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A B S T R A C T   

Biological soil crusts (biocrusts) are essential components of desert ecosystems and provide diverse ecological 
services that benefit both the environment and human society. Biocrusts exhibit varying ecological functions as 
they pass through several successional stages—cyanobacteria, lichens, semi-mosses, and mosses. Remote sensing 
has been widely applied to monitor the spatial and temporal distributions of biocrusts. However, previous efforts 
have focused primarily on identifying biocrusts while disregarding their distinct successional stages. Addition
ally, biocrusts remain dormant or inactive for most of the year, resulting in biocrusts at different successional 
stages with similar spectral characteristics, making them challenging to distinguish. Fortunately, biocrusts at 
different successional stages exhibit distinct spectral responses to hydration events. By leveraging imagery with 
high temporal (1-day) and spatial (3-m) resolutions from the PlanetScope constellation, this study attempts to 
map biocrust successional stages on a regional scale using transient spectral responses induced by a snowmelt 
event. We employed a two-stage mapping framework utilizing the random forest (RF) model. The aim of the first 
stage was to identify biocrusts, while the second stage was focused on mapping their distinct successional stages. 
The results showed that snowmelt induces noticeable changes in biocrust spectra, helping to distinguish between 
biocrusts and other background components and among different stages of biocrust succession. Our mapping 
framework achieved overall accuracies of 0.96 (252 out of 263 correctly identified samples) and 0.8 (85 out of 
106 correctly identified) in the above two stages, respectively, highlighting its ability to delineate spatial patterns 
of successional stages across landscape and regional scales. This study lays a foundation for future in-depth 
exploration of desert ecosystem dynamics, including structure, ecological services, and responses to climate 
change and human activities. Furthermore, we suggest that event-induced spectral responses could improve 
classification accuracy, especially when spectral features are similar under general conditions.   

1. Introduction 

Biological soil crusts (biocrusts) are widely distributed in desert 
areas worldwide and are complex mixtures of soil granules and micro
scopic organisms such as cyanobacteria, algae, fungi, and bacteria, as 
well as macroscopic entities such as lichens and mosses (Belnap et al., 
2016). Despite their inconspicuous nature, biocrusts provide diverse 
ecological services that benefit both the environment and human 

society, including increasing resistance to wind erosion (Belnap and 
Gillette, 1998; Belnap et al., 2014; Eldridge and Leys, 2003; Hamid 
Lajevardi and Shafiei, 2023) and water erosion (Colica et al., 2014; Gao 
et al., 2020a, 2020b; Knapen et al., 2007; Rabiei et al., 2022; Zhao et al., 
2014); improving soil fertility through carbon and nitrogen fixation 
(Sancho et al., 2016); influencing plant germination and growth 
(Bowker et al., 2022; Li et al., 2005; Rivera-Aguilar et al., 2005); and 
providing habitat for a variety of insect species (Li et al., 2006). On the 
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other hand, biocrusts are highly vulnerable to climate change and 
physical disturbance (Escolar et al., 2012; Ferrenberg et al., 2015; 
Rodríguez-Caballero et al., 2018; Phillips et al., 2022). Furthermore, 
biocrusts exhibit a slow recovery process, with full recovery from 
physical disturbances potentially taking several decades (Deng et al., 
2020; Weber et al., 2016). Given their critical ecological significance 
and vulnerability, a reliable technique for mapping both the spatial 
distribution and temporal dynamics of biocrusts is imperative. 

Biocrust distribution is typically investigated in three ways: field 
surveys, predictive modeling, and remote sensing mapping. While field 
surveys are nominally the most reliable approach, they are time 
consuming, labor intensive, and limited to accessible areas (Wu and 
Zhang, 2013). Conversely, predictive models offer a pragmatic approach 
for regional-scale estimation (Beaugendre et al., 2017; Bowker et al., 
2006; Bu et al., 2016; Qiu et al., 2023; Rodríguez-Caballero et al., 2018). 
However, these methods generally estimate potential rather than actual 
distribution areas; they also rely on the availability of environmental 
data and are limited by both the spatial resolution and the quality of 
such data. For instance, soil and climate data typically have spatial 
resolutions of 0.25 to 10 km and are less reliable in desert areas due to 
the scarcity of meteorological and hydrological stations (Qiu et al., 
2023; Rodríguez-Caballero et al., 2018; Chen et al., 2023). Fortunately, 
advances in remote sensing have provided unprecedented opportunities 
for regional biocrust mapping (Smith et al., 2019). Currently, two pri
mary methods have emerged: index-based and machine learning (ML)- 
based approaches. For the index-based approach, Karnieli (1997) 
formulated a Crust Index (CI) for mapping cyanobacteria-dominated 
biocrusts based on a notable increase in the blue spectral band due to 
the presence of phycobilin pigment in the biocrust type. Chen et al. 
(2005) further developed the Biological Soil Crust Index (BSCI) for 

mapping lichen-dominated biocrusts by exploiting the spectral flatness 
from the green to red bands and the darkness in the visible and near- 
infrared bands of biocrust types. Recently, Wang et al. (2022) devel
oped two indices, the Sandy Land Ratio Crust Index (SRCI) and the 
Desert Ratio Crust Index (DRCI), to identify moss-dominated and lichen- 
dominated biocrusts. However, the information derived from individual 
indices is inherently limited. To address this issue, ML models have been 
introduced to take full advantage of multiple spectral features, with 
promising results using Support Vector Machine (SVM) in biocrust 
mapping (Collier et al., 2022; Havrilla et al., 2020; Rodríguez-Caballero 
et al., 2014). Although recent research has significantly advanced the 
power of biocrust mapping, most related efforts have concentrated on 
mapping biocrusts at specific successional stages (i.e., cyanobacteria, 
lichens, or mosses), and comprehensive mapping of biocrust succession 
is still lacking. 

Biocrusts exhibit various successional stages (Belnap et al., 2008) 
(Fig. 1). In a typical successional sequence, cyanobacteria and algae 
initiate the colonization of the soil surface, facilitating carbon and ni
trogen fixation to establish a stable, nutrient-rich substrate. Subse
quently, lichen coverage expands, often accompanied by the emergence 
of mosses. In an undisturbed environment with suitable soil properties, 
temperature, radiation, and sufficient water and nutrient resources, 
mosses eventually dominate biocrust communities, marking the final 
successional stage (Lan et al., 2012, 2013; Weber et al., 2016). Tran
sitioning through these stages, biocrusts exhibit varying ecological 
functions, i.e., different capacities for nutrient fixation and erosion 
resistance (Chamizo et al., 2012a; Housman et al., 2006; Yang et al., 
2022). Moreover, their successional status also serves as a bioindicator 
of ecosystem change due to their susceptibility to environmental stress 
and disturbance (Belnap et al., 2013; Chamizo et al., 2012b; Holt and 

Fig. 1. Ground-level photographs of biocrusts at different successional stages and common land cover types in the Gurbantunggut Desert. These photos were taken in 
July 2023. Subplots for each biocrust depict its appearance before and after a hydration event. 
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Miller, 2010; Phillips et al., 2022). Therefore, mapping biocrust suc
cession is essential for a comprehensive study of desert ecosystem dy
namics, including structure, ecological services, and responses to 
climate change and human intervention. However, biocrust succession 
mapping is not straightforward, as the spectra have similar profiles 
(Wang et al., 2023; Yamano et al., 2006), with nuances detectable only 
in narrow-band absorptions induced by specific pigments such as chlo
rophyll a (Lan et al., 2012) and carotenoids (Reuter and Müller, 1993). 
Consequently, differentiating between successional stages relies heavily 
on hyperspectral data, which severely limits the practicality of these 
methods, although promising results have been achieved in mapping 
cyanobacteria and lichens using hyperspectral imagery (Rodríguez-Ca
ballero et al., 2014). 

Fortunately, biocrusts at different successional stages exhibit distinct 
spectral responses to hydration events (i.e., rainfall, fog and snowmelt) 
(Wang et al., 2023; Yamano et al., 2006) (Fig. 1). Following hydration 
events, late-stage biocrusts (e.g., mosses) exhibit darker (i.e., lower 
reflectance) and greener (i.e., increased red light absorption) appear
ances than early-stage biocrusts (e.g., cyanobacteria) due to their 
greater water-holding capacity (Yair et al., 2011) and higher photo
synthetic biomass content (Proctor and Smirnoff, 2000; Lan et al., 2019). 
Despite this clear distinction, few studies have exploited this feature in 
biocrust succession mapping due to two major challenges. First, sym
biotic relationships are common within biocrust communities, resulting 
in considerable heterogeneity and mixing of biocrust communities even 
at the patch scale (Lan et al., 2019). This heterogeneity, coupled with the 
mixed pixel effect due to the limited spatial resolution (>10 m) of most 
wide-area imaging satellites, poses challenges in mapping biocrust 
successional stages at coarser spatial resolutions. Second, the harsh 
desert environment rapidly dehydrates biocrusts after hydration events, 
typically within <24 h (Chen et al., 2023), significantly limiting the 
duration of observable spectral responses. Recently, Planet, a 

commercial enterprise with >200 CubeSats in orbit, has provided the 
opportunity to acquire images with unprecedented temporal (1 day) and 
spatial (3 m) resolution (Planet Team, 2017). This increased observa
tional capacity enables the fine-scaled capture of spectral response in
tensities following hydration events within a 24-h period, which 
presents a promising avenue for biocrust succession mapping based on 
the distinct spectral responses of biocrusts at different successional 
stages to hydration events. 

Accordingly, we hypothesize that biocrust succession mapping may 
be feasible if the spectral responses of biocrusts to hydration events can 
be observed by high spatial-temporal resolution satellite sensors. We 
evaluated this hypothesis by conducting a case study in the Gurban
tunggut Desert, China. Our study was driven by three main objectives: 1) 
To identify a suitable hydration event that would hydrate biocrusts in a 
uniform and complete manner across the desert. 2) To quantify the 
distinct spectral responses of different successional stages of biocrusts. 
3) To map biocrust succession through the use of spectral responses 
induced by a hydration event in a random forest (RF) model. 

2. Study area and data 

2.1. Study area 

The Gurbantunggut Desert is the largest mobile and stabilized sandy 
desert in China; it is located in the transition zone between Central and 
East Asia (85–90◦E, 44–47◦N) and has an area of approximately 4.88 ×
104 km2 (Fig. 2(a)). The landscape is characterized by large and densely 
populated stabilized sand dunes, typically 30 to 50 m high (Li et al., 
2022), interspersed with sparse vegetation (e.g., Haloxylon ammoden
dron). Open spaces are often covered by biocrusts, with late-stage bio
crusts such as mosses (e.g., Syntrichia caninervis) and lichens (e.g., 
Collema tenex) dominating the interdune areas, while early-stage 

Fig. 2. (a) Location of the study area (elevation data: GMTED2010) and (b) the summer landscape of the Gurbantunggut Desert shown in Sentinel-2 imagery ac
quired during June 2023 and (c) the winter landscape of the Gurbantunggut Desert shown in Sentinel-2 imagery acquired during February 2023 and (d) an aerial 
image of a typical sand dune landscape in winter. (e) – (g) Representation of three distinct periods in the Gurbantunggut Desert throughout the year: a snow cover 
period from December to February, a snowmelt event in early to mid-March, and an arid period from April to October. These photos were taken in 2023. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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biocrusts such as cyanobacteria (e.g., Microcoleus paludosus) and algae 
(e.g., Chlorella vulgaris) occur on sand dune slopes (Zhang et al., 2010). 
Under a typical continental arid climate, the annual precipitation ranges 
from 80 to 150 mm (statistics from 2006 to 2020), falling predominantly 
during winter and spring. The average annual temperature varies be
tween 6 and 10 ◦C (statistics from 2006 to 2020), with the maximum 
summer temperature exceeding 40 ◦C. 

Throughout a year, the Gurbantunggut Desert typically experiences 
three periods: a three-month period covered by snow from December to 
February (Fig. 2(e)); a quick snowmelt event lasting approximately one 
week in early to mid-March (Fig. 2(f)); and ultimately a lengthy arid 
period from April to October with sparse precipitation (Fig. 2(g)). 
During the snow-covered period (Fig. 2(c) – (e)), snow depths typically 
range from 20 to 30 cm, accounting for approximately 30% of the 
annual precipitation (Zhou et al., 2010). Vertical infiltration is the pri
mary hydrological process during snowmelt events (Hu et al., 2015). 
This snowmelt process ensures uniform and thorough hydration of the 
biocrusts, maintaining their biological activity for one week. In addition, 
while snowmelt can also nourish ephemeral plant growth, the green-up 
of ephemeral plants usually occurs a few weeks later (Wang, 1993) and 
thus does not interfere with observations of biocrusts during snowmelt 
events. 

2.2. Data collection and preprocessing 

2.2.1. Ground truth data 
Ground truth data, including various georeferenced plots of biocrusts 

at different successional stages (i.e., cyanobacteria, lichens and mosses) 

and non-biocrust backgrounds (i.e., coarse and fine sand), were 
collected during a field survey conducted from July 13 to 25, 2023. 
Fig. 3 illustrates the survey process. Sample sites were selected every 10 
km along the desert highway (i.e., 46 sites in total), each representing a 
typical sand dune landscape, including dune ridges, slopes (i.e., 10 to 
40-m areas alongside ridges), and interdune areas. Several plots (i.e., 
ranging from 15 to 25) were randomly selected within each site. Each 
plot covered an area of 6 × 6 m and was oriented northward to simplify 
the calculation of the weighted mean for intersecting pixels. The loca
tion of the northwest (NW) point was measured for each plot by three 
independent portable GPS devices with a positional precision of <1.48 
m. Subsequently, an orthographic image with 1 mm spatial resolution 
was obtained for each plot using an unmanned aerial vehicle (DJI Mini 3 
Pro). To determine the coverage of different components, including 
mosses, lichens, cyanobacteria, fine sand, coarse sand, plants, and plant 
litter, Support Vector Machine (SVM) was applied to each aerial image. 
To this end, multiple ground-level photographs were captured from 
different perspectives using a digital camera (EOS M50 Mark II). Sub
sequently, three microbiologists performed a double-check of the 
component coverage estimation using both the aerial and ground-level 
photographs, as detailed in Appendix S1. Finally, a total of 314 bio
crust plots (with biocrust coverage >20%) and 479 non-biocrust plots 
were used in the two-stage mapping framework. The biocrust plots were 
categorized into four successional stages following Lan's research (see 
Section 3.1 for details): cyanobacteria (number of survey plots: 25), li
chens (167), semi-mosses (97), and mosses (25). The non-biocrust plots 
were categorized into two classes based on grain size: fine sand (302) 
and coarse sand (177). 

Fig. 3. Illustration of the field survey process. (a) Distribution of the sample sites. The red and blue points refer to the field survey points used as training and test sets 
for classification, respectively. Both sets are spatially independent. (b) Partial sample plots of a site, with the red flag representing the northwest corner of each plot. 
(c) Data collection for a standard sample plot, including a high-resolution UAV image (denoted as a 6 × 6 m translucent orange rectangle), averaged GPS coordinates 
(denoted as a green circle with a solid border) of the northwest corner of the plot from three independent GPS devices (denoted as three green circles with dotted 
borders), and multiple ground-level photographs taken from different perspectives. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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2.2.2. Remotely sensed data 
The PlanetScope constellation offers imagery with remarkable tem

poral (1 day) and spatial resolution (3.7 to 4.1 m, altitude dependent). 
This study used PlanetScope Ortho Analytic 8B Surface Reflectance 
(PSOA8BSR) data with eight spectral bands (Table 1), which is a Level 
3B product that has undergone several preprocessing procedures, 
including radiometric calibration, atmospheric correction, geometric 
correction, and orthorectification. The processed images achieved an 
orthorectified pixel size of 3 m and exhibited a colour depth of 16 bits 
per band. In this study, PSOA8BSR images of both the snowmelt period 
(i.e., March 10th, 11th, 12th, and 15th of 2023 when biocrusts were 
wet) and arid period (i.e., September 16th and 17th of 2022 when 
biocrusts were dry) were obtained from https://www.planet.com/. The 
images used from both periods were clear of clouds and haze and were 
acquired under comparable lighting conditions (i.e., solar and viewing 
angles) (Table 2). Only images classified as “standard” in the “quality 
category” and pixels flagged as “clear” were retained to ensure obser
vation quality. No evident geometric mismatches were observed among 
the images. A total of 3023 images were collected for this study. Images 
acquired by the same satellite on the same day were then mosaiced into 
strips. In addition, PSOA8BSR images were also collected throughout the 
year over our sample sites to investigate the variation in biocrust spectra 
(see Fig. 4 and Fig. 12). 

Many studies have reported significant radiometric inconsistency 
among PlanetScope constellation images due to discrepancies in spectral 
response function and radiometric quality across different sensors 
(Frazier and Hemingway, 2021; Houborg and McCabe, 2018; Kington 
and Collison, 2022; Latte and Lejeune, 2020). To address this issue, 
previous studies have attempted to rectify PSOA8BSR imagery by 
referencing globally consistent observations acquired by Landsat 8 
(Houborg and McCabe, 2018) or Sentinel 2 (Kington and Collison, 
2022). However, these methods address only four out of the eight 
PSOA8BSR bands (i.e., the blue, green II, red and NIR bands), leaving 
notable radiometric inconsistencies in the remaining bands (i.e., coastal 
blue, green I, yellow and red edge bands). To address this, we employed 
an invariant object-based method to mitigate radiometric in
consistencies among strips (see Appendix S2). Then, the harmonized 
strips obtained on the same day were mosaiced together, resulting in a 
collection of six images, one image per day (i.e., two images during the 
dry period and four images during the snowmelt period). In addition, 
Scene Classification Maps (SCL) were acquired from Sentinel-2 MSI data 
collected in February 2023 to identify snow-covered areas. The pixels 
labeled ‘11’ indicate the presence of snow and were subsequently sub
jected to the mapping procedure. 

3. Methodology 

3.1. Defining successional stages of biocrusts and their spectral response 
to hydration events 

Biocrusts exhibit several successional stages under different envi
ronmental conditions (i.e., climate, soil microenvironment and physical 
disturbance), resulting in diverse physiological and ecological charac
teristics (Belnap et al., 2008). Lan et al. (2013) quantitatively demar
cated biocrust succession into stages of cyanobacteria, lichens, semi- 
mosses and mosses (Fig. 1) utilizing clustering analysis that incorpo
rated multiple biological indicators (Lan et al., 2013). Their demarca
tion revealed clear differences in community structure and 
physicochemical characteristics among biocrusts at different 

successional stages. Therefore, this study adopted the category system. 
In addition, sands of different grain sizes provide a native background 
for different successional stages. We also included coarse and fine sand 
(as defined by ISO 14688-1:2017) in the biocrust succession categories 
because different sand grain sizes have different degrees of spectral 
similarity to biocrusts. Table 3 summarizes the definitions of the bio
crust succession categories in the study. 

Due to the arid environment in the Gurbantunggut Desert, which has 
an aridity index of 0.10 (Zomer et al., 2022), biocrusts remain dormant 
or inactive for most of the year, resulting in biocrusts at different suc
cessional stages with similar spectral characteristics. However, 
following a hydration event (e.g., snowmelt, or rainfall), biocrusts at 
different successional stages exhibit distinct spectral responses, partic
ularly in the following two aspects: darkening (i.e., reduced reflectance 
while maintaining spectral flatness between the green and red bands) 
and greening (i.e., increased red light absorption) (Wang et al., 2023; 
Yamano et al., 2006). Accordingly, this study used two spectral indices, 
the Biological Soil Crust Index (BSCI) (Chen et al., 2005) and the Red 
Band Depth (RBD) (Mutanga and Skidmore, 2004), to highlight the 
darkening and greening response of biocrusts at different successional 
stages to a hydration event. The BSCI quantifies spectral darkness in the 
visible and near-infrared bands and flatness from the green to red bands 
and is expected to increase after hydration (Eq. 1). The RBD quantifies 
photosynthetic intensity by measuring the depth of the red-light ab
sorption valley, and this parameter is also expected to increase after 
hydration (Eqs. 2 and 3). In comparison to the Normalized Difference 
Vegetation Index (NDVI), the Red Band Depth (RBD) exhibits greater 
resilience against the influence of soil background (Zeng et al., 2022), 
and has been demonstrated effective in the analysis of both hyper
spectral and multispectral data, particularly in identifying subtle spec
tral variations resulting from increased photosynthetic activity 
(Panigada et al., 2019). 

BSCI =
1 − L ×

⃒
⃒Rred − Rgreen

⃒
⃒

Rmean
GRNIR

(1)  

RBD = 1 −
Rred

Renvelope
Red

(2)  

Renvelope
Red =

RNIR − Rgreen

CWNIR − CWgreen
×
(

CWred − CWgreen
)
+ Rgreen (3) 

Table 1 
Band configuration for the PSOA8BSR imagery.  

Bands name Coastal Blue Blue Green I Green II Yellow Red Red-Edge NIR 

Central Wavelength (nm) 443 490 531 565 610 665 705 865 
Band Width (nm) 20 50 36 36 20 31 15 40  

Table 2 
PSOA8BSR images used in the study.  

Acquisition 
Date 

Cloud 
cover 
(%) 

Heavy 
haze 
percent 
(%) 

Sun 
azimuth 
(degree) 

Sun 
elevation 
(degree) 

View 
angle 
(degree) 

September 
16th, 2022 0.00 0.07 146.87 42.44 2.97 

September 
17th, 2022 

0.00 0.02 146.91 42.02 3.55 

March 10th, 
2023 

0.06 0.19 146.10 34.70 3.72 

March 11th, 
2023 

4.99 0.00 146.43 35.31 3.00 

March 12th, 
2023 0.03 0.21 144.85 35.18 2.62 

March 15th, 
2023 

0.10 0.15 144.24 36.19 3.29  
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where Rgreen, Rred, and RNIR represent the reflectance of the green II, red 
and near-infrared bands, respectively. Rmean

GRNIR is the mean of the reflec
tance values across the green II, red and near-infrared bands. The 
adjustment parameter L is set to a value of 2, as recommended by Chen 
et al. (2005). Renvelope

Red refers to the upper envelope value of the red band. 
CWgreen, CWred and CWNIR denote the central wavelengths of the green II, 
red, and near-infrared bands, which are 565, 665 and 865 nm, respec
tively, in this study. Using the Gurbantunggut Desert as an example, 
Fig. 4 shows the changes in the BSCI and RBD during one year for bio
crusts at different successional stages. The snowmelt event not only 
enhances the contrast between biocrusts and background (i.e., fine and 
coarse sand) but also aids in distinguishing among various stages of 
biocrust succession (i.e., cyanobacteria, lichens, semi-mosses and 
mosses). Furthermore, the spectral response signals remained stable 
during this period, making this event ideal for mapping biocrust 
succession. 

Based on Eq.1 and Eq. 2, the BSCI and RBD were calculated for both 

the wet (the snowmelt period) and dry periods. After combining the two 
indices and the eight reflectance bands, two 10-band images for the wet 
and dry periods were generated by averaging the images for each period. 
In addition, a difference image (10 bands) was derived by subtracting 
the dry image from the wet image. In the following section, the spectral 
features from the wet, dry and difference images were prefixed with 
“wet”, “dry” and “Δ”, respectively. Finally, a 30-band feature image was 
created by concatenating these “wet”, “dry” and “Δ” spectral features for 
the subsequent mapping procedure. 

3.2. Two-stage random forest classification 

The random forest (RF) model is an ensemble classifier that combines 
multiple decision trees generated from random subsets of training 
samples and features (Belgiu and Drăguţ, 2016). Its remarkable perfor
mance, interpretability, ease of implementation and high efficiency 
make it widely applied for various mapping tasks. Considering the 
sensitivity of RF to the proportion of samples in different classes (sample 
imbalance for classes) and the higher classification performance for the 
optimized features, this study employed a two-stage mapping frame
work (Hu et al., 2021; Sun et al., 2004) using the RF model based on 
different subsets of training samples and features (Fig. 5). In the first 
stage, RF was used to identify biocrusts against non-biocrust (fine and 
coarse sand), while in the second stage, RF was used to differentiate 
biocrusts at different successional stages, including cyanobacteria, li
chens, semi-mosses, and mosses. Both biocrust and non-biocrust samples 
were used in Stage I mapping, whereas only biocrust samples were used 
in Stage II mapping. For each stage, the samples were partitioned into 
two spatially independent sets, in which 70% of the data were allocated 
to the training set and 30% to the test set. To reduce the computational 
burden induced by correlated and irrelevant features, a forward selec
tion process was implemented for each stage to identify the most 
important features. This iterative process was initiated by training the 

Fig. 4. Hydration-induced spectral response of biocrusts at different successional stages. I, II and III represent three typical periods in the Gurbantunggut Desert 
during the year. (a) and (b) represent the average BSCI and RBD series, respectively, from PSOA8BSR images across our sample plots (Section 2.2.1) in 2023. The 
observations labeled “month name” denote the monthly compositions, while those marked as “1st, 2nd, 3rd, and 4th” refer to the observations during the snowmelt 
period. Mar* refers to the ten-day composite from March 20 to 30. 

Table 3 
Definition of the biocrust succession categories.  

Primary 
class 

Secondary 
class 

Definition Reference 

Biocrusts cyanobacteria 
lichens and mosses coverages 
<20% 

Lan et al. 
(2013)  

lichens lichens coverage >20% but 
mosses coverage <20%  

semi-mosses mosses coverage >20% but 
<75%  

mosses mosses coverage >75% 
Non- 

Biocrust Coarse sand 0.63 mm < grain size <2 mm ISO 14688- 
1:2017  Fine sand 63 μm < grain size <0.63 mm  

R. Chen et al.                                                                                                                                                                                                                                    
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RF classifier with a single feature that achieved the highest out-of-bag 
(OOB) accuracy. Subsequently, one feature at a time, which contrib
uted the greatest improvement to the OOB accuracy during each training 
cycle, was added sequentially. The iteration stopped when the maximal 
OOB accuracy was reached. Once the essential features were identified, 
the RF model was trained using 500 trees and a maximum tree depth of 
3. The performance of the RF classifier for each stage was evaluated 
using the precision (Eq. 4), recall (Eq. 5), and F1 score (Eq. 6) of the 
different categories. 

Precisioni =
TPi

TPi + FPi
(4)  

Recalli =
TPi

TPi + FNi
(5)  

F1 scorei = 2 ×
Precisioni × Recalli
Precisioni + Recalli

(6) 

TP, FP, and FN denote true positive (i.e., positive instances predicted 
correctly), false positive (i.e., positive instances predicted incorrectly) 
and false negative (i.e., negative instances predicted incorrectly) in
stances, respectively. The index “i” represents different categories, 
namely biocrusts, non-biocrusts (Stage I), cyanobacteria, lichens, semi- 
mosses and mosses (Stage II) in this study. After testing and finalizing 
the classifier, it was applied across the desert where snowmelt occurred 
and valid observations were available. Fig. 5 shows the flowchart of this 
study. 

4. Results 

4.1. Spectral responses of biocrusts at different successional stages to a 
hydration event (snowmelt) 

Fig. 6 shows the spectra of biocrusts at different successional stages 
and fine and coarse sand under dry and wet conditions. Under dry 
conditions, it is possible to distinguish biocrusts (Fig. 6 (c)-(f)) from fine 
sand (Fig. 6(a)) since the latter has a much higher reflectance. 
Conversely, it is difficult to distinguish biocrusts from coarse sand (Fig. 6 
(b)) because both types of cover have lower reflectance. However, upon 
hydration, the biocrusts exhibited a noticeable decrease in reflectance 
across all bands (Fig. 6(i)-(l)), while the coarse sand was essentially 
unresponsive (Fig. 6 (h)). This “darkening” effect facilitates the accurate 
identification of biocrusts. On the other hand, these changes in reflec
tance are similar for biocrusts of different successional stages and thus 
insufficient to distinguish successional stages. Fortunately, late succes
sional biocrusts (i.e., semi-mosses and mosses) exhibit varying degrees 
of red-light absorption due to photosystem reactivation (Fig. 6(q) and 
(r)), in contrast to early successional biocrusts that lack such a response 
(Fig. 6(o) and (p)). This finding aligns with that of Rieser et al., who also 
observed an increase in photosynthetic intensity proxy of biocrusts 
(NDVI) following hydration events (Rieser et al., 2021). This “greening” 
effect helps to distinguish between biocrusts at different successional 
stages. 

Two spectral indices, the BSCI and RBD, were used in this study to 
quantify the aforementioned “darkening” and “greening” effects. Fig. 7 
illustrates the changes in these parameters between dry and wet con
ditions. Biocrusts consistently exhibited clear increases in BSCI regard
less of successional stage, whereas no such changes were observed in 

Fig. 5. Two-stage random forest classification.  
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Fig. 6. Spectral changes in biocrusts at various successional stages and fine and coarse sand under dry and wet conditions. (a) – (f) Spectra under dry (red) and wet 
(blue) conditions. (g) – (l) Differences in spectra between two conditions (wet spectra minus dry spectra). (m) – (r) Red band absorption under both conditions, with 
the dashed line representing the upper envelope from the Green II to NIR region. The location of Green II, Red and NIR bands are marked in translucent gray bars. A 
greater deviation of the red band reflectance below the envelope (dashed line) indicates a more pronounced absorption feature. The data were acquired from the 
PSOA8BSR images of our sample plots (Section 2.2.1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. (a) Biological Soil Crust Index (BSCI) and (b) Red Band Depth (RBD) of biocrusts at different successional stages and fine and coarse sand under dry and wet 
conditions. The median lines are shown in black for each boxplot, and the corresponding sample points under both conditions are connected by light gray lines. The 
data were acquired from the PSOA8BSR images of our sample plots (Section 2.2.1). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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either fine or coarse sand (Fig. 7(a)). Furthermore, late-stage biocrusts 
clearly exhibited red-light absorption (evident as a decrease in the RBD), 
whereas weaker or no such responses were observed in early-stage 
biocrusts (Fig. 7 (b)). Notably, some lichen samples exhibited red-light 
absorption, albeit weakly, consistent with the findings of Phinney 
et al. (2018). In summary, a hydration event (snowmelt) not only en
hances the contrast between biocrusts and their background (i.e., fine 
and coarse sand) through the “darkening” effect but also helps to 
distinguish between different stages of biocrust succession (i.e., cyano
bacteria, lichens, semi-mosses, and mosses) through the “greening” ef
fect. These features show great potential for biocrust succession 
mapping. 

Fig. 8 shows the spatial patterns of the BSCI and RBD based on 
PlanetScope images in the desert under dry and wet conditions. On a 
regional scale, the BSCI in the southwestern (A), central (B), south
eastern (C), and eastern (D) areas significantly increased after hydration 
(Fig. 8(a)-(c)), indicating the prevalence of biocrusts in these areas. 
However, the eastern (D) area (Fig. 8(e) and (f)) showed no change in 
the RBD, suggesting the dominance of early-stage biocrusts such as 
cyanobacteria and lichens. Conversely, significant changes in the RBD 
were observed in the remaining areas and were particularly intense in 
the southwestern area (A), indicating the widespread presence of late 
stage biocrusts such as semi-mosses and mosses. On a landscape scale, 
biocrusts showed a clear increase in BSCI after hydration compared to 
non-biocrust areas (Fig. 8(g)-(l)). In addition, higher RBD responses 
were found in the central interdune area (Fig. 8(o) and (q)), suggesting a 
distribution of late-stage biocrusts in this area. These results highlight 
the potential of BSCI and RBD images to map the spatial distribution of 
biocrust succession at multiple scales, from landscape to regional. 

4.2. Biocrust succession mapping based on two-stage random forest 
classification 

Tables 4 and 5 show the performance metrics for each mapping 
stage. The framework achieved promising overall accuracies of 0.958 
and 0.802 for Stage I and Stage II, respectively. It accurately identified 
biocrusts from both fine and coarse sand, demonstrating high precision 
(0.963) and recall (0.951). For mapping the biocrust succession stages, 
the framework achieved notable F1-scores: 0.828 for mosses, 0.741 for 
semi-mosses, 0.857 for lichens, and 0.588 for cyanobacteria. All the 
samples used for the test were collected during the field survey 
mentioned in Section 2.2.1. Notably, there were no misclassifications 
between nonadjacent stages, such as lichens and mosses, but a few 
occurred between adjacent stages, such as lichens and semi-mosses or 
semi-mosses and mosses. This is due to the gradual nature of biocrust 
succession, which results in similarities in spectral features between 
adjacent stages. However, the framework encounters challenges in 
identifying cyanobacteria, primarily because their light colour can be 
mistaken for that of certain light-colored lichens (Rodríguez-Caballero 
et al., 2014). Nevertheless, the proposed framework shows effectiveness 
in both biocrust identification and biocrust succession mapping. 

Fig. 9 shows the biocrust succession mapping results. Six represen
tative areas across the desert (Fig. 9(a)–(e)) are magnified for detail. At 
the regional scale, cyanobacteria and lichens dominate expansive areas, 
while semi-mosses are abundant in the central (Fig. 9(b-1) and (b-2)) 
and southeastern (Fig. 9(e-1) and (e-2)) regions of the desert. Notably, 
the southwestern (Fig. 9(d-1) and (d-2)) part of the desert exhibits a 
prevalence of mosses, an aspect often overlooked previously. 
Conversely, early-stage biocrusts were predominantly distributed in the 
northwestern regions (Fig. 9 (c-1) and (c-2)). In addition, biocrusts 
rarely occur on either the western or eastern side of the desert because 

Fig. 8. (a) – (f) The spatial patterns of the Biological Soil Crust Index (BSCI) and Red Band Depth (RBD) in the Gurbantunggut Desert under dry and wet conditions 
and their differences between the two conditions. (g) – (r) Index images of two typical areas: biocrusts and non-biocrusts (marked by crosses in (a)). Locations A to D 
in (a) serve as representative areas to illustrate spatial patterns. All the index images are derived from the PSOA8BSR images. 
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these areas are largely covered by coarse sand. At the landscape scale, 
late-stage biocrusts were observed in the interdune zones, while early- 
stage biocrusts occurred on the slopes of the sand dunes, consistent 
with previous field observations (Zhang et al., 2010). 

4.3. Feature importance by the forward feature selection 

Fig. 10(a) and (b) depict the out-of-bag (OOB) accuracy curves for 
forward feature selection in Stage I and Stage II mapping, respectively. 
The curves reveal an initial increase in accuracy, reaching a peak, fol
lowed by a gradual decrease, implying that crucial information is inte
grated in the early stages of feature selection, with subsequent stages 
potentially incorporating redundant or irrelevant information. There
fore, the feature subset that achieved the maximum OOB accuracy was 
used to finalize the classification model. Fig. 10(c) and (d) illustrate the 

initial eight feature selection processes, where the candidate features are 
ranked based on their contribution to OOB accuracy improvement at 
each step. Notably, hydration-induced features (i.e., prefixed as “wet” or 
“Δ”) outweigh ordinary features (i.e., prefixed as “dry”), constituting 
85% and 100%, respectively, of the final feature subset for each of the 
two mapping stages (i.e., highlighted in yellow). Specifically, Stage I 
mapping achieved an OOB accuracy of 0.947 solely based on the Δ BSCI, 
while for Stage II, only the wet RBD and wet Green II band were needed 
to reach the maximum OOB accuracy (0.812). This result consistent with 
Román et al.'s findings, which establish the red band absorption feature 
as a reliable indicator of biocrust photosynthetic intensity due to its 
strong correlation with Chlorophyll a content (Román et al., 2019). 

Fig. 11 shows scatter plots of the two most important features for 
Stage I (i.e., Δ BSCI vs. Δ Blue) and Stage II (i.e., Wet RBD vs. Wet Green 
II band) mapping, along with the decision boundaries for each stage. As 

Table 4 
Performance evaluation of Stage I classification.  

Stage-I Samples for non-biocrust Samples for biocrusts Precision Recall F1-score Overall Accuracy 

Non-biocrust 156 2 0.945 0.987 0.966 – 
Biocrusts 9 96 0.980 0.914 0.946 – 
Mean (macro) – – 0.963 0.951 0.956 0.958  

Table 5 
Performance evaluation of Stage II classification.  

Stage-II Samples for Cyanobacteria Samples for Lichens Samples for Semi-mosses Samples for Mosses Precision Recall F1-score Overall Accuracy 

Cyanobacteria 5 2 0 0 0.500 0.714 0.588 – 
Lichens 5 48 1 0 0.828 0.889 0.857 – 
Semi-mosses 0 8 20 2 0.833 0.667 0.741 – 
Mosses 0 0 3 12 0.857 0.800 0.828 – 
Mean (macro) – – – – 0.754 0.767 0.753 0.802  

Fig. 9. Mapping of biocrust succession across the Gurbantunggut Desert. Panels (a-1) through (f-1) show detailed maps of six representative regions across the desert. 
Panels (a-2) through (f-2) show in situ images of these regions. 
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Fig. 10. Feature importance by the forward feature selection. Panels (a) and (b) show the out-of-bag (OOB) accuracy curves for Stage I and II mapping, respectively, 
with asterisks indicating maximum accuracy. Panels (c) and (d) detail the initial eight steps of the iterative feature selection process. For each step, the feature with 
the highest relative importance is positioned at the top and selected for the subsequent iteration. The feature subsets used in the final classification models are 
highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Analysis of the two most important features at each stage of biocrust succession mapping. The decision boundaries of the classification model (RF) for each 
stage are set as background. Points A and B represent two anomalies encountered during the mapping process. 
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depicted in Fig. 11(a), biocrusts exhibit a greater increase in BSCI after 
hydration than non-biocrust due to their superior water retention. 
Fig. 11(b) shows that due to the inherent differences among the different 
successional biocrusts, late-stage biocrusts not only exhibited lower 
reflectance in the Green II band after hydration but also exhibited 
greater photosynthetic intensity (Wet RBD). However, there are excep
tions; for example, moss site A has a weaker photosynthetic intensity due 
to the threat of sand burial, while lichen site B has a greater photosyn
thetic intensity due to favorable growing conditions and the coexistence 
of mosses. Nevertheless, forward selection ensures that essential features 
are included while avoiding noise from irrelevant features. More 
importantly, the selected features highlighted the importance of 
hydration-induced spectral features for both stages of biocrust succes
sion mapping. 

5. Discussion 

5.1. Necessity of biocrust succession mapping 

Biocrusts at different successional stages have diverse ecological 
functions and interact differently with abiotic and biotic components. 
Mapping this succession holds great potential for enhancing our un
derstanding of desert ecosystem dynamics, including their structure, 
ecological services, and responses to climate change and human inter
vention. There are at least three critical research areas where mapping 
biocrust succession can contribute: First, different successional biocrusts 
have distinct effects on soil physicochemical (e.g., soil structure, pH and 
salinity) and biological (e.g., microbial respiration, protein content and 
total chlorophyll) properties (Atashpaz et al., 2023; Chamizo et al., 
2012a; Concostrina-Zubiri et al., 2013). They also play various roles in 
carbon and nitrogen cycling (Housman et al., 2006; Lan et al., 2021; 
Tian et al., 2023; Wu et al., 2023). Moreover, late-stage biocrusts 
notably enhance soil aggregate stability and water retention compared 
to early-stage biocrusts, thereby improving resistance against wind and 
water erosion (Drahorad et al., 2021; Gall et al., 2022; Lázaro et al., 
2023; Yang et al., 2022). Therefore, mapping these stages can help 
elucidate their roles in regional environmental modeling. For instance, 
35.08% of the Gurbantunggut Desert was covered by biocrusts, with 
lichens accounting for the largest proportion at 76.68%, followed by 
cyanobacteria and semi-mosses at 11.24% and 9.81%, respectively. 
Mosses made up the smallest proportion with only 2.26%. Combined 
with field survey data on carbon and nitrogen fixation rates and wind 
and water repellency, these proportion data allow quantification of their 
respective contributions to carbon and nitrogen pools and their distinct 
effects on regional aeolian and hydrologic systems. Second, late-stage 
biocrusts, such as mosses and lichens, are highly susceptible to phys
ical disturbance and climate-induced stress (Phillips et al., 2022) and 
require decades to recover (Deng et al., 2020). In this context, the suc
cessional stages of biocrusts serve as valuable bioindicators of dryland 
ecosystem change (Belnap et al., 2013; Chamizo et al., 2012b; Holt and 
Miller, 2010), and can provide guidance for prioritizing conservation 
strategies. For instance, early-stage biocrusts are predominantly found 
in northeastern desert regions, while late-stage biocrusts are more 
common in the southeastern, central, and southwestern deserts. This 
distribution pattern can be used as a guide to prioritize conservation 
areas (e.g., late-stage biocrust distribution areas). In addition, by 
obtaining biocrust succession maps over multiple years, researchers can 
assess disturbance or stress levels, allowing for timely protection of 
affected biocrusts. Third, biocrust succession mapping highlights their 
spatial distribution, facilitating field survey planning. By integrating the 
mapping results with multiple Geographic Information Systems (GIS) 
data layers, such as road vectors, researchers can efficiently sample 
different successional biocrusts from different habitats. 

5.2. Event-induced spectral features vs. multi-temporal spectral features 

In general, multi-temporal images provide comprehensive spectral 
information about land surface changes, leading to promising mapping 
performance in most applications. However, this is not always the case. 
Short-term spectral responses induced by specific events not only cap
ture specific spectral features that are generally difficult to observe, but 
also reduce the need for multi-temporal imagery, thereby reducing data 
acquisition and processing costs. Fig. 12 compares the effectiveness of 
hydration-induced and multi-temporal (i.e., April to October) spectral 
features for mapping biocrust succession. Hydration-induced features 
comprise 8-band spectral reflectance and 2 indices under dry and wet 
conditions, along with their differences (30 in total). The multi-temporal 
features comprise monthly compositions of 8-band spectral reflectance 
and 2 indices from April to October (70 in total). The monthly averaging 
composition mitigates cloud cover and cross-sensor radiometric in
consistencies. Independent forward selection procedures (as described 
in 4.3) were performed for both hydration-induced (i.e., blue dots) and 
multi-temporal (i.e., red dots) feature sets for Stage I (Fig. 12(a)) and 
Stage II (Fig. 12(c)) mapping. The OOB accuracy is consistently greater 
for hydration-induced features than for multi-temporal features. For 
Stage I mapping, 7 hydration-induced features achieve a maximum OOB 
accuracy of 0.966, while 19 multi-temporal features achieve a maximum 
accuracy of 0.942. For Stage II, 2 hydration induced features achieve a 
maximum OOB accuracy of 0.812, whereas 5 multi-temporal features 
achieve a maximum accuracy of 0.756. The feature subsets with the 
maximum OOB accuracy were subsequently used to finalize the classi
fication model. The model using hydration-induced features out
performs that using multi-temporal features in both stages (Fig. 12(b) 
and (d)). Especially in stage II, hydration-induced features showed 
significantly greater effectiveness (F1 score = 0.75) compared to multi- 
temporal features (F1 score = 0.43). This finding suggested that 
although multi-temporal features provide more spectral information, 
they are less effective than hydration-induced features in mapping bio
crust succession. These results imply that the use of a few essential 
event-induced features may outperform the use of multi-temporal but 
irrelevant features. 

5.3. Biocrust succession mapping based on rainfall-induced spectral 
response signals 

This study demonstrated the effectiveness of using distinct spectral 
responses to snowmelt events for mapping biocrusts at different suc
cessional stages. However, such snowmelt events do not always occur in 
other deserts around the world, especially in hot deserts characterized 
by infrequent hydration events (only infrequent rainfall events). It is 
reasonable to ask whether it is possible to use rainfall events instead of 
snowmelt events to map successional biocrusts. The answer to this 
question could ensure that the methodology proposed in this study can 
be applied to other deserts around the world where rainfall events are a 
common occurrence. Previous studies have shown that a rainfall- 
induced spectral response similar to that induced by snowmelt can be 
observed in numerous desert ecosystems with widespread biocrust dis
tribution, including the Negev Desert in Israel, the Mu Us Sandy Land in 
China, and the Colorado Plateau in the United States (Chen et al., 2023). 
Thus, the proposed method has potential as a roadmap for global bio
crust succession mapping if spectral responses triggered by rainfall 
pulses can be observed. To further investigate this possibility, two 
representative areas dominated by early-stage (i.e., cyanobacteria and 
lichens) and late-stage (i.e., semi-mosses and mosses) biocrusts were 
selected in the Gurbantunggut Desert for rainfall-induced mapping 
tasks. Here, testing is still confined to this desert, as we could not 
conduct intensive field surveys in other deserts. Both areas experienced 
significant rainfall from July 30 to 31, 2021. Therefore, PSOA8BSR 
images on July 29 and August 1, 2021, were employed as dry and wet 
images, respectively. All relevant feature images were prepared, as 
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outlined in Section 3.1. Using the ground-truth samples collected during 
the 2023 field survey (there was very little change between 2021 and 
2023), random forest models were separately trained for each area using 
only the most important features, as detailed in the Section 4.3. Fig. 13 
illustrates a comparison of biocrust succession mapping using rainfall 
and snowmelt induced spectral responses. In both selected areas, two 
types of hydration events induced significant but similar changes in the 
Biological Soil Crust Index (BSCI) and Red Band Depth (RBD) values 
(Fig. 13 (a) - (l)). Consequently, biocrust succession mapping using 
rainfall-induced spectral responses exhibited only minor differences 
compared to using snowmelt-induced spectral responses (Fig. 13 (m) – 
(p)), suggesting that the spectral responses triggered by rainfall events 
has potential to be applied to other deserts if rainfall events exist. 
However, it is important to acknowledge that desert rainfalls are 
generally localized and heterogeneous, resulting in different spectral 
response intensities at different locations. Accordingly, the mapping of 
the biocrust succession should be carried out for each sub-area using 
different local rainfall events and then be merged together to cover large 
areas. Given that current mainstream meteorological products provide 
precipitation records with global coverage at an hourly resolution, 
identifying local rainfall events within potential biocrust distribution 
areas has become an increasingly straightforward task. 

6. Conclusions 

Biocrusts at different successional stages have different ecological 
functions and serve as important bioindicators of changes in desert 
ecosystems. Few attempts have been made to map biocrusts at different 
successional stages. As a pioneering study, this study takes full advan
tage of the diverse spectral responses of biocrusts at different succes
sional stages to hydration events, i.e., late-stage biocrusts exhibit lower 
reflectance (i.e., darkening effect) and increased red light absorption (i. 
e., greening effect) upon hydration due to their superior water retention 

and photosystem recovery. Based on the spectral response induced by 
snowmelt events, this study proposes a two-stage classification frame
work for mapping biocrust succession and applies it to the Gurban
tunggut Desert. The results showed that snowmelt induces noticeable 
changes in biocrust spectra, facilitating differentiation between bio
crusts and other components or between different stages of biocrust 
succession. The mapping framework achieved overall accuracies of 
0.958 and 0.802 for Stage I and Stage II, respectively, highlighting its 
ability to delineate spatial patterns of successional stages across land
scape and regional scales. At the regional scale, cyanobacteria and li
chens dominate expansive areas, while semi-mosses are abundant in the 
central and southeastern regions of the desert. Notably, the south
western part of the desert contains a prevalence of mosses, which has not 
been found in previous studies. At the landscape scale, late-stage bio
crusts were observed in the interdunes, while early-stage biocrusts 
occurred on the slopes of the sand dunes, consistent with field obser
vations. This study lays the groundwork for future in-depth in
vestigations of desert ecosystem dynamics, including structure, 
ecological services, and responses to climate change and human activ
ities. Furthermore, event-induced spectral features may have great po
tential for application in classification tasks, as they not only capture 
specific spectral features that are generally difficult to observe but also 
reduce the cost of acquiring and processing multi-temporal image data. 
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