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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Root counts can efficiently estimate the 
coarse lateral root biomass of shrubs. 

• GPR is an efficient and labor-saving tool 
to obtain root counts. 

• A proposed index Ra can summarize the 
characteristics of all detectable roots. 

• The proposed method has the potential 
to be used in large regions.  
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Caragana microphylla
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A B S T R A C T   

The potential increases in carbon stocks in arid regions due to recent shrub encroachment have attracted 
extensive interest among both ecologists and carbon policy analysts. Quantifying the shrub root biomass amount 
in these ecosystems is essential to understanding the ecological changes occurring. In this paper, we proposed a 
simple nondestructive method for estimating the coarse lateral root biomass of shrubs based on the root counts 
obtained from ground-penetrating radar (GPR) radargrams. Root data were gathered via field experiments using 
GPR with antenna center frequencies of 900 MHz and 400 MHz. Five Caragana microphylla Lam. shrubs of 
different sizes were selected for measuring objects, and a total of 40 GPR survey lines were established for GPR 
data acquisition. The soil profile wall excavation method was used to obtain the total root biomass from each 
radargram. A model for estimating the root biomass was built by establishing the relationship between the root 
biomass in each profile and the root counts interpreted from the radargrams. According to the mathematical 
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relationship between the root diameter and root biomass, the proxy root radius was derived, which could explain 
the rationality of the proposed model from the biological mechanism. The established model provided high 
confidence in estimating the root dry biomass using the GPR data obtained at the two antenna frequencies (R2=

0.73 for 900 MHz and R2= 0.71 for 400 MHz). The leave-one-out cross-validation results showed that the model 
exhibits satisfactory performance. This study expands the application of geophysical methods in root research 
and offers a new simplified method for estimating the root biomass from GPR data under field conditions.   

1. Introduction 

The root biomass and its belowground distribution are vital to un-
derstanding the global carbon cycle and sequestration in the terrestrial 
ecosystem and have become of longstanding interest to ecologists (Dean 
et al., 2015). Root production provides the primary input of organic 
carbon to soils (Raich and Nadelhoffer, 1989). Roots in arid and semi-
arid regions may comprise a substantial proportion of the total biomass 
in grassland ecosystems (Hu et al., 2019). According to the Food and 
Agriculture Organization (FAO), >18 % of the global land surface is 
covered by semiarid areas (Sjoholm et al., 1989), and such large areas 
provide carbon sequestration in these regions global significance 
(Brovkin et al., 2013). Moreover, quantifying the belowground biomass 
is essential for monitoring and assessing the degradation status in 
semiarid regions (Baumann, 2009; Liu et al., 2003; Zhou et al., 2022). 
However, our knowledge of plant roots is limited despite their essential 
role because they typically lie below the soil surface (Canadell et al., 
1996). 

Traditional techniques for measuring the root biomass are based on 
manual or mechanical excavations. These methods are accurate but 
laborious, destructive, difficult to implement, and only practical in small 
areas (Alamusa and Pei, 2003; Wang et al., 2008). Fortunately, the 
successful application of the ground-penetrating radar (GPR) in the 
detection of buried roots has provided a method for estimating the 
buried root biomass (Barton and Montagu, 2004; Butnor et al., 2012; 
Butnor et al., 2003; Butnor et al., 2001; Cui et al., 2019; Guo et al., 
2013a; Hruska et al., 1999; Liu et al., 2019; Stover et al., 2007; Zhou 
et al., 2022). GPR employs electromagnetic waves to image the sub-
surface, relying on the principle of differential reflection. When the 
transmitting antenna emits electromagnetic waves, they encounter in-
terfaces between materials with contrasting dielectric properties. These 
encounters cause partial reflection of the waves, with differences in 
reflection strength and travel time revealing the depth and location of 
underground features (Daniels, 2004). Data acquisition using GPR 
consists of collecting individual signal waveforms, known as A-scans, at 
specific points. By sequentially acquiring multiple A-scans along a sur-
vey line, a two-dimensional data set called a B-scan is generated. The B- 
scans can be visualized as grayscale images, termed radar profiles, 
where darker areas signify stronger reflections. Since roots possess 
distinct electrical properties compared to soil, their reflections manifest 
as hyperbolic shapes within B-scan profiles. For a comprehensive un-
derstanding of GPR principles and applications, please refer to the 
following recommended literature (Daniels, 2004; Guo et al., 2013a). 
The advantages of the GPR include the potential to monitor roots in 
large areas and to map the belowground root distribution (Guo et al., 
2013a; Butnor et al., 2001; Hruska et al., 1999; Wu et al., 2014a, 2014b), 
as well as the repeatability of data collection facilitating time-series 
analysis. 

Over the past 20 years, GPR technology, with antenna frequencies 
between 400 and 2000 MHz, has been evaluated as an effective tech-
nique for monitoring the underground coarse root system of plants 
(Čermák et al., 2000; Guo et al., 2013a; Stokes et al., 2002), and various 
methods to estimate the root biomass or diameter with the GPR have 
been developed (Barton and Montagu, 2004; Butnor et al., 2012; Butnor 
et al., 2003; Butnor et al., 2001; Cox et al., 2005; Cui et al., 2019; 
Dannoura et al., 2008; Guo et al., 2013a; Hirano et al., 2009; Hirano 
et al., 2012; Hruska et al., 1999; Stover et al., 2007). These methods 

have been used to predict the root biomass by extracting parameters 
related to the reflected signals of root objects from GPR data. These 
parameters can be summarized as A-scan waveform-based parameters 
(Barton and Montagu, 2004; Bi et al., 2023; Butnor et al., 2012; Cui 
et al., 2013; Dannoura et al., 2008; Guo et al., 2013a; Hirano et al., 2009; 
Hirano et al., 2012; Liang et al., 2021) and B-scan image-based param-
eters (Addo-Danso et al., 2016; Bain et al., 2017; Butnor et al., 2003; 
Butnor et al., 2001; Butnor et al., 2016; Cox et al., 2005; Dannoura et al., 
2008; Hirano et al., 2009; Hirano et al., 2012; Molon et al., 2017; Sun 
et al., 2023). 

A-scan waveform-based parameters, including the timing of phase 
changes (Barton and Montagu, 2004; Bi et al., 2023; Butnor et al., 2012; 
Cui et al., 2013; Guo et al., 2013a; Hirano et al., 2009; Hirano et al., 
2012), the maximum amplitude value (Hirano et al., 2009; Hirano et al., 
2012), and the maximum amplitude area (dB × ns) (Cui et al., 2013; Guo 
et al., 2013a; Hirano et al., 2009; Hirano et al., 2012; Liang et al., 2021; 
Yamase et al., 2018), are generally obtained by selecting A-scan data 
that pass through the middlemost position of the root from the processed 
B-scan images. This type of method enables accurate estimation of the 
root diameter or biomass when the root orientation is perpendicular to 
the direction of GPR measurement (Liu et al., 2018a; Tanikawa et al., 
2013; Wang et al., 2020). Initial studies are mainly conducted under 
controlled experimental conditions where the root orientation is known. 
In recent years, Yamase et al. (2018) first used GPR waveform param-
eters to estimate the root diameter of mature C. japonica trees in 
weathered granite soils under forest field conditions. It has indicated 
that the sum of time intervals for all of the reflection waveforms was the 
only suitable parameter among the four proposed for estimating root 
diameter under forest field conditions. More studies are needed to clarify 
the suitability of the waveform-based parameters in different soil con-
ditions and plant species in field condition. 

B-scan image-based parameters can be extracted directly from GPR 
B-scan radargrams. The most common one is the area of the highly 
reflective region. GPR data are postprocessed, including position 
correction, background removal, Kirchhoff migration, and Hilbert 
transform. Then, the B-scan data are converted into 8-bit grayscale 
image files. An extraction threshold is set according to interpretation 
experience, and the number of high-amplitude pixels in the image above 
the set threshold is extracted. Finally, correlations are established be-
tween the number of pixels above the threshold and the root biomass 
(Butnor et al., 2016; Zhu et al., 2014). Butnor et al. (2001) first intro-
duced this method and used it for estimating the root biomass at a depth 
of 40 cm. The correlation coefficient only reached 0.55 due to the sur-
face environment and data processing methods. Butnor et al. (2003) 
used the same method to study the effectiveness of the GPR for esti-
mating the root biomass in forest ecosystems. The results showed that 
this method could be employed to effectively assess the distribution and 
amount of the lateral root biomass and help reduce the number of soil 
cores to be sampled. This approach was also employed to estimate the 
belowground carbon stocks in a chronosequence of managed Pinus pal-
ustris stands, thus contributing to the development of whole ecosystem 
carbon accumulation models (Samuelson et al., 2014; Samuelson et al., 
2017). Molon et al. (2017) used 1 GHz GPR to detect the root structure in 
a 400-m2 white pine woodland and determined the coarse root biomass. 
In recent years, this method has been used in an increasing number of 
studies to estimate the root biomass (Addo-Danso et al., 2016; Alani and 
Lantini, 2019; Bain et al., 2017; Freschet et al., 2021; Liu et al., 2018b; 
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Sun et al., 2023). 
Although the two types of GPR parameters have progressed in recent 

years, they still exhibit disadvantages. Both parameters require a com-
plex processing process. The more complex the processing procedure is, 
the larger the possible error between the final extracted and original 
information. These methods are also operator intensive and challenging 
to automate without expert user guidance. Therefore, the workload of 
data processing and parameter extraction can be significant for root 
measurement and biomass estimation over large areas. Furthermore, 
these methods use the signal strength of the root reflected to estimate 
root biomass and assume that other complex influencing factors can be 
ignored. In practice, site characteristics, such as the soil texture and 
water content (Grote et al., 2003; Huisman et al., 2003), root size, root 
depth (Hirano et al., 2009), root orientation (Wang et al., 2020), and 
root water content (Guo et al., 2013b; Liu et al., 2018a), all impose a 
significant effect on the signal strength. Therefore, there is considerable 
uncertainty in estimating the root biomass using the signal strength, 
which is the main reason for the low accuracy obtained in field 
experiments. 

Previous studies have shown that the significant advantage of the 
GPR in root research lies in identifying and localizing root objects (Wu 
et al., 2014a). In other words, the number and distribution of coarse 
roots can be obtained quickly and accurately by interpreting the GPR 
radargram. In this sense, a GPR radargram is analogous to a soil profile 
used in traditional root measurement methods for profile walls. In the 
traditional method, the number and spatial distribution of roots 
observed in the trench wall are important parameters in root ecological 
research (Bartos and Sims, 1974; Schafer and Nielsen, 1981). The point 
density of root intersections is converted into an estimate of the root 
length density based on empirical correlations or root anisotropy 

estimates (Chopart et al., 2008). Root counts in the profile could also be 
used to evaluate the root abundance in soil (Bartos and Sims, 1974). 
Schafer and Nielsen (1981) proposed a geometric model to calculate the 
root weight from root counts obtained in the excavated soil profile, and 
they suggested that root counts could be valuable for quickly assessing 
the root biomass in the field. However, the sampling process is time 
consuming, laborious, and destructive, making the observation of the 
number and spatial distribution of roots in the profile difficult, despite 
their importance. Fortunately, GPR technology can provide root counts 
(the number of roots identified in radargrams) in measured profiles 
quickly, easily, and nondestructively. Moreover, with a proper experi-
mental setup, GPR technology can be used for root detection on a large 
quadrat or population scale. 

Therefore, the aim of this study is to verify whether the root counts in 
a large area detected by GPR can be used to estimate the total coarse 
lateral root biomass within this range. Then, a simple model to estimate 
the root biomass on large spatial scales is constructed to address existing 
problems. It is assumed that (i) there may be a parameter analogous to 
the diameter at the breast height (DBH) that can be used to estimate the 
total biomass of all roots in a large area, (ii) the parameter may be 
correlated with the root counts within the range to be estimated, and 
(iii) the total biomass of coarse lateral roots within this range can be 
estimated from the root counts detected by the GPR. To achieve this, we 
first build a theoretical model based on GPR measurement scenarios and 
then validate the model by designing a coarse root detection experiment 
in the field. Caragana microphylla Lam., a typical shrub growing in the 
semiarid grasslands in Inner Mongolia, North China, was adopted as the 
research object. 

Fig. 1. a The schematic diagram of the field experiment from the top view. b The schematic diagram of the field experiment from the oblique view.  
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2. Materials and methods 

2.1. Theoretical model establishment 

GPR detection of the root system is generally achieved by a series of 
survey lines. The space detected by the GPR is directly related to the 
interval of the survey lines. Fig. 1 shows this concept from both top and 
oblique views. Under ideal conditions, the root is perpendicular to the 
profile along the horizontal and vertical directions, and the root length 
should match the spacing of the survey lines, which is assumed as 0.5 m 
here. A survey line can represent the condition of roots in a theoretical 
soil volume of 5× 0.5× 1m3. To reduce the differences due to the root 
length and orientation and to unify the study criteria, the root biomass 
was converted into the biomass per unit volume as the dependent var-
iable according to the dimensions of the GPR profiles. Therefore, the 
volumetric root biomass can be calculated as follows: 

Bthe
i =

πr2
i ρiD

sinαi
(1)  

where Bthe
i is the theoretical biomass of the ith root. ri is the radius of the 

ith root, D is the interval of the survey line, ρi is the density of the ith root 
(both the dry density and the wet density are acceptable), and αi is the 
orientation of the ith root. If there are n coarse roots in the theoretical 
volume (Fig. 2), the total root biomass in this theoretical volume can be 
expanded as: 

Bthe =
∑n

i=1

πr2
i ρiD

sinαi
=

πρ1D
sinα1

r2
1 +

πρ2D
sinα2

r2
2 +⋯+

πρnD
sinαn

r2
n (2) 

In Eq. (2), each root exhibits a different orientation and density. Bthe 

is the total biomass of roots in the theoretical volume corresponding to a 
survey line. 

According to existing research and statistical results for actual 
measurements, the root density ρ of the same species at the same loca-
tion can be considered the same (Cui et al., 2011). Therefore, consid-
ering n roots in the soil profile (Fig. 2), and assuming: ρ1 = ρ2 = ⋯ρn =

ρand α1 = α2 = ⋯ = αn = α, the Eq. (2) can be simplified as follows: 

Bthe =
πρD
sinα

(
r2

1 + r2
2 +⋯+ r2

n

)
= k

(
r2

1 + r2
2 +⋯+ r2

n

)
(3)  

where k is a constant term, and D is the interval of the survey line. If D is 
fixed, k is mainly related to the root density. Eq. (3) indicates that the 
root biomass in the profile can be calculated as the sum of the biomass of 
each root. An index, Ra, is proposed to represent the characteristics of all 
detectable roots. This index is related to the radii of all detectable roots 
and can be regarded as the proxy radius of all roots, which can be ob-
tained with Eq. (4): 

Ra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
1 + r2

2 + ⋯ + r2
n

√

(4) 

Then, Eq. (3) can be expressed as: 

Bthe = kR2
a (5)  

where Bthe is the total root biomass in the profile. The ecological im-
plications are shown in Fig. 2b. Ra is particularly related to the number 
and diameter of roots. Regarding the existing root detection methods, it 
is difficult to obtain and calculate the proxy radius Ra directly. If Ra 
exhibits a stable relationship with the root counts n, the total root 
biomass in the profile can be expressed as Eq. (6): 

Bthe∝Ra∝n (6) 

This indicates that the total root biomass in the profile can be derived 
from the root count. The GPR provides a notable advantage in obtaining 
root counts from radar profiles (Wu et al., 2014a), so an empirical model 
linking the root biomass to the root counts detected by the GPR can be 
developed. 

2.2. Field experiment 

2.2.1. Study site 
The study site (43◦54′58′′ N, 116◦12′16′′ E) occurs at the center of the 

Xilin Gol, Inner Mongolia, North China (Fig. 3). The average altitude of 
this area is 988.5 m, and this region is affected by a temperate conti-
nental climate. The annual average temperature in this area is 2.6 ◦C, 
involving four distinct seasons, with high temperatures occurring from 
June to August (Yiruhan et al., 2011). It is the most typical arid and 
semiarid area on the Mongolian Plateau, the annual potential evapo-
transpiration and the annual average precipitation are ~1750 and ~ 
350 mm respectively (Miao et al., 2009), and the majority of the annual 
precipitation falls in July and August (He, 2012). 

The soil types in this region are Calcic Chernozems and Calcic Orthic 
Aridisol, according to the FAO and the United States Department of 
Agriculture (USDA) soil classification systems, respectively (Li et al., 
2013; WRB, 2006; Zhao et al., 2010). These soil types are mainly 
distributed in the eastern and central parts of the Mongolian Plateau, 
and the soil parent material is loess. This regional soil exhibits exces-
sively drained characteristics, relatively homogeneous physiochemical 
properties, and low organic content, and is highly permeable, rendering 
it conducive to root detection with GPR (Cui et al., 2013; Li et al., 2016). 

C. microphylla is the dominant shrub species in the study region. It 
exhibits high cold tolerance and drought tolerance, which determine its 
favorable position in a community competition (Cao et al., 2004). As a 
keystone species, C. microphylla largely controls the sequestration of 
organic carbon, nitrogen accumulation, and the hydrological cycle in 
this system (Cao et al., 2018). 

2.2.2. GPR data collection 
The experiment was conducted in October 2018, during which there 

was no rainfall (http://data.cma.cn/) and the weeds have wilted. 

Fig. 2. a The front view of an excavated profile b The schematic diagram of the proxy radius Ra.  
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Considering the late timing of the experiment and the shallow weed root 
system, the influence of the weed roots on the experimental results was 
limited. The terrain of the experimental area is flat, and the ground angle 
is <3◦. Five relatively isolated C. microphylla shrubs (with a distance 
from the stem to the nearest adjacent shrub stem larger than 4 m) were 
randomly selected for measurement to avoid interference from neigh-
boring root systems (Fig. 4, Table 1). A total of 40 GPR survey lines with 
a 5-m length at every 0.5 m around the five shrubs were planned to 
observe the belowground root systems. The layout of the survey lines is 
shown in Fig. 4. To meet the modeling needs, the GPR detection area 
should contain different numbers, diameters, and degrees of sparseness 
of the distribution of the root system, so we chose different sizes of 
shrubs for measurement and set the direction of the survey line ac-
cording to the root distribution of each shrub. We first conducted a 
preliminary survey of the area around the shrubs using the GPR to 
identify the area with a high root density. Then, in this area, the survey 
line was established with the shrub as the center. To avoid crossings, the 
lines were oriented along the same direction for each shrub and were as 
perpendicular to the lateral root orientation as possible. The layout of 
the survey lines shown in Fig. 4 represents the position relative to the 
target shrub surveyed, and not all lines were oriented along the same 
direction. 

A field-portable GPR system (RIS MF Hi-Mod; Ingegneria Dei Sistemi 
Inc., Pisa, Italy) with two pairs of antennas shielded in the same antenna 
box was used to scan the shrub root system along the survey lines. The 
GPR system simultaneously collected data at two frequencies (900 and 
400 MHz). An antenna box with a survey wheel was used to measure the 
electromagnetic pulses emanating from the GPR unit and record the 
survey distance. Each pulse was recorded as a trace comprising 512 
samples with a time step of 0.0586 (or 0.1172) ns for a total record 
length of 40 (or 60) ns for the 900 (or 400) MHz antenna. The traces 
were triggered every 1.6 (or 3.2) cm for the 900 (or 400) MHz antenna 
along each survey line. In addition, a metal bar was buried in the soil at a 
depth of 30 cm, which was used to estimate the average velocity of the 
radar waves and calculate the depth of the detected roots (Cui et al., 
2019; Liu et al., 2018b; Wu et al., 2014a). 

2.2.3. Profile excavation 
After GPR measurement, trenches 5 m long, 0.5 m wider and 1 m 

deep were excavated vertically along the survey lines (Fig. 4). Based on 

the GPR results and the profile root conditions, it was decided whether 
the profile would be excavated considering the workload of profile 
excavation. Specifically, according to field manual interpretation, the 
profile was not excavated when there was excessive noise in the radar-
gram and the root signal was polluted. Eventually, 30 transects 5 m long, 
0.5 m wider and 1 m deep were excavated vertically along the survey 
lines and used to establish a root biomass estimation model, as shown in 
Fig. 4g. Steel tapes, vernier calipers, and protractors were used to 
measure the location, horizontal orientation, diameter, and other in-
formation of each exposed coarse root (a diameter larger than 0.2 cm) in 
the excavated profiles. For example, the excavated roots in the No. 108 
profile are shown in Fig. 5b. Each root was cut to a 20-cm length in the 
section directly below the antenna travel trajectory as a root sample and 
used to measure the wet biomass. The number of roots in each profile 
was counted and recorded in situ. Then, these roots were transported to 
the laboratory and weighed after oven drying at 65 ◦C for 72 h to obtain 
the dry biomass. After recording the root data of each profile, the 
trenches were backfilled. 

2.3. Data processing and analysis 

2.3.1. GPR data processing 
The GPR data were processed using the RGPR package written in R 

software (R Core Team, 2022), which is primarily used to process and 
visualize GPR data (Huber and Hans, 2018). The steps and purposes of 
GPR data processing can briefly be described as follows: (1) first break 
correction is used to correct the vertical and horizontal scales in the 
radargrams and to place all reflections under the correct two-way travel 
time; (2) background removal is used to remove the background noise or 
clutter caused by signal interference, multiple reflections of GPR signals, 
parallel bands and high-frequency spike events; (3) bandpass wave 
filtering is used to remove the high- and low-frequency noise in each 
profile; (4) automatic gain control (AGC) is used to compensate for the 
energy loss caused by medium attenuation, scattering losses, and dissi-
pation; and (5) travel time-to-depth conversion, which is used to obtain the 
depth of belowground targets by the wave velocity calculated based on 
the predefined depth of the metal bar. A processed GPR radargram 
collected by the 900 MHz antenna for the No. 108 profile is shown in 
Fig. 5a. For the detailed processes of each step, readers are referred to 
Cui et al. (2011), and Guo et al. (2013a). After radar data processing, the 

Fig. 3. a The study site is located in Xilin Hot, Inner Mongolia, China. b Unmanned aerial vehicle (UAV) image of the study site.  
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reflected signals from coarse roots exhibit a hyperbolic shape. 
We used the enhanced YOLOv4 algorithm to automatically identify 

hyperbolic reflections and locate roots in the GPR images (Li et al., 
2022). Thus, the root counts and locations within each profile could be 
automatically obtained. Then, the location of the roots identified in the 
radargram was automatically compared with that of the roots recorded 
along the excavated transects (Fig. 5b). Roots were considered accu-
rately identified if the Euclidean distance between the root identified in 
the radargram and the root recorded along the profile was smaller than 

15 cm. This value of 15 cm was determined based on the minimum 
spacing between the two roots that could be detected (Hirano et al., 
2009). The detection rate is the ratio of the number of roots detected by 
GPR to the actual total number of roots on the profile (Hirano et al., 
2012). It can be calculated using the formula: Detection rate (%) = (Root 
counts detected by GPR / Root counts measured) × 100 % (Table 2). 

2.3.2. Root biomass estimation model development 
The roots measured by the excavated profile method were used to 

Fig. 4. Schematic diagram of field experiment data collection. a Survey lines of shrub S1; b Survey lines of shrub S2; c Survey lines of shrub S3; d Survey lines of 
shrub S4; e Survey lines of shrub S5; f A schematic of the profiles (5 m long, 1 m depth and arranged at 0.5 m intervals); g A photo of the excavated transects in the 
field experiment. 
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assess the rationality of the proxy radius of roots in the profile and to 
examine the relationship between the proxy radius and the number of 
roots. First, the proxy radius Ra of each excavated profile was calculated 
based on the root diameter recorded in the field according to Eq. (4), and 
the relationship between proxy radius Ra and root biomass on the profile 
was constructed. Second, proxy radius Ra against the root count in each 
profile to examine their relationship. Then, the relationship between the 
root biomass and root counts was further analyzed by using the rela-
tionship between the root biomass and proxy radius Ra (Eq. (5)). Finally, 
based on the above relationship, regression analysis was performed to 
develop an empirical model of the relationship between the root 
biomass and the root count in each GPR radargram. Regression analysis 
was performed in MATLAB software (The MathWorks, Inc., Natick, 
USA). 

2.4. Model assessment and validation 

2.4.1. Model assessment 
The accuracy of the biomass model was evaluated based on a com-

bination of five fit statistics: (i) coefficient of determination (R2); (ii) 
correlation coefficient (r); (iii) root mean square error (RMSE); (iv) p 
value; (v) 1:1 line. R2 characterizes the goodness of fit of the model. In 
other words, it provides a measure of the degree of agreement between 
the predicted and actual values. The correlation coefficient (r) is usually 
used to describe the degree of linear correlation between two variables. 
The root mean square error (RMSE) was used to evaluate the accuracy of 
the established model for estimating the root biomass. 

R2 = 1 −

∑m

j=1

(
yj − ŷj

)2

∑m

j=1

(
yj − y

)2
(7)  

r =

∑m

j=1

[(
ŷj − ŷ

)
×
(
yj − y

) ]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
ŷj − ŷ

)2
√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
yj − y

)2
√ (8)  

RMSE =
1
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
yj − ŷj

)2

√
√
√
√ (9)  

where m is the number of excavated profiles and yj, ŷj y, and ŷ are the 
excavated, estimated, and average excavated root biomass values for the 
jth profile and the average estimated root biomass, respectively. 

Table 1 
Descriptive statistics of sampled individual C. microphylla.  

Shrub 
no. 

Long crowna 

(m) 
Short crownb 

(m) 
Crown widthc 

(m) 
Height 
(m) 

S1  2.90  2.40  2.65  1.30 
S2  3.50  2.70  3.10  1.05 
S3  3.60  2.40  3.00  1.20 
S4  2.20  1.80  2.00  1.25 
S5  2.40  2.20  2.30  1.15  

a The long crown is equal to the major axis of the crown of the shrub. 
b The short crown is equal to the minor axis of the crown of the shrub. 
c The crown width is equal to the average of the major and minor axis of the 

crown. 

Fig. 5. a GPR radargram collected by the 900Mhz antenna for No. 108 profile. Blue points indicate the location of roots identified by GPR. b 900 MHz radar detected 
roots and excavated roots on the No. 108 profile. Red points indicate the location of excavated roots. The size of red point represents the root diameter. The black 
dotted circle represents the root detected by GPR. 
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2.4.2. Cross validation 
Due to the small number of excavated profiles, leave-one-out cross- 

validation (LOO-CV) was applied to assess the biomass model accuracy. 
For a sample dataset with m samples, only one sample is selected for 
testing at a time, and the remaining m − 1 samples are used for model 
construction. This process is repeated m times until the validation pre-
diction values are obtained for all m samples (Geisser, 1974). 

The percent bias (%), root mean squared error (RMSE, kg/m3), root 
mean absolute error (MAE, kg/m3) and coefficient of determination 
(R2) were used to assess the model applicability. When the percent bias 
is positive, it indicates that the estimated value is on the high side, and 
vice versa. The RMSE was used to evaluate the prediction effect of the 
model; the smaller the value is, the better the prediction effect. When the 
MAE is equal to 0, the model is perfect. The larger the MAE is, the larger 
the model error. Models that produce small LOO-CV errors are preferred. 
The above metrics can be calculated as follows: 

Bias =
1
m

∑m

i=1

100
n

∑n

j=1

yj − ŷj

yj
(10)  

RMSE =
1
m

∑m

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

j=1

(
yj − ŷj

)2

√
√
√
√ (11)  

MAE =
1
m

∑m

i=1

100
n

∑n

j=1

⃒
⃒yj − ŷj

⃒
⃒ (12)  

where, m is the number of repetitions of the validation process, which is 
equal to the number of excavated profiles, and n is the number of profile 
samples per repetition, which is equal to m − 1. 

3. Results 

3.1. Root and profile information 

A total of 424 roots with diameters larger than 0.2 cm were measured 
by progressive excavation. Detailed information on the roots in each 
profile is provided in Table 2. The mean detection rates at the 900 MHz 
and 400 MHz radar frequencies over all profiles were 78 % and 60 %, 
respectively. Detection rates exceeding 60 % were observed in 86 % and 
54 % of the profiles using the 900 MHz and 400 MHz antennas, 
respectively. The detection rate of the 900 MHz antenna is slightly 
higher than that of the 400 MHz antenna in most of the profiles. The 
distribution histograms of the dry density, wet density, radius, and 
orientation of all excavated roots are shown in Fig. 6. The dry and wet 
densities of the roots were normally distributed, with mean values of 
0.52g/cm3 and 1.00g/cm3, respectively. The root radius showed an 
approximate power-law distribution. The mean root radius was 0.38 cm, 
and the maximum radius was 2.23 cm. Roots with a radius smaller than 
0.5 cm accounted for 78 % of the total sample. The orientation of the 
roots was normally distributed, with an average orientation angle of 88◦, 
and >89 % of the roots exhibited an orientation angle between 45◦ and 
135◦. 

3.2. Relationship between the root biomass and the proxy radius 

As shown in Fig. 7a and b, there is a power-law relationship between 
the proxy radius Ra and the excavated root biomass of each profile. The 
coefficient of determination for the dry biomass (R2 = 0.90) was slightly 
lower than that for the wet biomass (R2 = 0.92), indicating that the 
proxy radius Ra can be used to accurately estimate the root biomass 
(Fig. 7c and d, respectively). Compared with the theoretically derived 
results (Eq. (5)), the power index is 1.82 (for the dry biomass) and 1.91 
(for the wet biomass), which is slightly <2, probably due to changes in 

Table 2 
Total number and summary statistics of roots in each profile from excavation and GPR measurement.  

Profile No. Root counts measured Root counts detected by GPR GPR detection ratea (%) Ra (cm) Dry root biomass (kg/m3) Wet root biomass 
(kg/m3) 

900 MHz 400 MHz 900 MHz 400 MHz 

101  3  3  0  100  0  0.40  0.01  0.01 
106  12  8  5  67  42  1.40  0.11  0.21 
107  18  15  12  83  67  1.23  0.18  0.32 
108  10  7  5  70  50  1.06  0.14  0.29 
109  8  6  5  75  63  0.51  0.04  0.07 
110  4  3  2  75  50  0.42  0.01  0.02 
201  13  10  9  77  69  1.07  0.09  0.19 
202  8  5  5  63  63  1.20  0.17  0.34 
203  22  17  9  77  41  1.91  0.31  0.66 
204  21  17  13  81  62  1.89  0.24  0.47 
205  44  40  24  91  55  3.02  0.58  1.11 
301  7  6  6  86  86  1.33  0.17  0.37 
302  12  12  10  100  83  1.68  0.17  0.35 
303  28  23  20  82  71  2.41  0.43  0.97 
304  30  23  15  77  50  2.71  0.79  1.72 
305  22  20  14  91  64  3.17  0.64  1.34 
306  21  18  14  86  67  3.00  0.60  1.29 
307  15  12  7  80  47  2.02  0.38  0.79 
308  15  13  12  87  80  1.49  0.13  0.29 
309  11  10  8  91  73  1.13  0.07  0.16 
310  8  4  5  50  63  1.55  0.08  0.19 
401  1  0  0  0  0  0.14  0  0 
403  1  1  1  100  100  0.50  0.01  0.03 
404  7  6  5  86  71  0.81  0.04  0.08 
405  13  11  5  85  38  1.39  0.11  0.21 
501  6  0  2  0  33  0.75  0.04  0.08 
503  11  5  6  45  55  0.89  0.07  0.12 
504  10  6  5  60  50  1.01  0.15  0.29 
506  24  15  11  63  46  2.76  0.29  0.53 
507  19  11  7  58  37  1.10  0.28  0.49 
Mean  14  11  8  78  60  1.47  0.21  0.43  

a Detection rate (%) = 100 × (Root counts detected by GPR / Root counts measured). 
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the density of roots with different radii (Fig. 6). 

3.3. Validation of the theoretical model 

Fig. 8a shows the relationship between the proxy radius Ra and the 
number of roots counted in the excavation profile. As previously hy-
pothesized, the root count is strongly correlated with the proxy radius 
Ra, while there also exists a satisfactory power-law relationship between 
these variables in each soil profile (y = 0.221x0.71,R2 = 0.79, p-value 
<0.001), which verifies the above conjecture in Section 2.1. Therefore, 
the relationship between proxy radius Ra and the root counts n can be 
expressed as: 

Ra = mnt (13) 

Substituting the Eq. (13) into the Eq. (5), the total root biomass in 
each profile can be expressed as: 

Bthe = k(mnt)
2
= km2n2t = KnT (14) 

Eq. (14) shows that there is also a power-law relationship between 
the root biomass and root counts, which is verified in Fig. 8b and c. 
Across all 30 profiles, the root biomass increases exponentially with root 
counts (exponential regression, R2 = 0.83, p value <0.001 for the dry 
biomass and 0.82 for the wet biomass). The results validate the theo-
retical model presented in Section 2.1. 

3.4. Root biomass estimation using GPR data 

The relationship statistics for the dry and wet biomass estimation 
models based on GPR data slightly differ. The regression relationships 
show similar R2 and p values (<0.001). The dry biomass was closely 
related to the root counts identified from the 900 MHz radargrams with 
R2 = 0.73, whereas the model based on the root counts identified from 

the 400 MHz radargrams yielded R2 = 0.71. The models based on 900 
and 400 MHz data achieves similar performance levels in estimating the 
root biomass. 

3.5. Model validation results 

Table 3 provides the model validation results for the measured data 
and the GPR data. The model based on the root counts obtained from the 
excavation method had a high R2 value and produced the lowest bias, 
RMSE, and MAE values in estimating the root biomass. In comparison, 
the model based on the GPR data performed slightly worse. The use of 
the 900 MHz data to estimate the dry biomass provided a similar pre-
cision to that when using the 400 MHz data, with similar R2 (0.73 vs. 
0.71), RMSE (0.02 kg/m3 vs. 0.02 kg/m3), MAE (0.09 kg/m3 vs. 0.10 kg/ 
m3) and bias (20.16 % vs. 16.64 %) values, even though the 900 MHz 
radar has a higher detection rate than the 400 MHz radar (78 % vs. 60 %, 
Table 2). Similar results were obtained when using the data at two fre-
quencies to estimate the wet biomass. In summary, the root counts 
detected using the GPR can be used to effectively estimate the coarse 
lateral root biomass, and the performance levels of the two models based 
on the two antenna frequencies (900 and 400 MHz) are comparable. 

4. Discussion 

4.1. Significance of the root counts 

Root counts are not utilized in many applications due to the diffi-
culties of the data acquisition methods. However, as an advanced 
nondestructive geophysical detection technique, the GPR can efficiently, 
accurately, and nondestructively obtain the root count and the spatial 
distribution in each radar profile (Butnor et al., 2003), which offers the 
possibility of better utilizing this covariate in root system investigation. 
In this study, we used the root counts obtained from the GPR profile, 

Fig. 6. a Distribution of root dry density (g/cm3); b Distribution of root wet density (g/cm3); c Distribution of root radius (cm); d Distribution of root orientation (◦).  
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rather than the root counts measured via the traditional profile wall 
method, to estimate the root biomass. Our results show that the root 
count data detected by GPR exhibit a favorable power-law relationship 
with the total root biomass in the range scanned by the GPR (Fig. 9). The 
biomass estimation model constructed based on this relationship can be 
used to estimate the coarse lateral root biomass of shrubs. In addition, 
the theoretical derivation of the proposed proxy radius Ra can explain 
the rationality of the model, which is consistent with our hypothesis and 
the results of other studies (Plaza-Bonilla et al., 2014). 

Compared to existing parameters (A-scan waveform-based and B- 
scan image-based) for root biomass estimation extracted from GPR data, 

Fig. 7. a Correlation between proxy radius and root dry biomass; b Correlation between proxy radius and root wet biomass; c Plot of observed root dry biomass vs. 
estimated root dry biomass from proxy radius; d Plot of observed root wet biomass vs. estimated root wet biomass from proxy radius. 

Fig. 8. a Correlation between root counts and proxy radius based on measured data; b Correlation between root counts and root dry biomass based on measured 
data; c Correlation between root counts and root wet biomass based on measured data. 

Table 3 
The result of cross-validation of biomass models.  

Estimated 
variable 

Data Bias (%) RMSE (kg/ 
m3) 

MAE (kg/ 
m3) 

R2 

Dry biomass 
Measured  − 13.86  0.01  0.08  0.83 
900 MHz  − 20.16  0.02  0.09  0.73 
400 MHz  − 16.64  0.02  0.10  0.71 

Wet biomass 
Measured  − 16.44  0.08  0.17  0.82 
900 MHz  − 22.78  0.09  0.19  0.73 
400 MHz  − 17.72  0.09  0.21  0.72  
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root count data are simple, convenient and easy to obtain. The param-
eters used in previous studies require additional data processing after 
root object interpretation (Butnor et al., 2012; Butnor et al., 2016; Cui 
et al., 2013; Dannoura et al., 2008; Hirano et al., 2009; Molon et al., 
2017), which inevitably causes higher uncertainty in root biomass 
estimation, while these errors can be avoided by utilizing root count 
data. Moreover, the introduction and use of deep learning methods in 
GPR data processing have greatly improved the root identification ef-
ficiency and accuracy (Li et al., 2022). This can facilitate the automatic 
and accurate extraction of root counts from the mass of GPR data for root 
detection in large areas. Therefore, the proposed method is not only 
helpful to increase the sampling efficiency and reduce the uncertainty in 
a wider range of shrub root biomass estimation but also helpful to obtain 
the root biomass spatial distribution through the location of roots ob-
tained by the GPR. This is important for measuring the belowground 
competition and determining the location of soil resources available to 
shrubs. 

Root biomass has a significant impact on crucial ecosystem pro-
cesses, including soil carbon storage, water cycling, and nutrient uptake 
(Lynch, 1995). Due to the significance of root counts, the proposed 
method extends the application range of GPR and contributes to the 
research in a wide range of ecological issues, such as monitoring shrub 
encroachment in grasslands, assessing forest carbon stocks, and the 
impact of root systems on soil and water conservation. Furthermore, the 
method provides a novel and effective means of assessing root biomass 
at larger scales, and has the potential to be used to predict the response 
of root system to climate change. This could provide important insights 
into our understanding of shrub adaptation strategies and knowledge of 
key ecosystem functions. 

4.2. Function of the proxy radius 

The proxy radius Ra proposed in this paper, although a hypothetical 
parameter, has a similar physiological meaning in terms of the theo-
retical definition as the DBH and the cross-sectional area of the stem in 
the pipe model used in forestry (Shinozaki et al., 1964b). Traditionally, 
the DBH is used to estimate the tree aboveground biomass, mainly 
because of the apparent power-law relationship between these quanti-
ties (Ali and Yan, 2017; Pérez Cordero and Kanninen, 2003), while 
proxy radius Ra also shows a power-law relationship with the root 
biomass (Fig. 7). Stem cross-sectional area is firstly proposed to estimate 
the leaf mass of trees based on the pipe model theory (Shinozaki et al., 
1964a). The important concept in the pipe model is ‘a unit amount of 
leaves is provided with a pipe whose thickness or cross-sectional area is 
constant. The pipe runs from the leaves to the stem base through all of 
the intervening strata. Many pipes are bundled to form a tree’ (Shinozaki 
et al., 1964a). Proxy radius Ra is proposed based on a similar assump-
tion. A unit amount of roots is provided with a pipe. Pipes are bundled to 
form a root. Roots are bundled to represent a profile. Therefore, the 
proposed proxy radius Ra could explain the relationship between shrub 
root biomass and root counts as a bridge. The DBH and stem cross- 
section area have also been used to estimate the root biomass of trees 
in some previous studies (Brassard et al., 2011; Medrano-Meraz et al., 
2021; Pagès et al., 2004; Salas et al., 2004). However, it is particularly 
difficult to estimate the root biomass of shrubs by using this type of 
parameter because of the lack of a well-defined main stem. Here, the 
proposed proxy radius Ra is expected to solve the difficult problem of 
shrub root biomass estimation. 

4.3. Optimization of the model 

Models based on GPR data tend to be inferior to models based on 

Fig. 9. Relationships of root counts against root biomass a detected root counts on 900 MHz radargram vs. dry biomass; b detected root counts on 900 MHz 
radargram vs. wet biomass; c detected root counts on 400 MHz radargram vs. dry biomass; d detected root counts on 400 MHz radargram vs. wet biomass. 
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measured data in the same circumstances. The main reason is that the 
GPR misses a proportion of roots that exhibit unfavorable detection 
diameters, angles, and depths or are closely spaced and cannot be 
singularly detected (Hirano et al., 2009; Liu et al., 2018a; Tanikawa 
et al., 2013; Tanikawa et al., 2021; Wang et al., 2020). Since the root 
count is positively correlated with the root abundance belowground, it is 
inferred that the estimation accuracy of the model is related to the GPR 
detection rate. Therefore, it may be possible to improve the model ac-
curacy by using the radar detection rate as a correction factor to 
compensate for any roots not detected by the GPR. However, it is 
essential to note that substituting a constant detection rate into the 
model does not directly improve the models, as the model exhibits a 
power-law form. One possible idea is to generate a correction factor 
based on the probability distribution of the detection rate from the 
measured data and then use this factor to correct the root counts results 
of the GPR. 

In this study, the GPR detection rates for all measured profiles using 
the 900 and 400 MHz antennas were 78 ± 14 % (mean ± SD, n = 30) 
and 60 ± 16 % (mean ± SD, n = 30), respectively. Thirty detection rates 
were randomly generated as correction factors based on the above mean 
and standard deviation mentioned. These correction factors were 
applied to the GPR profiles, i.e., the root counts identified on the GPR 
profiles was divided by the correction factors to obtain the corrected 
root counts. Taking the detection rate into account, the corrected root 
count is brought into closer alignment with the actual root count, 
resulting in an enhanced performance of the model. The results are 
shown in Fig. 10. Compared with the results in Fig. 9, the model 
goodness-of-fit was improved (R2 in Fig. 10 is higher than that in Fig. 9), 
indicating that the model can be further optimized by considering the 

GPR detection rate. In practical applications, the GPR detection rate can 
be estimated by local sampling experiments such as soil core extraction 
and profile excavation. 

4.4. Limitations of the method 

The effectiveness of the GPR in plant root system research is mainly 
affected by buried nonroot objects, root orientation, soil properties and 
antenna frequency, as well as the difference in the dielectric constants 
between roots and soil (Guo et al., 2013a; Hirano et al., 2009). When 
using the GPR for root detection in the field, nonroot objects may pro-
duce hyperbolic reflections that are similar to those produced by roots 
and therefore can be misidentified as roots during data interpretation 
(Butnor et al., 2001). Typically, these objects include rock fragments, 
concretions, animal burrows, and some stratified or segmented soil 
layers (Butnor et al., 2001), which may be a source of error in estimating 
the root biomass using the model, especially in complex soil environ-
ments. Previous studies have shown that stones (dimension: 6–20 cm) 
occurring in the forest soil matrix are rarely detected by the GPR 
regardless of whether they are isolated or occur in clumps (Lantini et al., 
2020; Tanikawa et al., 2021). However, the boulders of stones (dimen-
sion: >20 cm) in the soil could interfere with root detection (Vafidis 
et al., 2017). Therefore, we suggest that the potential impact of the false 
detection rate needs to be assessed in advance when applying this 
method in areas with high soil heterogeneity. Theoretically, such errors 
can be partially eliminated by compensating for the false detection rate. 
However, our study site exhibits high soil homogeneity, and few nonroot 
objects were found in the soil in this experiment, so this type of error was 
not considered in this study. 

Fig. 10. The corrected results of root biomass estimation of GPR model on a 900 MHz frequency for dry biomass; b 900 MHz frequency for wet biomass; c 400 MHz 
frequency for dry biomass; d 400 MHz frequency for wet biomass. 
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The root orientation mainly affects the shape of root reflection in 
radargrams (Guo et al., 2015; Liu et al., 2018a; Tanikawa et al., 2013; 
Wang et al., 2020; Wu et al., 2014b). When the detection direction of the 
GPR intersects with the root orientation at an angle of 90◦, the reflected 
root signal shows a clear and standard hyperbolic shape, but when the 
angle is lower than 45◦ or higher than 135◦, the hyperbolic feature 
disappears, and it is difficult to identify the root (Tanikawa et al., 2013). 
When the angle varies between 45◦ and 135◦, the more the angle de-
viates from 90◦, the more severely the hyperbolic shape is deformed, but 
the root can still be empirically identified using visual interpretation 
methods (Liu et al., 2018a; Wang et al., 2020). Such signal deformation 
greatly affects the attribute parameters of roots extracted from A-scan 
waveforms and B-scan images but slightly affects the root count (Tani-
kawa et al., 2013). The experimental data in this study showed that the 
proportion of root orientation values between 45◦ and 135◦ is 89 % 
(Fig. 6d), and we used a deep learning method to effectively recognize 
roots in the radargrams (Li et al., 2022). However, considering the 
workload of excavating soil profiles, we set only one survey line direc-
tion for each research object in this experiment, so some roots may be 
missed. It is suggested that survey lines can be set up in a crisscrossing 
manner for GPR detection in practical applications to improve the ac-
curacy of root count identification. 

The antenna frequency affects the detectable depth and the resolu-
tion of roots (Annan, 2009; Barton and Montagu, 2004). High-frequency 
antennas provide a limited depth penetration but a high spatial resolu-
tion, while low-frequency antennas exhibit the opposite (Daniels, 2009). 
In this study, the two antenna frequencies (900 and 400 MHz) achieve a 
comparable performance in the biomass estimation model (Fig. 9, 
Table 3), although they provide different root detection rates (Table 2). 
The main reason for this result is that the number of roots, as a statistic 
magnitude, represents the overall level of the root biomass across the 
radar profile and can tolerate a certain degree of error due to the 
different identification rates at the different antenna frequencies of the 
GPR. However, we only collected data at two frequencies in our ex-
periments, and the applicability of the proposed method to the range of 
GPR detection rate variations needs to be tested with GPR data obtained 
at higher or lower frequencies. The GPR detection rate in this study is 
slightly higher than that of Hirano et al. (2012) with similar root 
diameter distribution. This may be related to the experimental envi-
ronment, plant species, roots identified method and the type of GPR 
used. 

In addition, the limitations of the methodology itself are manifested 
in three ways. Firstly, the quantitative relationship between proxy 
radius Ra and the root biomass may vary for different species, so the 
proposed method needs to be calibrated for different species in practical 
applications. The method has a theoretical assumption that the density ρ 
of coarse roots of different diameters is the same, which is applicable to 
the coarse roots of the shrubs in this study. However, for the coarse roots 
of trees in forests with a wide range of diameters (e.g., from 0.2 cm to 20 
cm), it is likely that the root densities also vary considerably, and thus 
the reasonableness of this assumption needs to be further verified. So, 
the method needs to be improved when applied it to the estimation of 
root biomass in forest trees. One possible suggestion is to analyze the 
variation in root density by collecting samples of coarse roots of 
different diameters to find the relationship between root density and 
root diameter. On this basis, the coefficient k in Eq. (3) should be 
redesigned and adjusted. Shrubs in arid and semiarid regions are prob-
ably the most appropriate due to their low root density and wide- 
ranging root systems. Secondly, this method summarizes the coarse 
lateral root biomass but cannot characterize taproots or below-stump 
mass directly underneath the shrub. Given the complexity of plant 
species and root conditions, there is a need to optimize the experimental 
design and develop advanced data processing algorithms to further 
expand the application of the GPR in plant root research. Finally, the 
proposed method focuses on estimating the total root biomass within a 
given area. Compared to existing methods, which are capable of 

estimating the root biomass or diameter for individual root, the method 
has limitations in accurately determining individual root biomass. 

5. Conclusion 

In this work, we present a simple and effective method for estimating 
the coarse lateral root biomass of shrubs by constructing a quantitative 
relationship between the root counts detected by the GPR and the 
excavated root biomass in the radar profile. The proxy radius Ra pro-
posed in this work is an effective parameter to characterize the total 
biomass of all roots in the corresponding soil volume (R2 > 0.9, Fig. 7). 
When using the proxy radius to estimate root biomass, its role may be 
analogous to using DBH to estimate above-ground biomass in trees. How 
to obtain and further apply this parameter requires further exploration 
in practice. The proposed model achieves satisfactory accuracy in esti-
mating the coarse lateral root biomass of shrubs, whether using 
measured data (R2 > 0.82, Fig. 8) or GPR data (900 MHz: R2 > 0.72, 
400 MHz: R2 > 0.71, Fig. 9), opening doors for regional-scale assess-
ments of shrub communities’ belowground carbon stocks. This 
advancement has the potential to transform how we monitor carbon 
storage and inform strategies for mitigating climate change. For 
instance, policymakers could leverage this approach to prioritize con-
servation efforts in areas with high carbon sequestration potential. 
Additionally, it can inform studies on root-soil interactions, linking root 
systems to soil health, water conservation, and ecosystem resilience. 
This knowledge empowers researchers and conservationists to develop 
strategies for maintaining healthy ecosystems in the face of environ-
mental challenges. We recommend further research to validate the 
model in diverse ecosystems, particularly forest ecosystems, and explore 
its integration with other tools for comprehensive belowground 
assessments. 
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