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A 31-year (1990–2020) global 
gridded population dataset 
generated by cluster analysis and 
statistical learning
Luling Liu1,2, Xin Cao   1,2 ✉, Shijie Li   1,2 & Na Jie1,2

Continuously monitoring global population spatial dynamics is crucial for implementing effective 
policies related to sustainable development, including epidemiology, urban planning, and global 
inequality. However, existing global gridded population data products lack consistent population 
estimates, making them unsuitable for time-series analysis. To address this issue, this study designed 
a data fusion framework based on cluster analysis and statistical learning approaches, which led to 
the generation of a continuous global gridded population dataset (GlobPOP). The GlobPOP dataset 
was evaluated through two-tier spatial and temporal validation to demonstrate its accuracy and 
applicability. The spatial validation results show that the GlobPOP dataset is highly accurate. The 
temporal validation results also reveal that the GlobPOP dataset performs consistently well across 
eight representative countries and cities despite their unique population dynamics. With the availability 
of GlobPOP datasets in both population count and population density formats, researchers and 
policymakers can leverage the new dataset to conduct time-series analysis of the population and 
explore the spatial patterns of population development at global, national, and city levels.

Background & Summary
The world’s population is estimated at over 8 billion and is projected to reach around 8.5 billion by 20301. As 
population growth continues, the ability to monitor population spatial dynamics over long periods becomes 
increasingly essential for the implementation of effective policies and initiatives related to sustainable develop-
ment. Specifically, of the 17 Sustainable Development Goals and 169 targets set by the United Nations2 in 2015, 
approximately half of the indicators require accurate and spatially explicit demographic data. The Sustainable 
Development Goals emphasize ‘leaving no one behind’, which means we need increasingly spatial-temporal 
consistent gridded population data to identify areas and groups that are vulnerable to poverty, disease, and 
other development challenges, enabling more targeted and effective interventions. A continuous gridded pop-
ulation dataset can offer more spatially detailed information and allows for analysis of the unevenly changing 
relationship between humans and nature at a pixel scale over time. It was recognized as essential data source for 
various applications, such as epidemiology, urban planning, environmental management, assessment of risks 
to vulnerable population, energy crises, global inequities, and assessment of progress toward the Sustainable 
Development Goals (SDGs)3–10.

The gridded population data is originally derived from census data, which is typically collected through a 
formal enumeration, although other methods such as surveys may also be used. After converting the census data 
table of administrative units or enumeration areas to vector format, it will be reallocated into raster grids11,12. 
Raster grids are a series of cells arranged in rows and columns, where each cell represents a geographic area 
and contains information about the population within that area. There are two main methods for producing 
top-down gridded population data: area-weighted and dasymetric mapping, and bottom-up population map-
ping methods are adopted when census data is not available. Area-weighted mapping assumes that the popu-
lation is evenly distributed across administrative areas and assigns demographic information to each grid cell 
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based on the proportion of administrative cells covered by each cell. This method is simple and easy to imple-
ment but may not accurately reflect the true population distribution, especially in areas with heterogeneous 
population density13. Dasymetric mapping makes assumptions about the relationship between population and 
various geographic and land cover characteristics and uses ancillary data to determine where and how much 
population should be assigned to each location. This method may result in more accurate estimates of popula-
tion distribution, but it requires more detailed ancillary data and expertise to implement.

There are five long time-series of global gridded population data products with either density or count 
measures, including the Global Human Settlements Layer Population (GHS-POP), the Global Rural Urban 
Mapping Project (GRUMP), the Gridded Population of the World Version 4 (GPWv4), the LandScan Population 
datasets and the WorldPop datasets, all with a spatial resolution of 30 arcseconds (about 1 km at the equator). 
Nonetheless, previous research has identified some limitations associated with these datasets.

First of all, there is currently no continuous long-term gridded population dataset available at a spatial res-
olution of approximately 1 km, particularly before 2000. Among the three datasets (GHS-POP, GRUMP, and 
GPWv4), the shortest time interval is five years. Continuous gridded population maps are available after 2000 
for the other two datasets (LandScan and WorldPop). However, LandScan’s methods and metadata are updated 
every year, especially for the 2000s14. These products are based on correlations between modeling factors and 
populations at the administrative unit level and then predicted to gridded populations. Therefore, the accuracy 
of population spatialization depends on the accuracy of the elements used to a large extent and population allo-
cation methods8,15. Besides, there is a mismatch between the training and predicted data under scale variation, 
resulting in low accuracy of the overall estimate11,16.

Secondly, the reliability and uncertainty of population data products are typically described in documenta-
tion or validated in specific countries and regions, with methodological and ancillary data uncertainties being 
the most common sources of uncertainty. Methodological uncertainty issues can arise due to spatial autocor-
relation resulting from the equally weighted distribution of the population, leading to overestimation of the 
population12,17. Problems associated with ancillary data include common inaccuracies in land cover data, which 
typically have an accuracy range of 70–85%18. Other ancillary data sources, such as nighttime light data, can 
also introduce cumulative errors in the gridded population data due to saturation effects, blooming effects, and 
inter-annual inconsistencies19. These errors can undermine the reliability of the ancillary data and propagate 
into the final population estimates, further increasing uncertainties in the results.

Last but not least, one issue that has received limited attention is the global applicability of gridded popula-
tion data. The five sets of gridded population data products are used extensively in global-scale studies, but their 
accuracy and suitability for different regions and situations have not been fully evaluated. Currently, there are 
ongoing efforts to validate and compare the precision of various population data products, although the findings 
are frequently restricted to specific countries or regions. For example, Archila Bustos et al.14 used the example 
of Sweden, where population change is slow, to validate and compare five demographic datasets with statistical 
data from 1990–2015, and found that no datasets showed consistent best for different situations, and there were 
differences in accuracy across datasets in uninhabited areas.

Although population data products are fundamental for many researches and applications, a lack of 
long-term and consistently highly accurate gridded population data exists for time-series analysis. As assess-
ments of population data product applicability continue to emerge, it has been found that each population data 
product has its applicability and, in some cases, shows a high degree of accuracy4,20. These findings offer insights 
into the research objective of whether it is possible to integrate these five sets of multi-source demographic data 
and leverage the strengths of each data through a statistical learning approach to produce a set of new demo-
graphic products suitable for long time-series analysis at the global grid scale.

Hence, this study proposed a data fusion framework to generate a continuous global gridded population 
(GlobPOP) from 1990 to 2020 using the five existing products. As shown in Fig. 1, the whole framework of 
population data production is divided into three parts. The first part was pre-processing, which harmonized 
the data by converting population data format uniformly and linear gap-filling. The second part involved model 
building and estimation based on cluster analysis and statistical learning. The clustering analysis allowed for 
understanding the differences in each population dataset’s performance across countries. The estimation model 
was established through statistical learning and training regression parameters on the regions with better per-
formance. The third part was accuracy validation, which included two levels of spatial and temporal validation. 
Finally, we examined the model sensitivity and discussed the adaptability of the new data product at pixel scale.

Methods
In this section, we described the input data and the data fusion framework used in producing the global gridded 
population data product.

Materials.  This section summarizes the five global population data products used to produce the continuous 
gridded population. Table 1 shows the detailed information of original input population data sources.

GPWv4 is the only dataset that uses area weighting for each year from national census registration data, 
where a water body mask is first applied before area weighting, to ensure that population is not allocated to water 
bodies and snow- and ice-covered areas21. The limitation lies firstly in the assumption that the population is 
evenly distributed within administrative boundaries and is, therefore, more accurate for smaller input units than 
larger ones22. Secondly, it can be affected by interpolation, particularly in areas where the population changes 
dramatically over short periods, leading to population underestimation23.

GHS-POP population data are binary dasymetric mapped, with population data derived from the GPWv4 
UN-adjusted population dataset at the administrative district level and ancillary data using a gridded dataset of 
built-up areas, with each grid representing the percentage of cells covered by built-up areas. 95% of the population  
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data is allocated to grid cells in proportion to the density of built-up areas using an area-weighted approach24. 
Only when the administrative district area is less than 250 m grid area, all the population within one grid will 
be aggregated together, which may lead to a shift in the spatial distribution of population to adjacent grids. As 
the reallocation of the population in the GHS-POP is based on the density of built-up, which may be allocated 
to non-residential areas, such as commercial, industrial, and recreational areas, distinguished by the residential 
population allocated to built-up areas24.

The GRUMP data is based on GPWv3 (version 3) to produce improved population gridded data, which 
redistributes the population to urban and rural areas according to a binary mapping method, with rural and 
urban areas being divided mainly based on nighttime light data. The GRUMP data refers to the use of nighttime 
light data such as DMSP, to estimate urban areas where the population is overestimated. Due to the ‘blooming’ 
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Fig. 1  Workflow of the estimation and validation of the global gridded population (GlobPOP).

Dataset Unit

Input 
population 
source

Resolution 
(arc-seconds) Year

Coordinate 
System Source URL

GHS-POP person/pixel GPWv4.10 30” 1990,2000 WGS-84 https://ghsl.jrc.ec.europa.eu/

GRUMP person /km2 GPWv3 30” 1990,1995, 2000 WGS-84 https://sedac.ciesin.columbia.edu/data/collection/grump-v1

GPWv4.11 person /km2 Census 30” 2000,2005,2010,2015,2020 WGS-84 https://sedac.ciesin.columbia.edu/data/collection/gpw-v4

LandScan person /pixel Census 30” 2000–2020 WGS-84 https://landscan.ornl.gov/

WorldPop person /pixel GPWv4 and 
Census 30” 2000–2020 WGS-84 http://www.worldpop.org/

Table 1.  Information on global population data product datasets utilized to produce continuous gridded 
population.

https://doi.org/10.1038/s41597-024-02913-0
https://ghsl.jrc.ec.europa.eu/
https://sedac.ciesin.columbia.edu/data/collection/grump-v1
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://landscan.ornl.gov/
http://www.worldpop.org/


4Scientific Data |          (2024) 11:124  | https://doi.org/10.1038/s41597-024-02913-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

effect of nighttime lights, where poorly electrified or un-electrified areas cannot be detected, and therefore the 
population is underestimated. Moreover, the GPWv3 as the older version is less accurate than GPWv4, and con-
sequently, the GRUMP data is less accurate than GPWv4 in some regions12.

LandScan data uses multivariate mapping to assign local census data to each grid cell according to the like-
lihood coefficient between the auxiliary data and the population. As the metric values represent integer counts 
of the environmental population, which is the average population for a typical 24-hour day, week, and season, 
and therefore also reflect the distribution of the working, and traveling population, such as in urban areas where 
there is a problem of population overestimation. The LandScan algorithm is updated annually to introduce more 
and higher precision data, which is not conducive to time-series comparisons of LandScan data, as changes can 
be caused not only by population changes but also by changes in input data or algorithms25.

A random forest model is employed in the WorldPop data production process to generate population projec-
tions based on ancillary data such as land cover, elevation, nighttime lights, roads, and settlements. Population 
input data from census and official population estimation databases linked to GIS through the WorldPop ini-
tiative and built on GPWv4 are then assigned to each country/region based on population projections13. The 
random forest projections in the WorldPop data do not exceed the input population range.

Besides the gridded population data, we used some other ancillary data as well. The vector boundary shape-
files were utilized for zonal statistics at two scales, and census data were used for cluster analysis and model 
validation. Since census data is still considered more accurate and reliable compared to gridded population data, 
the country administrative level census data as reference data was used to explore where are the better regions 
for various gridded population data products in different years. Meanwhile, we also employed the two spatial 
scales (level-0 is the country administrative level, and level-2 is the sub-division of the subnational administra-
tive level) to validate the results and for sensitivity analysis. Furthermore, the surface area layer was exploited for 
population density calculation. The detailed information is displayed in Supplementary Table 1.

GADM, or Database of Global Administrative Areas, is a highly accurate global database of administrative 
boundaries. As we performed the zonal statistics at two levels, we only use these two levels’ boundary shapefiles. 
For level-0 boundaries, we matched the ISO country code with census data and acquired the 217 countries’ 
boundaries. And for level-2 boundaries, we chose the nine countries’ level-2 administrative units across five 
continents (Asia, Europe, America, Africa, and Oceania), which were processed and harmonized to match the 
definitions used in the level-2 census data from 1990 to 2020.

The census data provides detailed information on the population size, age structure, and geographic dis-
tribution of a specific area. For the level-0 census data, the World Population Prospect (WPP) 20221 provides 
population estimates and projections for countries and regions worldwide. In this study, only the population 
estimates for countries from 1990 to 2020 were considered for two aspects. On the one hand, the WPP was used 
as reference data in cluster analysis to explore where the better regions are for various gridded population data 
products in different years, which helped to improve the accuracy of the population estimates. On the other 
hand, it was of great significance to validate the results’ spatial-temporal consistency for 217 countries from 1990 
to 2020. In addition, we collected level-2 census data from nine countries across five continents, including China 
and India in Asia, the United Kingdom in Europe, the United States in North America, South Africa, Nigeria, 
and Angola in Africa, and New Zealand and Vanuatu in Oceania. These data covered the period from 1990 to 
2020 and were obtained from each country’s bureau of official statistics.

Data preprocessing.  The data preprocessing consists of two steps, data harmonization and linear gapfill.

Data harmonization.  The harmonization process includes the raster data conversions and census data reg-
ulations. We converted the input population density products to population count layers, by overlaying the 
surface area layer. Because the population count data are originally in a geographic coordinate system, the closer 
the grids get to the Poles, the more they become narrower and smaller. This holds even after the polygons are 
projected, it is more accurate to calculate raster algebra. What’s more, we excluded some uninhabited countries, 
island countries and regions in the census data as Supplementary Table 4 shows, and finally acquired census data 
of 217 countries with matched names.

Linear gapfill.  Considering the gaps in different population data products are between five to ten years, we took 
the linear population growth assumptions to fill the data gaps. The linear gapfill process included linear interpo-
lation and extrapolation at the pixel level. The linear interpolation formula is as in Eq. (1):

= + − ⋅
−
−

y y y y
t t
t t

( )
(1)1 2 1

1

2 1

where y signifies the estimated population at a specific time, y1 corresponds to the population at the first known 
time, y2 denotes the population at the second known time, t represents the target time for which we want to esti-
mate the population, t1 is the time of the first known population value, t2 is the time of the second known popu-
lation value. This formula is essentially a linear interpolation formula. It calculates the population at a particular 
time t by considering the linear growth between the known population values (y1 and y2) at the times t1 and t2.

The data interval is usually 5 years, if data is not available within 5 years, 10 years interval is used. Thus, the 
five products are divided into three parts as shown in the top position of Fig. 1. From 1990 to 1999, we per-
formed the linear interpolation and extrapolation for GHS-POP, GRUMP, and GPWv4. For the year 2000, we 
kept the data for all five original population data products. And from the year 2001 to the year 2020 we carried 
out the linear interpolation for the GPWv4.
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Model estimation.  The key point of the data fusion framework is to fully comprehend and exploit the 
strengths and weaknesses of the five input population data products, contributing them to the regression model 
of population fusion. Thus, this study performed the clustering analysis which allowed for understanding the 
differences in each population dataset’s performance across countries. And then the estimation model was estab-
lished through statistical learning and training regression parameters on the regions with better performance.

Cluster analysis for spatial consistency.  Cluster analysis is an unsupervised approach, and the most common 
method is the K-means cluster method26. The statistical software used for cluster analysis is RStudio, and the 
packages include’cluster’,’quantreg’ and’Metrics’. Clustering allows for the identification and categorization of 
homogeneous groups of the dataset. Four metrics were selected to quantify the similarity between actual census 
and product population counts at the country level. And we used these differences to identify areas with less 
variation for population projections.

First of all, we selected the APE (Absolute Percentage Error), SE (Squared Error), SLE (Squared Logarithmic 
Error), and Dif (Difference) indexes to compare different population data products with census data. These 
indexes were chosen to facilitate a comprehensive comparison between different population data products and 
the corresponding census data in cluster analysis.

=
−

APE
X Y

X (2)
i i

i

= −SE X Y( ) (3)i i
2

SLE X Y(ln (1 ) ln (1 )) (4)i i
2= + − +

Dif Y X( ) (5)i i= −

where the Xi is the actual value of population count, and the Yi is the predicted value of population count.
Then the data were scaled to a standard range, between 0 and 1, to remove any potential bias that might be 

introduced by different measurement scales. Thirdly, we determined the ideal number of clusters for the data-
sets and performed K-means clustering analysis. It involves iteratively assigning data points to different clusters 
based on their similarity and calculating the centroids of each cluster. Finally, the country-level census data were 
divided into 2 categories. The better product data which have higher similarities with census data will be utilized 
for model parameters training, and the worse will take part in model parameters testing.

Model estimation.  To train regression parameters for population fusion based on countries with better perfor-
mance, we selected two statistical regression models for population prediction. Regression methods such as the 
generalized linear model (GLM) and quantile regression model (QRM) can be effective in controlling for con-
founding factors in a research study27. The generalized linear model (GLM) is an extension of the linear regres-
sion model that extends the possible distribution of residuals to a family of distributions called the exponential 
family, allowing the dependent variable to be non-normal28. In GLM, the confounding factors can be included 
as covariates in the model, along with the independent variables of interest. The coefficients for the independent 
variables can then be estimated while controlling for the effects of the confounding factors. The quantile regres-
sion model (QRM) is more efficient and robust to outliers29. In QRM, the focus is on estimating the conditional 
quantiles of the dependent variable, rather than the mean. This can be useful when the relationship between the 
independent and dependent variables is not well approximated by a linear relationship. QRM can also be used 
to estimate the conditional quantiles while controlling for the effects of the confounding factors. The GLM and 
QRM can both be expressed as given below:

Y a X a X a X (6)t t t t t n t n t t1, 1, 2, 2, , , ε= + + … + +

where Yt is the predicted population of the target t year, Xn,t is the n available population data product in the 
target t year, and an,t is the weight coefficient of the n available population data product in the target t year.

Given that population counts should inherently be non-negative, we employ the L-BFGS-B (Limited-memory 
Broyden–Fletcher–Goldfarb–Shanno Bound-constrained) algorithm for parameter estimation within the 
model. The algorithm is a well-established optimization technique, often used in constrained optimization prob-
lems30. Specifically, we impose lower bounds on the estimated coefficients to ensure their non-negativity.

We trained the two regression models at the national level to obtain the parameters needed for the produc-
tion of population data product. The model output was used as coefficients of linear regression prediction at the 
pixel scale. During the training process, we took 10-fold cross-validation and 200 iterations on average to obtain 
the optimal parameters.

Population adjustment.  For quality control, two steps are carried out to ensure the reliability of GlobPOP data-
set. We took the UN World Population Prospects 2022 as a reference standard, with the model projections for 
each country adjusted to the UN agencies’ generic global national population statistics. We applied the adjust-
ment to 217 countries, excluding uninhabited islands and territories.
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Adjustment factors for matching national estimates to UN estimates:

a
P

P (7)
t

un t

x t

,

,∑
=

where at is the adjustment factor in the target year, Px,t is the pixel population count in the target year within the 
national administrative region, and Pun,t is the UN national estimate for the target year.

Adjustment factors were applied at the pixel level within each country boundary:

P P a (8)adj t x t t, ,= ×

where Padj,t is the sub-national UN WPP-adjusted estimate, and Px,t and at are as defined in Eq. (7).
Furthermore, the projected population for each year will be evaluated to determine if they are below zero. If 

this is the case, they will be adjusted to zero to ensure that negative population numbers are not recorded.

Accuracy validation.  To scan the GlobPOP products fully and thoroughly, we employed the validation in 
three aspects. Table 2 shows the accuracy indexes and their equation definitions for spatial and temporal valida-
tion in this study.

For spatial validation, we used four indicators (R2, RMSE, MAE, and Relative Entropy) to explore the overall 
accuracy in 217 countries and nine countries’ level-2 regions. The metric R square (R2) represents the propor-
tion of variance in the dependent variable, which describes the extent to which the variance of one variable 
explains the variance of a second variable. The Root Mean Squared Error (RMSE) is a common measure of the 
quality of the model fit. The Mean Absolute Error (MAE) is also a common measure of the error between pairs 
of observations of the same phenomenon. In addition to relative entropy (RE), the metric is used to measure the 
probability distribution difference between the predicted population count and census data.

As for the temporal validation, the time-series curve similarities and trend analysis were taken into consider-
ation. We chose eight countries and their most populated or capital cities, and performed the temporal validation 
at two levels. The Dynamic Time Warping (DTW) distances method is a normal and popular method to measure 
the time-series curve similarities31. It aims to find the minimal distance between two time-series curves.

The Sen’s slope estimator and non-parametric Mann-Kendall test are widely used in the long time-series trend 
analysis for many fields, such as meteorology32–34. The Mann-Kendall test statistic can be expressed as given below:
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where Xj and Xk are the sequential data values, n is the length of the data, Zs is the normalized test statistics.

Metrics Equation Description

R2 R 1 i
n xi yi

i
n x xi

2 1( )2

1( )2
= −

∑ = −

∑ = −
Higher values indicate a better fit.

RMSE x yRMSE ( )n i
n

i i
1

1
2= ∑ −=

Lower values indicate a better fit.

MAE ∣ ∣= ∑ −= x yMAE n i
n

i i
1

1 Lower values indicate a better fit.

RE ∫= ⋅
−∞

∞

( )RE P x dx( ) log P x
Q y

( )
( )

Higher values indicate a better fit.

DTW distance
Warping curve: φ φ φ=t t t( ) ( ( ), ( ))x y , t = 1,…,T

φ φ= ∑φ φ φ=d X Y d t t m t M( , ) ( ( ), ( )) ( )/t
T

x y1
DTW distance: = φD X Y d X Y( , ) min ( , )

Lower values indicate a better fit.

Table 2.  Model accuracy metrics calculated in this study. Note: x is the census data, y is the predicted data, 
m t( )φ  is a per-step weighting coefficient and φM  is the corresponding normalization constant.
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And then Sen’s slope estimator can be calculated using Eqs. (12) and (13).

=
−

−
= … .d

X X

j i
i, for 1, , N

(12)
k

j i

Sen Median d( ) (13)k=

where dk is the value of the slope, and Sen is the Sen’s slope estimator.

Data Records
The continuous global gridded population data product35 (GlobPOP 1990–2020) in the WGS84 coordinate sys-
tem with a spatial resolution of 30 arcseconds (approximately 1 km in equator) can be freely accessed on Zenodo 
at https://doi.org/10.5281/zenodo.10088105. The data is stored in the GeoTIFF format for each year. There are 
two population formats available: ‘Count’(Population count per grid) and ‘Density’(Population count per square 
kilometer each grid). The current version of the product covers the globe from 90 N latitude to 90 S.

Each GeoTIFF filename has 5 fields that are separated by an underscore “_”. A filename extension follows 
these fields. The fields are described below with the example filename: GlobPOP_Count_30arc_1990_I32.

Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population “Count” or population “Density”
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year “1990”
Field 5: Data type is I32(Int 32) or F32(Float32)

Technical Validation
Cluster results.  The cluster analysis was performed to quantify the accountability of the current five global grid-
ded population data products, which is represented by the similarity between actual census and product population 
counts at the country level. In Fig. 2 and Supplementary Table 2, we provided explicit information on which global 
gridded population data products are not valid in a specific year for different countries, and that can guide the users on 
whether or not they should use these products in the study area of interest. Figure 2 shows that the numbers for which 
the population data products are accountable are distributed unevenly in all 217 countries for the past three decades. 
It quantifies the accountability of these data products by indicating how many of them can be trusted for each country 
in a given year. As observed in the Fig. 2, the numbers vary across countries and years. The uneven distribution of 
valid data sets highlights that the reliability of these products fluctuates over time and is not uniform across all regions.

The greater the valid numbers are, the more product data get involved in the following model training pro-
cedures. The top three countries with the lowest number of active products are India, Guadeloupe, and the 
Republic of Maldives. In total, 12 countries show that no less than one product set is unreliable for one or more 
of the past years 1990–2020.

Spatial accuracy validation.  Level-0 accuracy.  The findings of this study reveal that GlobPOP has a high 
level of accuracy in predicting country-level population estimates, shown in Table 3. The overall R2 of GlobPOP is 
greater than 0.999 when compared with the World Population Prospects 2022. The range of Root Mean Squared Error 

Fig. 2  The number of valid sets of population data products for 217 countries from 1990 to 2020.
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(RMSE) values observed was between 120423 and 296066, while the Mean Absolute Error (MAE) values ranged from 
48243 to 84103. Additionally, the largest relative entropy was less than 0.1. During the model estimation process, the 
quantile regression model (QRM) exhibited stable performance and outperformed the general linear model (GLM) 
tested in terms of both predictive accuracy and consistency. Therefore, we selected the QRM as the population predic-
tion model.

Level-2 accuracy.  Table 4 demonstrates that the average R2 is higher than 0.972 for all census available countries 
at the level-2 scale when compared with the corresponding level-2 census data. The range of Root Mean Squared 
Error (RMSE) values observed was between 11158 and 272229, while the Mean Absolute Error (MAE) values 
ranged from 3065 to 49844. Moreover, the mean relative entropy was less than 3.406. These findings highlight 
the strong performance and accuracy of the population prediction model at the level-2 scale.

Temporal accuracy validation.  Country-level accuracy.  To validate the temporal accuracy of GlobPOP 
at the country level, we randomly selected eight countries from five different continents, consisting of four devel-
oped countries (Japan (JPN), German (DEU), United States (USA), Portugal (PRT)) and four developing coun-
tries (China (CHN), Liberia (LBR), Guyana (GUY), Lebanese Republic (LBN)). These countries were chosen due 
to their distinct population trends, representing a diverse range of demographic and socioeconomic characteris-
tics. We compared the population counts time-series curves of the GlobPOP dataset with the other five available 
datasets, from 1990 to 2020. The results are presented in Fig. 3(a). In the developed countries, the GlobPOP 
dataset shows the most consistent curve variations with the census curve, while the other dataset shows obvious 
disparity with census curve especially in Germany.

It is worth mentioning that there are slight differences between the curves for Japan and Guyana in Fig. 3(a), 
even though the curves’ trends are matched. This is due to the method used to calculate the national adjustment 
factor, which is rasterized from a vector file. For small countries with long coastlines, some of the small pixels 
were excluded during the rasterization process, which resulted in a curve that is not the same as the census data 
curve. This issue may have implications for the accuracy of the population estimates in these small countries, 

Year RMSE MAE Relative entropy

1990 120,423.353 48,243.115 0.008

1991 256,783.525 72,354.328 0.038

1992 257,177.260 73,229.177 0.035

1993 255,930.564 74,003.526 0.035

1994 137,396.778 50,624.452 0.015

1995 259,304.072 75,973.255 0.035

1996 270,164.279 77,203.126 0.037

1997 274,992.760 78,344.594 0.039

1998 280,552.406 79,361.923 0.043

1999 285,944.660 80,456.476 0.042

2000 246,056.942 71,651.535 0.047

2001 223,478.015 63,369.909 0.038

2002 223,469.611 63,024.679 0.025

2003 236,657.490 66,128.909 0.035

2004 237,735.200 66,803.389 0.035

2005 240,226.741 68,510.560 0.028

2006 236,346.429 67,497.998 0.028

2007 246,290.367 70,017.576 0.037

2008 157,570.549 50,698.258 0.011

2009 155,296.131 52,465.263 0.008

2010 249,214.418 71,935.985 0.052

2011 257,686.207 74,504.449 0.063

2012 263,606.439 75,997.545 0.057

2013 269,468.057 77,288.322 0.066

2014 279,812.049 79,058.192 0.086

2015 296,066.337 84,102.538 0.070

2016 288,390.994 83,084.648 0.052

2017 166,830.045 54,751.908 0.016

2018 132,079.934 51,094.696 0.019

2019 144,898.231 52,834.512 0.025

2020 172,456.799 58,858.456 0.021

Average accuracy 229,751.827 68,176.558 0.037

Table 3.  Accuracy metrics at level-0 scale from 1990 to 2020.
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especially at a finer spatial resolution. To address this issue, our future studies will explore alternative methods 
for calculating the national adjustment factor that takes into account the specific characteristics of small coun-
tries with long coastlines. Nonetheless, the overall results of this study suggest that the population estimation 
models and products evaluated in this study could be useful for generating reliable population data at different 
spatial scales.

Furthermore, we computed the Dynamic Time Warping (DTW) distances between the population 
time-series curves of the three datasets from 2000 to 2020 in the same eight countries. The DTW distances 
represent the similarity between two time-series curves, with smaller distances indicating higher similarity. 
As presented in Fig. 3(b), GlobPOP’s DTW distances are the smallest in the eight countries. For example, the 
GlobPOP dataset outperforms the other dataset in Guyana and Lebanese Republic, the DTW distances of 
WorldPop and LandScan are statistically six times larger than GlobPOP. The results display a large disparity 
of population change from 2000 to 2020 for WorldPop and LandScan comparing with census data in both 
countries. These comparisons provide evidence of the high temporal accuracy of the GlobPOP dataset, which 

Year R2 RMSE MAE Relative Entropy

1990 0.996 19,409.489 5,971.134 4.051

1991 0.910 185,423.919 28,184.222 9.872

1996 0.979 41,881.703 10,069.021 12.427

2000 0.996 89,359.155 16,212.022 0.670

2001 0.918 228,714.182 31,130.438 1.486

2006 0.991 26,268.296 7,162.628 1.623

2009 1.000 8,728.191 2,547.121 0.835

2010 0.992 140,002.895 25,753.600 0.566

2011 0.916 272,229.082 32,903.260 1.189

2014 0.999 12,424.848 4,008.583 1.614

2016 0.999 14,655.628 4,212.231 1.889

2020 0.978 259,976.075 48,883.768 1.262

Average accuracy 0.973 108,256.122 18,086.502 3.124

Table 4.  Accuracy metrics at level-2 scale from 1990 to 2020.

Fig. 3  Comparison of the GlobPOP and the other datasets over the eight countries. (a)The population count 
time-series curve in eight countries from 1990 to 2020. (b)The population time-series curve DTW distances of 
the GlobPOP, LandScan, and WorldPop datasets in eight countries from 2000 to 2020.
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consistently outperforms the other datasets tested across all eight countries, regardless of whether the countries 
were classified as developed or developing.

City-level accuracy.  More importantly, to validate the temporal accuracy of GlobPOP at the city level, we focused 
on the most populated or capital cities of the above eight countries. Through trend analysis and exploration of 
pixel population count curve variations, we aimed to examine the GlobPOP dataset’s performance in capturing 
population dynamics at the local scale. Specifically, Fig. 4(a),(c),(e),(g) presents the pixel population count curves 
with both positive and negative slopes, with the curve trends consistently aligned with the trend analysis results.

Nonetheless, in the cities of developing countries, as Fig. 4(b),(d),(f),(h) shows, the curve fluctuations of 
pixels are significantly different, particularly in smaller cities, such as Beirut in Fig. 4(d). where there is a clear 
discontinuity in pixels showing significant growth or decline trends from 2015 to 2020. This phenomenon is 
caused by the fact that the QRM model assigned more weight to LandScan since 2016, making the population 
distribution of GlobPOP data more similar to that of LandScan. As the LandScan data is defined as a nighttime 
population rather than the residential population, LandScan is more realistic in terms of spatial detail, but it is 
fundamentally different from other population data products. As a result, the spatial distribution of GlobPOP 
over the last five years and at a finer scale is somewhat inconsistent with what it was before, and further calibra-
tion is needed to adjust the parameters of the model.

Spatial distributions.  Figure 5 provides a comprehensive overview of global population development over 
the past three decades. The pixel with population higher than 5,000 has increased significantly in India, China, 
western Europe, the eastern and southern United States, and South Sahara Africa since 1990. As Fig. 5(d) shows, 
the pixels with population count range from five to fifty diminish and instead the pixels with population no larger 
than five increased, it looks like the population has decreased in these areas. The observed phenomenon can be 
attributed to the changes in the weighting of the QRM model towards LandScan since 2016 as Supplementary 
Table 3 shown. This has resulted in a greater resemblance between the population distribution of GlobPOP and 
LandScan datasets. While LandScan provides a more detailed representation of nighttime population, it differs 

Fig. 4  The temporal population trend analysis with significant slopes and pixel population curve variations in 
eight cities. (a) Tokyo in Japan. (b) Beijing in China. (c) Berlin in German. (d) Beirut in the Lebanese Republic. 
(e) New York in the United States. (f) Monrovia in Liberia. (g) Lisbon in Portugal. (h) Georgetown in Guyana.
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significantly from other population data products due to its nature of being defined as nighttime population 
rather than residential population. Consequently, there exists a certain degree of inconsistency in the spatial dis-
tribution of GlobPOP at a finer scale over the past five years as compared to previous years. Further calibration of 
the model parameters which is necessary to reconcile this disparity will be considered in the next following work.

Benchmark test.  A benchmark test was performed to evaluate the performance of three population fusion 
models, namely QRM, GLM, and Median-composite model, along with five global gridded population data 

Fig. 5  The global gridded population distribution from 1990 to 2020. (a)Global population distribution 
in 1990. (b)Global population distribution in 2000. (c)Global population distribution in 2010. (d)Global 
population distribution in 2020.
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Fig. 6  Level-0 population count notched boxplots with data points after log10 transformation, and accuracy 
comparisons for five population data products and three different population prediction models in 2000.
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products. The objective was to compare the models and population data products for the year 2000, which was the 
only year when all five datasets were available in their entirety. Other years were unsuitable for benchmarking tests 
as the population data products were interpolated. Figures 6 and 7 display the population count scatter plot after 
log10 transformation and accuracy comparisons for the five population data products and the three different model 
predicted populations at level-0 and level-2 scales, respectively. The results show that the QRM model performed 
better than the other two models at a finer scale, with an R-squared value of 0.9963. The QRM model maintains high 

Fig. 8  Examples of population distribution at pixel level and the google earth image in 2020. (a) Farmland 
in western China. (b)Forest in northern China. (c) The Sahara Desert in Africa. (d) Snow mountain in west-
eastern China. (5) Pantanal wetland in South America.
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Fig. 7  Level-2 population count notched boxplots with data points after log10 transformation, and accuracy 
comparisons for five population data products and three different population prediction models in 2000.
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accuracy at the level-0 scale as well, with an R-square value of 0.9997, which is similar to the performance of the GLM 
model. Based on these results, the QRM model was selected as the final population estimation model for this study.

In summary, the QRM model demonstrates the best performance among the three population fusion models 
and the existing five population data products. The high accuracy of the QRM model at the level-0 scale also 
makes it a reliable choice for population estimation.

With the spatial resolution at 30 arc-second, GlobPOP provides more detailed population distribution than 
conventional census data. The spatial validation results demonstrate the effectiveness of the GlobPOP model in 
generating reliable and precise population estimates at level-0 and level-2 scales. We also investigated the account-
ability of GlobPOP to estimate population in the rarely populated land cover areas at pixel scale, five different land 
cover types (cropland, forest, wetland, desert, and snow) were selected to test the data. As Fig. 8 shown, GlobPOP 
performs better in capturing population distribution in cropland compared to other products, while its perfor-
mance is equivalent to other products in other land cover types. Since the real land surface data are not available, 
and the land cover/use products typically have its uncertainty and bias. There is a lack of reference data to perform 
spatial validation for gridded population data at pixel level. The selected sample areas include five different land 
cover types, and we believe the visual inspection could show the accountability of GlobPOP to some degree.

What’s more, to analyze changes in population distributions and for long time-series analysis, a data prod-
uct constructed from data layers representing the relevant period would be preferred. But there is no global 
gridded population dataset at approximately 1 km for the past three decades. The temporal validation results 
demonstrate that the GlobPOP dataset performs consistently well across all eight countries, despite their unique 
population dynamics. And GlobPOP dataset’s performance in capturing population dynamics at the local scale 
is also proven. The two-level temporal validation underscores the reliability and versatility of the population 
prediction model in generating accurate and consistent population estimates over time. Nonetheless, we are 
obliged to emphasize the disparity of the GlobPOP dataset before and after 2016. The regression model relies on 
coefficients trained from cluster results, as assigned more weights to LandScan since 2016. Further calibration 
of the model parameters which is necessary to reconcile this disparity will be considered in the following work.

Usage Notes
The input datasets and census data are all available on their official website36–41. The programs used to generate 
and validate the gridded population dataset were GRASS GIS (8.2), Python(3.9) and RStuido (2022.07.2). The 
zonal statistics were performed at QGIS (3.22). All software needs to be installed in Windows 10.

Code availability
The fully reproducible codes are publicly available at GitHub (https://github.com/lulingliu/GlobPOP).
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