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A B S T R A C T   

Deep learning has become the leading technique for precisely extracting individual arable fields (IAFs) from 
high-resolution remote sensing images. Maintaining transferability remains a major concern for deep learning 
methodologies due to the significant cost of acquiring labelled samples for network training. FieldSeg-DA, 
introduced by Liu et al. (2022), enhanced network transferability by introducing a finely tuned adversarial 
domain adaptation module (FADA). An improved version of the FieldSeg-DA framework, FieldSeg-DA2.0, which 
further enhances transferability through incorporating multisource remote sensing and land cover data is 
introduced in this paper. First, we introduce a spatiotemporal fusion module, U-LSTM, to extract the IAF extent 
by merging textural information from the high-resolution image (Gaofen-2) and phenological information from 
the coarse time-series data (Sentinel-2). Incorporating phenological information mitigates the risk of overfitting 
associated with the high-resolution imagery acquired in specific seasons, thereby improving the temporal 
transferability of FieldSeg-DA2.0 compared to FieldSeg-DA. Second, we introduce a novel fine-grained adver-
sarial domain adaptation module with ancillary data (FADA-A) to enhance spatial transferability. FADA-A in-
corporates prior knowledge from the Dynamic World (DW) land cover dataset to guide adversarial training in the 
standard FADA, thereby enhancing the robustness of domain adaptation across diverse geographic regions. We 
evaluate the performance of FieldSeg-DA2.0 through various spatial and temporal transfer experiments utilizing 
GaoFen-2 and Sentinel-2 data. The results illustrate that the cross-domain performance of FieldSeg-DA2.0 is 
significantly better than that of the original FieldSeg-DA, highlighting its robust spatiotemporal transferability. 
FieldSeg-DA2.0 can accurately delineate IAFs across varied regions and seasons without requiring additional 
training samples, illustrating its considerable potential for large-scale IAF extraction.   

1. Introduction 

An individual farm arable field (IAF), also referred to as a crop 
parcel, is a land patch used for crop cultivation, where either a single 
crop is planted or several crops are regularly intercropped during each 
growing season. IAFs are often delineated by ridges, paths, and ditches, 
serving as fundamental spatial units for agricultural activities (Liu et al., 
2022; Persello et al., 2019). Precise information about IAFs not only 
assists in formulating agricultural land management, such as land 

ownership determination, water and irrigation allocation (Luo et al., 
2021), and agricultural disaster insurance (Aung et al., 2020), but also 
facilitates the crop cultivation area estimation, crop yield prediction, 
and crop classification (Waldner and Diakogiannis, 2020). 

Remote sensing imagery is an important data source for IAF 
extraction. Efforts have been made to automatically extract IAFs from 
high-resolution satellite images. Traditionally, empirical graphical op-
erators (e.g., Sobel, Canny) and image segmentation techniques (e.g., 
watershed segmentation, multiresolution segmentation (Wen et al., 
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2022)) have been used to identify IAF boundaries and parcels, respec-
tively (Da Costa et al., 2007; Mueller et al., 2004). However, these 
methods explore only shallow features, failing to exploit rich spatial 
context in high-resolution images and thus having limited accuracy in 
IAF extraction. In recent years, deep neural networks, as an effective 
technology for exploring spatial and spectral features across multiple 
scales (Ma et al., 2024; Yan et al., 2023), have also shown great potential 
for extracting IAFs from high-resolution satellite imagery (Aung et al., 
2020; Fare Garnot and Landrieu, 2021; Li et al., 2023; Liu et al., 2022; 
Long et al., 2022; Matton et al., 2015; Persello et al., 2019; Sun et al., 

2022; Waldner and Diakogiannis, 2020). Although deep segmentation 
networks can be directly applied for IAF extent extraction by treating the 
extraction as a pixelwise classification task of cropland and non- 
cropland (Cai et al., 2023b; Zhang et al., 2020), these networks 
frequently exhibit adhesion issues due to the lack of attention on the IAF 
boundaries. Thus, the delineation of IAF boundaries has received 
increasing attention. Various deep segmentation models, e.g., FCN 
(Long et al., 2015), SegNet (Badrinarayanan et al., 2017), and UNet, 
have been applied for IAF boundary identification (Jong et al., 2022; 
Masoud et al., 2019; Persello et al., 2019; H. Zhang et al., 2021). 

Fig. 1. Workflow of FieldSeg-DA2.0.  
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Nonetheless, direct outputs generated by deep learning models are often 
overly fragmented, requiring additional postprocessing to generate 
closed segments (Persello et al., 2019; H. Zhang et al., 2021). A multitask 
network is another approach to extracting distinct IAFs that compre-
hensively considers the boundary and extent information. For instance, 
Aung et al. (2020) trained two independent UNet branches to extract the 
IAF boundary and extent simultaneously. Liu et al. (2022) applied UNet 
and DeeplabV3 + for identifying IAF boundaries and extents, respec-
tively, considering their different preferences for identifying “line” and 
“face” objects. Waldner et al. (2020) trained ResUNet-a for IAF extrac-
tion with a combined loss of four related tasks, i.e., IAF extent identi-
fication, IAF boundary identification, estimation of distance to boundary 
and image reconstruction. As the multi-task strategy showed promising 
performance in IAF extraction, it has become the mainstream approach 
in recent studies (Li et al., 2023; Long et al., 2022). 

However, training deep learning models requires many labelled 
samples, which are often difficult to collect in sufficient numbers in 
practice. Domain Adaptation (DA), i.e., preventing performance degra-
dation when a model trained in the source domain with sufficient 
samples is applied to the target domain with insufficient samples, is a 
practical approach to reducing the need for training samples (J. Peng 
et al., 2022). The transfer problem in IAF extraction mainly arises from 
differences between the spatial locations and data acquisition time of the 
source and target domains. For example, a model trained in a plain area 
may not accurately recognize terrace IAFs in a hilly area due to signif-
icant differences in the IAF morphology. A model trained with satellite 
imagery acquired in the growing season may perform poorly on imagery 
acquired in the non-growing season due to the distinct spectral differ-
ences in different seasons. 

Several transfer learning techniques have been introduced in IAF 
extraction models to address spatial transfer. Fine-tuning is a straight-
forward and effective transfer technique that has demonstrated excel-
lent performance in transferring IAF extraction models across different 
study areas (Jong et al., 2022; Wang et al., 2022). It slightly adjusts the 
model parameters pretrained from the source domain and thus needs 
only a small number of samples from the target domain. However, fine- 
tuning is not suitable for study areas without labelled samples. Unsu-
pervised Domain Adaptation (UDA) is another type of transfer learning 
technology which does not require additional annotations in the target 
domain (Mirza et al., 2022; Wang et al., 2020; Xiao and Zhang, 2021; P. 
Zhang et al., 2021). UDA focus on reducing the distribution mismatch by 
optimizing feature divergence (Ge et al., 2023; P. Zhang et al., 2021) or 
adopting adversarial training to generate domain-invariant features 
(Cicek and Soatto, 2019; Long et al., n.d.; Wang et al., 2020) at different 
feature levels. For example, Zhang et al. (2021) proposed a novel 
method leveraging representative prototypes and feature distances to 
achieve remarkable performance improvements in UDA for segmenta-
tion. Mirza et al. (2022) proposed Dynamic Unsupervised Adaptation 
(DUA), using batch normalization adjustments for strong performance 
gains with minimal unlabelled data, addressing continuous adaptation 
challenges in segmentation tasks. Wang et al. (2020) proposed a fine- 
grain adversarial domain adaption (FADA) approach, which aligns fea-
tures in the source and target domains at the class level by introducing a 
fine-grained domain discriminator and shows good performance in the 
cross-domain semantic segmentation task. Recently, Liu et al. (2022) 
adopted the FADA approach in their IAF extraction model (FieldSeg- 
DA), achieving excellent transferability across multiple target domains. 
However, FADA requires prior class information in the target domain to 
start the training process. This information is commonly accessed from 
the pseudo-labels generated by a classifier trained in the source domain. 
However, the inaccuracy of the pseudo-labels may result in a negative 
transfer of FADA if the IAF morphology and spectral characteristics of 
the source and target regions significantly differ (Wang et al., 2019). 

Temporal transfer generally includes cross-season and cross-year 
transfers. Although both can raise critical issues for vegetation or crop 
classification (Capliez et al., 2023; Wang et al., 2023), the cross-year 

transfer issue is less serious for IAF extraction. This is because the 
phenological differences between IAF and other land cover types are 
much more obvious than those between different vegetation or crop 
types, resulting in discriminative features that remain relatively stable 
across years. For the problem of cross-seasonal transfer, the introduction 
of time-series data is an effective solution. Time series data contain 
remote sensing observations in all seasons, so there are no differences in 
the acquisition seasons between the source and target domains. Aung 
et al. (2020) utilized spatiotemporal convolutional networks to encode 
time-series data from Sentinel-2 for IAF extraction. Garnot et al. (2021) 
developed an IAF extraction method using a self-attention-based image 
sequence encoding network for time-series analysis, and they empha-
sized that leveraging the phenological information from Sentinel-2 time 
series can better address the complex spatiotemporal patterns of IAFs. 
Song et al. (2023) demonstrated that using time series Sentinel-2 images 
with a 10-metre spatial resolution resulted in better performance in 
extracting fragmented IAFs than using a single-temporal image. How-
ever, time-series data often exhibit low spatial resolutions, which does 
not satisfy the need for clear IAF boundaries, especially on the frag-
mented landscape in China (Persello et al., 2019). 

To mitigate these spatiotemporal transfer issues, an improved 
version of the FieldSeg-DA network (Liu et al., 2022), named FieldSeg- 
DA2.0, is proposed in this study. FieldSeg-DA2.0 includes a spatiotem-
poral fusion module and an improved FADA module with ancillary data 
(FADA-A). The spatiotemporal fusion module incorporates the textural 
information from the high spatial resolution image and the phenological 
information from the coarse time-series data, enhancing temporal 
transferability while retaining spatial details. FADA-A introduces the 
existing coarse-resolution (10 m) land cover data DW (Brown et al., 
2022) as ancillary data to guide domain-adversarial training, which 
enhances the robustness of the transfer learning across distinct spatial 
regions. The proposed FieldSeg-DA2.0 is then tested in diverse areas 
with different IAF landscapes by using Gaofen-2 (GF2) data and the 
Sentinel-2 time series. 

2. Method 

FieldSeg-DA2.0 is developed based on the framework of FieldSeg-DA 
proposed by Liu et al. (2022). FieldSeg-DA involves three main stages: 
an extent-boundary parallel network (EBPN) combined with DeeplabV3 
+ and UNet for identifying the IAF extent and boundary independently; 
an FADA domain adaptation module for enhancing the transferability of 
the network; and a connecting boundaries and filling field (CB-FF) 
module for consistently integrating the identified IAF extent and 
boundary. In this study, we further enhance the transferability of 
FieldSeg-DA in two ways (Fig. 1). First, we replace DeeplabV3 + with a 
novel U-LSTM network in the EBPN to better extract the IAF extent. U- 
LSTM fuses spatial textural information from high-resolution images and 
phenological information from coarse time-series data to enhance the 
model’s temporal transferability. Second, during the domain adaptation 
stage, we introduce additional ancillary data, the DW (DW) land cover 
data product (Brown et al., 2022), to serve as prior class information to 
guide the FADA training process. Despite the coarse spatial resolution 
(10 m), the DW provides a more stable land cover class prior across 
different areas than the pseudo-labels obtained from the source-domain 
classifier. Thus, FADA with ancillary data (FADA-A) is expected to 
achieve better spatial transferability than standard FADA without 
ancillary data. 

2.1. EBPN for IAF extent and boundary extraction 

In the proposed FieldSeg-DA2.0, the EBPN consists of two indepen-
dent branch networks, U-LSTM and UNet, which are employed the IAF 
extent and IAF boundary, respectively. 
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Fig. 2. (a) The main architecture of U-LSTM; (b) UNet used for extracting the textural information from the GF-2 gradient map. (c) ConvLSTM used for extracting the 
phenological information from the Sentinel-2 time series. (d) PTFM used for fusing the textural and phenological information. 

Fig. 3. Workflow of FADA-A.  
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2.1.1. U-LSTM for IAF extent extraction 
We designed a U-LSTM to replace the DeeplabV3 + in the original 

EBPN in FieldSeg-DA for extracting IAF extent in this study. U-LSTM 
aims to combine the textural information from high spatial resolution 
images and the phenological information from coarse time series by 
incorporating UNet (Ronneberger et al., 2015) and ConvLSTM (Shi 
et al., 2015) networks (Fig. 2), which helps to mitigate the overfitting 
risk of the network on training data acquired in specific seasons. 

First, UNet (Fig. 2b) is used to extract textural features from the 
gradient map of high-resolution images, considering that the skip- 
connection structure in UNet helps preserve spatial details in high- 
resolution images (L. Peng et al., 2022). The gradient map obtained by 
the Sobel operator from the multispectral image, rather than the mul-
tispectral image itself, is used as input. This is because the gradient map 
generally corresponds to high-frequency textural information (Yang 
et al., 2020; Zhou et al., 2022), which is insensitive to the colour vari-
ation induced by phenological changes across different seasons. Second, 
ConvLSTM (Fig. 2c) is employed to explore the phenological features 
from the Sentinel-2 time series due to its proven effectiveness in crop 
classification (Luo et al., 2023) and IAF segmentation (Cai et al., 2023a). 
Finally, a phenological-textural fusion module (PTFM) (Fig. 2d) is 
designed to fuse both the textural features generated from UNet and the 
phenological features generated from ConvLSTM. First, the phenological 
feature image is resampled to match the size of the textural feature 
image, and residual convolution is then applied to both types of features. 
Additionally, a convolutional block attention module (CBAM) (Woo 
et al., 2018) is employed to extract pertinent features for identifying IAF 
extents. 

Through fusing textural features from high-resolution images and 
phenological features from coarse time series, U-LSTM demonstrates 
strong transferability when applied to high-resolution images acquired 
in different seasons and retains detailed spatial information when 
identifying the IAF extents. 

2.1.2. UNet for IAF boundary extraction 
We employ the UNet branch to extract IAF boundaries from high- 

resolution images, as in the original FieldSeg-DA model (Liu et al., 
2022). Coarse time series data are not used as input in this model, as IAF 
boundaries tend to remain relatively stable across different seasons. 
Furthermore, we refrain from utilizing gradient maps alone, as relying 
solely on gradient map information for IAF boundary extraction proves 
inadequate. 

2.2. Fine-grained domain adaptation with ancillary data (FADA-A) 

Due to the difference between the source and target domains, 
domain adaptation technologies were proposed to further adapt the 
model pretrained in the source domain, which is a commonly used 
strategy in previous studies (Mirza et al., 2022; Wang et al., 2020; P. 
Zhang et al., 2021). In FieldSeg-DA 2.0, we propose FADA-A, an 
improved version of the standard FADA module that incorporates prior 
class information derived from ancillary data to further enhance the 
robustness of domain adaptation training (Fig. 3). When FieldSeg-DA2.0 
is used in a target area distinct from the training areas, both branch 
networks (U-LSTM and UNet) are retrained with FADA-A to better adapt 
the model to the target area. 

2.2.1. FADA 
FADA is a domain adaptation technique based on class-level feature 

alignment. It achieves a better transferring performance in the image 
semantic segmentation task than the traditional adversarial domain 
adaptation technique (Wang et al., 2020). Thus, FADA was incorporated 
into the original FieldSeg-DA to enhance model transferability (Liu 
et al., 2022). 

FADA consists of a segmentation network (G) and a discriminator 
(D). G is used to predict the segmentation result, i.e., the IAF extent or 

boundary in this study, which can be divided into a feature extractor (F) 
and a binary classifier (C). D is used to distinguish the F derived features 
from the source and target domains. Then, F-derived features can be 
aligned at the class level by alternatively optimizing G and D in two 
steps. 

In step one, D is trained to distinguish features from the source and 
target domains at the class level by minimizing the following loss 
function (Eq. (1)). 

min
D

LD = −
∑ns

i=1
pilogP(d = 0, c = k|fi)

−
∑nt

j=1
pjlogP

(
d = 1, c = k

⃒
⃒
⃒fj

) (1)  

where fi and fj are the features extracted by F on samples from the source 
and target domains; d denotes the domain code, where 0 refers to the 
source domain and 1 refers to the target domain; k denotes the class 
code, where 1 refers to the IAF extent or boundary class and 0 refers to 
the background class; and P(d, c|f) is the probability output from D. ns 
and nt are the numbers of samples from the source and target domains, 
respectively. pi and pj are the class soft labels (i.e., probability of class) 
for source sample i and target sample j. In this training step, only the 
parameters in D are updated, and the parameters in G are fixed. 

In step two, G is trained to learn the domain invariant features for the 
segmentation task by minimizing a loss function combined with the 
segmentation loss (Lseg) and the adversarial loss (Ladv) (Eq. (2)) 

min
F,C

(Lseg + λLadv) (2)  

where λ is the empirical weight balancing segmentation and adversarial 
loss. The segmentation loss represents the difference between the pre-
diction and the ground truth, which guides G to learn the knowledge of 
the segmentation task. The Tanimoto format loss is used here because of 
its superiority in addressing the sample imbalance issue (Diakogiannis 
et al., 2020): 

Lseg =

∑ns
i=1piyi

∑ns
i=1
(
p2

i + y2
i
)
−
∑ns

i=1(piyi)
(3)  

where pi represents the prediction probability that the source domain 
sample x(s)

i belongs to the positive class (the IAF extent or boundary in 
this study), and yi refers to the corresponding ground truth label. The 
adversarial loss Ladv is a cross-entropy function denoting the difference 
between the features from the source and target domains; this function 
forces F to generate domain-aligned features. 

Ladv = −
∑nt

j=1
pjlogP

(
d = 0, c = k

⃒
⃒
⃒fj

)
(4)  

In this training step, only the parameters in G are updated, and the 
parameters in D are fixed. 

Through the iterative optimization of both Equations (1) and (2), 
FADA achieves class-level feature alignment and enhances the trans-
ferability of the segmentation model. 

2.2.2. Class prior knowledge from ancillary data 
FADA achieves feature alignment at the class level by incorporating 

the class information in the source and target domains, i.e., pi and pj in 
Eq. (1) and (4). However, pj is unknown due to the absence of ground- 
truth labels in the target domain. As recommended by Wang et al. 
(2020), in standard FADA, pj is estimated by classifier C trained from the 
source domain data (i.e., pseudo label). This strategy is also used in the 
original FieldSeg-DA. However, there is a risk of negative transfer when 
classifier C trained in the source domain produces unreliable pseudo- 
labels. 

Unlike in general image segmentation tasks, prior information is 
available for IAF extraction through various global land cover datasets 
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produced by the remote sensing community. Most global land cover 
datasets, e.g., DW (Brown et al., 2022), ESA (Zanaga et al., 2022), GLC- 
FCS (X. Zhang et al., 2021), and GlobeLand30 (Chen et al., 2021), 
contain the cropland layer, which has semantic information closely 
related with IAF. Despite the coarse spatial resolution (10–30 m), these 
ancillary datasets could contain valuable class information for guiding 
FADA training in the IAF extraction network. DW data are chosen as the 
ancillary data in this study for their unique ability to provide globally 
consistent, near real-time land use and land cover classification infor-
mation (Brown et al., 2022). 

Regarding the domain adaptation of U-LSTM for IAF extent extrac-
tion, the pseudo-label information (i.e., pj in Eq. (1) and (4)) is directly 

replaced with the cropland probability derived from the DW because of 
the similar semantic information between IAF extent and cropland land 
cover. Here, the cropland probability is computed using the mean of the 
top 10th percentile values of the DW cropland probability throughout 
one year, considering that cropland is often misclassified as other land 
cover types during the nongrowing season in the DW. For the domain 
adaptation of the branch network for IAF boundary extraction, the in-
formation provided by DW cannot be used because the 10-metre reso-
lution image is too coarse to provide accurate IAF boundary 
information. Thus, the prior IAF boundary information is accessed from 
the IAF extent probability image predicted by the domain-adapted U- 
LSTM. The Sobel operator is applied to the predicted IAF extent 

Fig. 4. Geographic locations of the experimental areas and the corresponding GF-2 images. The red region represents the location of the source and temporal target 
domain, and the blue region represents the locations of the spatial target domains. 

Table 1 
Summary of climate and crop conditions in five study areas and description of corresponding single-date GF-2 data.  

Domain Site Location Climate type Main characteristics Main crops Acquisition date 

Source Funan-source1 
Funan-source2Funan- 
source3 

32◦36′N,115◦24′E Arid to humid 
continental climate 

Mostly flat Soybean, maize, and wheat 2020/7/29 (growing 
Season) 

Target   

(Temporal) 

Funan-target1 
Funan-target2Funan- 
target3 

32◦36′N,115◦24′E Arid to humid 
continental climate 

Mostly flat Soybean, maize, and wheat 2019/6/23 (non- 
growing season) 

Target  
(Spatial) 

Chengdu 31◦2′N,104◦0′E Monsoon climate Flat plains to 
mountainous 

Wheat, barley, canola, and 
legume crops 

2018/4/24 

Ruian 27◦46′N,120◦34′E Subtropical monsoon 
climate 

Gently undulating 
landscape 

Rice, maize, barley, 
potatoes, and soybean 

2021/1/17 

Chongqing 30◦11′N,107◦19′E Warm temperate climate Mountainous Rice, maize, Oilseeds and 
peanuts 

2021/5/9 

Songyuan 45◦2′N,125◦52′E Humid continental 
climate 

Vast plains in most 
areas 

Soybean, maize, wheat and 
sorghum 

2022/9/11  
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probability image to enhance the boundary information. Then, the 
output Sobel image is stretched into 0–1 (linear 1 %) and used to replace 
the pseudo-label information of the IAF boundary in standard FADA. 
Through the guidance of the DW, the proposed FADA-A is expected to 
further enhance the spatial transferability of the IAF extraction network. 

2.3. Connecting boundaries and filling field (CB-FF) 

Similar to the postprocess module in the original FieldSeg-DA (Liu 
et al., 2022), CB-FF is used to integrate the predicted IAF extent and 
boundary results in our proposed method. First, a series of morpholog-
ical operations, including skeletonization, dilation, and re- 
skeletonization, is used to connect boundaries with breakpoints in the 
predicted boundary result. Second, a filling-field (FF) operation is 
applied to fuse the predicted boundary and extent images. In this 
operation, the predicted IAF extent image is clipped with the predicted 
boundary and then filled by a morphological “closing” operation. CB-FF 
effectively eliminates over-fragmented boundaries and resolves overly 
aggregated extents in the IAF boundary and extent images predicted by 
UNet and U-LSTM. 

3. Experiments 

3.1. Study areas 

To assess the performance of our proposed FieldSeg-DA2.0 in IAF 
extraction, we conducted experiments in five distinct municipal districts 
in China, i.e., Funan, Chengdu, Ruian, Chongqing and Songyuan (Fig. 4). 
These regions showcase a diverse range of climates, crop types and IAF 
morphologies (Table 1). For example, IAFs in Ruian featured a higher 
degree of complexity than the other regions due to intricate river 

networks and mountainous terrain. Conversely, IAFs in Songyuan show 
a larger size and more homogeneous pattern than the other four regions. 
Due to the adequate number of labelled samples, images acquired in 
Funan during the growing season (three subimages denoted as Funan- 
source1, Funan-source2, and Funan-source3) were selected as the 
training samples. Then, the temporal transferability was evaluated using 
test GF-2 images acquired in Funan during the non-growing season 
(three subimages denoted as Funan-target1, Funan-target2, and Funan- 
target3) when the wheat had been harvested. The spatial transferability 
was evaluated by using test images acquired in different areas, including 
Chengdu, Ruian, Chongqing and Songyuan. 

3.2. Data and preprocessing 

For the five experimental regions, we selected ten subimages of 
Gaofen-2 (GF-2) as high-resolution image input for IAF extraction net-
works. Their information is presented in Table 1. To obtain surface 
reflectance images, we performed orthorectification, radiometric cali-
bration, and atmospheric correction. These steps reduce radiometric 
inconsistencies caused by variations in terrain and atmospheric condi-
tions. To best utilize the spectral and spatial information from the GF-2 
imagery, we employed the Gram-Schmidt Adaptive (GSA) method to 
fuse the coarse spatial resolution (4 m) multispectral bands with the 
corresponding high spatial resolution (1 m) panchromatic band image. 
The resulting surface reflectance images consist of four multispectral 
bands with a spatial resolution of 1 m. 

Additionally, each GF-2 image was paired with a time series of 
Sentinel-2 images. We selected Sentinel-2 images that were composited 
every 10 days in the same year as the GF-2 images. The time series 
consisted of 36 frames with four bands (red, green, blue and near- 
infrared) at a resolution of 10 m. 
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Fig. 5. Ground truth data from the extents and boundaries of training and test images sampled at different locations (RGB composites).  
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The ground truth labels of the IAF boundary and extent were ac-
quired through manual digitization of GF-2 images (Fig. 5). 

3.3. Experimental setup 

To evaluate the spatiotemporal transferability of FieldSeg-DA2.0, we 
compared it with two benchmark models, FieldSeg-DA (Liu et al., 2022) 
and DeeplabV3+ (Chen et al., 2018). We chose FieldSeg-DA for com-
parison because it is the predecessor of our model and achieves state-of- 
the-art performance in IAF extraction. Additionally, we chose Deep-
labV3 + due to its widespread use in various image segmentation tasks. 
Notably, both of the compared models were designed primarily for 
single high-resolution image input without requiring Sentinel-2 time 
series. Additionally, we compared two other practical UDA methods, 
namely ProDA (P. Zhang et al., 2021) and DUA (Mirza et al., 2022), 
which replaced FADA-A respectively and combined with FieldSeg2.0 to 
validate the generality of our framework. 

Comparative experiments in the source domain. We conducted 
cross-validation experiments in the source domain, encompassing sub-
images of Funan-source1, Funan-source2, and Funan-source3. This 
enabled us to compare the performance of FieldSeg2.0 (FieldSeg-DA2.0 
without FADA-A) with the performances of other IAF extraction 
methods, including DeeplabV3 + and FieldSeg (FieldSeg-DA without 
FADA). Domain adaptation modules were not utilized for all models in 
the source domain. 

Temporal transfer experiments. To assess the temporal transfer 
capability of the proposed model, we conducted an experiment with 
FieldSeg2.0, FieldSeg-DA, FieldSeg, and DeeplabV3 + in the temporal 
target domain (Funan-target1, Funan-target2, and Funan-target3). 
FieldSeg2.0 did not utilize FADA-A because the introduced U-LSTM 
module mitigates the need for temporal domain adaptation. 

Spatial transfer experiments. To evaluate the spatial transfer 
capability, we conducted an experiment with FieldSeg-DA2.0, FieldSeg- 
DA, FieldSeg2.0-ProDA, FieldSeg2.0-DUA and DeeplabV3 + in different 
spatial target domains, including subimages in Chengdu, Ruian, 
Chongqing and Songyuan. 

Ablation experiments. We performed ablation experiments to 
analyse the contribution of individual components of our proposed 
method to the overall performance. ULSTM and FADA-A were individ-
ually removed from the model, and their contributions to temporal and 
spatial transferability were validated in temporal transfer domains and 
spatial transfer domains. Furthermore, we established a baseline by 
removing both modules, which serves as a reference point for evaluating 
the impact of removing specific components. 

3.4. Implementation details 

The GF-2 imagery and its corresponding IAF labels were divided into 
256 × 256 patches due to the limited GPU memory size. The corre-
sponding Sentinel-2 data were clipped based on the coordinates of the 
GF-2 patch and resampled to a size of 32 × 32 for convenient processing. 
To monitor the model’s performance, 10 % of the training samples were 

set aside as a validation set. The training process ends when the vali-
dation accuracy does not improve over 100 consecutive epochs. To 
augment the training data, we introduced geometric transformations to 
the patches, including horizontal, vertical, and diagonal flips, enabling 
the model to acquire rotation-invariant features. We initialized our 
learning rate at 1e-4 and employed the Adam optimizer with betas of 0.9 
and 0.999. For the training of FADA-A and FADA, we initialized the 
discriminator’s learning rate at 1e-3 and conducted training for 4,000 
epochs. All experiments were executed utilizing the PyTorch framework 
on Ubuntu systems equipped with NVIDIA GeForce 3090 24 GB GPUs. 

3.5. Accuracy assessment 

We used both pixel-based attribute and object-based geometric 
measurements to assess the accuracy of IAF extraction. The pixel-based 
attribute measurements include the Precision, Recall, F1 − score and the 
mean intersection over union (mIoU). These are calculated as follows: 

Precision =
TP

TP + FP
(5)  

Recall =
TP

TP + FN
(6)  

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(7)  

mIoU =

(
TP

TP + FP + FN
+

TN
TN + FP + FN

)

/2 (8)  

where TP refers to the “true positive”, TN refers to “true negative”, FP 
refers to “false positive” and FN refers to “false negative”. 

The global total classification (GTC) index (Li et al., 2023) developed 
based on under segmentation and over segmentation error measure-
ments (Persello and Bruzzone, 2010) is applied as an object-based 
evaluation metric. Let Di(i = 1,⋯,m) be a predicted IAF and 
Oj(j = 1,⋯, n) be the reference IAF. Let area(Di) and area(Oj) be the 
areas of Di and Oj, respectively, and area(Di ∩ Oj) be their overlapping 
area. The region Dx = argmax

∀Di

(area(Di ∩ Oj)). The local-error over 

classification OCj
(
Oj,Dx

)
error and an under classification UCj

(
Oj,Dx

)

error can be calculated as: 

OCj
(
Oj,Dx

)
= 1 −

area(Oj ∩ Dx)

area (Oj)
(9)  

UCj
(
Oj,Dx

)
= 1 −

area(Oj ∩ Dx)

area (Dx)
(10)  

Based on this, GTC was introduced, with lower GTC values indicating 
higher accuracy in IAF extraction: 

TCj
(
Oj,Dx

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

OCj
(
Oj,Dx

)2
+ UCj

(
Oj,Dx

)2

2

√

(11) 

Table 2 
Assessment of the IAF accuracy in the .  

Area  Funan-source1 Funan-source2 Funan-source3 Average 

F1-score DeeplabV3þ 88.40 %  88.71 %  81.91 %  86.34 % 
FieldSeg  90.41 %  89.16 %  90.70 %  90.09 % 
FieldSeg2.0  90.62 %  91.06 %  90.30 %  90.66 % 

mIoU DeeplabV3þ 80.02 %  77.46 %  70.43 %  75.97 % 
FieldSeg  89.13 %  86.01 %  88.64 %  87.93 % 
FieldSeg2.0  89.93 %  88.84 %  89.91 %  89.56 % 

GTC DeeplabV3þ 53.01 %  61.01 %  63.02 %  59.01 % 
FieldSeg  17.77 %  16.10 %  13.12 %  15.66 % 
FieldSeg2.0  12.21 %  11.28 %  9.02 %  10.84 % 

Source domain using different methods 
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GTC =
∑n

j=1

(

TC
(
Oj,Dx

)
×

area
(
Oj
)

∑n
j=1area

(
Oj
)

)

(12)  

4. Results 

4.1. Results of the source domain 

Table 2 showcases the accuracy metrics of IAF extraction perfor-
mances for different IAF extraction methods in the source domain ex-
periments. Among all the methods, FieldSeg2.0 performs best in all 
three metrics. And the utilization of gradient maps also results in su-
perior performance on the GTC metric compared to other methods. 
FieldSeg also achieves high accuracy values, with only slightly lower 
values than FieldSeg2.0. In contrast, DeeplabV3 + significantly 

underperforms. In particular, the GTC of DeeplabV3 + is nearly five 
times that of FieldSeg2.0, indicating a large boundary recognition error 
for DeeplabV3 + . As shown in Fig. 6, IAFs extracted by DeeplabV3 + are 
excessively aggregated due to a severe omission of the IAF boundaries, 
while the IAFs extracted by FieldSeg2.0 and FieldSeg both show align 
well with the ground truth label. 

4.2. Results of the temporal transfer experiment 

Table 3 presents the accuracies of different IAF extraction algorithms 
in the temporal transfer experiment. Overall, the accuracies in the target 
domain (Table 3) are lower than the accuracies in the source domain 
(Table 2) for all compared methods compared. Nonetheless, the accu-
racy of FieldSeg2.0 decreases the least from the source domain to the 
target domain, thereby clearly outperforming other methods. FieldSeg- 

Fig. 6. Extracted IAFs with different methods for GF-2 images acquired in the source domain. (a) refers to the GF-2 image. (b) refers to the reference IAF. (c)- (e) are 
the IAFs extraction results from different methods. 

Table 3 
Assessment of the IAF accuracy in the temporal target domain using different methods.  

Area  Funan-target1 Funan-target2 Funan-target3 Average 

F1-score DeeplabV3þ 79.71 %  81.19 %  69.71 %  76.87 % 
FieldSeg  80.27 %  79.66 %  71.24 %  77.06 % 
FieldSeg-DA  80.94 %  81.75 %  75.27 %  79.32 % 
FieldSeg2.0  84.94 %  86.74 %  80.12 %  83.93 % 

mIoU DeeplabV3þ 64.57 %  61.29 %  43.46 %  56.44 % 
FieldSeg  66.04 %  59.03 %  48.68 %  57.92 % 
FieldSeg-DA  65.43 %  65.65 %  57.66 %  62.91 % 
FieldSeg2.0  73.55 %  71.69 %  66.19 %  70.48 % 

GTC DeeplabV3þ 75.01 %  71.02 %  73.02 %  73.02 % 
FieldSeg  52.74 %  51.08 %  56.62 %  53.48 % 
FieldSeg-DA  39.44 %  42.08 %  48.72 %  43.41 % 
FieldSeg2.0  34.12 %  33.3 %  31.21 %  32.88 %  
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Fig. 7. Extracted IAFs using different methods for GF-2 images acquired in the temporal target domain. The red highlighted areas are confusing feature areas that 
require attention, while the yellow lines denote the reference IAF. (a) contains the GF-2 images. (b) contains the reference IAF. (c)- (f) are the IAFs extraction results 
from different methods. 

Table 4 
Assessment of the IAF accuracy in the spatial target domain using different methods.  

Area  Chengdu Ruian Chongqing Songyuan Average 

F1-score DeeplabV3þ 65.39 %  68.05 %  27.20 %  95.28 %  63.98 % 
FieldSeg-DA  80.12 %  68.81 %  25.64 %  95.94 %  67.62 % 
FieldSeg2.0-ProDA  80.88 %  86.25 %  64.09 %  96.08 %  81.83 % 
FieldSeg2.0-DUA  81.01 %  84.21 %  63.87 %  74.11 %  75.80 % 
FieldSeg-DA2.0  81.77 %  88.27 %  66.52 %  96.28 %  83.21 % 

mIoU DeeplabV3þ 53.38 %  55.59 %  33.42 %  79.53 %  55.48 % 
FieldSeg-DA  77.22 %  63.32 %  30.35 %  81.67 %  63.14 % 
FieldSeg2.0-ProDA  77.69 %  72.24 %  62.97 %  84.21 %  74.28 % 
FieldSeg2.0-DUA  77.71 %  70.94 %  62.19 %  69.72 %  70.14 % 
FieldSeg-DA2.0  78.95 %  74.59 %  65.21 %  84.58 %  75.83 % 

GTC DeeplabV3þ 98.89 %  73.01 %  93.69 %  71.77 %  85.18 % 
FieldSeg-DA  34.62 %  68.81 %  90.01 %  61.07 %  63.80 % 
FieldSeg2.0-ProDA  33.32 %  60.37 %  84.11 %  44.07 %  55.47 % 
FieldSeg2.0-DUA  32.14 %  65.41 %  75.27 %  61.01 %  58.46 % 
FieldSeg-DA2.0  29.2 %  42.21 %  53.41 %  37.08 %  40.70 %  
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DA ranks second in this experiment, indicating that the FADA module 
also benefits transfer learning across different temporal domains to some 
extent. FieldSeg and DeeplabV3 + achieve the lowest accuracy due to 
their lack of domain adaptation modules. 

A detailed comparison of IAF extraction errors from different 
methods is shown in Fig. 7. Overall, FieldSeg2.0 effectively distinguishes 
IAF and non-IAF by incorporating phenological features throughout the 
year. In contrast, other methods often confuse IAF with other land cover 
types due to the significant spectral change in IAF from the source 
domain (growing season) to the target domain (non-growing season). 
For instance, in Funan-target1 and Funan-target3, some forest and bare 
land patches are misclassified as IAF, while in Funan-target2, the paddy 
fields are misclassified as non-IAFs. In summary, FieldSeg2.0 maintains 
robust performance in the temporal transferring experiments. This 
performance is attributed to its ability to capture dynamic phenological 
features throughout a year rather than focusing on the instantaneous 
features in a single image. 

4.3. Results of the spatial transfer experiment 

Table 4 presents the accuracies of different IAF extraction models in 

the spatial transfer experiment. FieldSeg-DA2.0 still achieves the best 
accuracies among all the methods, obviously outperforming FieldSeg- 
DA, FieldSeg2.0-ProDA, FieldSeg2.0-DUA and DeeplabV3 + . The 
pixel-based accuracy metric (F1-score and mIoU) and the object-based 
metric (GTC) values achieved by FieldSeg-DA2.0 are approximately 10 
% and 20 %, respectively, higher than those of FieldSeg-DA. The pixel- 
based accuracy metrics of FieldSeg2.0-ProDA and FieldSeg2.0-DUA 
exceed those of FieldSeg-DA, illustrating the robust generality of our 
proposed framework, which can benefit from any novel UDA methods. 
However, these two UDA methods exhibit slightly worse domain adap-
tation performance compared to FADA-A. Additionally, DeeplabV3 +
without using UDA method achieves the worst performance with the 
lowest accuracies. 

We further visually examine the detailed difference in IAF extraction 
for the three compared methods (Fig. 8). The IAFs in Chengdu exhibit 
more diverse colours and fragmented patterns than the source domain; 
thus, FieldSeg-DA and DeepLabV3 + miss some purple IAFs and bare 
IAFs that do not exist in the source domain, and they also generate 
overly large IAF sizes, which obviously deviate from the ground truth 
(Fig. 8d). In comparison, FieldSeg-DA2.0, FieldSeg2.0-ProDA, and 
FieldSeg2.0-DUA yield more reasonable results. FieldSeg-DA2.0, in 

Fig. 8. IAF extracted with different methods in different spatial target domains. The yellow highlighted areas are confusing feature areas that require attention, while 
the red lines denote the reference IAF. (a) contains the GF-2 images. (b) contains the reference IAF. (c)- (g) are the IAFs extraction results from different methods. 
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particular, demonstrates the closest alignment with ground truth. In 
Ruian, there was a new IAF type, greenhouse, which is not present in the 
source domain. Both FieldSeg-DA and DeepLabV3 + fail to recognize 
this IAF type because its textures and colours greatly differ from those of 
other IAFs, while FieldSeg-DA2.0 correctly identifies them despite some 
adhesion issues. FieldSeg2.0-ProDA and FieldSeg2.0-DUA miss some 
greenhouses and also encounter adhesion issues. In Chongqing, the 
majority of IAFs take the form of terraced, irregularly shaped, and 
densely distributed features. Both FieldSeg-DA and DeeplabV3 +
struggle to achieve satisfactory results in this region, exhibiting serious 

confusion with forests. In contrast, FieldSeg-DA2.0, FieldSeg2.0-ProDA 
and FieldSeg2.0-DUA achieves much more acceptable results. But 
FieldSeg-DA2.0 has better adaptation performance. In Songyuan, the 
IAFs exhibit similar characteristics with the source domain, all methods 
except FieldSeg2.0-DUA generate reasonable results. 

4.4. Results of ablation experiments 

Ablation experiments were conducted in both temporal and spatial 
transferring experiments to assess the influence of ULSTM and FADA-A 
on temporal and spatial transferability. For comparison, we removed the 
FADA-A module from FieldSeg-DA2.0 and replaced the ULSTM module 
with UNet to establish a baseline model. Then, ULSTM and FADA-A are 
respectively introduced into the baseline model to evaluate their con-
tributions on model transferability. The results of each ablation exper-
iment are presented and compared with the baseline model (Table 5 and 
Table 6). F or the temporal transferring experiment, introducing ULSTM 
module (replacing corresponding UNet in the baseline model with 
ULSTM) resulted in 6.88 % increase in F1-score, a 12.57 % increase in 
mIoU, and an 18.05 decrease in GTC over the baseline model. Intro-
ducing FADA-A module also improves the accuracy of base-line model, 
yielding improvements of 3.71 % in F1-score, 9.42 % in mIoU, and 
11.76 % in GTC. It indicates that both ULSTM and FADA-A contribute in 
enhancing the temporal transferability, with ULSTM making a larger 
contribution. For the spatial transferring experiment, introducing 
ULSTM module led to improvements of 13.49 % in F1-score, 10.81 % in 
mIoU, and 10.66 % in GTC over the baseline model. Introducing FADA-A 

Table 5 
Ablation experiments in the temporal target domain.  

ULSTM FADA-A F1-score (average) mIoU (average) GTC (average) 

− − 77.05 %  57.91 %  50.93 % 
− √  80.76 %  67.33 %  38.77 % 
√ − 83.93 %  70.48 %  32.88 % 
√ √  85.09 %  72.11 %  32.53 %  

Table 6 
Ablation experiments in the spatial target domain.  

ULSTM FADA-A F1-score (average) mIoU (average) GTC (average) 

− − 61.53 %  55.72 %  81.84 % 
− √  78.98 %  69.54 %  67.21 % 
√ − 75.02 %  66.53 %  71.18 % 
√ √  83.21 %  75.83 %  41.61 %  

Fig. 9. Feature visualization using t-SNE for different temporal target domains. (a) depicts features from U-LSTM, which takes a GF-2 gradient map and Sentinel-2 
time series as input. (b) depicts features from UNet, which takes a single-date GF-2 image as input. (c) depicts the combined FADA-A using (b) as a basis. 
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module into the baseline method resulted in a 17.45 % increase in F1- 
score, a 13.82 % increase in mIoU, and a 14.63 % decrease in GTC. It 
indicates that FADA-A contributes more in enhancing the spatial 
transferability than ULSTM. And the full model with both FADA-A and 
ULSTM module achieves the best results in both temporal and spatial 
transferring experiments. These results demonstrate that U-LSTM and 
FADA-A mainly contribute on enhancing temporal and spatial trans-
ferability respectively, which is consistent with our design objective. 

5. Discussion 

5.1. Superiority of the U-LSTM module in enhancing temporal 
transferability 

To understand how U-LSTM improves temporal transferability, we 
employ the t-distributed stochastic neighbour embedding (t-SNE) algo-
rithm to visualize feature representations obtained through U-LSTM, 
UNet adapted by FADA-A, and UNet trained in the source domain 
(Fig. 9). 5,000 IAF samples and 5,000 non-IAF samples are randomly 
selected in the temporal target domain (Funan-target1, Funan-target2, 
and Funan-target3) for training t-SNE. The results demonstrate that U- 
LSTM exhibits the highest capability in distinguishing IAF and non-IAF 

Table 7 
The IAF extraction accuracy of various U-LSTMs employing either FADA or FADA-A in the spatial target domain.  

Area  Chengdu Ruian Chongqing Songyuan Average 

F1-score FieldSeg2.0  69.80  78.98  54.74  96.57  75.02 
FieldSeg-DA2.0 with FADA  80.90  85.35  64.07  96.07  81.60 
FieldSeg-DA2.0  81.77  88.27  66.52  96.28  83.21 

mIoU FieldSeg2.0  57.15  65.01  59.41  84.55  66.53 
FieldSeg-DA2.0 with FADA  77.69  71.48  62.79  84.55  70.88 
FieldSeg-DA2.0  78.95  74.59  65.21  84.58  75.83 

GTC FieldSeg2.0  58.85  65.01  89.69  47.77  71.18 
FieldSeg-DA2.0 with FADA  32.72  65.85  87.11  45.02  61.89 
FieldSeg-DA2.0  29.20  42.21  53.41  37.08  41.61  

Fig. 10. Comparison of prior information in different domain adaptation models. (a) (d) depict the reference IAF. (b) (e) depict the prior knowledge guiding the 
FADA-A model, with (e) provided by DW data and (b) obtained through the Sobel operator on the adapted IAF extent probability maps. (c) (f) depict prior knowledge 
guiding the FADA model, with both directly provided by classifiers. 
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regions in the feature space. In comparison, the abstract features 
extracted by UNet adapted by FADA-A and UNet trained from the source 
domain display weaker and the weakest separability, respectively, be-
tween IAF and non-IAF. These results indicate the ability of U-LSTM to 
generate robust features across temporal target domains. This can be 
attributed to the usage of the phenological features in the Sentinel-2 
time series. 

5.2. Superiority of FADA-A in enhancing the spatial transferability 

To assess the effectiveness of FADA-A in enhancing transferability for 
the IAF extraction model, we conducted spatial transfer experiments 
comparing standard FieldSeg-DA2.0 with two degraded versions, 
FieldSeg-DA2.0 with FADA (where FADA-A is degraded to FADA) and 
FieldSeg-2.0 (where FADA-A is excluded) in spatial transferring exper-
iments. FieldSeg-DA2.0 and FieldSeg-DA2.0 with FADA achieved 
significantly higher accuracies than FieldSeg2.0 without domain adap-
tation (Table 7), demonstrating the necessity of domain adaptation. 
FieldSeg-DA2.0 outperforms FieldSeg-DA2.0 with FADA in all four re-
gions, particularly in Ruian and Chongqing. This is a result of the 
presence of “new” land cover types (e.g., rivers, greenhouses and forests) 
in these two areas that are absent from the source domain, leading to 
inaccuracies in the pseudo-labels generated by the source domain model 
(Fig. 10c and f) and thus negatively impacting the FADA. In contrast, 
these “new” land cover types are not new for the DW. Moreover, in 
contrast to the pseudo-labels generated by the source domain model 
(Fig. 10c and f), the DW does not overlook IAFs that significantly differ 
from the source domain features; instead, it comprehensively covers 
IAFs with various features in new areas (Fig. 10e), which is crucial for 
domain adaptation techniques. Consequently, FADA-A based on the DW 
can capture the common features of IAFs in diverse regions, rather than 

blindly relying on features learned by the source domain model. 
Furthermore, the DW also contributes to more complete delineation of 
IAF boundaries (Fig. 10b), facilitating domain adaptation of IAF 
boundary extraction models. 

To further illustrate the feature alignment performance of FADA and 
FADA-A, we employed t-SNE to visualize the two-dimensional feature 
distributions before and after domain adaptation (Fig. 11). We randomly 
selected 5000 samples for both positive and negative classes. Overall, 
both FADA-A and FADA helped networks generate more distinct fea-
tures between the positive and negative classes than FieldSeg2.0 
without domain adaptation. However, FADA-A achieved better class 

Fig. 11. Visualization of features using t-SNE for various domain adaptation methods in the spatial target domain. (a)- (c) represent feature visualization for different 
domain adaptation methods in the IAF extent branch, and (d)- (f) depict feature visualization for different domain adaptation methods in the IAF boundary branch. 
Blue points represent IAF extent or boundary samples, and yellow points represent non-IAF extent or non-IAF boundary samples (background samples). 

Fig. 12. Comparison of the mIoU of FieldSeg-DA2.0 by setting different syn-
thesis percentile of DW. In the legend, the numbers represent percentiles of the 
composite. For instance, the number 10 signifies selecting the mean of the top 
10th percentile values of the DW cropland probability for each sample over 
one year. 
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discrimination in the feature space than FADA, especially in Chongqing 
and Ruian. These results indicate that FADA-A is better at aligning 
features across different spatial domains than FADA. 

5.3. Sensitivity analysis of the synthesis percentile of DW 

To derive class prior knowledge to guide FADA-A training, we 
compute a synthetic cropland probability for each sample by averaging 
the DW cropland probability above the top 10th percentile values 
throughout one year. As the top 10th of synthesis percentile is an 
empirical setting, we further explore how different synthesis percentile 
values affect the accuracy of FieldSeg-DA2.0 (Fig. 12). The results show 
that unreasonable synthesis selections can impact the final accuracy of 
IAF extraction. Too large synthesis percentile would more probably 
include DW data in non-growing season, leading to inaccurate estima-
tion of prior cropland probability. Conversely, a percentile that is too 
small ensures the exclusion of non-growing season data but is highly 
sensitive to outliers in the DW time-series. Based on our experiment, the 
setting of top 10th percentile helps to produce the most stable IAF 
extraction accuracy across all regions, thus is recommended for most 
applications. 

6. Conclusion 

In this article, we developed a novel IAF extraction network, 
FieldSeg-DA2.0, aiming to enhance the spatiotemporal transferability of 
the original FieldSeg-DA. FieldSeg-DA2.0 employs the main framework 
of FieldSeg-DA but utilizes two novel modules, U-LSTM for IAF extent 
extraction and FADA-A for domain adaptation. U-LSTM integrates in-
corporates features in the GF-2 image and phenological features in the 
Sentinel-2 time series, which enhances temporal transferability without 
sacrificing spatial details. The FADA-A module is an improvement of 
FADA that introduces the prior information derived from the coarse- 
resolution land cover product to enhance feature alignment across 
different spatial domains. The experimental results in different target 
domains confirm the greater spatial and temporal transferability of 
FieldSeg-DA2.0 compared to the original FieldSeg-DA. In conclusion, 
FieldSeg-DA2.0 demonstrates robust performance in extracting IAF 
across diverse scenarios due to its effective integration of multiple 
remote sensing and land cover data. 
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