
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 5004913

A Data-Driven Model for Estimating Clear-Sky
Surface Longwave Downward Radiation

Over Polar Regions
Mengfei Guo, Jie Cheng , Senior Member, IEEE, and Qi Zeng

Abstract— Polar regions play a crucial role in global climate
change. Surface longwave downward radiation (SLDR) is a
primary energy source for the polar surface and plays an essential
role in studies of polar hydrology, temperature, and climate.
Therefore, accurately estimating the SLDR over polar regions
is highly important. However, the accuracies of existing polar
SLDR datasets and SLDR inversion methods are insufficient
to meet the requirements of relevant research. In this study,
we developed a data-driven model for high spatial resolution
clear-sky SLDRs estimated from Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery in polar regions. The model
comprises two layers: the first layer incorporates three machine
learning models, namely, eXtreme gradient boosting (XGBoost),
convolutional neural network (CNN), and transformer, while the
second layer consists of a stacking meta-model. The ground
measurements collected from 51 sites were used to train and
validate the developed model. The bias, RMSE, and R2 of the
model training are zero, 14.15 W/m2, and 0.95, respectively,
whereas the values for the validation are 0.49, 15.35 W/m2, and
0.9, respectively. We also compared the accuracies of the ERA5
and CERES-SYN SLDR data with the SLDR estimated by the
developed model. The results indicate that the developed model
is superior to the ERA5 and CERES-SYN SLDR models when
evaluated at the validation sites. In addition, we analyzed the
performance of the developed model under different elevations
and seasons, demonstrating its robustness in different situations.

Index Terms— Convolutional neural network (CNN), eXtreme
gradient boosting (XGBoost), machine learning, polar region,
stacking, surface longwave downward radiation (SLDR), surface
radiation budget, transformer.

I. INTRODUCTION

THE surface longwave downward radiation (SLDR,
4–100 µm) is a key parameter in the Earth’s energy

balance and represents the thermal energy transferred from the
atmosphere to the surface [1], [2]. The SLDR plays a crucial
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role in various processes, including global energy distribution,
climate change, hydrological cycles, and interactions within
the cryosphere [3], [4]. Therefore, accurate estimates of the
SLDR are essential for global climate change, hydrological
cycle, and polar environmental research [5], [6].

The polar region represents a highly vulnerable area to the
effects of global warming. Due to the low solar zenith angles
and high albedo caused by ice and snow coverage, the amount
of solar radiation absorbed by the surface in polar regions
is significantly reduced compared to mid-latitude regions [7].
As a result, SLDR serves as a primary energy source in
polar regions and profoundly influences ice cap variations, sea
ice formation, and melting processes [8], [9], [10]. Accurate
estimates of the SLDR in polar regions are critically important
for observing and predicting polar climate change, determining
complex hydrological cycles, and investigating the global
radiation balance [11], [12]. However, owing to the unique
geographical attributes of polar regions, including their high
latitudes, extreme climatic conditions, and distinct physical
properties of the surface and atmosphere compared to those
of other regions, estimating the SLDR at the polar surface is
highly challenging.

There are three primary ways to acquire SLDR data over
polar regions: 1) ground measurements; 2) reanalysis or land
surface model simulation; and 3) satellite remote sensing.
Currently, several in situ networks, such as the baseline surface
radiation network (BSRN), coordinated energy and water
cycle observation project (CEOP), and AmeriFlux, have been
established in polar regions [13], [14], [15]. In situ obser-
vations have the advantages of high observational accuracy
and fine-grained temporal resolution. However, the installation
and maintenance costs of these in situ sites are prohibitively
high, necessitating substantial financial and human resources.
Furthermore, the number of observation sites in polar regions
is limited and unevenly distributed due to the harsh natu-
ral environments in high-latitude areas and the restrictions
imposed by both nature and national policies. Consequently,
this scarcity of sites results in limited SLDR data availability
and poses challenges to the effective monitoring of large-scale
SLDRs in polar regions.

General circulation models (GCMs) and reanalysis datasets
often provide global, long-term time series of meteorologi-
cal and land surface data, including polar SLDR data. The
most representative of the GCM simulation datasets is the
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coupled model intercomparison project (CMIP), which was
initiated by the World Climate Research Program (WCRP) in
1995 [16]. With the continuous growth of climate/Earth system
model development teams worldwide, CMIP has evolved from
CMIP1 to the present CMIP6. However, the spatial resolutions
of GCMs are coarse (approximately 1◦

× 1◦), which makes
it challenging to meet the needs of subsequent research.
In addition, studies indicate that various GCMs perform less
effectively over polar regions [17]. Various reanalysis datasets,
such as ERA5 and MERRA-2, have also been widely used.
For example, ERA5 has a spatial resolution of 0.25◦

× 0.25◦

and provides hourly SLDR data for polar regions from 1979 to
the present [18]. Like those of GCMs, reanalysis datasets have
relatively coarse spatial resolutions, and studies have shown
that the accuracy of SLDR data provided by reanalysis datasets
decreases with increasing latitude [19].

The advancement of remote sensing technology has opened
up new possibilities for estimating SLDRs [20]. Various
SLDR estimation methods have been proposed and can be
categorized into four main types: physical models, parametric
models, hybrid models, and data-driven models. Physical
models utilize radiation transfer models or highly parameter-
ized radiation transfer equations to calculate SLDRs based
on atmospheric profiles. Physical models are grounded in
solid physical foundations and employ mathematical formulae
to simulate the process of longwave radiation transmission
from the atmosphere to the Earth’s surface [21], [22]. While
physical models theoretically offer high estimation accuracy,
they demand accurate atmospheric profile data inputs that are
not always available through certain remote sensing obser-
vations. In addition, these models have high computational
requirements. Parametric models emphasize the impact of
near-surface meteorological variables, such as near-surface
temperature and water vapor pressure, on the SLDR. These
models establish empirical relationships between parameters
and the SLDR. Hybrid models, on the other hand, are mostly
built upon databases generated by radiative transfer model
simulations [23], [24]. Linear and nonlinear relationships are
established between various specific sensor data, such as
spectral radiance, elevation, sensor zenith angle (SZA), and
SLDR [25], [26]. In recent years, due to the advantages
of the physical foundation and computational simplicity of
models, many parametric and hybrid models have been pro-
posed and validated. Guo et al. [27] refitted coefficients
for seven parametric models. Except for the Swinbank [28]
and Idso and Jackson [29] models, which performed poorly
across all conditions, the remaining five models exhibited
severe underestimations over the polar site validation, with
biases ranging from −10.78 to −26.07 W/m2. Wu et al. [30]
assessed eight parametric models and one hybrid model for
clear-sky SLDR estimation. The results indicated that all the
models performed poorly over polar surfaces covered with
glaciers, with relative errors exceeding 20%. Yu et al. [31]
proposed a new parametric model for clear-sky SLDR esti-
mation and compared it with two other parametric models,
namely, Zhou et al. [32] and Gupta et al. [25], and two hybrid
models, Tang and Li [23] and Wang and Liang [24]. The
validation results for the three BSRN polar sites indicated that

the newly proposed model had a bias ranging from −10.6 to
−1.8 W/m2, indicating nonnegligible underestimation. The
bias values of the other four methods ranged from −17.3 to
34.0 W/m2, with RMSE values between 17.3 and 34.8 W/m2.
In addition, Lu et al. [33] developed some surface solar
radiation estimate models combining hybrid algorithms and
machine learning techniques. Although the models focus on
shortwave radiation, it is a good idea that can be used in the
estimate of SLDR. In general, current parametric and hybrid
methods exhibit limited generalizability, particularly because
they fail to estimate clear-sky SLDRs over polar regions.
On the one hand, this difference is primarily attributed to the
development of the model, which is predominantly based on
climate features from mid to low latitudes and, as a result,
is inadequately suited for extremely cold and arid climate
conditions in polar regions. On the other hand, observational
errors and outliers significantly impact model performance,
with climatic anomalies in polar regions often introducing
substantial errors into the model.

With the development of versatile SLDR retrieval
algorithms, several publicly available SLDR datasets, such
as the Global Energy and Water Exchanges Project-Surface
Radiation Budget (GEWEX-SRB), International Satellite
Cloud Climatology Project-Flux Data (ISCCP-FD), Clouds
and the Earth’s Radiant Energy System-Synoptic Radiative
Fluxes and Clouds (CERES-SYN), and Global Land Surface
Satellite (GLASS), have been derived from remote sensing
data collected over the past few decades [34], [35], [36], [37].
However, some of these products have limited temporal
coverage and are no longer updated. For instance, GEWEX-
SRB and ISCCP-FD provide data only up to 2007 and 2010,
respectively. Xin et al. [38] assessed three different SLDR
products derived from remote sensing data over polar regions,
namely, GEWEX-SRB, ISCCP-FD, and CERES-SYN.
Validation results showed that CERES-SYN has the best
performance, with an RMSE of 26.9 W/m2, compared to
35.8 and 40.5 W/m2 for GEWEX-SRB and ISCCP-FD,
respectively. This finding suggested that the accuracy of
SLDR products over polar regions provided by remote
sensing datasets is insufficient for meeting climate research
requirements.

Data-driven models, which include various machine learn-
ing and deep learning algorithms, do not presuppose mathe-
matical or physical relationships among data but rather delve
deeply into uncovering correlations between input features
and their intrinsic connections with the predicted values. This
approach significantly reduces the impact of the aforemen-
tioned challenges on model performance, making it suitable
for addressing SLDR high-accuracy estimations over polar
regions. With the advancement of information science and
computing capabilities, machine learning and deep learn-
ing algorithms have undergone rapid development in recent
years [39], [40], [41]. For instance, Lopes et al. [42] employed
the MARS machine learning model to estimate all-sky SLDRs
by utilizing surface meteorological data from ERA5 and cloud
data from the MeteoSat Second Generation (MSG) satellite.
The model achieved a satisfactory overall estimation result,
with a bias of 0.65 W/m2 and an RMSE of 18.76 W/m2.
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TABLE I
MAIN DATA USED IN SLDR ESTIMATE

The model was evaluated using a polar site, GVN, which
exhibited a bias of −2.98 W/m2 and an RMSE of 25.5 W/m2

for clear-sky SLDR validation. Kim and Kim [43] addressed
the uncertainty in current SLDR reanalysis products in the
Arctic region by proposing optimization through the use of
the CNN model. They applied the CNN to three SLDR prod-
ucts, namely, ERA5, polar weather research and forecasting
(PWRF) improved ERA5, and PWRF ERA5 with additional
data assimilation (DA). Site validation results demonstrated
significantly improved accuracy after CNN optimization, with
respective reductions in RMSE of 17.62%, 14.98%, and
13.14% for the three products. These studies demonstrate
the potential effectiveness of data-driven models for accurate
SLDR estimation over polar regions.

Above all, although scholars have recognized gaps and
limitations, such as coarse spatiotemporal resolution and insuf-
ficient accuracy, in SLDR estimation over polar regions, there
is still a lack of models for achieving accurate clear-sky
SLDR estimation in these areas. To address this issue, this
study proposes a new data-driven model in which a stacking
model is established based on three different machine-learning
models. The remainder of this article is organized as follows:
Section II provides an introduction to the multisource data
used in the study. In Section III, the three fundamental algo-
rithms and the stacking model employed in the research are
outlined. Section IV presents the model training and validation
results. Section V conducts a discussion and analysis. Finally,
Section VI concludes the article with a summary.

II. DATA AND MATERIALS

Three types of datasets were employed in this study,
including 1) in situ observations; 2) digital elevation model
(DEM) data, and (3) MODIS products. The input of the SLDR
estimate model was constructed by referencing numerous
widely used parameterized schemes and hybrid methods [2],
[23], [24], [27]. SLDR emitted by the lower 50 hPa of the
atmosphere accounts for approximately 85% of the total,
whereas under inversion conditions, this proportion decreases
to 63.4% [44], [45]. Therefore, the model inputs must reflect
both the near-surface atmospheric conditions and the middle to
upper atmosphere conditions. A total of 12 parameters were
employed as input for the model, and the details regarding
these parameters are provided in Table I. Among these, the air
temperature at screen level (Ta) and relative humidity (RH)

Fig. 1. Spatial distribution of the collection sites in the polar regions.
(a) Arctic. (b) Antarctic.

provided by in situ observations are the primary inputs for
parameterized schemes, reflecting the SLDR emitted by the
lower atmosphere near the surface. The pressure (PS) data
supplements the conditions of near-surface climate. Elevation
data provided by DEM, commonly used in some hybrid
methods and impacting SLDR to some extent, is also included
as one of the inputs. The top-of-atmosphere (TOA) radiance
of MODIS bands 27–29 and 31–34 primarily captures the
thermal radiation characteristics of the overall atmosphere. The
SZA reflecting the path length was also input to the model as
supplementary to MODIS band radiance. In addition, latitude
and longitude data provided by MYD03 are used for spatial
matching of MODIS products; in situ observations, DEM data,
and the cloud mask (CM) data provided by MYD35 are used
to identify clear and cloudy skies.

A. In Situ Observations

This study employed observational data collected from
51 sites at seven flux networks, namely, AmeriFlux,
AsiaFlux, the BSRN, the Coordinated Enhanced Observing
Period (CEOP), the European Fluxes Database Cluster
(EFDC), FLUXNET, and the Program for Monitoring of the
Greenland Ice Sheet (PROMICE). Among them, 48 sites were
located in the Arctic region, and three sites were located in
the Antarctic region. Fig. 1 illustrates the distribution of these
sites. The extracted variables included surface air temperature
(Ta), RH, surface pressure (PS), and SLDR.

The flux networks selected in this study have been exten-
sively employed in quantitative remote sensing research. The
AmeriFlux is situated in the Americas and is dedicated to mea-
suring ecosystem carbon, water, and energy fluxes [15]. In this
study, data from nine AmeriFlux sites located above 60◦N
latitude were used. Currently, AsiaFlux comprises 117 tower
flux observation sites, two of which were utilized in this
study [46]. The BSRN is part of the Global Climate Observing
System (GCOS) [13]. The solar and atmospheric radiation
data provided by the BSRN exhibit high precision and high
temporal resolution (1 min). This study included a total of four
BSRN sites. To prevent an undue impact on model training
due to the excessive data volume at the BSRN sites, all
the data were resampled to a 30-min resolution. In addition,
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TABLE II
DETAILED INFORMATION REGARDING THE SLDR MEASUREMENT INSTRUMENTS ACROSS FLUX NETWORKS

we collected data from five CEOP sites. Apart from the STT
site, which has a temporal resolution of 1 h, the other four
sites have a temporal resolution of 30 min [14]. The EFDC
has compiled observational data from research projects funded
by the European Union since 1996 [47]. This study utilized
data from three of these sites. FLUXNET is a “network of
networks” that connects various regional networks, including
AmeriFlux, AsiaFlux, ICOS, and NEON [48], [49]. It pro-
vides data to the public after standardized data processing.
We selected three FLUXNET sites with a temporal resolution
of 1.5 h. PROMICE sites are all located in Greenland and
were originally set up to assess changes in the Greenland
Ice Sheet by accurately monitoring surface energy and mass
balances [50]. Table II summarizes the specific information
on the SLDR measurement instruments used by each flux
network.

All the selected sites were situated above 60◦ latitude, and
the data collected from the sites spanned a period of 19 years,
from 2002 to 2020. Detailed information on site coordinates,
elevations, temporal resolutions, and other parameters can be
found in Supplementary Table S1.

B. DEM Data

In this study, we used Global Multiresolution Terrain
Elevation Data (GMTED2010) for elevation information, with
a spatial resolution of 7.2 arc-s [51]. The global validation
accuracy of GMTED2010 is approximately 6 m in terms
of the root mean square error (RMSE). The GMTED2010
dataset provides elevation data only for latitudes ranging from
84◦N to 56◦S and does not include Greenland; the elevation
data for the BSRN and PROMICE sites were obtained from
site-provided sources.

C. MODIS Products

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is an important instrument used in the Earth Observ-
ing System (EOS) program of the United States; it is carried
out onboard the Terra and Aqua polar-orbiting satellites.
The Terra and Aqua satellites are placed in sun-synchronous

polar orbits, ensuring that each satellite passes over the same
area at approximately the same local time every day. This
regular revisiting time enables MODIS to provide at least
four daily updates; additionally, with higher latitudes in polar
regions, there can be more frequent updates and some locations
experience updates as frequently as a dozen times a day.

In this study, MODIS data from the Aqua satellites
were used, including MODIS radiance data products
(MYD021KM), geolocation products (MYD03), and CM
products (MYD35_L2), all with a spatial resolution of 1 km.
The MYD021KM product provides radiance data for various
spectral bands. In this study, radiance data from bands 27–29
and 31–34 were used. The MYD03 product mainly provides
latitudinal and longitudinal data, as well as SZA data. These
data were used for spatial matching with site data and as sup-
plementary information for the radiance data. The MYD35_L2
product provides CM information and was used for selecting
clear-sky data in this study.

D. Data Quality Control

CM data from MYD35 were first utilized to discern clear-
sky conditions. A CM value of three denoting confident
clear-sky was retained for further analysis. Subsequently, site
measurements were used to identify and address potential
anomalies. Ta below −100 ◦C or above 80 ◦C was deemed
abnormal, and RH values exceeding 90% indicated possi-
ble cloudy conditions. Consequently, we removed these data
points.

Under clear-sky conditions, Ta can represent the
atmospheric effective temperature. Thus, additional data
quality control can be implemented based on the Stefan–
Boltzmann equation [52], [53], as shown in (1) where
εclr denotes clear-sky atmospheric emissivity and σ is the
Stefan–Boltzmann constant. In this study, we substituted the
in situ observed Ta into (1) and set the threshold range of
εclr to [0.5, 1.5]. SLDR observations with εclr outside this
calculated range were removed

SLDRclr = σεclr(Ta)
4. (1)
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III. METHODOLOGY

In recent years, a wealth of machine-learning algorithms
have been proposed and applied to quantitative remote sensing
studies. As a tree-based machine-learning algorithm, eXtreme
gradient boosting (XGBoost) has demonstrated remarkable
parameter inversion capabilities in soil moisture retrieval [54],
land surface evapotranspiration prediction [55], surface short-
wave net radiation estimation [56], and surface longwave net
radiation estimation [26]. The convolutional neural network
(CNN), a well-established deep learning algorithm with a
relatively long development history, has also achieved promis-
ing performance in land surface temperature retrieval [57],
subsurface temperature estimation [58], shortwave radiation
estimation [59], and solar radiation estimation [60]. Although
not yet widely used in quantitative remote sensing studies,
the transformer, a newcomer to the realm of deep learning
algorithms, has already demonstrated its superiority in remote
sensing image change detection [61] and solar radiation time
series prediction [62].

Therefore, we introduce a novel data-driven model designed
for clear-sky SLDR estimates in polar regions. This model
seamlessly integrates three fundamental machine-learning
algorithms, namely, XGBoost, CNN, and transformer, via a
stacking model. This integration leveraged the unique strengths
of each foundational algorithm and heightened the overall
robustness of the estimation results.

A. Stacking Model

The stacking model is an ensemble algorithm that combines
multiple diverse foundational learning models to enhance
the predictive performance and generalization capability [63].
When discussing ensemble learning methods, it is worth
mentioning the bagging and boosting models [64]. Bagging
(bootstrap aggregating) involves training independent models
through multiple random data subsampling iterations and then
combining their outputs, typically by averaging or voting,
to improve performance. A classic example of Bagging is the
random forest algorithm. In contrast, boosting is a method
of sequentially training multiple models, with each model
attempting to correct the errors of the previous model; for
example, XGBoost and LightGBM. Both bagging and boost-
ing typically rely on a single type of foundational model.
Stacking, on the other hand, distinguishes itself from these
models by focusing on aggregating insights from different
foundational learners, thus achieving more accurate and robust
predictions. Stacking can be viewed as a meta-model that
takes the outputs from multiple foundational learning models
as inputs and utilizes these outputs to train the meta-model,
further enhancing its predictive performance. Prior research
has demonstrated the substantial potential of stacking, as it
enables multiple machine learning models to collaborate,
effectively addressing complex problems and delivering opti-
mal solutions [65], [66].

The stacking model constructed in this study consists of
two layers. In the first layer, we employed three distinct
types of foundational learning models, namely, XGBoost,
CNN, and transformer, to conduct initial predictions on the

Fig. 2. Diagram of the constructed stacking model used in this study.

Fig. 3. Diagram of the 1-D CNN Model constructed in this study.

input data. By integrating the predictive results generated by
these base models, in the second layer, we further trained a
meta-model to achieve precise SLDR estimation. The structure
of the stacking model is depicted in Fig. 2. For the meta-
model selection, we opted for the Bayesian model average
(BMA) algorithm based on posterior probabilities. It is worth
noting that stacking does not simply select the best model
or result from the foundational models but combines the
information and insights derived from each of the foundational
models. This approach leverages the strengths of each model
to compensate for the weaknesses of the others, addressing
potential overfitting issues and enhancing the reliability of
the predictions simultaneously. Therefore, through stacking,
we comprehensively combined the capabilities of XGBoost,
CNN, and transformer. All three models perform well yet
with distinct underlying principles and strengths to achieve
superior and robust performance in the task of clear-sky SLDR
estimation over the polar region.

B. XGBoost

XGBoost is a powerful machine-learning algorithm initially
proposed by Chen and Guestrin [67] for supervised learning
problems. It falls within the category of gradient-boosting
decision tree (GBDT) algorithms. Its fundamental principle
is gradient boosting, which can be viewed from a statistical
perspective as a combination of additive models and forward
optimization algorithms. Mathematically, we can summarize
our model using (2). In the equation, ŷi represents the pre-
dicted result of the model, xi denotes the input features,
K is the total number of trees, each fk corresponds to an
independent tree, and F represents the space of the overall
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regression tree. The prediction result of the gradient boosting
algorithm can be explained as the sum of the predictions from
each individual tree

ŷi =

∑K

k=1
fk(xi ), fk ∈ F . (2)

XGBoost builds upon the gradient boosting framework and
incorporates several optimization techniques to enhance its
performance. The main optimization steps in XGBoost are
as follows: first, XGBoost creates decision trees in a parallel
manner. This differs from the sequential tree-building process
in traditional GBDT, which results in faster and more effi-
cient model training. Second, to mitigate overfitting, XGBoost
introduces a regularization term in the objective function.
This term prevents the model from becoming overly complex
and improves its ability to generalize to unseen data. Third,
XGBoost improves computational accuracy by optimizing the
loss function using second-order Taylor expansion, which
enhances the accuracy of calculations involved in the optimiza-
tion process. The objective function of XGBoost is defined
in (3) where l represents the loss function that measures the
discrepancy between the predicted values and target values.
N denotes the number of samples, t indicates the number of
trees, � represents the regularization term used to penalize
complex models, T represents the number of leaves, and
w represents leaf weights. The goal is to minimize Obj(2) to
obtain the optimal model. In (4) ŷi

(t) represents the predicted
value for the i th sample by the first t trees. It can be expressed
as the sum of predictions for the i th sample made by the
previous t − 1 trees and the prediction made by the t th tree

Obj(2) =

∑N

i=1
l
(

yi , ŷi
)

+

∑t

j=1
�

(
f j

)
, f j ∈ F (3)

where �( f ) = γ T +
1
2 λ∥w∥

2

ŷi
(t)

=

∑t

j=1
fk(xi ) = ŷi

(t−1)
+ ft (xi ). (4)

By substituting (4) into (3) and assuming that the first “t−1”
trees are fixed, the regularization term for the previous t − 1
trees can be treated as a constant. Therefore, the objective
function can be rewritten as (5): Then, using Taylor expansion,
we can derive (6) by removing the constant term. This leads
to the optimization objective for the t th tree, which solely
depends on the first and second derivatives of the loss function.

Obj(2) =

∑N

i=1
l
(

yi , ŷi
(t−1)

+ ft (xi )

)
+ �( ft ) + constant

=

∑N

i=1

(
gi ft (xi ) +

1
2

hi f 2
t (xi )

)
+ �( ft ) (5)

Obj(2)≃
∑N

i=1

[
l
(
yi ,ŷi

(t−1)
)
+gi ft (xi )+

1
2

hi f 2
t (xi )

]
+�( ft )

=

∑N

i=1

(
gi ft (xi ) +

1
2

hi f 2
t (xi )

)
+ �( ft ) (6)

where gi =
∂l(yi ,ŷi

(t−1))

∂ ŷi
(t−1) , hi =

∂2l(yi ,ŷi
(t−1))

∂2 ŷi
(t−1)

The above section presents several important equations for
XGBoost. For additional optimization details of XGBoost,
please refer to the article by Chen and Guestrin [67]. One
notable advantage of optimized XGBoost is its ability to
handle large-scale datasets. It was designed with the intention

of efficiently processing and learning from datasets that
have a large number of samples and features. Its powerful
learning and generalization capabilities make it suitable for
real-world applications with complex relationships and large
data volumes [26]. In addition, XGBoost provides a range
of parameters and options that users can customize, allowing
model fine-tuning to achieve optimal performance on specific
tasks and datasets. The details and results of hyperparameter
tuning for the XGBoost model in this study can be found in
Supplementary Table S2.

C. Convolutional Neural Network

With the advancement of modern technology and the sup-
port of massive amounts of data and powerful computing
capabilities, deep learning has emerged as a subfield of
machine learning. Deep learning can be understood as various
types of neural networks that mimic the perceptual process of
the human brain, constructing hierarchical models to extract
features layer by layer. CNNs are among the most important
deep learning models and have been widely applied in quan-
titative remote sensing research in recent years [68], [69].

CNN models exhibit a well-defined layer structure, includ-
ing convolutional layers, pooling layers, flattening layers, and
fully connected layers [70]. In this study, a 1-D CNN model is
constructed to estimate the clear-sky SLDR over polar regions.
The model structure is depicted in Fig. 3.

Among the layer structures, the convolutional layer plays a
crucial role because it performs convolution operations on the
input data using a sliding window, followed by the application
of activation functions for nonlinear feature extraction and
propagation to the next layer. With this model, we constructed
a total of 5 consecutive convolutional layers, applying the
widely used rectified linear unit (ReLU) activation function.
ReLU has several advantages, such as simplicity, high com-
putational efficiency, and ease of use of gradient descent
algorithms for optimization. Pooling layers, another important
component of CNNs, aim to capture important features and
reduce the spatial dimension of network parameters; this leads
to feature compression, which not only decreases computa-
tional complexity but also mitigates the risk of overfitting.
Common pooling operations include max pooling and average
pooling. In our model construction, we employed max pooling,
where the maximum value within each local region was
selected as the output. Before entering the fully connected
layers, the outputs from the convolutional or pooling layers
need to be flattened into a 1-D representation. This flattening
process, performed by the flattened layer, arranges all the
elements of the matrix in sequential order, reducing the data
dimensions for further processing by the fully connected
layers. The fully connected layers in CNNs, also known
as dense layers, are typically positioned toward the end of
the CNN model and are responsible for generating the final
regression or classification results. Each output neuron in the
fully connected layers is connected to all the inputs from the
previous layer, creating a fully connected network structure.
In our model, the last layer is a fully connected layer with only
one output neuron, representing the estimation of the SLDR.
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After defining the CNN model structure, the training process
can be divided into several main steps: 1) network initial-
ization: the number of training epochs, batch size, learning
rate, loss function, and other related hyperparameters are
set. 2) Feedforward pass: the training samples are input into
the network and passed through the layers to obtain the
output values while calculating the loss functions at each
layer. 3) Backpropagation pass: by calculating the difference
between the predicted values of the model and the given actual
values, the top-level loss is obtained. The loss gradient is
subsequently propagated backward, and the weights and biases
of the convolutional filters are optimized layer by layer via
the gradient descent algorithm. 4) Iterate the above steps until
the specified number of iterations is reached or the stopping
criterion is satisfied. The important hyperparameters of the
CNN model, along with their tuning ranges and Optimum
value, can be found in Supplementary Table S3.

D. Transformer

The transformer model was proposed by Vaswani et al. [71]
from Google with the primary objective of addressing
challenges in natural language processing (NLP) and related
tasks. Subsequently, significant advancements have been made
in research applications such as image recognition, time-
series forecasting, and change detection [61], [62], [72]. The
transformer model stands out from traditional deep learning
models such as CNNs and RNNs because it eliminates
convolutional and recurrent operations and introduces the
self-attention mechanism. This innovative mechanism enables
the transformer model to effectively capture the relationships
between input elements, leading to significant improvements
in model performance.

The self-attention mechanism can be explained using (7).
In this mechanism, the input feature matrix X is transformed
into query matrix Q, key matrix K , and value matrix V by
multiplying it by three weight matrices W Q, W K , and W V .
The key aspect is the calculation of similarity scores between
all keys, which is achieved by taking the dot product of
matrix Q and K . To ensure stable gradients, the scores are
divided by the square root of the dimension of the key vectors
(scaling factor (d)

1/2
k ) and then normalized. The final step

involves multiplying the normalized scores by the value matrix
V to obtain the output of the self-attention layer

Attention(Q, K , V ) = softmax
(

QK T

√
dk

)
V (7)

where Q = X W Q, K = X W K , V = X W V .
In this study, we developed a simple transformer model

consisting of an encoder and a decoder, as illustrated in
Fig. 4. The input data are first processed through the encoder
layer, which comprises four sublayers: one self-attention layer,
two feedforward layers with residual connections, and one
fully connected feedforward network. The fully connected
feed-forward network can be viewed as a basic multilayer
perceptron (MLP) consisting of multiple fully connected layers
and an activation function layer. In our model, we also chose
the “ReLU” activation function. The output of the encoder

Fig. 4. Diagram of the constructed transformer model.

layer serves as the input to the decoder layer. The structure of
the decoder layer is similar to that of the encoder layer, but it
contains only three sublayers. In the decoder layer, the output
of the last fully connected layer in the feed-forward network
is used as the prediction output. Although our transformer
model has a relatively simple structure, the stacked encoder
and decoder effectively enable the encoding and decoding of
input features. The combination of sublayers allows the model
to capture the relationships within the input data, which leads
this transformer model to achieve accurate predictions in the
task of SLDR estimation. In addition, detailed information on
hyperparameter fine-tuning for the transformer model can be
found in Supplementary Table S4.

IV. RESULTS

We randomly divided the collected data in Table I into two
sets according to the site: two-thirds (34 sites) for training and
one-third (17 sites) for validation. Three evaluation metrics are
used to evaluate the model performance, namely, bias, RMSE,
and determination coefficient (R2). The formulae are shown
as follows:

Bias =
1
N

∑N

i=1
(ys − yo) (8)

RMSE =

√
1
N

∑N

i=1
(ys − yo)

2 (9)

R2
=

∑N
i=1 (yo)

2∑N
i=1 (ys)

2
−

∑N
i=1 (ys − yo)

2
(10)

where ys represents the model-retrieved SLDR value, yo rep-
resents the observed SLDR, and N represents the number of
samples. The bias reflects the mean difference between the
simulated values and the observed true values and provides an
assessment of the overall deviation of the model. The RMSE,
on the other hand, is a metric that quantifies the difference
between simulated values and observed true values. This
approach provides an objective evaluation of the dispersion
of the model’s simulated values in relation to the true values.
R2 is a relative measure that indicates how well the model
fits the true values, and it ranges between 0 and 1, where a
value closer to 1 indicates a stronger relationship between the
model’s predictions and the true values.
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Fig. 5. Training results for (a) XGBoost, (b) CNN, (c) transformer, and
(d) stacking.

A. Training Results

In total, we obtained 52 826 samples from the training
dataset. The training results are shown in Fig. 5. The majority
of the data points are concentrated around the 1:1 line. The
outcomes of the training phase indicate that all three funda-
mental models, XGBoost, CNN, and transformer, achieved
commendable levels of accuracy. Specifically, the XGBoost
model exhibited a bias of −0.02 W/m2 and an RMSE of
14.75 W/m2, with an R2 of 0.94. The CNN model has a bias
of −0.73 W/m2 and an RMSE of 14.81 W/m2, with an R2

of 0.94. For the transformer model, the bias is 0 W/m2, the
RMSE is 14.62 W/m2, and the R2 is 0.94.

The three fundamental models have comparable perfor-
mances, and stacking demonstrates a slight improvement.
Compared with those of the three fundamental models, the
RMSE of the proposed model decreases by 0.47–0.66 W/m2

and the R2 increases by 0.01. In addition, the scatter density
plot of the stacking training results exhibits reduced dispersion,
indicating an enhanced ability to handle outliers.

B. Validation Results

We extracted 31 904 samples from the 17 sites collected;
these samples were not included in the model training. Fig. 6
shows the validation results. In terms of validation metrics,
the transformer outperforms XGBoost and the CNN, which
achieved a bias of −0.17 W/m2, an RMSE of 15.69 W/m2,
and an R2 of 0.9. In contrast, the XGBoost model and the CNN
model had biases of 0.9 and 0.27 W/m2, RMSEs of 16.72 and
16.83 W/m2, and R2 values of 0.89. The machine learning
models XGBoost and the deep learning model CNN perform
similarly, which implies that for the task of SLDR estimation
in polar regions, convolutional models do not necessarily
outperform GBDT models. In addition, despite the relatively
simple architecture of the transformer model employed in this
study, which is composed of only one encoder layer and one

Fig. 6. Scatter density plots of the test results. (a) XGBoost model. (b) CNN
model. (c) Transformer model. (d) Stacking model.

decoder layer, it still outperforms conventional machine learn-
ing and convolutional models during validation; this is because
the self-attention mechanism within its sublayers effectively
considers the interrelationships between input features, leading
to more accurate SLDR estimations.

Subsequently, the predictions from these three fundamental
models were stacked using the BMA model. The bias and
RMSE were 0.49 and 15.35 W/m2, respectively, with an
R2 of 0.9. In terms of the evaluation metrics, the stacking
model exhibited significant improvements compared to the
XGBoost and CNN models, performing comparably to the
best-performing transformer model. In addition, the scatter
density plot distribution revealed a reduction in dispersion
after stacking, implying that this approach can enhance the
reliability and robustness of the fundamental models during
practical validation. In comparison to the training results, there
is a slight decrease in the model’s accuracy or performance.
However, in general, the overall performance remains satisfac-
tory, indicating that the models exhibit good generalizability.

C. Geographical Distribution of the Estimated SLDR

To further demonstrate the ability of the data-driven model
to estimate practical SLDRs, the model was applied to real
Aqua/MODIS imagery utilizing near-surface meteorological
data from ERA5. Fig. 7 displays the estimated clear-sky
SLDRs for areas above 60◦ north and south latitude on
January 1, 2020 and July 1, 2020, respectively, and the blank
areas indicate regions covered by clouds. The image resolution
matches that of MODIS, with a consistent 1 × 1 km grid, pro-
viding finer details than products such as ERA5 and CERES.
On January 1, the Northern Hemisphere was in winter, and the
Southern Hemisphere was in summer. Therefore, the overall
SLDRs in the Arctic region are lower than those in the
Antarctic region. Conversely, on July 1st, when the Northern
Hemisphere was in summer and the Southern Hemisphere was
in winter, the overall SLDRs in the Arctic region were greater
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Fig. 7. Geographical distribution of the estimated clear-sky SLDRs in
the Arctic and Antarctic regions. (a) Arctic, January 1, 2020. (b) Antarctic,
January 1, 2020. (c) and (d) Spatial distributions of SLDRs estimated over
the Arctic and Antarctic on July 1, 2020.

than those in the Antarctic region. Notably, the application of
the data-driven model proposed in this study is not confined
to surface types; it can simultaneously estimate the SLDR
for both oceanic and terrestrial areas, which has significant
practical implications for polar regions with extensive marine
and sea ice distributions. The spatial distribution of clear-sky
SLDRs in the Arctic and Antarctic regions reveals a general
trend toward higher SLDRs in the Arctic and lower SLDRs
in the Antarctic, with higher SLDRs in low-latitude areas and
lower SLDRs in high-latitude areas. Moreover, over glacier
surfaces, such as Greenland and the Antarctic continent, the
SLDR tends to have lower values. Overall, the spatial distribu-
tion of clear-sky SLDR estimation results over polar regions
aligns with the expected patterns. Furthermore, although the
development and implementation of the data-driven model are
based on MODIS sensor data, the model will not be restricted
to only MODIS sensor data in the future. The model can be
extended to other observation satellites equipped with thermal
infrared sensors, such as GOES-16, Himawari-8, and FY-3,
demonstrating its expansive potential for various applications.

V. DISCUSSION

A. Comparison With the Existing SLDR Products

To further evaluate the performance of the proposed
model, the accuracy of two widely used SLDR products was
assessed. One is the ERA5 reanalysis data product provided
by the European Centre for Medium-Range Weather Forecasts
(ECMWFs) [18], and the other is the CERES-SYN global
radiation data product provided by the Clouds and the Earth’s
Radiant Energy System (CERES) of the National Aeronautics
and Space Administration (NASA) [73], [74]. Both products
offer long-term time series of hourly SLDR data over polar
regions. ERA5 utilizes the ECMWF Integrated Forecast
System (IFS) CY41R2 with 4D-Var DA and model forecasts
to provide hourly SLDR data with a spatial resolution of

Fig. 8. Scatter density plots of SLDR product evaluation. (a) ERA5.
(b) CERES-SYN. (c) Stacking. (d) Stacking_era5.

0.25◦
× 0.25◦ for polar regions. The CERES-SYN product,

derived from the CERES sensors onboard the TERRA and
AQUA satellites, applies improved SLDR simulation algo-
rithms based on geostationary (GEO) infrared channel data
and multichannel cloud property data. It offers high-accuracy
hourly SLDR data with a spatial resolution of 1◦

× 1◦.
ERA5 and CERES-SYN products provide cloud cover

data and can identify clear sky conditions. To ensure the
consistency of the comparison results, we used the MYD35
CM to identify the clear-sky ERA5 and CERES-SYN grid.
Note that a scale effect issue exists between ERA5, CERES-
SYN data, and in situ observations, which may introduce
additional errors in the validation and intercomparison results.
The footprint of the flux measurement typically ranges from
tens to hundreds of meters, much smaller than the grid size of
ERA5 and CERES-SYN products, inevitably introducing rep-
resentativeness errors [75], [76]. Although a few researchers,
like Wang et al. [77], have attempted to address this issue,
no mature scheme is currently available to mitigate these rep-
resentativeness errors in validating SLDR. Thus, we employed
the nearest neighbor method to temporally and spatially match
the products with the validation dataset in this study.

Fig. 8 presents the scatter density plots. The ERA5 SLDR
product underestimates the clear-sky SLDR values in polar
regions with a bias of −6.97 W/m2, an RMSE of 27.48 W/m2,
and an R2 of 0.73. The CERES product exhibits an overall
minor bias, with a bias of 2.55 W/m2. However, its RMSE
is relatively high and reaches 39.47 W/m2. Moreover, the
bias and RMSE values of the proposed data-driven model are
0.49 and 15.35 W/m2, respectively. This result demonstrated
a clear advantage over the other two products in the polar
regions.

We employed in situ measured near-surface meteorological
data such as Ta, RH, and PS to establish the data-driven
model, which ensures that our model will not excessively rely
on specific meteorological data sources in later applications.
To confirm the transferability of the stacking model and
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Fig. 9. Line charts of the validation results across different sites: analysis
by bias, RMSE, and R2.

investigate the potential errors caused by the scale effects in
model input data when comparing the stacking model and
ERA5 SLDR product, we conducted an additional experiment
by substituting the site-observed meteorological data with
near-surface 2 m temperature, 1000 hPa RH, and surface pres-
sure (PS) data provided by ERA5 reanalysis products. Fig. 9(d)
shows the evaluation results. The bias and RMSAE are -
4.22 and 21.97 W/m2, and R2 is 0.81. The results indicate that
although the performance of the stacking model with ERA5
input (stacking_era5) is slightly decreased, it still outperforms
the two SLDR products, indicating the established Stacking
model is robust and the impact of model input is weak.

In addition, to provide a more comprehensive analysis,
we conducted a site-per-site comparison. The comparison
results are shown in Fig. 9. The ERA5 and CERES-SYN
SLDR products exhibit significant differences in validation
accuracy across different sites, while the stacking model con-
sistently demonstrates robust and stable validation accuracy at
each site. For instance, at site NCB, ERA5, and CERES-SYN
both exhibit significant overestimations, with biases of
29.3 and 30.39 W/m2, respectively, whereas the stacking
model has a bias of only 5.12 W/m2. At site SCO_L, ERA5,
and CERES-SYN both show substantial underestimations,
with biases of −40.7 and −26.84 W/m2, respectively, while
the stacking model achieves a bias of only −3.98 W/m2.
Furthermore, even at sites where both products perform
relatively well, the stacking model still exhibited better
performance. For instance, at site CEN, which has an
elevation of 1880 m, ERA5 has a bias and RMSE of
−3.88 and 13.42 W/m2, respectively; CERES-SYN has a bias
and RMSE of 13.13 and 26.94 W/m2. The stacking model
has a bias and RMSE of 4.04 and 10.43 W/m2, respectively.
In summary, the stacking model surpasses existing products in
terms of estimation accuracy, model stability, and robustness.
The detailed site-specific validation results can be found in
Supplementary Table S5.

B. Influence of Surface Elevation

The polar region has complex terrain and significant vari-
ations in surface elevation. Previous studies have indicated

Fig. 10. Scatter plots of the SDLR estimation evaluation for the different
elevation ranges. (a) XGBoost model. (b) CNN model. (c) Transformer model.
(d) Stacking model.

that elevation can influence the accuracy of SLDR products
[3], [24]. In the construction of the data-driven model, ele-
vation was incorporated as part of the model’s input features.
To evaluate the impact of elevation on the accuracy of the data-
driven model’s SLDR estimation, we performed a detailed
analysis.

The elevation of the validation sites ranged from 6 to
1880 m. We categorized the elevations into three subranges: 0,
500 m, 500, 1000 m, and 1000 m and above. The evaluation
results are shown in Fig. 10. The accuracy of SLDR estima-
tion by the three models exhibited variations with elevation
fluctuations. With increasing elevation, the bias of the CNN
model increased from 1.63 to −4.27 W/m2, and R2 decreased
from 0.9 to 0.84. Similarly, the transformer model exhibited
an increase in bias from 0.22 to −1.14 W/m2 and a decrease in
R2 from 0.91 to 0.78 with increasing elevation. In contrast, the
XGBoost model achieved the lowest bias in the 500–1000 m
range, at −0.17 W/m2, and the highest R2 in the 0–500 m
range, at 0.9. This indicates that due to factors such as
atmospheric conditions and terrain features, the performance
of individual models varies at different elevations.

By integrating the predictions of the three fundamental
models, with increasing elevation, the bias values of the
final stacking model decreased from 1.05 to −0.67 W/m2,
and the highest RMSE was achieved in the 500–1000 m
range at 16.13 W/m2, and the lowest RMSE was achieved
in regions above 1000 m at 12.38 W/m2, with R2 values
ranging from 0.91 to 0.84. This finding suggested that the
stacking model exhibited improved RMSE and R2 values
compared to those of the other three fundamental models,
revealing the individual weaknesses of the individual models.
In addition, for elevations above 1000 m, the stacking model
demonstrated the best SLDR estimation performance, with a
bias of −0.67 W/m2, an RMSE of 12.38 W/m2, and an R2 of
0.84. Compared to the individual model, the stacking model
has successfully reduced RMSE, constrained bias, and ensured
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Fig. 11. Bar plots of the seasonal variation of the estimated SLDRs in polar
regions generated by different models. (a) Arctic. (b) Antarctic.

the stability of estimation results. In other words, the stacking
model effectively combines the strengths of individual models,
enhancing its generalization and robustness.

C. Seasonal Variations

Fig. 11 illustrates the model performance during different
seasons in both the northern and southern polar regions. The
detailed SLDR monthly mean values and RMSE data can be
found in Supplementary Tables S6 and S7. To better showcase
the performance of the stacking model, the results from the
three fundamental models are also presented in Fig. 11.

In the Arctic region, pronounced seasonal variations in the
SLDR can be observed. In July, the highest average SLDR
was observed, with site observations reaching 269.56 W/m2.
In February, the lowest average SLDR is observed, with a
value of 175.61 W/m2. Seasonal variations in the RMSE
show that the proposed data-driven model performs slightly
less effectively in winter. This could be attributed to the
complex winter climate in the polar region, which includes
phenomena such as polar nights and ice storms, leading to
the occurrence of SLDR outliers, which are challenging for
model estimation. Nevertheless, all three fundamental models
established in the present study effectively capture the seasonal
changes in the SLDR in the Arctic region, contributing to
the excellent performance of the stacking model in the Arctic
region.

In the Antarctic region, the seasonal variation in the SLDR
is less obvious than that in the Arctic region, but it still
follows the general pattern of higher SLDR values in summer
and lower values in winter. In January, the highest observed
monthly average SLDR is 211.81 W/m2, while in September,
the lowest observed monthly average SLDR is 148.85 W/m2.
The SLDRs estimated by the three fundamental models are
influenced by seasonal changes. All three models tend to over-
estimate SLDRs during the summer in the Antarctic region,
especially the CNN model. Stacking integration helps mitigate
the extent of overestimation in the final SLDR estimations
by the models. However, in general, the performance of the
data-driven model in the Antarctic region is not as strong as its
performance in the Arctic region, possibly due to the limited
number of Antarctic sites used during model validation. There
are fewer established sites in the Antarctic region, and some
site data are not publicly available. The quality of the data
provided by certain Antarctic sites is subpar. As a result, only
data from one Antarctic site were used for validation in this
study. In the next steps, we will continue to gather Antarctic
data and expand the model’s validation coverage.

VI. CONCLUSION

Currently, various reanalysis and remote sensing SLDR
products are available at global and regional scales. However,
these products often suffer from issues such as coarse
resolution and poor accuracy over polar regions. Moreover,
the complex surface environment in polar regions poses a
challenge to existing clear-sky SLDR estimation methods.
To address these challenges, this study develops a data-
driven model for estimating the clear-sky SLDR over polar
regions.

Based on the inner physics of the parametric and hybrid
models and considering the unique characteristics of the polar
region, 12 input parameters of the data-driven model were
determined. With extensive data gathered from 51 polar sites,
we trained and validated the clear-sky SLDR estimate data-
driven model. The initial relationships between the SLDR and
the input parameters were established using three machine
learning models, namely, XGBoost, CNN, and transformer,
from the data randomly selected from two-thirds of the sites.
The final SLDR was estimated through the stacking model.
Validation results from one-third of the site data showed
that the proposed data-driven model significantly improved
the estimation accuracy of clear-sky SLDRs in polar regions
when compared to that of the ERA5 and CERES products.
The proposed stacking model yields a bias of 0.49 W/m2

and an RMSE of 15.34 W/m2, with an R2 of 0.9, whereas
ERA5 and CERES yield biases of −6.97 and 2.55 W/m2,
RMSEs of 27.48 and 39.47 W/m2, and R2 values of 0.73 and
0.44, respectively. This suggests that the stacking model is
a promising method for clear-sky SLDR estimation in polar
regions.

In conclusion, this study reveals that data-driven models
are effective approaches for addressing SLDR estimation chal-
lenges in polar regions. In particular, the successful application
of the stacking model based on various machine learning mod-
els provides us with a new direction. In our next step, we will
explore the implementation of the data-driven models and the
stacking model for accurate cloud-sky SLDR estimation over
polar regions.
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