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A B S T R A C T

The extreme weather caused by global warming is increasing day by day. It is of great significance to reasonably
assess the risk from extreme precipitation in the world to reduce the losses caused by disasters. Based on the daily
precipitation simulation data of 22 global climate models (GCMs) under three scenarios, shared socioeconomic
pathways (SSPs) 1–2.6, 2–4.5, and 5–8.5 in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this
study calculated three rainstorm indicators (annual rainstorm days, ARDs; annual rainstorm intensity, ARI; and
annual rainstorm maximum, ARM), combined them into an index to indicate rainstorm hazard, calculated the
socioeconomic exposure index using the projected future population and GDP data of SSP1, SSP2, and SSP3, and
finally combined the rainstorm hazard index and socioeconomic exposure index to calculate the socioeconomic
risk index of rainstorms. The socioeconomic risks from rainstorms in different periods (1995–2014, 2041–2060,
and 2081–2100) were compared at global and continental scales. The main factors that cause the differences in
the socioeconomic risks from rainstorms on different continents were explored. The uncertainties of the three
rainstorm indicators calculated from the 22 GCMs were analyzed. The main conclusions are as follows: (1) The
socioeconomic risk from rainstorms in most regions of the world will increase in the future, with the largest
increase in the SSP5-8.5 scenario and the smallest increase in the SSP1-2.6 scenario. Compared with the his-
torical period, the number of grids with increased risk in the mid-term (2041–2060) and long-term (2081–2100)
is 97.58% and 97.98% under the SSP5-8.5 scenario, respectively. Under the SSP1-2.6 scenario, the number of
grids with increased risk in the mid-term (2041–2060) and long-term (2081–2100) is 89.20% and 86.57%,
respectively. (2) Overall, in the two future periods, the least socioeconomic risk from rainstorms is in Europe, and
the largest socioeconomic risk from rainstorms is in Asia, especially the southern and southeastern parts of Asia,
which have both the highest mean socioeconomic risk and the largest growth of socioeconomic risk. (3) The
socioeconomic risk changes of rainstorms in North and South America, Africa, Asia, and Oceania are more closely
related to socioeconomic exposure changes, while the socioeconomic risk changes of rainstorms in Europe are
more closely related to the three rainstorm indicators. (4) Among the three scenarios, the SSP5-8.5 scenario has
the largest uncertainty, and among the three rainstorm indicators, ARDs have the largest uncertainty. The re-
gions with the greatest uncertainty are concentrated in central North America, Central America, central and
southern Africa, central South America, eastern Asia, and southern Oceania.

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) pointed out
in the Sixth Assessment Report (AR6) that global warming of 1.5℃ and

2℃ is expected to be exceeded during the 21st century. Global warming
will lead to the continuous strengthening of climate system changes
(Zhang et al., 2013), which increases and enlarges the frequency, in-
tensity, and coverage trends of impacts from extreme weather and
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climate events in the global scope (Liu et al., 2015; Tang, 2019; Ragettli
et al., 2019; AghaKouchak et al., 2020; Zhou et al., 2021), such as
extreme high temperature, rainstorms, drought and heatwaves. These
extreme events will have serious adverse impacts on the ecological
environment, social economy, and human life and health at global and
regional scales (Bowles et al., 2014; Liu and Chen, 2021; Zhu et al.,
2021), greatly threatening the sustainable development of society and
human well-being (Hauer et al., 2021; Tate et al., 2021; Tellman et al.,
2021). Therefore, it is of great significance for the formulation of
disaster prevention and mitigation policies in various regions of the
world to accurately assess the hazards of extreme events and predict
population and economic exposure to extreme events under climate
change scenarios.

The World Meteorological Organization divides precipitation into
seven grades (Tan et al., 2015; World Meteorological Organization,
2012), of which daily precipitation greater than 50 mm is called rain-
storm, which is one kind of extreme precipitation. In recent years,
research on extreme precipitation has been increasing, significant
progress has been made in the analysis of spatial and temporal distri-
bution characteristics, influencing factors, and trends of extreme pre-
cipitation (Abdila and Nugroho, 2021; Li et al., 2020; Noor et al., 2019;
Uranchimeg et al., 2020; Wang et al., 2017, 2019; Zhang et al., 2021).
Besides, extreme precipitation can induce meteorological and geological
disasters, such as floods, landslides, and debris flows (Hu et al., 2021;
Melillo et al., 2015), which hurt human production and life. Therefore,
in the context of intensified climate change, more and more researchers
paid attention to the potential impact of future extreme precipitation on
human society and the economy (Chen and Sun, 2020; Franzke, 2021;
Weaver et al., 2017).

Table 1 summarizes the main research in recent years on the po-
tential socioeconomic impacts of extreme precipitation in future sce-
narios, particularly the changes in population and gross domestic
product (GDP) exposure with changes in extreme precipitation. Some
studies have used historical observations and future simulation data of
precipitation, population, and GDP to analyze the changes in population
and GDP exposure to extreme precipitation on a global or regional scale
in a certain period in the future (Chen and Sun, 2021; Liu et al., 2020b;
Sun et al., 2021; Tang and Hu, 2022; Xu et al., 2022a). Other studies
have calculated and compared the change in the economy and popula-
tion exposure to extreme precipitation under 1.5 ℃, 2 ℃, and 3 ℃
increasing temperature scenarios based on global climate model (GCM)
data (Ayugi et al., 2022; Qin, 2022; Shi et al., 2021; Ta et al., 2022; Zhao
et al., 2021). In general, considering the uncertainty of model

simulations, existing studies have usually used more than 10 climate
datasets simulated by GCMs as input to reduce the uncertainty of single
model simulation results. The scenarios used in different studies were
different, among which SSP1-2.6, SSP2-4.5, and SSP5-8.5 were the most
commonly used climate scenarios. From the perspective of the study
area, most studies have focused on local areas. From the perspective of
exposure, most studies have only considered population, not GDP,
especially in the two global scale studies based on CMIP6 (Table 1).
However, the potential adverse impact of rainstorm disaster (risk) is the
consequence of the interaction among the hazard of rainstorms, the
exposure, and the vulnerability of rainstorm-bearing bodies. According
to the disaster risk assessment paradigm of the United Nations Office for
Disaster Risk Reduction (UNDRR), the determination of risk can be
expressed as the product of hazard, exposure, and vulnerability (United
Nations Office for Disaster Risk Reduction, 2019). So far, there is no
comprehensive assessment of socioeconomic risk assessment of rain-
storms under future climate scenarios. Accurate socioeconomic risk
assessment of rainstorms can help people understand the potential
adverse effects of rainstorms, identify the hot spots vulnerable to rain-
storms, clarify the factors affecting the socioeconomic risks of rain-
storms, scientifically plan urban land use, reasonably layout buildings
and infrastructure, strengthen the monitoring and management of areas
vulnerable to rainstorm, and develop scientific and effective disaster
prevention and mitigation measures.

In response to the issues raised in the aforementioned research, based
on the daily precipitation simulation data of 22 GCMs under three sce-
narios, SSP1-2.6, SSP2-4.5, and SSP5-8.5 in CMIP6, this study extracted
the annual rainstorm days (ARDs), annual rainstorm intensity (ARI) and
annual rainstorm maximum (ARM) and combined these three indicators
into an index to indicate rainstorm hazards; calculated the socioeco-
nomic exposure index using future population and GDP data from SSP1,
SSP2, and SSP3; and finally assessed and compared the socioeconomic
risks of rainstorms in the mid-term (2041–2060) and long-term
(2081–2100) on global and continental scales. Compared with previ-
ous work, the main novelty of this study lies in three aspects. First, it
gives a more comprehensive description of rainstorm risk, integrates
population and GDP into the socioeconomic exposure index (E), in-
tegrates ARDs, ARI, and ARM into the rainstorm hazard index (H), and
further integrates E and H into a risk index. Second, it used the future
daily precipitation data of 22 GCMs in CMIP6 to calculate the three
rainstorm indicators (ARDs, ARI, and ARM) to reduce the uncertainty
between models and quantitatively analyzed the uncertainty of the three
rainstorm indexes calculated by different models through coefficient of

Table 1
Summary of existing studies regarding the impact of extreme precipitation under future scenarios.

Authors, year Future scenarios Models Hazard indicators Warming
Levels

Exposure Study
area

Liu et al. (2020b) CMIP5 RCP2.6, RCP4.5,
RCP8.5

5 Days of extreme precipitation — Population and
GDP

Global

Shi et al. (2021) RCP4.5, RCP8.5 29 Days of extreme precipitation 1.5, 2℃ Population and
GDP

Global

Zhao et al. (2021) RCP2.6, RCP4.5,
RCP8.5

5 Days of extreme precipitation 1.5, 2, 3℃ Population Region

Sun et al. (2021) CMIP6 SSP1-2.6, SSP2-4.5, SSP5-8.5 10 Days of daily precipitation amount≥ 20mm — Population Region
Chen and Sun.
(2021)

SSP1-2.6, SSP2-4.5, SSP3-7.0,
SSP5-8.5

23, 25,
21, 25

Days of extreme precipitation — Population Global

Tang and Hu.
(2022)

SSP1-2.6, SSP2-4.5, SSP5-8.5 26 Days of extreme precipitation — Population Region

Ayugi et al. (2022) SSP2-4.5, SSP5-8.5 26 Extremely wet days, duration of dry days 1.5, 2℃ Population Region
Ta et al. (2022) SSP1-2.6 12 The number of annual extreme precipitation

events,
the areal coverage of each extreme
precipitation event

1.5℃ Population and
GDP

Region

Xu et al. (2022a) SSP1-2.6, SSP2-4.5, SSP3-7.0,
SSP5-8.5

20 The frequency of dangerous precipitation
extremes

— Population Region

Qin (2022) SSP2-4.5 16 Consecutive wet days and consecutive dry
days

1.5, 2℃ Population Global
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variation. Third, the main factors that cause the changes in the socio-
economic risks of rainstorms on each continent were explored. This
study is expected to provide a reference for a more comprehensive and
objective understanding of the distribution patterns, changes, influ-
encing factors, and uncertainties of global rainstorm socioeconomic
risks and guide us to focus on high-risk areas and high-uncertainty areas.

2. Data and methods

2.1. Data

Compared with CMIP5, CMIP6 has higher data quality and resolu-
tion (Du et al., 2022; Xu et al., 2022b; Zhu et al., 2020). This study used
22 GCMs from NASA Earth Exchange Global Daily Downscaled Pro-
jections (NEX-GDDP-CMIP6), which were produced using the bias-
correction and spatial-disaggregation approach (Thrasher et al., 2022).
NEX-GDDP-CMIP6 provides simulated data with a time resolution of 1
day and a spatial resolution of 0.25◦ under three scenarios (SSP1-2.6,
SSP2-4.5, and SSP5-8.5). The details of the GCMs are shown in Table 2.
Among the three scenarios used in this study, SSP1-2.6 represents the
comprehensive impact of low social vulnerability, low mitigation pres-
sure, and low radiation forcing; SSP2-4.5 is an intermediate path of a
combination of moderate development and moderate emission sce-
narios, which is closer to the current social development status; and
SSP5-8.5 is a shared socioeconomic path for human-caused radiation
forcing to reach 8.5 W/m2 in 2100 (O’Neill et al., 2016). During this
research, we used two time periods: the mid-term (2041–2060) and
long-term (2081–2100).

Future population and GDP datasets were obtained from the National
Institute for Environmental Studies (NIES), Japan (Murakami and
Yamagata, 2019). These datasets are available every 10 years under the
SSP1, SSP2, and SSP3 paths, with a spatial resolution of 0.5 degrees. The
downscale approach used in the process of data production assumed that
the city population changes over time and that urban areas expand or
shrink according to the city population change. The city populations
were downscaled into 0.5-degree grids considering the specific charac-
teristics and dynamics of each city including its population change,
urban expansion/shrinkage, and auxiliary variables such as road
network and land cover. Besides, spatial and socioeconomic interactions
among cities were used to accurately estimate the population and GDP at
a finer spatial resolution. The downscaling approach utilized a model
ensemble technique to estimate the influence of each factor and allows

for control over urban shrinkage or dispersion based on the SSPs. The
population/GDP average from 2041 to 2060 was used as the social/
economic exposure in the mid-term period. The population/GDP
average from 2081 to 2100 was used as the social/economic exposure in
the long-term period.

2.2. Methods

The overall technical flowchart is shown in Fig. 1. It includes 5 main
steps: calculating the rainstorm hazard index (H) based on future pre-
cipitation data from 22 models under three scenarios (SSP1-2.6, SSP2-
4.5, and SSP5-8.5) of NEX-GDDP-CMIP6, calculating the exposure
index (E) of rainstorm-bearing bodies based on the future GDP and
population data, calculating rainstorm socioeconomic risks based on H
and E, calculating the coefficient of variation of rainstorm hazard
calculated from different GCM simulation data grid by a grid to assess
the uncertainty of different GCM, and analyzing the leading factors
causing spatial differences in rainstorm risk changes on each continent
based on the geographic detector. The above five steps were carried out
in the two future periods (2041–2060 and 2081–2100).

2.2.1. Calculation of the rainstorm hazard index
According to the precipitation classification of the World Meteoro-

logical Organization, daily precipitation greater than 50 mm is defined
as a rainstorm (Tan et al., 2015). Therefore, this study used 50 mm as the
threshold to determine whether there was a rainstorm and calculated
the ARDs, ARI, and ARM. ARDs refer to the total number of rainstorm
days in a year. ARI refers to the average precipitation of all rainstorm
days in a year. ARM refers to the maximum precipitation of all rainstorm
days in a year.

We take the calculation of ARDs as an example to introduce the
calculation of the three rainstorm indicators in the future. First, for each
GCM, we calculated the ARDs according to the daily precipitation pre-
diction data in 2041–2060 and then calculated the mean value of ARDs
in 2041–2060. Second, we took the mean ARDs of 22 GCMs in
2041–2060 as ARDs in the mid-term period. Third, the ARDs were
normalized between 0 and 1 using the minimum and maximum values.

With the above method, we calculated the standardized values of the
three rainstorm indicators (ARDs, ARI, and ARM) in the two future pe-
riods (2041–2060 and 2081–2100). Then, for each future period, the
mean value of three standardized rainstorm indicators was calculated
and taken as the rainstorm hazard index (H).

2.2.2. Calculation of the exposure index of rainstorm-bearing bodies
Similarly, we first calculated the average population from 2041 to

2060, interpolated the average population to a 0.25◦ resolution through
area weight interpolation, and standardized the population to 0–1 using
the minimum and maximum values, respectively. Using the same
method, we calculated the population and GDP standardized values for
the two future periods (2041–2060 and 2081–2100). Then, for each
period in the future, we calculated the average of the standardized
population and GDP as the exposure index (E).

2.2.3. Calculation of socioeconomic risks
The socioeconomic risk calculation formula is as follows:

Risk =
̅̅̅̅̅̅̅̅̅̅̅̅̅
H× E

√
(1)

where H is the rainstorm hazard index; E is the exposure index of the
rainstorm-bearing body; and Risk represents the socioeconomic risks
caused by rainstorms.

The socioeconomic risks of rainstorms in the historical and future
scenarios were calculated by Eq. (1). It should be noted that in the
calculation of socioeconomic risks of rainstorms, since no population
and GDP datasets under SSP5 path in the dataset obtained from the
National Institute for Environmental Studies (NIES), Japan, the hazard

Table 2
22 GCMs of CMIP6 used in this study.

Model name Country Days/year

ACCESS-CM2 Australia 365/366
ACCESS-ESM1-5 Australia 365/366
BCC-CSM2-MR China 365
CanESM5 Canada 365
CMCC-CM2-SR5 Italy 365
CMCC-ESM2 Italy 365
EC-Earth3 Ten European countries 365/366
EC-Earth3-Veg-LR Ten European countries 365/366
GFDL-ESM4 USA 365
INM-CM4-8 Russia 365
INM-CM5-0 Russia 365
IPSL-CM6A-LR France 365/366
KACE-1–0-G Korea 360
KIOST-ESM Korea 365
MIROC6 Japan 365/366
MPI-ESM1-2-HR Germany 365/366
MPI-ESM1-2-LR Germany 365/366
MRI-ESM2-0 Japan 365/366
NESM3 China 365/366
NorESM2-LM Norway 365
NorESM2-MM Norway 365
TaiESM1 China 365
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index of SSP1-2.6 corresponds to the exposure index of SSP1, the hazard
index of SSP2-4.5 corresponds to the exposure index of SSP2, and the
hazard index of SSP5-8.5 corresponds to the exposure index of SSP3.
Finally, we used the natural breakpoint method (Anchang et al., 2016;
Jenks and Caspall, 1971) to grade socioeconomic risks and obtained five
risk grades.

2.2.4. Analysis of the uncertainty based on the coefficient of variation
The coefficient of variation is the ratio of the standard deviation and

the average of the original data (Eq. (2)). It has no unit and can be used
to compare the dispersions of quantitative variables that are not
expressed in the same units, or the dispersions of variables that have
very different mean. Therefore, we used the coefficient of variation to
analyze the difference in rainstorm hazard calculated from different
GCM simulation data grid by grid. The greater the coefficient of varia-
tion, the greater the uncertainty of the rainstorm risk assessment results.

cv =
σ
μ (2)

where σ is the standard deviation of a set original data; μ is the
average of a set original data; and cv represents the coefficient of
variation.

2.2.5. Analysis of the leading factors causing spatial differences in risk
changes on each continent based on the geographic detector

The geographic detector is a statistical tool to detect spatial hetero-
geneity and explore the determinants behind spatial heterogeneity

(Wang et al., 2010, 2016). It is widely used in the study of driving factors
such as the evolution of the spatial distribution patterns of ground ob-
jects (Guo et al., 2022; Wei et al., 2022; Zhu et al., 2022). We used the
factor detector in the geographic detector to measure the interpretation
degree between the socioeconomic risk changes of rainstorms and the
changes of socioeconomic exposure and three rainstorm indicators. The
calculation formula (Wang et al., 2016) of the q value is as follows:

q = 1 −
∑L

h=1Nhσ2
h

Nσ2 = 1 −
SSW
SST

= 1 −
1

1+ SSB
SSW

(3)

SSW =
∑L

h=1

Nhσ2
h (4)

SST = Nσ2 = SSW+ SSB (5)

Let’s assume that factor is X and the variable is Y, where q is the
interpretation degree value of factor X to the spatial heterogeneity of
variable Y; h = 1, ..., L refers to the stratification of variable Y or factor
X; Nh and N are the number of units of the strata and the whole study
area, respectively; σ2

h is the variance of the values of the variable Y of the
strata h; σ2 is the population variance of values of the variable Y of the
whole study area; SSW, SSB and SST are the sum of intra-strata variance,
the sum of between-strata variance, and the total sum of variance,
respectively.

The range of q values is [0,1]. A larger q-value indicates a stronger
stratified heterogeneity effect of Y. This means that the stratification is
able to explain a larger proportion of the total variation in the data.

Fig. 1. Technology flowchart.
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When the q-value is small, it suggests that either SSW is large or SSB is
small. In either case, the within-stratum variation is relatively large
compared to the between-stratum variation, indicating weakly stratified
heterogeneity. Therefore, a larger q-value indicates a stronger ability to
explain the variation between strata, and thus a stronger stratified het-
erogeneity effect. If stratification is generated by variable X, the larger
the q value, the stronger the explanatory power of the independent
variable X for attribute Y, and vice versa.

3. Results

3.1. Hazard analysis of future rainstorms

Fig. 2 is the distribution map of the rainstorm hazard index under the
three future scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in the mid-
term and long-term periods. The figure shows that the regions with
the largest rainstorm hazard index are mainly distributed in the western
and southeastern coastal areas of North America, the northwestern and
southeastern regions of South America, the western and southeastern
regions of Africa, the southern and southeastern regions of Asia, and the
northern region of Oceania. The average global hazard indices of the
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios in the mid-term period are
0.0313, 0.0321, and 0.0344, respectively. Compared to the mid-term
period, the average global hazard indices for the three scenarios of
SSP1-2.6, SSP2-4.5, and SSP5-8.5 in the long-term period have increased
by 1.60 %, 12.15 %, and 36.63 %, respectively. From the perspective of
continents (Fig. 3), the value and distribution of the rainstorm hazard
index differ among the six continents, with the hazard index ranging
from 0.0078 to 0.1019, among which Oceania has the largest average
hazard index, followed by South America, and Europe has the smallest
hazard index. South America has the largest standard deviation of the
hazard index, followed by Oceania, and Europe has the smallest stan-
dard deviation of the hazard index. Compared with the mid-term period,

the hazard indices of the six continents in the long-term period increase
by 0.33 %-2.64 % on average under the SSP1-2.6 scenario, 10.02
%-13.13 % on average under the SSP2-4.5 scenario, and 22.46 %-58.07
% on average under the SSP5-8.5 scenario. In the three future scenarios,
the average increasing rate of the rainstorm hazard index in Africa is the
largest, followed by Asia, and the smallest increasing rate is projected to
occur in Oceania.

3.2. Socioeconomic exposure to future rainstorms

Fig. 4 shows the curve of the global population and GDP under the
historical and three future scenarios. Fig. 4 (a) shows that the global
population in 1980–2010 basically showed a trend of constant growth.
In the future, the global population in the SSP3 scenario is projected to
be the largest, followed by the SSP2 scenario, and the global population
in the SSP1 scenario is projected to be the smallest. Under the SSP1
scenario, the growth rate of the population will slow down during
2020–2050, and the total global population will decrease during
2050–2100. Under the SSP2 scenario, the growth rate of the global
population is projected to gradually slow down during 2020–2070, and
the total global population is projected to slowly decrease during
2070–2100. Under the SSP3 scenario, the global population is projected
to increase at a constant rate. Fig. 4 (b) shows that the total global GDP
has an increasing trend from 2020 to 2100 under the three scenarios.
The total global GDP is projected to be the largest under the SSP1 sce-
nario and the smallest under the SSP3 scenario. Under the SSP1 sce-
nario, GDP first grows rapidly and then slowly. The growth rate of GDP
under the SSP2 scenario is accelerating, and the total global GDP of the
SSP2 scenario is expected to exceed that of the SSP1 scenario after 2100.
Under the SSP3 scenario, the total global GDP is expected to increase
slowly.

Fig. 5 shows the distribution of the socioeconomic exposure index
under the three future scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in

Fig. 2. Distribution of the rainstorm hazard index under the three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) in the two future periods, where (1) is the mid-term
(2041–2060) and (2) is the long-term (2081–2100).
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the mid-term and long-term periods. Overall, there are more regions
with higher exposure indices in China and India. In the mid-term period,
the average value of the global socioeconomic exposure index is almost
equal under the SSP1 and SSP2 scenarios, and both are greater than that
under the SSP3 scenario. In the long-term, the average value of the
global socioeconomic exposure index is the largest under the SSP2 sce-
nario, followed by the SSP1 scenario, and is the smallest under the SSP3
scenario. The average global socioeconomic exposure index in the long-
term period increases by 23.51 % under SSP1, 24.96 % under SSP2, and
19.63 % under SSP3 compared with the average global socioeconomic
exposure index in the mid-term period. From the perspective of conti-
nents, both the average value and standard deviation of the socioeco-
nomic exposure index are the smallest in Oceania. The average value of
socioeconomic exposure in Oceania is 0.00011–0.00024 and the stan-
dard deviation is 0.0010–0.0026. Compared with the mid-term period,
the average socioeconomic exposure index of the six continents in the
long-term period increases by 0.62 %-69.56 % under the SSP1 scenario,
13.43 %-76.33 % under the SSP2 scenario, and − 5.11 %-66.47 % under
the SSP3 scenario. Among them, the socioeconomic exposure index in-
creases the most under all three future scenarios in Africa and increases
the least in Asia under the SSP1 and SSP2 scenarios and in Europe under
the SSP3 scenario.

3.3. Socioeconomic risk analysis of future rainstorms

Fig. 6 shows the distribution of socioeconomic risk levels of rain-
storms in the mid-term and long-term periods under the three future
scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5. The socioeconomic risk of
rainstorms in most regions of the world is at the first level. The regions
with the greatest socioeconomic risk are concentrated in southern and
southeastern Asia, especially China and India. Under the SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios, the average socioeconomic risk of
global rainstorms in the long-term period increases by 4.04 %, 16.66 %
and 27.30 %, respectively, compared with that in the mid-term period.
From the perspective of the continents (Fig. 7), under the three future
scenarios in the two future periods, Asia has the largest socioeconomic
risks, while Europe has the smallest socioeconomic risks. In general,
compared with the mid-term period, the number of grids with high-risk
levels (Levels 4 and 5) on each continent increases at the end of the 21st
century.

4. Discussion

4.1. Uncertainty of rainstorm indicators

To reduce the uncertainty of model simulation, we used precipitation
datasets simulated by 22 GCMs in CMIP6 as input to analyze the

Fig. 3. Mean and standard deviation of the hazard index of the six continents in the(a) mid-term (2041–2060) and (b) long-term (2081–2100) of the 21st century.

Fig. 4. Changes in global (a) population and (b) GDP under the historical (1980–2010) and future (2020–2100) scenarios.
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Fig. 5. Distribution of the socioeconomic exposure index under the three scenarios (SSP1, SSP2, and SSP3) in the two future periods, where (1) is the mid-term
(2041–2060) and (2) is the long-term (2081–2100)).

Fig. 6. Distribution of socioeconomic risk under the three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) in the two future periods, where (1) is the mid-term
(2041–2060) and (2) is the long-term (2081–2100).
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rainstorm hazard. The final ARDs, ARI, and ARM were all calculated
according to the mean value of the 22 GCMs. In this study, we calculated
the coefficient of variation of ARDs/ARI/ARM from the 22 GCMs for the
historical period (Fig. 8) and two future time periods (2041–2060 and
2081–2100) under three scenarios (the SSP1-2.6, SSP2-4.5, and SSP5-
8.5) (Fig. 9 and Fig. 10) to measure the uncertainty of ARDs/ARI/
ARM. Overall, the distribution of the coefficient of variation calculated
for the three indicators, three periods, and three scenarios is similar and
the regions with the greatest uncertainty are concentrated in central
North America, Central America, central and southern Africa, central
South America, eastern Asia, and southern Oceania. During the histor-
ical period, the global average values of the coefficients of variation of
ARDs, ARI, and ARM are 0.7279, 0.7095, and 0.7115. During the time
period of 2041–2060, the global average values of the coefficients of
variation of ARDs, ARI, and ARM are 0.7750, 0.7459, and 0.7493 under
the SSP1-2.6 scenario, 0.8197, 0.7822, and 0.7866 under the SSP2-4.5
scenario, and are 0.8297, 0.7864, and 0.7914 under the SSP5-8.5 sce-
nario, respectively. During the time period of 2081–2100, the global
average values of the coefficients of variation of ARDs, ARI, and ARM
are 0.7882, 0.7579, and 0.7615 under the SSP1-2.6 scenario, 0.8128,
0.7693, and 0.7746 under the SSP2-4.5 scenario, and are 0.8584,
0.7654, and 0.7754 under the SSP5-8.5 scenario, respectively. Thus,
among the three scenarios, the SSP5-8.5 scenario has the largest un-
certainty; and among the three rainstorm indicators, ARDs have the
largest uncertainty. Some studies that have only used the rainstorm
frequency (such as ARDs) (Shi et al., 2021; Sun et al., 2021; Tang and
Hu, 2022) to calculate the rainstorm risk may suffer from high uncer-
tainty. This study comprehensively uses three rainstorm indicators,
ARDs, ARI, and ARM, which can reduce the uncertainty of rainstorm
hazard assessment caused by the uncertainty of a single rainstorm in-
dicator to a certain extent.

4.2. Socioeconomic risk changes

To analyze the change in future rainstorm risk relative to the his-
torical period, we first used the historical precipitation data of 22 GCMs
to calculate the rainstorm hazard index in terms of the method intro-
duced in Section 2.2.1. Then, we calculated the socioeconomic exposure
index based on the population and GDP from 1991 to 2010 obtained
from the NIES, Japan, in terms of the method introduced in Section
2.2.2. Finally, we calculated the historical socioeconomic risk according
to the method introduced in Section 2.2.3 and subtracted the historical
socioeconomic risk from the socioeconomic risk under the future climate
scenarios to obtain the changing value of socioeconomic risk. The results
are shown in Fig. 11.

Fig. 11 shows that the socioeconomic risk of rainstorms in most re-
gions of the world is projected to have an increasing trend, with the
largest increase under the SSP5-8.5 scenario. Specifically, under the
SSP5-8.5 scenario, the number of grids with increased risk in the mid-
term and long-term is 97.58 % and 97.98 %, respectively. Under the
SSP1-2.6 scenario, the number of grids with increased risk in the mid-
term and long-term is 89.20 % and 86.57 %, respectively. The regions
with the largest increase in the socioeconomic risk of rainstorms are
mainly distributed on the southwestern coasts of Africa and the southern
and southeastern coasts of Asia, which are also the regions with large
rainstorm hazards (Fig. 2) and high socioeconomic exposures (Fig. 5). In
general, compared with the historical period, the socioeconomic risks of
rainstorms on the eastern coast of China, the central and southern parts
of India, Nigeria, and its surrounding areas, southern Mexico, the
western coast of Colombia, and the southeastern coast of Brazil increase
significantly. Compared to other regions where rainstorm hazards will
also increase significantly, these areas are expected to experience the
most substantial growth in population and GDP in future scenarios, thus
eventually leading to the most prominent increase in rainstorm risk.

Fig. 12 shows the correlation between the changes in rainstorm so-
cioeconomic risk and the changes in three rainstorm indices (ARDs, ARI,
and ARM) and socioeconomic exposure (population and GDP) in the
mid-term and long-term periods under the three future scenarios, SSP1-
2.6, SSP2-4.5, and SSP5-8.5. In the figure, the larger the q value is, the
stronger the interpretation ability. Under the SSP1-2.6 scenario, the
socioeconomic risk changes of rainstorms in Europe are most closely
related to the three rainstorm indices, with q values between socioeco-
nomic risk changes and rainstorm indices ranging from 0.4075 to 0.4141
in the mid-term period and 0.3203–0.3340 in the long-term period. The

Fig. 7. Distribution of five socioeconomic risk levels on six continents in the two future periods, where (a) is mid-term (2041–2060) and (b) is long-
term (2081–2100).

Fig. 8. Distribution of coefficients of variation of ARDs, ARI, and ARM among
22 models under the historical scenario.
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q value between rainstorm socioeconomic risk changes and socioeco-
nomic exposure on five continents except Europe is between 0.49 and
0.88, which is greater than the q value between socioeconomic risk
changes and the three rainstorm indices. The socioeconomic risk
changes of rainstorms in Africa are most closely related to population
changes, while the socioeconomic risk changes of rainstorms in North
and South America and Asia are most closely related to GDP changes.
The socioeconomic risk changes of rainstorms in Oceania are least
closely related to rainstorm indices. Similar conclusions can be made
under the SSP2-4.5 and SSP5-8.5 scenarios. The results are consistent
with the existing research results (Chen and Sun, 2021; Liu et al.,
2020b).

For areas where the risk of rainstorms increases due to the increase in
rainstorm hazard, such as Europe, the construction of a meteorological
monitoring system should be strengthened and the disaster warning
system should be improved (Alfieri et al., 2012; Calvello et al., 2020).
For example, advanced meteorological prediction models and big data
analysis should be used to improve the accuracy of rainstorm event
prediction (Shabariram et al., 2016), and early warning of possible
rainstorm events should be given in advance to ensure that accurate
disaster information is transmitted to the public (Hallegatte, 2012;
Pappenberger et al., 2015). In case of a rainstorm, emergency response
can be carried out timely and effective. For areas with increased rain-
storm risk caused by increased exposure of rainstorm-bearing bodies,

such as North and South America, Africa, Asia, and Oceania, the layout
of the city should be reasonably planned to avoid vigorously developing
areas that are susceptible to flooding, improve the efficiency of urban
drainage systems, and strengthen flood prevention facilities (Fraiture
et al., 2017), such as building flood control dams and widening drainage
channels. In addition, protecting natural wetlands and water sources to
alleviate the rapid concentration of rainwater in cities (Kim et al., 2016;
Douglas, 2018). Promoting afforestation, increasing vegetation
coverage, reducing soil erosion, and improving soil flood resistance are
also beneficial for reducing flood risks (Liu et al., 2020a; Takata and
Hanasaki, 2020).

4.3. Contributions and limitations

Compared with previous studies, this study has the two following
characteristics:

First, there is still great uncertainty about future climate change
(Alves et al., 2021; Dey et al., 2019; Long and Li, 2021; Ortega et al.,
2021; Zappa and Shepherd, 2017). The simulation performance of GCMs
is related to various factors such as model structure and parameter
settings, initialization conditions, etc. Numerous studies have shown
that no GCM performs well in different scenarios, such as different re-
gions, terrain conditions, climate zones, seasons, etc. There is also no
research confirming that a certain GCM performs better than other

Fig. 9. Distribution of coefficients of variation of ARDs, ARI, and ARM among 22 models under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios of 2041–2060.

Fig. 10. Distribution of coefficients of variation of ARDs, ARI, and ARM among 22 models under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios of 2081–2100.
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GCMs. Using only one GCM simulation data for analysis has significant
uncertainty. Compared to a single model, the multi-model ensemble
average demonstrates superior simulation capabilities and can effec-
tively reduce model uncertainty. Methods of the multi-model ensemble
include the arithmetic mean (Santer et al., 2007; Duan and Phillips,
2010; Sillmann et al., 2013; Miao et al., 2014; Fu et al., 2018; Sonkoué
et al., 2019; Sun et al., 2021; Shi et al., 2021), the weighted mean (Duan
and Phillips, 2010; Niu et al., 2018; Xu et al., 2023), and the median
(Sillmann et al., 2013; Srivastava et al., 2020). The mean method is the
most commonly used method among the three methods. Therefore, this
study also chose to use an arithmetic mean as a method of the multi-
model ensemble. Specifically, we used the future daily precipitation
data of 22 GCMs in CMIP6 to calculate three rainstorm indices (ARDs,
ARI, and ARM).

Second, the hazard of a rainstorm disaster is related to many char-
acteristics of rainstorms, such as frequency, intensity, and duration (Wu
et al., 2010; Feng et al., 2019; Deng et al., 2022). Comprehensive
consideration of multiple rainstorm characteristics can more compre-
hensively evaluate the hazard of rainstorms and avoid the deviation and
limitation caused by a single factor (Bécue-Bertaut and Pagès, 2008;
Chen et al., 2020; Liu et al., 2022). In addition, many previous studies
have considered the population and the economy separately and
calculated population exposure and economic exposure in disasters (Lim
et al., 2018; Mondal et al., 2021; Chen and Sun, 2021; Chen et al., 2021;
Zhao et al., 2022; Xie et al., 2022), which is not conducive to the
comprehensive analysis of socioeconomic risks. Therefore, using the
arithmetic mean method, ARDs, ARI, and ARM were integrated into a
hazard index, while population and GDP were integrated into an expo-
sure index in this study. The weighted average method requires so-
phisticated mathematical models (such as the Analytic Hierarchy
Process, Fuzzy Analytic Hierarchy Process, Entropy Weight Method, and
Principal Component Analysis) to capture the complex relationships and
mutual influences between elements, thereby determining the impor-
tance and priority of different elements. On the one hand, weights are

influenced by model performance and subjective factors. On the other
hand, the importance of various elements in different regions of the
world is theoretically different, and weights need to be set by region, but
this is difficult to achieve. Different from weighted average, the
advantage of arithmetic mean is that the calculation process is simple,
does not require too many assumptions and prerequisites, and can
provide a relatively stable comprehensive indicator. Based on the risk
assessment paradigm of UNDRR, the risk index can be expressed as the
product of the hazard index and exposure index (United Nations Office
for Disaster Risk Reduction, 2019). After obtaining the exposure index
and hazard index, we further integrated them into a risk index through
geometric averaging. Compared to the arithmetic mean, the geometric
mean is more suitable for indicators that handle product relationships,
especially indicators such as ratios and proportions. The geometric mean
of two indices and the product of two indices have the same trend, but
with larger values, making it easier to observe differences.

However, there are also some limitations in this paper. First, global-
scale rainstorm socioeconomic risk analysis was conducted based on
NEX-GDDP-CMIP6 future precipitation simulation data. However, the
NEX-GDDP-CMIP6 data resolution is relatively coarse, which is not
conducive to analysis in local areas. In the future, it is necessary to
combine regional climate models to produce a regional climate simu-
lation dataset with higher resolution by downscaling to better support
the accurate analysis of small-scale rainstorm disasters. Second, there
are many different choices for rainstorm thresholds. Considering the
global comparability, this paper chose 50 mm daily precipitation as the
threshold to identify a rainstorm. However, for local areas, we can use
the threshold selection method suitable for the local area to conduct
fine-resolution research in combination with higher-resolution datasets
to better serve the formulation of disaster prevention and mitigation
policies in local areas. Third, this paper used the population and GDP
simulation data in the future scenario as the disaster-bearing body. For
the population, different conditions, such as age, educational back-
ground, and health status, will have large differences in disaster-bearing

Fig. 11. Socioeconomic risk change distribution under three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) in the two future periods, where (1) is the mid-term
(2041–2060) and (2) is the long-term (2081–2100). (Note: D represents a decrease, I represents an increase, and D1 < I1 < I2 < I3 < I4).
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capacity, but more refined population data will also have greater un-
certainty. Based on our study, rainstorm risk changes in most regions are
more closely related to changes in population and GDP. The accuracy
and uncertainty of disaster-bearing body data will greatly affect the
results of risk assessment. Therefore, our study highlights that while
producing more refined and precise precipitation datasets, it is also
necessary to strengthen the production and research of disaster-bearing
body data such as population and GDP. Fourth, the disaster-bearing
body of rainstorms not only includes population and GDP, but also in-
cludes social infrastructure and urban buildings (Bonazza et al., 2021;
Yang et al., 2024) and so on. However, due to limitations in the avail-
ability of these data in future scenarios, this study like most previous
studies did not consider other disaster-bearing bodies of rainstorms
other than population and GPD, which may affect the results to some
extent. In the future, with the gradual enrichment of prediction data of
disaster-bearing bodies, we can add them to the assessment of rainstorm
risk in order to improve the accuracy of the assessment results. In
addition, we may be able to use the latest data of disaster-bearing bodies
such as infrastructure and buildings to conduct a rainstorm risk assess-
ment in combination with future rainstorm hazard data. Although the
infrastructure and buildings in the future cannot remain unchanged, the
rainstorm risk assessment results considering the infrastructure and
buildings and other disaster-bearing bodies are theoretically more
accurate.

5. Conclusions

This paper uses the precipitation simulation data of 22 GCMs of
CMIP6 and the population and GDP data of different scenarios in the
future to calculate the socioeconomic risks of rainstorms in the mid-term
and long-term periods under three scenarios (SSP1-2.6, SSP2-4.5, and
SSP5-8.5) and further explores the uncertainty between the data of the
22 GCMs used in this study and the changes in the socioeconomic risks of
rainstorm relative to historical periods and their leading factors. The
main conclusions are as follows:

First, from a global perspective, compared with the mid-term period,
under the three scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), the mean
hazard index of rainstorms increases by 1.60 %, 12.15 %, and 36.63 %,
respectively, and the mean socioeconomic exposure index increases by
23.51 %, 24.96 %, and 19.63 % in the long-term period, respectively.
From the perspective of continents, the mean value of the rainstorm
hazard index under the three future scenarios is the largest in Oceania,
followed by South America, and is the smallest in Europe. Compared
with the mid-term period, the hazard index of rainstorms in the long-
term period increases the most in Africa, followed by Asia, and is the
least in Oceania. The average socioeconomic exposure index is the
largest in Asia, followed by Africa, and is the smallest in Oceania.
However, compared with the mid-term period, the largest increase in
socioeconomic exposure is in Africa all the time under the three sce-
narios in the long-term period, but the continents with the smallest

Fig. 12. Interpretation degree of population, GDP, ARDs, ARI, and ARM to the spatial heterogeneity of socioeconomic risk changes in 6 continents under three
scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) in the two future periods, where (1) is the mid-term (2041–2060) and (2) is the long-term (2081–2100).
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increase differ under the three scenarios.
Second, from a global perspective, the socioeconomic risk of rain-

storms in most regions of the world will increase in the future, with the
largest increase in the SSP5-8.5 scenario and the smallest increase in the
SSP1-2.6 scenario. Under the lowest growth scenario (SSP1-2.6 scenario
in the long-term period), the proportion of the grid with increased so-
cioeconomic risk of rainstorms is also above 86.57 %. The average so-
cioeconomic risk of rainstorms in the long-term period increases by 4.04
% under SSP1-2.6, 16.66 % under SSP2-4.5, and 27.30 % under SSP5-
8.5 compared with that in the mid-term period. In general, the socio-
economic risks of rainstorms on the eastern coast of China, the central
and southern parts of India, Nigeria and its surrounding areas, southern
Mexico, the western coast of Colombia, and the southeastern coast of
Brazil are projected to increase significantly.

Finally, the change in rainstorm socioeconomic risk in North and
South America, Africa, Asia, and Oceania is more related to socioeco-
nomic exposure, and the change in rainstorm socioeconomic risk in
Europe is more related to the three rainstorm indicators.
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