture (Chang et al., 2017; 
Ghasempour et al., 2024). Hyperspectral data, characterized by their 
high spectral resolution, strong spectral continuity, and rich spectral 
information, is the preferred data type for both research directions. 

Hyperspectral dataset acquisition under drought stress conditions 
can be broadly categorized into two methodologies: field control ex
periments and model simulations. Field control experiments involved 
the establishment of reference and drought stress groups within exper
imental fields, with varying vegetation drought stress conditions ach
ieved through controlled irrigation and rain-shielding equipment. 
Hyperspectral data, along with corresponding physiological and 
biochemical indicators (such as leaf area index and chlorophyll content) 
and environmental indicators (like temperature and soil moisture), are 
then measured under these diverse drought stress conditions. For 

instance, Zhang and Zhou (2015) measured canopy water content 
(CWC) of maize in the north plain China with varying irrigation levels to 
assess the capability of different vegetation indices in estimating CWC. 
Li et al. (2022) exposed wheat to drought stress at different growth 
stages in the greenhouse in Beijing, China, analyzing the spectral curve 
characteristics of the wheat canopy under different drought stress con
ditions. However, field experiments are often hindered by their lengthy 
durations, significant financial investment, substantial labor costs, and 
limited data collection capacity, making it difficult to gather a large 
volume of empirical data across different growth stages and drought 
stress conditions. Model simulation, on the other hand, simulates 
vegetation spectral curves under drought stress conditions based on 
radiative transfer models. The PROSPECT leaf optical properties model 
and SAIL canopy bidirectional reflectance model are widely used in 
related studies. By coupling the PROSPECT and SAIL models, the PRO
SAIL model can quantitatively describe the influence of characteristics 
such as pigment content, moisture, leaf area index (LAI), and other pa
rameters on reflectance spectra. This allows for forward simulation of 
canopy spectra and backward inversion of physiological parameters 
(English et al., 2020). Using the PROSAIL model allows for the analysis 
of spectral bands that are more sensitive to changes in different physi
ological parameters. This is advantageous for investigating the response 
characteristics of vegetation physiological parameters under varying 
moisture conditions, as well as for conducting a mechanistic analysis of 
sensitive spectral bands and monitoring indices (Berger et al., 2018). 
Zhang et al. (2017) conducted irrigation control experiments on winter 
wheat. Through a global sensitivity analysis using the PROSAIL model, 
they found that leaf reflectance is more sensitive to changes in leaf water 
content compared to canopy reflectance. Based on the PROSAIL model 
and measured spectral data, their experiment revealed that using NDWI 
is effective in estimating both leaf and CWC. Xing et al. (2021) utilized 
the PROSAIL model to simulate canopy spectra at different growth 
stages of winter wheat, establishing models that correlate various 
spectral indices with LAI and chlorophyll content (CCD). Their findings 
suggest indices derived from spectral and physiological characteristics 
could better estimate LAI and CCD during different growth stages of 
winter wheat. Compared to field experiments, simulation methods based 
on the PROSAIL model are cost-effective and user-friendly, and can 
provide a large number of simulated spectral data under various con
ditions, facilitating subsequent quantitative analyses. 

Current research efforts, whether aimed at the development of novel 
drought indices or the evaluation of existing ones, have predominantly 
focused on drought monitoring of crops, such as wheat and maize (Li 
et al., 2021c; Li et al., 2022; Lijuan et al., 2017). Research on drought 
monitoring in grasslands is relatively limited, mostly using meteoro
logical drought indices, soil moisture indices, and composite drought 
indices (Behifar et al., 2023). Current research has demonstrated that 
vegetation indices effectively characterize the health status of vegeta
tion under stress conditions by reflecting changes in vegetation water 
content and greenness (Ashraf et al., 2022; Cârlan et al., 2020; Jin and 
Wang, 2016). However, there is limited comprehensive assessments 
regarding the capacity of vegetation indices to monitor grassland 
drought (Almeida-Ñauñay et al., 2022; Chang et al., 2021; Li et al., 
2021d; Liu et al., 2021). Additionally, although the PROSAIL model has 
been proven to be suitable for simulating grassland spectra (Atzberger 
et al., 2013; Féret et al., 2017), there are few studies on simulating 
grassland spectra under drought stress conditions. Therefore, exploring 
the spectral response characteristics of grasslands at different growth 
stages to varying drought conditions and evaluating the applicability 
and capability of existing vegetation indices in grassland drought 
monitoring is significant for enhancing the accuracy and precision of 
grassland remote sensing drought monitoring. 

Taking all of the above into consideration, this study uses the PRO
SAIL model in conjunction with empirically measured physiological 
parameters of grassland and soil reflectance data under diverse humidity 
levels to simulate spectral curves of grassland at different soil moisture 
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conditions and growth stages. On this basis, the study aims to answer 
three key questions: 1) What spectral band ranges exhibit the highest 
sensitivity of grassland canopy reflectance to drought? 2) From a spec
tral perspective, which of the five mainstream satellites (GF-2, Landsat- 
8, Sentinel-2, WorldView-2, and MODIS) is the most suitable for drought 
monitoring? 3) How do the 16 commonly used vegetation indices 
perform in drought monitoring? The innovation of this study mainly lies 
in comprehensively evaluating the ability of 16 commonly used remote 
sensing indicators and 5 commonly used satellites to monitor grassland 
drought with consideration of grass growth stage and drought intensity 
for the first time. The answers to these questions will serve as a reference 
for the selection of data and indicators in drought monitoring and pro
vide theoretical support for the design of novel sensors and remote 
sensing drought indices. 

2. Methods 

2.1. Simulating grassland spectra under various drought conditions using 
PROSAIL 

The PROSAIL model is developed by coupling the PROSPECT model 
with the SAIL model (Jacquemoud and Baret, 1990). PROSPECT model 
is first used to simulate leaf reflectance (ρl) and transmittance (τl) in the 
range of 400 to 2500 nm, and then ρl and τl derived from the PROSPECT 
model combined with other parameters are input to the SAIL model to 
simulate canopy bidirectional reflectance (Jupp and Strahler, 1991). In 
this study, PROSPECT-D model (Eq. (1)) is employed, in which the pa
rameters include leaf structural parameter (N), leaf chlorophyll content 
(Cab), leaf equivalent water thickness (Cw), dry matter content (Cm), 
brown pigment content (Cbrown) and carotenoid (CCX) (Féret et al., 2017). 
Except for ρl and τl derived from the PROSPECT model, the SAIL model 
(Eq. (2)) requires canopy structural parameters, such as LAI and leaf 
inclination distribution (LIDF), viewing geometry parameters, such as 
sun zenith angle (tts), viewing zenith angle (tto), relative azimuth angle 
between sun and sensor (psi), hotspot effect (hot), and soil reflectance 
(ρs) (Verhoef, 1984). 

(ρl, τl) = PROSPECT(N,Cab,Cw,CCX,Cm,Cbrown) (1)  

ρ = SAIL(LAI, LIDF, ρl, τl, ρs, hot, tts, tto, psi) (2) 

In order to observe the response of grassland reflectance to drought 
at different production stages, referring to the physiological parameters 
of grasslands under different growth stages and drought conditions 
measured by Bayat et al. (2016), this study defined two different 
grassland growth stages (growing stage and stable stage), and set spe
cific PROSAIL model parameters for each stage. The growing stage was 
characterized by rapid changes in LAI, which increases from 2.3 to 3 
under no water stress conditions; during the stable stage, LAI remained 
basically unchanged and remained around 3 under no water stress 
conditions. For each growth stage, we further defined three scenarios: no 
drought, mild drought, and severe drought. Mild drought was defined as 
the stage from cessation of watering to visible signs of stress on the 
grassland, characterized by curling and shrinking of leaves, dull luster, 
etc., with a decrease in Cab and Cw. Severe drought was defined as the 
stage in which water stress continues to worsen after the occurrence of 
mild drought, characterized by yellowing, wilting, and falling of leaves, 
with a continuous decrease in all parameters except for Cbrown. In addi
tion, considering the different soil moisture corresponding to different 
drought conditions, referring to the definition of agricultural drought 
(West et al., 2019) and the soil moisture data measured by Bayat et al. 
(2016) under different drought conditions, different soil reflectance 
curves under varying soil moisture conditions were input PROSAIL 
model to simulate canopy spectral curves of grassland under different 
drought conditions. Specifically, in the study of Bayat et al. (2016), the 
soil moisture of saturated soil was approximately between 0.3m3 • m− 3 

and 0.4 m3 • m− 3. Therefore, we set the soil reflectance when the soil 

moisture decreases by about 50% (0.17m3 • m− 3) as the soil reflectance 
under mild drought conditions, and the reflectance of dry soil (soil 
moisture content of 0.02 m3 • m− 3) as the soil reflectance under severe 
drought conditions. Table 1 summarizes the distribution and ranges of 
parameters used in the PROSAIL model in this study. 

2.2. Analyzing bands sensitive to changes in grassland moisture content 

Analysis of variance (ANOVA) is a statistical method employed to 
ascertain whether a specific variable significantly influences the 
observed variable. This is achieved by examining the variance of the 
observed variable while simultaneously controlling for other variables. 
In this study, one-way ANOVA is used to determine if there are signifi
cant differences in the simulation results for the same wavelength under 
different drought conditions. The Eqs. (3)–(5) for calculating it is as 
follows:  

(1) Calculate the between-group variance SA: 

SA =
∑s

i=1

[
(xi − x)2ni

]
(3)    

(2) Calculate the within-group variance SE: 

SE =
∑s

i=1

∑ni

j=1

(
xij − xi

)2 (4)    

(3) Calculate the F ratio 

F =
SA/(s − 1)
SE/(n − s)

(5) 

In the equations provided:  

- xi is the sample mean for the ith treatment.  
- xij is the jth observation f on the ith treatment.  
- x is the grand mean of the observations. 

The calculated F ratios are compared to the expected values from the 
F distribution. If the computed F ratio significantly exceeds the expected 
value (assuming a sufficiently small p value), the null hypothesis will be 
rejected, indicating that there are significant differences among the 
groups. 

In this study, a variance analysis is conducted to examine the 
reflectance values at each wavelength under different drought condi
tions. The derived F ratios are used to assess the sensitivity of each 
wavelength between 400 nm and 2500 nm to changes in moisture 
content. A higher F ratio indicates a greater difference in reflectance 
values under different drought conditions, indicating that the wave
length is more sensitive to changes in moisture content and is suitable 
for monitoring grassland drought. The study computes two sets of F 
ratios: one set involves the one-way ANOVA of data under normal and 
severe drought conditions, and the other set involves a one-way ANOVA 
of data under no drought, mild drought, and severe drought conditions, 
treating them as three separate groups. To better extract bands sensitive 
to moisture changes based on the F ratio curve, the study calculates the 
first derivative of the F ratio curve. Points where the first derivative is 
zero represent inflection points in the curve's trend. By identifying these 
points (fʹ(x) = 0), bands with higher F ratios can effectively be extrac
ted, indicating the bands sensitive to moisture changes. 

2.3. Assessing the capability of various vegetation indices for monitoring 
grassland drought 

This study selected 16 commonly used vegetation indices to assess 
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their suitability for monitoring grassland drought (as shown in Table 2). 
In the equations, the variables BLUE, GREEN, RED, NIR, and SWIR 
denote the respective spectral bands of satellite sensors, encompassing 
the blue, green, red, near-infrared, and shortwave infrared bands. When 
calculating vegetation indices using satellite bands, the initial step in
volves the weighted summation of simulated reflectance values at 
different wavelengths within the designated sensor-specific band ranges, 
in accordance with the sensor's spectral response function. Subse
quently, this summation is transformed into the broadband reflectance 
of the sensor, followed by the computation of commonly used vegetation 
indices. 

In this study, silhouette coefficient method (Bagirov et al., 2023) and 
the separation index (Kaufman and Remer, 1994) were used to evaluate 
the ability of vegetation indices to distinguish different drought in
tensities. The silhouette coefficient method comprehensively considers 
the degree of intra class clustering (i.e. the degree of clustering of 
vegetation index values under the same drought condition) and the 
degree of inter class separation (i.e. the degree of separation of vege
tation index values under different drought conditions) to reflect the 
clustering effect. The silhouette coefficient S is defined as shown in Eq. 
(6). 

S(i) =
drest(i) − ds(i)

max[drest(i) , ds(i) ]
(6)  

where S(i) represents the silhouette coefficient, with values ranging 
from − 1 to 1. A higher S(i) indicates a more reasonable classification of 
samples and better clustering under the chosen classification method. 

Conversely, a lower S(i) closer to − 1 suggests a less reasonable classi
fication and poorer sample clustering, indicating reduced discriminative 
capacity in delineating the distribution ranges of vegetation indices 
under different drought conditions. 

The separation index (SI) is used to evaluate the separation ability of 
two classes, which is defined as shown in Eq. (7). 

SI = |u1 − u2|

σ1 + σ2
(7)  

where u and σ are the mean value and standard deviation value of same 
vegetation index under different drought conditions. Higher SI values 
show better separation between two classes. 

2.4. Assessment of the potential of different satellite data for monitoring 
grassland drought 

This study examines the potential of satellite data for monitoring 
grassland drought from two perspectives. First, by calculating the mean 
values based on the F ratios within the wavelength ranges specified by 
satellite sensors, the canopy spectra of different bands from different 
satellite sensors in response to moisture conditions during different 
growth stages of grassland are compared. This analysis aims to identify 
the satellites and their respective spectral bands that exhibit the highest 
sensitivity to drought stress. Second, this study evaluates the capability 
of satellites for grassland drought monitoring by assessing the silhouette 
coefficients and SI of 10 vegetation indices computed from simulated 
satellite band reflectance data (as shown in Table 2). 

Table 1 
Specific ranges for input parameters used for PROSAIL model.   

Parameter Description Unit Growth Stage Range Distribution 

Leaf 

N Leaf structural parameter  Undifferen-tiated 1.5 Fixed 

Cab Leaf chlorophyll content ug/cm2 

Growing stage 
No drought: 21.35–22.49 

Gaussian 

Mild drought: 18.44–21.12 
Severe drought: 10.53–18.44 

Stable stage 
No drought: 21.52–22.89 
Mild drought: 7.02–10.53 
Severe drought:3.60–7.02 

Ccx Carotenoid ug/cm2 Undifferenti-ated 5 Fixed 

Cbrown Brown pigment content  

Growing stage 
No drought: 0.023–0.037 

Gaussian 

Mild drought: 0.028–0.032 
Severe drought:0.032–0.101 

Stable stage 
No drought: 0.012–0.024 

Mild drought: 0.101–0.160 
Severe drought:0.160–0.297 

Cw Leaf equivalent water thickness cm 

Growing stage 
No drought: 0.0059–0.0062 

Gaussian 

Mild drought: 0.0036–0.0057 
Severe drought:0.0019–0.0036 

Stable stage 
No drought: 0.0062–0.0073 

Mild drought: 0.0011–0.0019 
Severe drought:0.0010–0.0011 

Cm Dry matter content g/cm2 

Growing stage 
No drought: 0.00161–0.00221 

Gaussian 

Mild drought: 0.00166–0.00170 
Severe drought: 0.00170–0.00174 

Stable stage 
No drought: 0.00221–0.00251 

Mild drought: 0.00162–0.00177 
Severe drought:0.00151–0.00162 

LAI Leaf area index  

Growing stage 
No drought: 2.31–3.02 

Gaussian 

Mild drought: 2.34–2.53 
Severe drought:2.53–2.66 

Stable stage 
No drought: 2.96–3.10 

Mild drought: 2.31–2.57 
Severe drought:1.61–2.31 

LIDFa Leaf angle distribution 
◦

Undifferentia-ted 
− 0.35 Fixed 

LIDFb ◦ − 0.15 Fixed 
hspot Hot spot size parameter  0.05 Fixed 

Soil psoil Soil brightness factor  Undifferentia-ted 1 Uniform 

Other 

tts Sun zenith angle ◦

Undifferentia-ted 

0–60 Uniform 
tto View zenith angle ◦ 0–60 Uniform 
psi Relative azimuth angle ◦ 0–360 Fixed 
skyl Fraction of diffuse  Calculated from model   
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3. Results 

3.1. Simulation spectra of grassland 

In this study, the PROSAIL model was used to simulate the spectral 
reflectance of grassland canopies during different growth stages and 
varying drought conditions, resulting in a total of 8640 simulated 
spectral curves. The average reflectance under different conditions is 

shown in Fig. 1. Overall, the variation characteristics of canopy reflec
tance in the two growth stages under different drought conditions are 
similar. Except for the wavelength range of 720 nm to 1200 nm during 
the stable growth stage, in which the reflectance decreases as drought 
severity increases, the canopy reflectance increases with increasing 
drought severity in both growing stage and stable growth stage. 

Table 2 
The vegetation indices considered for evaluation.  

Group Index Formulas Satellites 

Calculated from specific wavelengths 

Normalized Difference Infrared Index (NDII) 
(Jackson et al., 2004) 

R850 − R1650

R850 + R1650 

None 

Moisture Stress Index (MSI) 
(Hunt Jr et al., 1987) 

R1600

R820 
Normalized Difference Water 

Index (NDWI) 
(Gao, 1996) 

R860 − R1240

R860 + R1240 

Photochemical Reflectance 
Index (PRI) 

(Gamon et al., 1992) 

R531 − R570

R531 + R570 

Water index (WI) 
(Peñuelas et al., 1997) 

R900

R970 
Optimized Soil-Adjusted Vegetation Index (OSAVI) 

(Rondeaux et al., 1996) (1 + 0.16)×
(R800 − R670)

(R800 + R670 + 0.16)

Calculated from NIR and visual bands 

Atmospherically Resistant Vegetation Index (ARVI) 
(Kaufman and Tanre, 1992) 

NIR − 2RED + BLUE
NIR + 2RED + BLUE 

MODIS; 
Sentinel 2; 
Landsat 8; 

Worldview 2; 
GF 2 

Difference Vegetation Index (DVI) 
(Demetriades-Shah et al., 1990) NIR − RED 

Enhanced Vegetation Index (EVI) 
(Huete et al., 2002) 

NIR − RED
NIR + 6RED − 7BLUE + 1 

Modified Soil Adjusted Vegetation Index (MSAVI) 
(Qi et al., 1994) 0.5

(
2NIR+ 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(2NIR + 1) − 8(NIR − RED)2

√

Normalized Difference Vegetation Index (NDVI) 
(Tucker, 1979) 

NIR − RED
NIR + RED 

Ratio Vegetation Index (RVI) 
(Jordan, 1969) 

NIR
RED 

Calculated from SWIR and other bands 

Global Vegetation Moisture 
Index (GVMI) 

(Ceccato et al., 2002) 

(NIR + 0.1) − (SWIR + 0.02)
(NIR + 0.1) + (SWIR + 0.02)

MODIS; 
Sentinel 2; 
Landsat 8 

Land Surface Water Index (LSWI) 
(Xiang et al., 2020) 

NIR − SWIR
NIR + SWIR 

Modified Normalized Difference Water Index (MNDWI) 
(Szabo et al., 2016) 

GREEN − SWIR
GREEN + SWIR 

Visible and Shortwave Infrared Drought Index (VSDI) 
(Zhang et al., 2013) 1 − [(SWIR − BLUE) + (RED − BLUE) ]

Fig. 1. Simulation of grassland canopy reflectance during the growing stage (a) and the stable stage (b).  
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3.2. The spectral bands sensitive to changes in grassland moisture content 

Four distinct bands sensitive to changes in moisture content were 
extracted during the growing and stable stages of grassland, as shown in 
Fig. 2. Fig. 2a displays the results of two sets of F ratios obtained during 
the growing stage, while Fig. 2b presents the first-order derivative of the 
F ratios during this stage. Similarly, Fig. 2c shows the results of two sets 
of F ratios obtained during the stable stage, and Fig. 2d presents the first- 
order derivative of the F ratios during the stable stage. It is evident that 
bands with relatively high F ratios primarily occur in the visible and 
shortwave infrared spectral ranges. The bands sensitive to moisture 
content in the visible spectrum are between approximately 540 nm and 
720 nm. Compared to the shortwave infrared range, the F ratios in this 
interval are relatively lower but still exhibit a pronounced contrast with 
the surrounding wavelengths. In the shortwave infrared region, three 
prominent bands with high F ratios were observed, spanning from 1250 
nm to 1690 nm, 1805 nm to 2190 nm, and 2264 nm to 2500 nm. These 
findings indicate that grassland canopy reflectance is most sensitive to 
changes in moisture conditions within these bands, with peak F ratios 
occurring at approximately 1450 nm and 1930 nm. Previous studies 
have indicated that these positions in grassland reflectance curves 
correspond to two major absorption valleys, primarily influenced by leaf 
cell sap, cell membranes, and water content in absorption bands (Qin 
et al., 2021; Ranjan et al., 2017). These results align with our funda
mental understanding of vegetation reflectance characteristics. 

Analyzing the F ratio curves in the same growth stage reveals that the 
moisture-sensitive bands do not exhibit significant differences among 
different drought conditions. Although the F ratios obtained from the 

ANOVA for the three conditions of no drought, drought, and severe 
drought are smaller than those obtained from the ANOVA for the two 
conditions of no and severe drought, all four F ratio curves show sta
tistically significant differences in the simulated results of the four 
sensitive bands mentioned above across various drought conditions. 

Comparing the sensitivity of bands between the two growth stages, 
no significant differences in moisture-sensitive bands are observed. 
However, during the stable stage, the F ratios in the visible spectrum are 
higher than those in the growing stage, with a small region of signifi
cantly higher F ratios observed between 750 nm and 1000 nm. 
Conversely, during the growing stage, F ratios are higher at approxi
mately 970 nm and 1200 nm, which coincide with the leaf water ab
sorption bands. These differences indicate the varying responses of 
grassland canopy moisture content under different drought conditions 
during the two growth stages. 

3.3. Drought monitoring capability for different vegetation indices 

In this study, S and SI were used to assess the drought monitoring 
capability of different vegetation indices. The assessment results of S and 
SI are consistent. In order to reduce space and information redundancy, 
we only present the evaluation results based on silhouette coefficient in 
this section. The evaluation results based on separation index can be 
found in Appendix. 

A higher silhouette coefficient indicates a greater capacity to 
differentiate the distribution intervals of the same vegetation index 
under different drought conditions. For instance, when computing fixed- 
wavelength vegetation indices based on simulated spectral curves 

Fig. 2. Curve of F ratios for different wavelengths. (a) Curve of F ratios during the growing stage; (b) first derivative of F ratios during the growing stage; (c) Curve of 
F ratios during the stable stage; (d) first derivative of F ratios during the stable stage. (Note: the shaded area represents the sensitive band range). 

X. Zhu et al.                                                                                                                                                                                                                                      



Ecological Informatics 82 (2024) 102717

7

during periods of stability (as shown in Fig. 3), it can be observed that 
the MSI (S = 0.797) and PRI (S = 0.793) exhibit significant differenti
ation in vegetation index values under various drought conditions. This 
suggests that these indices can effectively distinguish the level of 
drought in the grassland based on their index values. In contrast, the 
NDWI (S = 0.653) and WI (S = 0.671) show a higher degree of overlap in 
the distribution range of vegetation indices under different drought 
conditions. Consequently, when the computed results fall within this 
overlapping region, it becomes challenging to accurately assess the level 
of drought in the grassland. This evaluation result is consistent with 
previous studies on the relationship between vegetation indices and 
vegetation water content(Colombo et al., 2008; Wang et al., 2015). 

The silhouette coefficient results for the 16 selected vegetation 
indices are presented in Fig. 4. Fig. 4a, c and e display the results for 
various vegetation indices during the growing stage revealing that the 
PRI exhibits the highest silhouette coefficient (S = 0.753), indicating it is 
the most suitable index for monitoring drought during this growth stage. 
Following PRI, GVMI, LSWI, NDII, and MSI all demonstrate silhouette 
coefficients greater than 0.6. Conversely, the remaining vegetation 
indices perform poorly, with DVI, EVI, MSAVI and OSAVI all exhibiting 
silhouette coefficients below 0, rendering them unsuitable for drought 
monitoring during the grassland growing period. 

Fig. 4b, d and f present the silhouette coefficient results for the 
various vegetation indices during the stable stage. Compared to during 
the growing period, all vegetation indices exhibit higher silhouette co
efficient values during the stable stage. This indicates that the differ
entiation of vegetation index values under different drought conditions 
is enhanced during the stable period. The vegetation indices with the 
highest silhouette coefficient values are LSWI and GVMI, both of which 
achieved silhouette coefficients of approximately 0.8 when calculated 
using data from different satellites. Subsequently, NDII, MSI, PRI and 
ARVI all achieved silhouette coefficients exceeding 0.7, while DVI per
formed the least effectively. 

In summary, vegetation indices that use shortwave infrared bands in 
their calculation formulas perform relatively well during both the 
growing and stable stages. Vegetation indices using near-infrared bands 

in their calculation formulas perform poorly during the growing stage 
but relatively well during the stable stage. Indices suitable for drought 
monitoring in both the growing and stable stages include NDII, MSI, PRI, 
LSWI, and GVMI, while DVI is not suitable for either stage. 

3.4. Drought monitoring potential of different satellite data sources 

The bar chart in Fig. 5 presents the mean F ratios, indicating that as 
grassland grows, the drought monitoring capabilities of five different 
satellites in various spectral bands significantly improve for monitoring 
drought stress. When examining the drought detection capabilities 
across different spectral bands, it is evident that in both growth stages, 
the highest mean F ratios are found within the red and shortwave 
infrared (SWIR) bands. This suggests that within these wavelength 
ranges, reflectance differences are more pronounced under different 
drought conditions, making them more suitable for drought monitoring. 
Conversely, the blue and near-infrared (NIR) bands exhibit the lowest F 
ratios, indicating lower capabilities for drought monitoring when using 
these bands individually. 

In the analysis of the capabilities of drought monitoring in different 
spectral bands for various satellites, during both growth stages, Sentinel 
2 and Landsat 8 consistently exhibit higher mean F ratios within the 
green spectral band compared to other satellites. In the red spectral band 
during the growing stage, MODIS shows higher mean F ratios compared 
to other satellites, while during the stable stage, Sentinel 2 and Landsat 8 
exhibit higher mean F ratios, indicating that MODIS has stronger 
drought monitoring capabilities in this band compared to other satel
lites. Within the NIR band, GF 2 and WorldView 2 consistently exhibit 
higher mean F ratios compared to other satellites during the stable stage. 
However, it is important to note that the sensors on these two satellites 
do not include a SWIR band. Comparing the drought monitoring capa
bilities among the remaining three satellites within the SWIR region, 
MODIS's third SWIR band (band 7) has the highest mean F ratios, indi
cating the strongest drought monitoring capability, while the first SWIR 
band (band 5) performs the poorest compared to the other SWIR bands. 
Sentinel 2 and Landsat 8 both demonstrate stable drought monitoring 

Fig. 3. Box plots of 6 vegetation indices calculated from specific wavelengths during the stable stage of grassland.  
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capabilities within the SWIR band. 
Based on the calculation of 10 vegetation indices using simulated 

satellite band reflectance data (as shown in Fig. 4), it can be observed 
that among the vegetation indices calculated using the NIR region, the 
data obtained from MODIS have the highest silhouette coefficient. 
During the stable stage, the results obtained from GF2 data perform 
better than those from other satellites, while the results obtained from 
WorldView 2 data are the least favorable among the five satellites. It is 
worth noting that WorldView 2 and GF 2 lack reflectance data in the 
SWIR region, so the evaluation only included data from MODIS, Sentinel 
2, and Landsat 8 in the SWIR band. 

The results indicate that within the SWIR region, the best-performing 
band is MODIS's band 7, followed by Sentinel 2's band 12 and Landsat 8's 
band 7. The poorest results are associated with MODIS's band 5. 
Therefore, considering the overall performance across all spectral bands 
and the range of available satellite data, MODIS data are found to be the 
most suitable for grassland drought monitoring, while WorldView2 data 
are the least suitable. 

4. Discussion 

We employed the PROSAIL model to simulate grassland spectra 

under varying growth stages and drought conditions. Influenced by 
parameters predominating in different spectral bands, the response of 
grassland canopy reflectance to drought varies across the visible, NIR, 
and SWIR regions. Through ANOVA analysis, we identified four bands 
sensitive to moisture across diverse growth stages, which are within the 
ranges of 540 nm–720 nm, 1250 nm–1690 nm, 1805 nm–2190 nm, and 
2264 nm–2500 nm. Notably, these sensitive bands in the visible spec
trum (540–720 nm) are correlated with pigment concentration (Jiang 
and Carrow, 2005). Chlorophyll absorption occurs in the red and blue 
spectral bands, affecting the two shoulders of the green band, whereas 
carotenoid absorption takes place in the blue band, influencing only one 
side of the green band (Hong et al., 2019). When moisture decreases, 
vegetation closes its stomata, leading to a reduction in CO2 assimilation, 
a decrease in chlorophyll concentration, and a gradual decline in 
photosynthetic activity (Fariaszewska et al., 2020). In the NIR region, 
typical healthy leaves do not exhibit strong absorption characteristics, 
and the magnitude of reflectance is controlled by structural disconti
nuities encountered in the leaf (Jiang and Carrow, 2005). Under drought 
stress, the reflectance in the NIR region initially increases and then de
creases. The increase in reflectance is attributed to the contraction of 
leaf mesophyll cells and the enlargement of air spaces within the leaf 
(Żelazny and Lukáš, 2020). Subsequently, as the leaf area decreases and 

Fig. 4. Silhouette coefficient results of three type vegetation indices during growing stage (a, c and e) and stable stage (b, d and f) (Note: vegetation indices in a and b 
were calculated from specific wavelengths; vegetation indices in c and d were calculated from NIR and visual bands; vegetation indices in e and f were calculated 
from SWIR and other bands). 
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intercellular scattering in the NIR region diminishes, reflectance de
creases with leaf aging. In addition, consistently with previous research, 
the moisture sensitive wavelengths detected during growing stage in this 
study are at wavelengths of 970 nm and 1200 nm, both of which are NIR 
bands sensitive to leaf tissue moisture content (Jiang and Carrow, 2007). 
For green vegetation, reflectance in the SWIR region is mainly controlled 
by vegetation water content (specifically, manifested as strong absorp
tion of water), as well as the internal structure and dry matter content of 
the leaves (Davidson et al., 2006; Tucker, 1978). Our results show that 
the peaks of the F ratios are at about 1450 nm and 1930 nm in the SWIR 
region, which are the two main water absorption bands related to the 
equivalent water thickness of vegetation. Many studies have used these 
two wavelengths to estimate the water status of vegetation (González- 
Fernández et al., 2015; Rallo et al., 2014). 

In this study, we assessed the grassland drought monitoring capa
bilities of various vegetation indices using S and SI from the perspective 
of vegetation water content and greenness. The results indicate that 
vegetation indices calculated based on the SWIR bands, with a particular 
emphasis on the contrast between the NIR and SWIR bands, out
performed other indices in both growth stages. Indices like DVI, EVI, and 
NDVI are computed based on the red and NIR bands, which are primarily 
affected by physiological parameters like chlorophyll content. However, 
changes in chlorophyll content due to drought are relatively slow 
compared to variations in vegetation water content (Bayat et al., 2016; 
Liu et al., 2004). In contrast, the reduction in water content directly 
leads to a decrease in reflectance. The range between 1300 nm and 2500 
nm is a strong water absorption band, making it highly sensitive to 
variations in vegetation water content (Carter, 1991; Davidson et al., 
2006; Faurtyot and Baret, 1997). Combining the NIR and SWIR regions 

to calculate drought index can help mitigate the influence of leaf in
ternal structure and dry matter content, thereby enhancing the canopy 
moisture content information (Rallo et al., 2014). For instance, Bajgain 
et al. (2015) monitored drought in the high plateau grasslands of 
Oklahoma, USA, from 2000 to 2013. They found that the LSWI exhibited 
larger variations in drought and wet years when compared to the NDVI 
and EVI. Sow et al. (2013) calculated multiple vegetation indices using 
MODIS data and analyzed their correlations with measured equivalent 
water thickness in grasslands. They found that the NDII, MSI, and GVMI 
exhibited higher correlations with the EWT than the NDWI. Further
more, considering the simulated leaf reflectance and atmospheric 
transmission characteristics, the shortwave infrared band in the range of 
1550–1750 nm has been identified as most suitable for observing 
vegetation canopy moisture status (Tucker, 1980). This finding is 
consistent with our assessment results, indicating that bands such as 
MODIS band 6 (SWIR2), Sentinel-2 band 11 (SWIR1), and Landsat 8 
band 6 (SWIR1), which are situated within the range of 1550–1750 nm, 
exhibit superior capabilities for growing stage drought monitoring 
compared to indices derived from other shortwave infrared bands. 
Therefore, vegetation indices calculated using the NIR and SWIR bands 
are better suited for grassland drought monitoring using multispectral 
satellite data. In addition, PRI calculated using hyperspectral data can 
capture variations in vegetation canopy moisture content under sunlight 
and shade, thereby demonstrating good performance in detecting early- 
stage vegetation water stress (Behmann et al., 2014). 

Compared to previous studies, this research comprehensively eval
uates the drought response of grasslands between 400 and 2500 nm as 
drought intensity increases. Additionally, it provides a more compre
hensive assessment of the ability of vegetation indices to monitor 

Fig. 5. Suitability of satellite bands for drought monitoring during different growth stages. Growing stage (a); Stable stage (b).  
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grassland drought by considering their sensitivity to various biochem
ical parameters. Previous studies often directly used satellite data for 
drought monitoring, with limited comparison of the drought monitoring 
capabilities of different satellite systems (Leisenheimer et al., 2024; 
Miller et al., 2022; Wang et al., 2023). This paper evaluates the suit
ability of commonly used satellites and satellite bands for grassland 
drought monitoring through extensive coverage of simulated reflectance 
curves and spectral response functions across various conditions. The 
results provide valuable guidance for researchers and practitioners 
when selecting data and monitoring indicators. Additionally, the study's 
findings can serve as a theoretical foundation for designing new sensors 
and remote sensing drought indices based on existing sensitive bands 
and drought indices. Furthermore, the analysis was conducted sepa
rately for different growth stages of grassland, considering potential 
variations in vegetation structure and spectral characteristics, thereby 
enhancing the applicability of the research results throughout the 
growth cycle. 

However, this study still has certain limitations. First, the simulated 
grassland spectra in this research have some constraints. Due to condi
tion limitations, it was not possible to simulate finer growth stages. In 
addition, the types of grassland vary in different regions due to envi
ronmental factors, and different grass species exhibit varying degrees of 
sensitivity to drought (Lin et al., 2021): C3 grasses respond to drought by 
closing their stomata to minimize water loss, while C4 grasses do not 
adjust stomatal conductance in the early stages of drought. However, 
both types of grasses suppress photosynthetic rates under drought con
ditions (Lemoine et al., 2018). Therefore, further refinement of the re
sults is needed with more diverse grassland types and growth stages to 
enhance the universality of the findings. When assessing the drought 
monitoring capabilities of satellites, the analysis in this study primarily 
focused on the spectral perspective, examining the match between 
sensitive bands and different vegetation index calculations. However, 
aspects such as satellite revisit frequency, spatial resolution, and prac
tical suitability for grassland drought monitoring were not thoroughly 
analyzed. Future research should integrate these considerations into the 
assessment after practical application. 

5. Conclusion 

This study used the PROSAIL model to simulate canopy spectral 
curves of grasslands across various growth stages and drought condi
tions. It conducted a comparative analysis of the suitability of five 
commonly used satellites (MODIS, Sentinel 2, Landsat 8, WorldView 2, 
GF 2) and 16 frequently employed vegetation indices (NDVI, EVI, RVI, 
DVI, MSAVI, ARVI, MNDWI, GVMI, LSWI, VSDI, WI, MSI, NDWI, NDII, 

PRI, and OSAVI) for monitoring grassland drought. The analysis 
revealed that: (1) Within the spectral range of 400 nm to 2500 nm, both 
growth stages of grasslands exhibited sensitivity in four wavelength 
intervals related to moisture content, primarily concentrated in the red 
and shortwave infrared spectral bands. These intervals were identified 
as 540 nm–720 nm, 1250 nm–1690 nm, 1805 nm–2190 nm, and 2264 
nm–2500 nm. (2) Indices calculated using the infrared-shortwave 
infrared spectral range were found to be more suitable for grassland 
drought monitoring than those computed using the red and near- 
infrared spectral range. Among the 16 vegetation indices analyzed, 
PRI was the most suitable index for grassland drought monitoring during 
the growing stage, while LSWI and GVMI were most suitable during the 
stable stage. NDII, MSI, PRI, LSWI, and GVMI were suitable for both 
growth stages, while DVI was found to be unsuitable for monitoring 
grassland drought. (3) In terms of the sensitivity to changes in moisture 
content and the suitability of satellite-derived indices for drought 
monitoring, MODIS is the most suitable satellite. Within the satellite 
bands, MODIS band 7 was identified as the most sensitive to moisture 
changes. 
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Fig. A1. Separability degree between the index values of hyperspectral vegetation indices under no drought, mild drought and severe drought condition in both 
growth stages. (Note: SI1 represents the separation index between severe and mild drought condition; SI2 represents the separation index between mild and no 
drought condition; SI3 represents the separation index between severe and no drought condition.)  
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Fig. A2. Separability degree between the index values of vegetation indices that was calculated by NIR band and other visible bands under no drought, mild drought 
and severe drought condition in growing stage. The meaning of SI1, SI2, SI3 is the same as Fig. 1.  
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Fig. A3. Separability degree between the index values of vegetation indices that was calculated by NIR band and other visible bands under no drought, mild drought 
and severe drought condition in stable stage. The meaning of SI1, SI2, SI3 is the same as Fig. 1.  

X. Zhu et al.                                                                                                                                                                                                                                      



Ecological Informatics 82 (2024) 102717

14

Fig. A4. Separability degree between the index values of vegetation indices that was calculated by SWIR band and other bands under no drought, mild drought and 
severe drought condition in growing stage. The meaning of SI1, SI2, SI3 is the same as Fig. 1.  
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Fig. A5. Separability degree between the index values of vegetation indices that was calculated by SWIR band and other bands under no drought, mild drought and 
severe drought condition in stable stage. The meaning of SI1, SI2, SI3 is the same as Fig. 1. 
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Féret, J.-B., Gitelson, A., Noble, S., Jacquemoud, S., 2017. PROSPECT-D: towards 
modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 
193, 204–215. 

Gamon, J., Penuelas, J., Field, C., 1992. A narrow-waveband spectral index that tracks 
diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41 (1), 35–44. 

Gao, B.-C., 1996. NDWI—A normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58 (3), 257–266. 

Gessner, U., Reinermann, S., Asam, S., Kuenzer, C., 2023. Vegetation stress 
monitor—assessment of drought and temperature-related effects on vegetation in 
Germany analyzing MODIS time series over 23 years. Remote Sens. 15 (22), 5428. 

Ghasempour, R., Aalami, M.T., Saghebian, S.M., Kirca, V.O., 2024. Analysis of 
spatiotemporal variations of drought and soil salinity via integrated multiscale and 
remote sensing-based techniques (case study: Urmia Lake basin). Eco. Inform. 81, 
102560. 
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