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Abstract: Fractional Forest cover holds significance in characterizing the ecological condition of
forests and serves as a crucial input parameter for climate and hydrological models. This research
introduces a novel approach for generating a 250 m fractional forest cover product with an 8-day
temporal resolution based on the updated GLASS FVC product and the annualized MODIS VCF
product, thereby facilitating the development of a high-quality, long-time-series forest cover product
on a global scale. Validation of the proposed product, employing high spatial resolution GFCC data,
demonstrates its high accuracy across various continents and forest cover scenarios globally. It yields
an average fit coefficient of determination (R2) of 0.9085 and an average root-mean-square error of
7.22%. Furthermore, to assess the availability and credibility of forest cover data with high temporal
resolution, this study integrates the CCDC algorithm to map forest disturbances and quantify the
yearly and even monthly disturbed trace area within two sub-study areas of the Amazon region.
The achieved sample validation accuracy is over 86%, which substantiates the reliability of the
data. This investigation offers a fresh perspective on monitoring forest changes and observing forest
disturbances by amalgamating data from diverse sources, enabling the mapping of dynamic forest
cover over an extensive time series with high temporal resolution, thereby mitigating data gaps and
enhancing the precision of existing products.

Keywords: fractional forest cover; GLASS FVC; forest loss; CCDC

1. Introduction

Forests, as the largest carbon reservoir in terrestrial ecosystems, significantly impact the
carbon sequestration function of land-based systems. Their vital role includes maintaining
ecological balance, facilitating carbon cycling, mitigating climate change, and determining
energy budgets [1–3]. In contrast, the global occurrence, severity, and scope of forest
disturbances have witnessed a notable escalation in the 21st century, primarily attributed
to climate change-induced factors such as droughts, wildfires, and pest outbreaks. Addi-
tionally, anthropogenic logging activities have also contributed to this phenomenon [4,5].
Hence, it is imperative to obtain precise and timely forest cover data, which can furnish
robust evidence to elucidate the spatial and temporal fragmentation patterns of forests, as
well as their underlying causes. Moreover, such information is essential for comprehending
the ramifications of forest disturbances on climate change, biodiversity, and other related
facets. The Fractional Forest Cover (FFC) refers to the ratio of the area of forest canopy
viewed from the vertical direction to the entire pixel [6–8]. In 2015, the United Nations
General Assembly established 17 sustainable development goals (SDGs), one of which
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specifically highlights FFC as an important parameter for protecting, restoring, and pro-
moting sustainable management of forest resources [9]. A prolonged temporal sequence of
fractional forest cover data holds the potential to offer precise and reliable information on
forest attributes, thereby enhancing the efficacy of natural resource management.

Remote sensing data has traditionally served as the principal data source for mapping
Fractional Forest cover (FFC), particularly in the context of large-scale and long-term
regional studies. Over the past years, a limited number of Fractional Forest cover (FFC)
maps spanning a global scale have been developed, indicative of the increasing significance
attributed to this research domain. Notable examples include the Terra MODIS Vegetation
Continuous Fields (MODIS VCF) [10,11], the Global Forest Cover Change (GFCC) Tree
Cover [12], the forest cover map by the Japan Aerospace Exploration Agency (JAXA) [13],
and the Hansen Global Forest Change dataset (The Hansen GFC) [14,15]. Notably, the
latter provides FFC data at a resolution of 30 m for the years 2000 and 2010, along with
comprehensive annual information on global forest loss and gain. At the same time,
Landsat and other high spatial resolution remote sensing data have increasingly been
applied to generate global Fractional Forest cover (FFC) datasets [7,8,16]. However, it is
essential to note that medium spatial resolution FFC remains crucial for understanding the
dynamics and long-term trends of forest ecosystems. For one thing, the spatiotemporal
scale remains crucial for a comprehensive understanding of global forest greening under
gradual and abrupt climate changes [17]. For another, using long time series remote sensing
data with a spatial resolution of 30 m or even higher for large-area change detection results
in a substantial increase in data volume, requiring more time and effort for processing and
computation [18–20]. Tang et al. have suggested the utilization of medium spatial resolution
data for large-scale near real-time operational monitoring of forest loss, followed by the
strengthening of monitoring in target areas (such as deforestation “hotspots”) using high-
resolution data [21,22]. Consequently, there is a growing interest in investigating fractional
forest cover information and the associated forest change dynamics at moderate resolutions.

Currently, there is a lack of comprehensive datasets enabling the observation of dy-
namic changes in global FFC on both an intra-annual and inter-annual basis [23–25]. The
update frequency of MODIS VCF is limited to an annual cycle, while that of GFCC is
constrained to a five-year interval. The complexity of defining FFC data, necessitating
differentiation between forest types, non-forest vegetation types, and non-vegetated areas,
precludes the feasibility of simulating this parameter using a binary pixel model. Moreover,
the distinction between forest and non-forest vegetation types requires extensive sample
data for model training due to spectral and structural similarities, rendering it challenging
to achieve updates at monthly or higher frequencies [16,26,27]. Other multi-temporal
vegetation indices and land classification products are subject to limitations [28,29]. While
indices like the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), and Leaf Area Index (LAI) aim to capture the greenness of forest vegetation,
they fail to unequivocally attribute these changes to specific sources such as forest trees,
understory grasses, or shrubs [30]. The utilization of hard land-use classification prod-
ucts results in the provision of multi-period forest distribution maps. Nonetheless, these
datasets impose specific canopy cover thresholds to delineate forests, potentially causing an
overestimation of forest coverage in areas with low tree density [25,31]. The 8-day updated
Global Land Surface Satellite Fractional Vegetation Cover (GLASS FVC) stands as one
of the most mature and commonly utilized global land surface characteristic parameter
datasets [32,33]. Hence, a pertinent topic for consideration and exploration lies in the
extraction of forest-related information from established vegetation cover datasets and
the subsequent construction of a novel time series for FFC. Acquiring a higher frequency
time series of FFC is of paramount significance for comprehensive, timely, and accurate
observation of forest disturbances and dynamic deforestation monitoring.

Therefore, this study endeavored to create a fractional forest cover product named
Global Land Surface Satellite Fractional Forest Cover (GLASS FFC), of which the spatial
resolution is 250 m and is at an 8-day interval. Through a synergistic utilization of the
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GLASS FVC product and MODIS VCF, we aimed to not only mitigate data shortcomings but
also elevate the precision of existing products. To ensure the reliability and accuracy of the
GLASS FFC product, a comprehensive global-scale accuracy assessment will be conducted.
This evaluation will provide crucial insights into the performance and limitations of the
developed product, enabling its widespread use in forest change monitoring studies in
the future. Furthermore, to demonstrate the efficacy of GLASS FFC data in detecting
forest changes, we employed GLASS FFC products as the data source and combined them
with the CCDC algorithm to achieve rapid mapping of forest loss areas across a large
geographical extent. This endeavor serves as a foundational step towards conducting
detailed investigations on forest loss at regional and even global scales in the future. This
research endeavor will facilitate more targeted conservation and management efforts,
contributing to effective decision-making and sustainable forest resource utilization.

2. Materials and Methods
2.1. Data and Workflow

This study developed and applied high-temporal resolution fractional forest cover
data. (1) Initially, a global FFC dataset, referred to as GLASS FFC, was created for the
period spanning from 2000 to 2020 at a spatial resolution of 250 m, with an 8-day temporal
frequency. The primary data source used to construct this dataset was GLASS FVC data,
which was further enhanced through the integration of the Global Land Surface Satellite
Enhanced Vegetation Index (GLASS EVI) and MODIS VCF. (2) Subsequently, the accuracy
of GLASS FFC was assessed by comparing it with high-resolution GFCC data. The Global
Ecosystem Dynamics Investigation level2B (GEDI02_B) data obtained from lidar technology
and land cover data, the Global 30 m Land-Cover products with Fine Classification System
(GLC_FCS30D) were also involved in the supporting validation. (3) Finally, leveraging
GLASS FFC as the primary data source and employing the CCDC algorithm, the study
investigated and analyzed forest loss occurrences within the study area. The detection re-
sults were then compared and validated against the Hansen GFC data. This comprehensive
exploration allowed for the assessment of the usability and advantages of the GLASS FFC
dataset constructed in this research endeavor. The specific datasets utilized in this study
were introduced in the subsequent section.

2.1.1. Vegetation Index Data

GLASS FVC is a key indicator for monitoring the health and productivity of terrestrial
ecosystems [33]. The training data was generated using Landsat TM/ETM+ reflectance
data, which was transformed into NDVI data. The pixel dichotomy method was then
applied to calculate the pixel’s mean value at 500 m [34]. To train the FVC model, a
Multivariate Adaptive Regression Splines (MARS) algorithm was used [32]. This algorithm
is a non-parametric regression method that can effectively capture the complex relationships
between input variables and output values. The trained model was then applied to MODIS
reflectance data as input to produce global 500 m FVC data. The FVC data is updated every
8 days, providing a near-real-time monitoring capability for global forest cover [35,36].

GLASS EVI is a new global seamless 250 m, 8-day EVI product for 2000–2021 devel-
oped from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance
data using a Long Short-Term Memory (LSTM) neural network approach [37]. The EVI
data minimizes variations in the canopy background and retains its sensitivity even under
dense vegetation conditions. Moreover, compared to MODIS EVI, the GLASS EVI data
exhibits a more uniform quality. In this study, we utilize the GLASS EVI data as the basis
for downscaling GLASS FVC.

2.1.2. Relevant Fractional Forest Cover Data

MODIS VCF is a sub-pixel representation of global surface vegetation estimation [10].
Each pixel provides the percentages of tree cover, non-tree vegetation cover, and bare type
instead of simple classification results. The current resolution of MODIS VCF is 250 m, and
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it is updated annually. MODIS VCF employs a regression tree algorithm, incorporating
linear regression functions to the algorithm’s nodes, thus facilitating the detection of data
variability while increasing precision and minimizing noise. It generates a comprehensive,
annually updated global-scale dataset of FFC utilizing MODIS reflectance data as the
primary input source [10]. Validation utilizing laser radar imagery has confirmed that the
MODIS VCF has an overall accuracy of more than 70% on a worldwide scale [11,38,39]. In
this study, we primarily downloaded and utilized MODIS VCF on Google Earth Engine.

GFCC dataset [12] provides estimates of the horizontal ground percentage covered by
woody vegetation with a height greater than 5 m for each 30-m pixel. This dataset is updated
globally for the years 2000, 2005, 2010, and 2015. GFCC Tree Cover, initiated by Hansen
et al., utilizes an improved Cubist algorithm, drawing from Landsat reflectance data as the
data source, thus further enhancing the resolution of MODIS VCF. The validation accuracy
of GFCC is confirmed to exceed 85% at four global locations [12]. In this study, we primarily
downloaded the GFCC dataset using the Google Earth Engine (GEE) platform. Using the
2015 data as a reference, we conducted a global validation of the GLASS FFC dataset.

GEDI02_B data [40] is derived from the Global Ecosystem Dynamics Investigation
(GEDI) lidar sensor, which captures biophysical metrics extracted from each GEDI wave-
form. The vertical spacing between leaf-level measurements is consistently 5 m. The data
is provided in a point-based format with a spatial resolution (average footprint) of 25 m,
covering a global range from 51.6◦N to 51.6◦S. In this study, we primarily downloaded
the GEDI02_B data using the Google Earth Engine (GEE) platform. The “canopy cover” is
defined in the product as the percentage of the ground covered by the vertical projection of
canopy material, including leaves, branches, and stems [41], which aligns closely with the
definition of forest canopy cover in optical remote sensing products [42–44]. The data was
utilized to validate the GLASS FFC dataset, specifically in the Amazon tropical rainforest
region [45].

2.1.3. Land Cover Data

GLC_FCS30D represents the first global 30-m resolution land cover product that incor-
porates continuous change detection technology [46]. It employs an elaborate classification
system featuring 35 land cover categories, including more than ten types specifically related
to forests, and spans the period from 1985 to 2022. The update frequency of this product
was quinquennial prior to the year 2000 and became annual thereafter. The development
of GLC_FCS30D involved the integration of continuous change detection methodologies,
local adaptive updating models, and spatiotemporal optimization algorithms using dense
time-series Landsat imagery. The overall accuracy of the ten primary land cover types
within the baseline classification system is documented at 80.88% (±0.27%). In this study,
we predominantly utilize this data to facilitate the validation of the accuracy of GLASS FFC.

2.1.4. Forest Cover Change Data

The Hansen GFC dataset [14] is the result of a time-series analysis of Landsat satellite
imagery, aiming to determine global forest extent and change characteristics. It has been
widely utilized in studies analyzing forest loss and gain as well as the driving factors in
various countries and regions [47–49]. The accuracy of Hansen GFC has been assessed by
comparing and validating it against ground-truth data, such as local forest management
inventories and forestry measurement reports, consistently achieving accuracy levels above
90% [50–52]. Therefore, the combination of Hansen GFC data with GEVI (Google Earth-
based visual interpretation plots) provides a reliable and efficient approach for validating
forest loss detection results. Additionally, the open access and transparency of the Hansen
GFC dataset enhance the reproducibility and credibility of the forest loss validation process.
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2.2. Long-Term Dynamic Fractional Forest Cover Mapping Based on GLASS FVC and MODIS VCF
2.2.1. Decomposition of GLASS FVC

This study initially implemented a downscaling approach to decompose GLASS FVC
into a spatial resolution that is consistent with MODIS VCF data. Drawing from the
principles of pixel unmixing models, this method assumes that coarse-resolution FVC
pixels are the linear combinations of finer-resolution FVC pixels. All finer-resolution pixels
within a coarse-resolution pixel are regarded as endmembers of the coarse-resolution pixel,
with weights determined by vegetation growth status. NDVI still has some problems while
being applied, e.g., saturation problems found in highly denied vegetation, etc. To account
for these issues, the Enhanced Vegetation Index (EVI), a commonly used vegetation index
that outperforms NDVI in reducing background and atmospheric effects and saturation
issues, was used as the weight for each end member during the decomposition process.

Initially, GLASS FVC was resampled to a spatial resolution of 250 m × 250 m using bi-
linear interpolation. Subsequently, a 2 × 2 window of 250 m pixels was employed to match
and decompose the resampled GLASS FVC data pixel by pixel, with pixel values calculated
using Formula (1). To minimize non-vegetation interference, pixels with EVI values below
0.05 were considered non-vegetation and were excluded from the decomposition process.

FVCD =
EVID∑M

i=1 f vci

∑M
i=1 EVI I

(1)

where FVCD is the decomposed FVC value of the pixel and EVID is the corresponding EVI
value. M is the number of valid vegetation endmembers within the moving window, and
f vci and EVI I represent the resampled FVC and EVI values, respectively.

2.2.2. Extraction of High Temporal Resolution FFC

This study initially employed a weighting methodology to downscale the GLASS FVC
using the 250 m resolution GLASSEVI, resulting in the generation of vegetation coverage
data with a spatial resolution of 250 m and an update frequency of 8 days. Due to the
considerable uncertainty associated with the MCD12Q2 product and the intricate seasonal
patterns, particularly in tropical regions, the decision was made to forego the utilization
of the MODIS EVI product. Instead, the unreleased GLASS EVI product was referenced.
Subsequently, for a more precise delineation of the FFC using the downscaled data, the
‘percent tree cover’ and ‘percent non-tree vegetation cover’ bands were extracted from the
MODIS VCF product, which possesses a spatial resolution of 250 m. The proportion of
forest types was then calculated based on the vegetation coverage data at the 250 m pixel
level. The GLASS FFC was derived through the multiplication of the previously obtained
results, followed by post-processing and the application of system bias correction. This
comprehensive process yielded 8-day, 250 m resolution global FFC data.

2.3. Mapping of Long-Term Forest Loss Based on CCDC

Consequently, this study endeavors to employ the CCDC algorithm [53,54] to fully
leverage the temporal information derived from the GLASS FFC time series, enabling a
rapid and comprehensive screening of areas affected by forest disturbances.

The CCDC algorithm is widely used for monitoring and analyzing land cover changes,
including forest disturbances [55–57]. It offers a comprehensive approach that com-
bines change detection and classification techniques to identify and characterize temporal
changes in satellite imagery. In the CCDC algorithm, the time series data is first decom-
posed into different components using harmonic analysis. This decomposition separates
the time series into its constituent parts, including a constant term representing the overall
mean, intra-annual variations capturing seasonal patterns, and inter-annual trends de-
picting long-term changes. To detect changes, the CCDC algorithm employs a statistical
approach based on the comparison between the fitted historical model and the residuals
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of the incoming data. The residuals represent the differences between the observed pixel
values and the values predicted by the model.

The CCDC version employed in this study, based on Chen et al. [55], utilizes the
Root Mean Square Error (RMSE) comparison between the fitted historical model and the
residuals of the incoming data for change detection. When the residuals deviate from
the model for six consecutive observations, it suggests a significant change has occurred.
The date of the first deviation is then identified as the date of change. However, it is
important to note that not all detected breaks by the CCDC model necessarily indicate
forest disturbances. Other factors such as sensor noise, cloud cover, or changes in land use
and land cover types can also contribute to detected breaks. Therefore, further analysis and
contextual information are typically required to accurately interpret the detected changes
and determine if they are related to forest loss or other factors.

2.4. Performance Validation Methods
2.4.1. Validation of GLASS FFC Product

Assessing and validating continuous estimations at moderate resolutions can often
be challenging due to the heterogeneity of the ground, which makes it impractical to
directly employ ground measurement values for validation purposes. In our study, we
opted to utilize the higher-resolution continuous forest estimation product, GFCC, and
upscale its values to moderate spatial resolution pixels (it is worth noting that the tiling and
projection of GLASS FFC align with the MODIS series 250-m grid products). Subsequently,
we conducted an evaluation and comparison with the results of GLASS FFC. The GFCC
dataset was initially reprojected to the MODIS sinusoidal projection at a resolution of 30 m.
To match the gridding, we applied the exact area averaging method to generate the final
dataset on the MODIS sinusoidal 250-m grid. To quantify the uncertainty, we employed
commonly used data validation metrics, namely mean absolute error (MAE), root-mean-
squared error (RMSE), and R-squared (R2), which are based on the linear relationship and
average differences between paired data values.

MAE =
1
N ∑N

i=1|yi − ŷi| (2)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (3)

yi =
1
N ∑N

i=1 yi (4)

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (5)

In the context, N represents the sample size, where yi denotes the reference value
(GFCC) of the i-th sample, ŷ represents the predicted value (GLASS FFC) of the ith sample.

In consideration of the inherent errors associated with the GFCC product, an extensive
spatial comparison of the GLASS FFC was initiated using the 30-m land cover product
from 2015, denoted as GLC_FCS30D. Given the refined classification of forest types in
GLC_FCS30d, which encompasses more than ten categories, and mindful of the efficiency
and complexity of data validation, selected regional subsets of different forest types were
employed. By examining the spatial distributions and frequency statistics of GLC_FCS30D,
GFCC, and GLASS FFC, the spatial accuracy of GLASS FFC was assessed. The forest types
from GLC_FCS30D were aggregated based on secondary classification definitions to a
resolution of 250 m, and the continuous forest coverage for each pixel was computed. The
frequency histograms of GLC_FCS30D, GFCC, and GLASS FFC across the various forest-
type study areas were analyzed to observe peak occurrences and overlaps as indicators of
spatial consistency among the datasets.
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2.4.2. Validation of the Forest Loss Identification

To validate the derived findings pertaining to forest loss, we conducted a compre-
hensive collection of numerous sample plots from three distinct sources, encompassing
PRODES (the Amazon Deforestation Monitoring Project) and GEVI (Google Earth visual
interpretation). PRODES, which is managed by the Brazilian Space Agency, Instituto Na-
cional de Pesquisas Espaciais (INPE) [58], facilitated the acquisition of digital spatial data
layers pertaining to deforestation. These data layers were derived from INPE’s extensive
PRODES dataset, which spans over a long-term period. The purpose of obtaining these
data layers was to overlay them with degradation layers in order to analyze the changes
that occurred in OYs from 2000 to 2018 [58]. We randomly selected sample plots from
the PRODES dataset to validate the results of forest loss in the Amazon region. Visual
interpretation constituted the predominant method employed for validation in this in-
vestigation to augment the sample size and enhance its representativeness. The process
of sample selection on Google Earth entailed a comparative analysis of high-resolution
imagery from various time intervals, facilitating the identification of central regions as-
sociated with extensive deforestation or fire occurrences. By synergistically leveraging
extensive classification expertise, the sample points indicative of forest loss were promptly
and accurately ascertained from the Google images.

The evaluation of forest loss detection, gain area estimation, and spatial distribution en-
tailed the utilization of multiple metrics, including user accuracy, producer accuracy, overall
accuracy, and the Kappa Coefficient. User accuracy primarily focuses on assessing the
model’s sensitivity and recognition capability, specifically its ability to accurately identify
true positive instances. Conversely, producer accuracy emphasizes the model’s precision
and accuracy in predicting positive cases. Overall accuracy represents the arithmetic mean
of user accuracy and producer accuracy, with a higher value indicating greater robustness
of the outcomes. Another vital accuracy metric employed is the Kappa Coefficient, which
measures the degree of concordance between the classified results and random allocation
values. A Kappa Coefficient approaching 1 signifies a heightened resemblance between
the classified image and the corresponding ground truth. Furthermore, we conducted a
comparative analysis between the annually identified forest loss results and the Hansen
Global Forest Change (Hansen GFC) data to assess spatial consistency. Additionally, the
dissimilarities between the two datasets were quantified through the calculation of annual
loss areas.

3. Results
3.1. Spatial Patterns and Time Series of GLASS FFC

Figure 1 illustrates the distribution of the mean spatial values of fractional forest
cover data from the GLASS FFC constructed for the year 2020. To assess the intra-annual
spatial variations of GLASS FFC across the globe, the four panels in Figure 1 represent
composite mean values for the months of January, April, July, and October, each indicative
of a different season. The results reveal that regions such as the Amazon, the Congo Basin,
and the subtropical rainforests of Southeast Asia are characterized by concentrations of
forest coverage exceeding 90%, with minimal variation throughout the different months.
In contrast, the southern forests of North America and Eurasia, along with the dense
temperate forests of the Northern Hemisphere, exhibit forest coverage rates above 90%
in July but drop to between 30 and 70% in other seasons. Forests outside the tropical
rainforest zones in South America and Africa consistently display forest cover ranging
from 40–90% across all seasons. In agricultural, grassland, and desert areas, the estimated
forest coverage throughout all four seasons approximates 0%, accounting for about 55% of
the global land area.

To emphasize the temporal characteristics of the GLASS FFC, we approached the
analysis from two distinct perspectives: land cover differences and forest cover changes.
From these perspectives, time series curves based on individual pixels were constructed,
providing a detailed depiction of temporal dynamics within the dataset.
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For the first component, we selected a study region situated within the subtropical
monsoon zone of Southeastern Asia, known for its distinct seasonal patterns. Within this
area, we generated time series curves based on pixels representing diverse land cover
types. These curves depicted the temporal trajectories of GLASS FVC, GLASS FFC, and the
concurrent non-tree vegetation percent. To mitigate the potential impact of spatial misalign-
ment, we resampled the GLASS FFC data to a 500-m spatial resolution, aligning it with the
grid of the GLASS FVC product. As illustrated in Figure 2a–f, the six sets of time series
curves exhibit distinct seasonal trends, with the trajectories of FVC and FFC displaying a
generally consistent pattern of variation. However, due to the prior downscaling algorithm
employed for GLASS FVC and the forest information provided by the MODIS VCF product,
there are minor differences in the finer details of the respective curves.

Furthermore, the high-resolution temporal curves of FVC and FFC data provide a
novel perspective for differentiating various land cover types. For instance, Figure 2b,c
represent forested areas, where both FVC and FFC exhibit relatively high values. In contrast,
Figure 2a,e depict cropland and grassland, respectively, which are non-forest vegetation
types, and their FVC and non-tree vegetation percent time series curves align closely.
Figure 2d represents a shrubland type, where the FVC peak exceeds 0.5, while the FFC
and non-tree vegetation percent are both relatively low and converge. Lastly, Figure 2f
illustrates a wetland type characterized by FVC values below 0.5, FFC values below 0.1,
and a relatively muted seasonal trend.

In the second part, to further validate the effectiveness of the GLASS FFC dataset in
capturing forest cover changes, we plotted the time curves of pixels exhibiting forest status
between 2000 and 2020 (Figure 3). Specifically, we selected pixels from two tropical regions
(Figure 3a,b) and two subtropical regions that exhibit seasonal variations (Figure 3c,d). The
proposed method effectively captures the dynamic changes in FFC over time, including
distinct seasonal patterns and growth characteristics. Additionally, the time curves provide
insights into instances of forest loss observed in four distinct pixel areas during specific time
periods. We verified the detection of these changes using high-resolution historical remote
sensing imagery from Google Earth, which confirmed the continuity and accuracy of the
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time curves of the GLASS FFC product. These findings serve as a testament to the potential
of GLASS FFC in effectively monitoring the dynamic shifts in global forest coverage.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 25 
 

 

FFC and non-tree vegetation percent are both relatively low and converge. Lastly, Figure 
2f illustrates a wetland type characterized by FVC values below 0.5, FFC values below 0.1, 
and a relatively muted seasonal trend. 

 
Figure 2. Comparative Analysis of Pixel-based GLASS FVC, GLASS FFC, and Corresponding Non-
Tree Vegetation Percent Time Series across Different Land Cover Types. (a) Cropland; (b,c) Forest; 
(d) Shrubland; (e) Grassland; (f) Wetland. 

In the second part, to further validate the effectiveness of the GLASS FFC dataset in 
capturing forest cover changes, we plotted the time curves of pixels exhibiting forest status 
between 2000 and 2020 (Figure 3). Specifically, we selected pixels from two tropical re-
gions (Figure 3a,b) and two subtropical regions that exhibit seasonal variations (Figure 
3c,d). The proposed method effectively captures the dynamic changes in FFC over time, 
including distinct seasonal patterns and growth characteristics. Additionally, the time 
curves provide insights into instances of forest loss observed in four distinct pixel areas 
during specific time periods. We verified the detection of these changes using high-reso-
lution historical remote sensing imagery from Google Earth, which confirmed the conti-
nuity and accuracy of the time curves of the GLASS FFC product. These findings serve as 
a testament to the potential of GLASS FFC in effectively monitoring the dynamic shifts in 
global forest coverage. 

Figure 2. Comparative Analysis of Pixel-based GLASS FVC, GLASS FFC, and Corresponding Non-
Tree Vegetation Percent Time Series across Different Land Cover Types. (a) Cropland; (b,c) Forest;
(d) Shrubland; (e) Grassland; (f) Wetland.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 3. Time series plot of GLASS FFC on a single 250 m image element and examples of Google 
Earth image temporal changes in the corresponding area. The locations described in panel (a) and 
panel (b) are situated in the tropical rainforest region, while panels (c,d) are in the subtropical ever-
green broadleaved forest. 

3.2. Accuracy Evaluation and Product Comparison of GLASS FFC 
To validate the GLASS FFC product, we conducted a multi-scale assessment, exam-

ining its performance at both the global and local levels. At the global scale, we compiled 
a dataset of 113 validation sites based on the guidelines established by the CEOS-LPV 
initiative (Garrigues et al., 2008) [59]. These validation sites were selected to be homoge-
neous in terms of land cover type, vegetation composition, and topography, with minimal 
proportions of urban areas and permanent water bodies, making them suitable for vege-
tation index validation. For each site, we extracted the GLASS FFC and the GFCC data, 
which had been resampled to a 250-m resolution within a 3 km by 3 km area centered on 
the site location, to assess the product accuracy. Figure 4b depicts the global distribution 
of the 113 validation sites, from which a total of 202,356 validation pixels were extracted. 

Additionally, we selected four distinct geographic regions representing different con-
tinents and climate zones, exhibiting diverse forest landscapes, as our primary study ar-
eas. This allowed us to determine the local-scale accuracy of the GLASS FFC product 
across different climatic regimes and spatial extents. These four study regions encompass 
territories in Asia, specifically the northwestern Shaanxi Province in China; Africa, specif-
ically the central rainforest border of the Republic of Congo; South America, specifically 
the central Rondônia State in Brazil; and North America, particularly the eastern part of 
British Columbia in Canada. Figure 5a presents the spatial locations of four study sample 
areas, using GLASS FFC as the map background. The red dots represent the location of 
the selected sample region.  

Figure 4a illustrates the results aggregated to a 250-m resolution from the GFCC da-
taset for the year 2015, alongside the annual average results from the GLASS FFC for the 
same year, whereas Figure 4b displays the distribution of validation sites and a scatter 
plot comparing the consistency between the datasets. The synthesized GLASS FFC dataset 
demonstrates a high degree of consistency with the validation GFCC data, with a coeffi-
cient of determination (R2) exceeding 90%. The MAE and the RMSE are quantified as 
3.23% and 7.22%, respectively. Additionally, the fitted regression line approaches a slope 
of approximately 0.89, reflecting the annual composite nature of the 46 GLASS FFC data 

Figure 3. Time series plot of GLASS FFC on a single 250 m image element and examples of Google
Earth image temporal changes in the corresponding area. The locations described in panel (a) and
panel (b) are situated in the tropical rainforest region, while panels (c,d) are in the subtropical
evergreen broadleaved forest.
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3.2. Accuracy Evaluation and Product Comparison of GLASS FFC

To validate the GLASS FFC product, we conducted a multi-scale assessment, examin-
ing its performance at both the global and local levels. At the global scale, we compiled a
dataset of 113 validation sites based on the guidelines established by the CEOS-LPV initia-
tive (Garrigues et al., 2008) [59]. These validation sites were selected to be homogeneous
in terms of land cover type, vegetation composition, and topography, with minimal pro-
portions of urban areas and permanent water bodies, making them suitable for vegetation
index validation. For each site, we extracted the GLASS FFC and the GFCC data, which
had been resampled to a 250-m resolution within a 3 km by 3 km area centered on the site
location, to assess the product accuracy. Figure 4b depicts the global distribution of the
113 validation sites, from which a total of 202,356 validation pixels were extracted.
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Additionally, we selected four distinct geographic regions representing different conti-
nents and climate zones, exhibiting diverse forest landscapes, as our primary study areas.
This allowed us to determine the local-scale accuracy of the GLASS FFC product across
different climatic regimes and spatial extents. These four study regions encompass territo-
ries in Asia, specifically the northwestern Shaanxi Province in China; Africa, specifically
the central rainforest border of the Republic of Congo; South America, specifically the
central Rondônia State in Brazil; and North America, particularly the eastern part of British
Columbia in Canada. Figure 5a presents the spatial locations of four study sample areas,
using GLASS FFC as the map background. The red dots represent the location of the
selected sample region.
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Figure 5. Comparison of GLASS FFC with GFCC in different validation regions in different continents
and climate zones. The red line in the scatter plot is the linear regression line that fits the paired data
points in 2015. (a) Global Spatial Distribution of Four Regions (b) Study region in North America
(GLASS FFC = 0.0365 + 1.0827 × GFCC, R2 = 0.6879, RMSE = 14.03%). (c) Study region in South
America (GLASS FFC = −2.7669 + 1.0238 × GFCC, R2 = 0.8624, RMSE = 13.12%). (d) Study region in
Africa (GLASS FFC = 0.01 + 0.9981 × GFCC, R2 = 0.8895, RMSE = 9.75%). (e) Study region in Europe
(GLASS FFC = 0.051 + 1.0355 × GFCC, R2 = 0.8231, RMSE = 11.95%). (f) Study region in Asia (GLASS
FFC = 0.0024 + 1.0897 × GFCC, R2 = 0.9352, RMSE = 6.58%).

Figure 4a illustrates the results aggregated to a 250-m resolution from the GFCC
dataset for the year 2015, alongside the annual average results from the GLASS FFC for
the same year, whereas Figure 4b displays the distribution of validation sites and a scatter
plot comparing the consistency between the datasets. The synthesized GLASS FFC dataset
demonstrates a high degree of consistency with the validation GFCC data, with a coefficient
of determination (R2) exceeding 90%. The MAE and the RMSE are quantified as 3.23%
and 7.22%, respectively. Additionally, the fitted regression line approaches a slope of
approximately 0.89, reflecting the annual composite nature of the 46 GLASS FFC data
images, which tend to slightly underestimate forest coverage in regions with seasonal
variations compared to the GFCC. Furthermore, due to the coarser resolution, it has been
observed that in predominantly non-forest areas, such as urban zones, the synthesized
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dataset underestimates areas with sparse tree canopy distribution, indicating a lower
detection sensitivity in regions with minimal forest cover.

Figure 5 illustrates the validation results for the four selected study areas. Figure 5b–f
displays these scatter plots, providing a visual representation of the data. In the eastern part
of British Columbia Province, Canada, and the central region of Rondônia State, Brazil, the
R2 values were both below 0.87, with an RMSE exceeding 13% (as illustrated in Figure 5b,c).
Sexton et al. observed that estimates of forest cover in the Americas, based on GFCC data,
tend to be overestimated compared to lidar data from locations such as California and Costa
Rica [12]. Consequently, employing GFCC as the validation data in this study results in an
overall underestimation of forest coverage in the Americas region. In Europe, we selected
the Kologriv virgin forest area located in the northern part of Kostroma Oblast, Russia,
as the study area. The value of R2 was 0.75, and the value of GLASS FFC was slightly
higher (Figure 5e). In the northwestern region of Shaanxi Province, China (Figure 5f), a
linear regression analysis was conducted to compare the values of GLASS FFC with those
of GFCC. The analysis resulted in an R2 value of 0.935, indicating that, on average, GLASS
FFC values were slightly lower. Similarly, in the tropical rainforest region of central Africa,
the R2 value was 0.890, with GLASS FFC values slightly higher, particularly towards the
upper end of the range (as illustrated in Figure 5d). This disparity can be attributed to the
geographical separation of the three study regions, leading to variations in the timing of
peak vegetation. Additionally, GFCC provides data for only one period per year, which
introduces systematic differences when compared to the average data of GLASS FFC.

Furthermore, as shown in Figure 6, we conducted an analysis based on the extraction
of GLASS FFC from four distinct forest regions, namely mixed temperate forest, mixed
cold-temperature forest, tropical rain forest, and tropical seasonal forest. The FFC from
these regions were compared with the GFCC and the GLC_FCS30D at a resolution of
250 m. Additionally, we computed the percentage histogram of FFC for each of the four
regions. The comparative analysis revealed a consistent estimation of different forest
types using our proposed approach. Within the tropical rainforest region, there exists a
significant presence of dispersed high-density forest cover. The FFC percentage estimated
by our method consistently exceeds 80% and exhibits a reasonable transition toward the
peripheral areas. In the region of tropical seasonal forests, the peak of the forest cover
percentage is observed at around 20%, representing cultivated land, while another peak
is observed at approximately 60%, which corresponds to closed deciduous broadleaved
forests. However, in comparison to GFCC and GLC_FCS30D, the peak values exhibit a
certain left-skewness. This can be attributed to the fact that GLASS FFC calculates the
annual average values. In the mixed temperate forest region, a substantial amount of forest
cover below 60% is extracted, with peaks observed at around 5% and 50%. These peaks
capture the linear distribution of trees surrounding agricultural fields, and the estimated
values range from 10% to 30%. And in the mixed cold-temperature forest region, the peaks
are primarily concentrated between 20% and 60%. This range captures the transitional
zones from open deciduous broadleaved forests to bare areas. This pattern is similar to
the results obtained from GLC_FCS30D. However, GFCC shows a greater concentration of
forest cover, around 5%.

To summarize, these results reveal the remarkable accuracy and reliability of the data,
instilling confidence in its suitability for a wide range of applications worldwide. However,
considering the inherent errors associated with the GFCC product, it is crucial for future
research to prioritize the attainment of more precise validation through meticulous field
investigation data. This approach will enhance the credibility of the product and establish
it as a reliable tool for monitoring changes in forest coverage.
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3.3. Forest Loss Identification Based on GLASS FFC and CCDC

To further investigate the applicability of GLASS FFC in monitoring forest changes and
to leverage the advantages of its long-term, high-resolution time series data, we conducted
a rapid assessment of forest loss areas in the Amazon region from 2000 to 2020. This
analysis was performed using the Google Earth Engine (GEE) platform in conjunction with
the CCDC algorithm.

3.3.1. Post-Processing of the CCDC

The CCDC algorithm can detect significant temporal discontinuities in time series
data, but it cannot definitively confirm that the detected breakpoints are caused by forest
loss. To determine the most appropriate metric for identifying forest disturbance-related
breaks, we followed the methodology and parameter selection described by Chen et al. and
decided to utilize the change magnitude (observed values minus predicted values) as an
indicator [55]. We calculated the overall accuracy using visual interpretation sample points
in the study area to determine an optimal threshold for change magnitude. Subsequently,
we applied this threshold to classify the breaks identified by the CCDC algorithm, selecting
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those with change magnitudes exceeding the threshold and considering the corresponding
dates as indicative of forest disturbance occurrence. The optimal threshold selection for the
two study regions is presented in Table 1. To further improve the accuracy of our results,
we implemented two post-processing steps based on spatial information. Isolated pixels
that were erroneously classified as disturbed were removed from the final degradation
map. This step aimed to enhance the overall accuracy by mitigating misclassifications.

Table 1. Testing to find the optimal thresholds for monitoring forest loss.

Study Area Sample Size Step Size Optimal Threshold Overall Accuracy at Optimal Threshold

Study area I in Amazon 134 0.05 −0.25 93.68%
Study area II in Amazon 171 0.05 −0.26 80.12%

3.3.2. Accuracy Assessment of Forest Loss Detection Results

This study encompasses the selection of two local study areas within the Amazon
research region. The precise distribution of these research areas, along with the spatial
arrangement of validation sample points, are visually depicted in Figure 7. Table 2 provides
a statistical summary of the types and quantities of validation samples in the two local
study areas. The methodology employed for the selection of these sample points has been
comprehensively described in Section 2.4.2.
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Table 2. Characteristics and quantities of the collected various sampling plot data.

Forest Loss Persistent Forest Total

Study area I
in Amazon

PRODES 43 37 80
GEVI 51 23 74

Study area II
in Amazon

PRODES 94 31 125
GEVI 58 19 77

Total 246 110 356

The confusion matrices of the validation samples for the two local study areas are
presented in Table 3. Comprehensive metrics and their corresponding interpretations can
be found in Section 2.4.2. Specifically, in the validation conducted using sample points,
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the producer and user accuracies for forest loss detections in the Amazon region’s Study
Area I and Study Area II exceeded 89%, respectively. The overall accuracy for these
two areas was 86.00% and 88.31%, accompanied by Kappa coefficients of 0.78 and 0.76.
Notably, the accuracy of the persistent type was notably lower than that of the loss type.
This discrepancy can be attributed to the presence of loss-type pixels in close proximity
to the sample points labeled as persistent type, resulting in misclassification within the
250-m pixel range. In conclusion, the combination of long-term GLASS FFC data and the
CCDC algorithm proved effective for rapid and large-scale forest loss detection in both
the Amazon region. The forest loss results obtained from this study provide a basis for
further fine-grained classification using higher-resolution data, thus significantly saving
time and resources.

Table 3. Accuracy assessment confusion matrix for forest loss in four study areas.

Forest
Loss

Persistent
Forest

Producer’s
Accuracy

User’s
Accuracy

Overall
Accuracy Kappa

Study area I
in Amazon

Forest loss in correct year 137 13 91.33% 90.13%
86.00% 0.78Persistent forest 15 35 70.00% 72.92%

Study area II
in Amazon

Forest loss in correct year 84 8 91.30% 89.36%
88.31% 0.76Persistent forest 10 52 83.87% 86.67%

To enhance the clarity of the validation results, we conducted a spatial comparative
analysis between the forest loss data provided by Global Forest Watch (GFW) from the
Hansen Global Forest Change (GFC) database and the detection results from this study
within the selected subregions (refer to Figure 8). Distinct colors are employed to depict
loss areas corresponding to different years, with yellow indicating forest loss occurrences
in 2000 and dark red representing those in 2020. The legend illustrates a gradual darkening
pattern as the years progress. Simultaneously, we conducted an assessment of the temporal
changes in forest loss areas across the study area. From 2000 to 2020, both the Amazon
Forests exhibited a certain extent of forest loss due to a variety of frequent disturbance
events. In the Amazon region, forest loss areas were primarily concentrated around areas
characterized by intensive human activities, primarily resulting from timber harvesting
and the conversion of forested land to bare land. Notably, the majority of detected forest
loss areas were attributed to logging activities, as evidenced by the regularity observed
in their boundary shapes. Analysis of the statistics concerning forest loss area changes
in the study area revealed significant inter-annual variations from 2000 to 2020, owing to
dynamic changes in forest management practices and disturbance patterns. In summary,
the identification results obtained from this study generally align with the trends observed
in the Hansen GFC data. However, the detected forest loss areas appear slightly larger due
to the coarser spatial resolution used in this analysis.

Owing to the temporal richness exhibited in the data time series, the forest loss
identification outcomes, utilizing GLASS FFC data and the CCDC algorithm, can achieve
month-level precision. In this study, a representative region was selected to undertake
spatial comparisons between Landsat imagery and forest loss detection results obtained
for specific months. Figure 9 illustrates a close correspondence between the monthly
progression of forest loss and the observed variations in Landsat images. Concurrently, the
presence of cloud interference in Landsat images is evident, which poses challenges for
monthly forest loss identification using this data source. Nevertheless, this underscores the
advantages of our research methodology, despite the spatial resolution of our data being
250 m.
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Figure 8. The annual forest loss identification results are based on GLASS FFC and CCDC algorithm
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area I is in Amazon; (b) Study area II is in Amazon.
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3.3.3. Comparison with Other Vegetation Datasets

As observed in the previous section, the developed methodology in this study presents
a notable advantage in forest loss detection by effectively leveraging the abundant infor-
mation contained within the time series of GLASS FFC data through the implementation
of the CCDC algorithm. In this section, we will compare and analyze the proposed forest
loss detection method with existing and commonly used combinations of vegetation index
data and algorithms. In this section, we utilized a combination of MODIS VCF [10] and
MODTrendr algorithms [60], with MODTrendr being an algorithm specifically tailored
for MODIS data and an improvement over LandTrendr [61]. Additionally, we employed
a combination of MODIS EVI [62] data and the CCDC algorithm. These data algorithm
combinations were used to identify forest loss locations occurring within Study Area II
(Figure 6) in the Amazon region from 2000 to 2020. The identified locations were compared
with the Hansen GFC data in Figure 8b, and the results obtained through our proposed
methodology, as shown in Figure 10. The validation sample points used for Study Area II
were also retained and included in this section (Figure 6). The detailed statistical results are
presented in Table 4.

Table 4. Accuracy assessment confusion matrix for forest loss in four study areas from different
combinations of data and methods in Study area II in Amazon.

Loss in
Correct Year

Persistent
Forest

Producer’s
Accuracy

User’s
Accuracy

Overall
Accuracy Kappa

GLASS FFC
CCDC

Forest loss in
correct year 84 8 91.30% 89.36%

88.31% 0.76
Persistent forest 10 52 83.87% 86.67%

MODIS VCF
MODTrendr

Forest loss in
correct year 57 11 83.82% 56.98%

68.83% 0.39
Persistent forest 37 49 60.64% 81.67%

MODIS EVI
CCDC

Forest loss in
correct year 34 6 85.00% 36.17%

57.14% 0.25
Persistent forest 60 54 51.92% 90.00%
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Forest Loss Identification Results based on MODIS EVI and CCDC.

Yearly Forest Loss Identification Results based on MODIS EVI and CCDC.
Based on the findings presented in Figure 10 and Table 4, it was observed that the

fusion of GLASS FFC data and the CCDC algorithm yielded the most accurate recognition
outcomes, as evidenced by the highest validation accuracy of the sample points. Conversely,
the combination of MODIS VCF and MODTrendr exhibited a distinct delineation of the
recognized areas; however, its accuracy in detecting the specific year of forest loss deviated
more from the actual results. The combination of MODIS EVI data and the CCDC algorithm,
on the other hand, displayed issues with incomplete recognition. In summary, the forest
loss detection method employed in this study demonstrates certain advantages in the
context of 250 m resolution data, enabling rapid and large-scale identification of forest loss.
Nevertheless, when compared to higher-resolution vegetation index series and LiDAR
data, there remains potential for further improvement in the methodology.

4. Discussion
4.1. Characteristics of GLASS FFC Data

Previous validation efforts conducted on MODIS VCF [45] have indicated that the
estimated values of MODIS VCF throughout the entire tropical region did not exceed
80%, which is clearly inconsistent with the actual conditions. Therefore, we employed
the same validation data and methodology to examine the performance of GLASS FFC,
specifically in the tropical region. The validation methodology was adopted from the
MODIS VCF literature [10]. We reprojected the GEDI-derived canopy cover data onto
the GLASS FFC grid, limiting the validation dataset to GLASS FFC pixels containing
five or more high-quality GEDI data points to minimize potential sampling errors in the
aggregation process [45]. Subsequently, we averaged the tree canopy cover samples falling
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within each MODIS pixel. Specifically, we assessed the occurrence of canopy cover at the
footprint level across the entire Amazon region, resulting in over 450,000 sample points.

Figure 11 presents an illustration of the spatial distribution of GLASS FFC and GEDI
footprints within the study area of the Amazon rainforest. In the Amazon region, a
significant level of agreement was observed between the estimated canopy cover values
derived from GEDI and GLASS FFC (R2 = 0.7492, RMSE = 14.03%). Both datasets exhibited
a bimodal distribution pattern in terms of canopy cover. However, the peaks of GLASS
FFC were centered at 18% and 75%, whereas those of GEDI were centered at 8% and 85%.
Notably, GLASS FFC displayed an additional minor peak at 8%. Furthermore, a high
degree of consistency between the two datasets was found within the range of 25% to 65%,
as evidenced by the overlapping cumulative probability curves. Previous studies have
indicated that GEDI tends to exhibit higher mean values at the upper end of the range and
lower values at the lower end [10]. The systematic discrepancy in higher values can be
attributed to GEDI’s inability to distinguish between trees and buildings, leading to an
overestimation of canopy cover due to the misinterpretation of taller buildings as higher
vegetation cover. This disparity contributes to the observed differences in the bimodal
patterns between the two datasets. Simultaneously, in contrast to the phenomenon observed
in MODIS VCF, where the values did not exceed 80% throughout the entire tropical region,
as depicted in Figure 11c, GLASS FFC effectively mitigated this limitation.
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Figure 11. Comparison of GLASS FFC percent tree cover with GFCC percent canopy cover in the
Amazon region. Panel (a) illustrates the spatial distribution of GLASS FFC in the Amazon region.
Panel (b) presents the geographic extent of the GEDI flight lines in Amazon. Panel (c) shows a
detailed comparison between GLASS FFC and GEDI sample points in the Amazon region. The
blue line in the scatter plot is the linear regression line that fits the paired data points. In Panel (d),
the thin bar lines represent the probability distribution of GEDI canopy cover (red) and GLASS
FFC (purple) in the Amazon region, while the solid line corresponds to their respective cumulative
distribution functions.

4.2. Application Potential and Prospects

The GLASS FFC dataset represents the first set of 8-day resolution forest cover data.
In comparison to other long-term, high-temporal-resolution vegetation indices, it pro-
vides a more effective and intuitive means of monitoring forest dynamics. This efficacy
stems from the fact that forest loss or recovery is defined by the decrease or increase in
forest cover [63,64]. Regarding the application of GLASS FFC, one aspect involves the
utilization of dense intra-annual and inter-annual trend information to ascertain the precise
months and seasons during which forest loss transpires within distinct climatic zones.
Alternatively, gaining a more nuanced understanding of the underlying drivers of forest
disturbances [65] (including natural degradation, anthropogenic logging, wildfires, and
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insect infestations) relies on the analysis of temporal characteristics and patterns [66]. Ad-
ditionally, the temporal regularities within the GLASS FFC data also enable the assessment
of subsequent recovery or afforestation efforts. By monitoring changes in forest cover over
time, researchers can evaluate the effectiveness and success of restoration initiatives or
reforestation programs. This critical evaluation contributes to a comprehensive comprehen-
sion of the causes of global forest disturbances and their environmental consequences on a
global scale. Moreover, it provides valuable insights for sustainable forest management
and conservation strategies.

Subsequent research endeavors concerning the GLASS FFC data will primarily con-
centrate on leveraging its dense time-series information to achieve a more precise mapping
of forest disturbances on a global scale. Firstly, efforts are directed towards integrating the
attention mechanism with deep learning methodologies to extract the most pertinent histor-
ical forest cover information. The attention mechanism can be employed to prioritize and
extract the most significant features from the dense time-series data [67,68]. When applied
to the GLASS FFC data, the attention mechanism can be utilized to identify and emphasize
the relevant historical forest cover information. This includes data from adjacent times
within the same year, as well as data from the same time in different years. By assigning
attention weights to different temporal instances, the model can effectively highlight the
time points that provide important insights into forest disturbances. During the training
process, the attention mechanism learns to assign higher weights to the most informative
temporal instances while suppressing the influence of less relevant ones.

4.3. Limitations and Future Work

The methodology proposed in this study introduces the GLASS FFC data as an in-
novative approach for monitoring forest change and assessing disturbances, capitalizing
on its advantageous attributes of high temporal resolution and extensive spatial cover-
age. However, it is crucial to acknowledge that the algorithms employed in this study
primarily rely on GLASS FVC and MODIS VCF data, which raises the possibility of error
amplification originating from the quality of the source data [25]. To address this concern,
future research endeavors can employ existing forest cover data as a reference training
set [69] and supplement it with a substantial volume of ground truth data or high-resolution
satellite images for annotation and validation [70]. Furthermore, adopting more suitable
algorithms, such as deep learning methods, can be pursued to advance the development of
forest cover data with enhanced spatial and temporal resolutions [71–73]. It is noteworthy
that forest cover exhibits high levels of diversity, encompassing various vegetation types,
topographical features, and ecological conditions. Consequently, ensuring the robustness
and generalization capability of deep learning models across diverse forest ecosystems
poses a significant challenge that warrants careful consideration and further investigation.

5. Conclusions

This study introduces a novel methodology for constructing fractional forest cover
data with a temporal resolution of eight days at a 250-m spatial resolution, based on the
long-term series GLASS FVC product and the annual MODIS VCF product. Subsequently,
the high-quality, long-term series forest cover data product, GLASS FFC, was developed to
encompass global scales. This dataset represents the first suite capable of monitoring intra-
annual and inter-annual dynamics of forest cover globally. For verification, the dataset was
assessed both globally and at localized scales using the high spatial resolution data from the
GFCC. Moreover, to explore the dataset’s applicability in monitoring forest disturbances,
an enhanced Continuous Change Detection and Classification (CCDC) algorithm was
employed, enabling the rapid, large-scale detection of annual forest loss from 2000 to 2020
in two study areas within the Amazon. The specific research findings are as follows:

(1) By employing pixel-based time series plotting of FFC and its comparison with
GLASS FVC, GLASS FFC has demonstrated the capability to accurately reflect seasonal
variations and abrupt changes in forest cover within the year. The discrepancies and
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convergences between GLASS FFC and vegetation cover provide new perspectives for
identifying different land cover classifications and for detecting forest loss and recovery.

(2) The spatial validation of GLASS FFC with high-resolution GFCC data illustrates
that this product achieves high accuracy across various continents and forest coverage sce-
narios globally. Validation results based on global sites show a coefficient of determination
(R2) of 0.9085 and an RMSE of 7.22%. Notably, the accuracy in the Eurasian continent is
even higher, reaching an R2 of 0.9352 and an RMSE of 6.58%. Furthermore, validation in
the Amazon region using radar data demonstrates that GLASS FFC mitigates the limitation
observed in MODIS VCF, where forest cover estimates in low-latitude tropical rainforest
areas did not exceed 80%.

(3) Furthermore, the integration of GLASS FFC with the CCDC algorithm has achieved
a detection accuracy exceeding 86% for forest loss in the Amazon rainforest region. At a
250-m spatial resolution, this approach effectively captured disturbances of various scales.
To a certain extent, GLASS FFC surpasses vegetation indices such as NDVI, EVI, and NBR,
establishing itself as a crucial indicator for describing the ecological status of forests.
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