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ORIGINAL RESEARCH ARTICLE

Long-term (2013–2022) mapping of winter wheat in the 
North China Plain using Landsat data: classification with 
optimal zoning strategy
Yifei Liua,b, Xuehong Chen a,b, Jin Chena,b, Yunze Zanga,b, Jingyi Wangc, Miao Lud, 
Liang Sund, Qi Donga,b, Bingwen Qiue and Xiufang Zhua,b

aState Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, 
Faculty of Geographical Science, Beijing Normal University, Beijing, China; bBeijing Engineering Research 
Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, 
Faculty of Geographical Science, Beijing Normal University, Beijing, China; cState Key Laboratory of Crop 
Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 
Beijing, China; dState Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern 
China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 
Beijing, China; eKey Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, 
Academy of Digital China (Fujian), Fuzhou University, Fuzhou, China

ABSTRACT
Long-term mapping of winter wheat is vital for assessing food 
security and formulating agricultural policies. Landsat data are the 
only available source for long-term winter wheat mapping in the 
North China Plain due to the fragmented landscape in this area. 
Although various methods, such as index-based methods, curve 
similarity-based methods and machine learning-based methods, 
have been developed for winter wheat mapping based on remote 
sensing, the former two often require satellite data with high 
temporal resolution, which are unsuitable for Landsat data with 
sparse time-series. Machine learning is an effective method for 
crop classification using Landsat data. Yet, applying machine learn
ing for winter wheat mapping in the North China Plain encounters 
two main issues: 1) the lack of adequate and accurate samples for 
classifier training; and 2) the difficulty of training a single classifier 
to accomplish the large-scale crop mapping due to the high spatial 
heterogeneity in this area. To address these two issues, we first 
designed a sample selection rule to build a large sample set based 
on several existing crop maps derived from recent Sentinel data, 
with specific consideration of the confusion error between winter 
wheat and winter rapeseed in the available crop maps. Then, we 
developed an optimal zoning method based on the quadtree 
region splitting algorithm with classification feature consistency 
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criterion, which divided the study area into six subzones with uni
form classification features. For each subzone, a specific random 
forest classifier was trained and used to generate annual winter 
wheat maps from 2013 to 2022 using Landsat 8 OLI data. Field 
sample validation confirmed the high accuracy of the produced 
maps, with an average overall accuracy of 91.1% and an average 
kappa coefficient of 0.810 across different years. The derived winter 
wheat area also has a good correlation (R2 = 0.949) with census area 
at the provincial level. The results underscore the reliability of the 
produced annual winter wheat maps. Additional experiments 
demonstrate that our proposed optimal zoning method outper
forms other zoning methods, including Köppen climate zoning, 
wheat planting zoning and non-zoning methods, in enhancing 
wheat mapping accuracy. It indicates that the proposed zoning is 
capable of generating more reasonable subzones for large-scale 
crop mapping.

1. Introduction

Wheat is the world’s third-largest food crop, serving as a staple food for nearly 40% of the 
global population (FAO, 2014). China is the world’s largest producer and consumer of 
wheat, with an annual production of about 124 million tons and consumption of 
120 million tons (Zhao et al., 2018). The North China Plain is the predominant wheat- 
producing region in China. Long-term mapping of winter wheat in this area is crucial as it 
reflects the primary spatiotemporal dynamic of winter wheat cultivation in China. Such 
maps are essential for identifying the driving force behind the winter wheat changes and 
for guiding the formulation of agricultural policy (He et al., 2019; Qiu et al., 2017; Shen 
et al., 2022; Zhang et al., 2019).

Remote sensing is the most effective tool for large-scale crop mapping. It has been 
extensively applied in mapping various crops in different regions (Li et al., 2021; Massey 
et al., 2017; Nabil et al., 2022; Pan et al., 2012; Song & Wang, 2019; Wang et al., 2019; 
Wardlow et al., 2007; Yang et al., 2023). Generally, classification methods for winter wheat 
mapping using remote sensing can be categorized into three types: index-based meth
ods, curve similarity-based methods and machine learning-based methods (Dong et al., 
2020).

The first type of method designs empirical indices for winter wheat based on its unique 
phenological features. For instance, Pan et al. (2012) proposed a crop proportion phenol
ogy index (CPPI) by capturing the unique two growth peaks at tillering and heading 
stages of winter wheat in Enhanced Vegetation Index (EVI) time-series. Tao et al. (2017) 
developed a peak before winter feature (PBWF) index to map winter wheat in the North 
China Plain by emphasizing the unique greenness of PBW phase. Qiu et al. (2017) 
proposed a method combining variations before and after estimated heading dates 
(CBAH) to identify winter wheat with a consideration of phenological variation across 
a large area. Qu and Zhang (2021) proposed a winter wheat index (WWI) based on two 
distinctive contrasts (i.e. the contrast between the over-wintering and sowing stages, and 
the contrast between the heading and harvesting stages) from Normalized Difference 
Vegetation Index (NDVI) time series. Mapping winter wheat based on the empirical 
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indices is highly efficient, but heavily dependent on clear images acquired in key pheno
logical stages. Thus, such methods are often inapplicable when the key observations are 
missing. The second type of method identifies winter wheat by measuring the similarity 
between the observed vegetation index (VI) curve and a standard VI curve of winter wheat 
(Belgiu & Csillik, 2018; Dong et al., 2020; Li et al., 2021; Li et al., 2021; Maus et al., 2016; Sun 
et al., 2012; Yang et al., 2019; Zhang et al., 2019; Zhang et al., 2019). Various similarity 
measurements, such as Euclidean distance, Kullback–Leibler divergence (KLD), and 
Jeffries-Matusita (JM) distance, have been used for winter wheat classification based on 
VI time-series (Sun et al., 2012). To address the issue of the shifts and distortions of VI 
curves induced by phenological variation across a large area, similarity based on dynamic 
time matching (DTW) was also applied to winter wheat mapping (Dong et al., 2020; Dong 
et al., 2020). The curve similarity-based method utilizes all available data in the time-series, 
thus has a relatively slight reliance on the effective observations of key phenological 
periods. However, it necessitates the dense time-series observations to match the 
observed and the reference curves. In summary, both the index-based and curve similar
ity-based methods require frequent observations to ensure the cloud-free observations in 
the key phenological periods or a time-series curve throughout the growing season. Thus, 
most of these studies utilize moderate resolution imaging spectroradiometer (MODIS) or 
Sentinel-2A/B data, which have a relatively high temporal resolution. However, the spatial 
resolution of MODIS is too coarse to support the accurate mapping of winter wheat in the 
North China Plain due to the fragmented landscape in this area. And the Sentinel-2A/B 
data, although having a higher spatial resolution, were not available before 2017. Thus, 
the Landsat data is the only available source that can be used for long-term mapping of 
winter wheat in this region. Unfortunately, the sparse time-series of Landsat poses 
a challenge in effectively applying the aforementioned methods.

The third type of method, machine learning-based methods, such as random forest 
(RF), support vector machine (SVM), and deep learning methods, have demonstrated 
effectiveness in crop classification using time-series data in recent years (Asgarian et al., 
2016; Liang & Wang, 2019; Liu et al., 2018; Nasrallah et al., 2018; Skakun et al., 2017; Weiss 
et al., 2020; Xu et al., 2020). Zhang et al. (2021) utilized random forest to map winter wheat 
in the North China Plain based on the EVI time-series features extracted from Landsat 
data. Wang et al. (2019) applied random forest for winter wheat classification based on the 
harmonic fitting results of Landsat time-series and achieved more than 80% classification 
accuracy across different regions and years in the United States. These studies highlight 
the effectiveness of machine learning-based methods in exploring features from sparse 
Landsat time-series data for winter wheat mapping. Despite the promising performance 
of machine learning in crop classification, winter wheat mapping by machine learning 
encounters two major challenges: 1) obtaining sufficient labeled samples for training 
classifiers; and 2) zoning an entire large region into different subzones to reduce the 
spatial heterogeneity. Selecting high-confidence samples from existing crop maps is 
a practical and effective approach for the first challenge (Li et al., 2021). For instance, 
regions with consistent labels among different land cover maps are often considered as 
high-confidence and could be used for training classifier (Jin et al., 2019; Liu & Chen, 
2018). Conversely, the edge pixels are often considered as unreliable and should be 
filtered out (Tran et al., 2022). Such a strategy is feasible for winter wheat mapping in 
the North China Plain because several crop maps in this area have been produced based 
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on Sentinel-2 data (Dong et al., 2020; Dong et al., 2020; Yang et al., 2023; Zang et al., 2023). 
These maps could be used to generate reliable samples for training Landsat data. 
Although such strategies guarantee the reliability of the selected training samples, the 
sample representativeness becomes a concern because the difficult or confused samples 
may be filtered out (Li et al., 2021). Thus, it is important to carefully design the sample 
generation rules that is able to balance the tradeoff between the reliability and the 
representativeness, with consideration of the regional characteristics and the error 
types of the available crop maps. Regarding the second challenge, some studies divided 
the study area into a group of square or hexagonal grids (Dong et al., 2020; Huang et al., 
2022) and trained different classifiers for different grids. However, such a strategy is 
somewhat arbitrary as it does not consider the varying spatial heterogeneity across 
different grids. Zoning with climatic or agro-ecological zones is another commonly used 
strategy for large-scale crop mapping (Li et al., 2021; Liu et al., 2022; Yang et al., 2021). The 
crop growth situation and the crop varieties within a single subzone tend to be more 
similar, thus a single classifier is adequate for crop classification in a single subzone. 
However, the classification process is influenced not only by the crop characteristics but 
also by the background land cover features and the data availability. Therefore, the 
climatic or agro-ecological zoning is not an optimal zoning strategy for crop classification 
either. To date, rare attention was paid to the development of an optimal zoning method 
specifically tailored for crop classification.

Due to the different challenges associated with different methods mentioned above, 
there are currently no publicly available data of long-term winter wheat maps in the North 
China Plain up to now. To fill this gap, this study proposes a novel machine learning-based 
approach for winter wheat mapping. Firstly, we generated a training sample set (compris
ing wheat and non-wheat samples) from several existing crop maps in the study area by 
considering both the sample reliability and representativeness. Secondly, we developed 
an optimal zoning method for crop classification by combining a measure of inter- 
regional classification feature consistency with the quadtree region splitting algorithm. 
Based on the generated sample set and the derived optimal subzones, we trained specific 
classifiers for Landsat data in each subzone. Then the classifiers were used to generate 
annual winter wheat maps from 2013 to 2022 in the North China Plain.

2. Materials

2.1. Study area

This research focuses on the North China Plain, the largest wheat-producing region in 
China, contributing 60% of the national wheat production (Yu et al., 2002). The region 
encompasses 10 provinces and municipalities, including Beijing, Tianjin, Hebei, Shandong, 
Henan, Anhui, Jiangsu, Hubei, Shaanxi, and Shanxi (Figure 1a). The study area exhibits 
significant climatic heterogeneity, including five subzones based on the Köppen climate 
zoning system (Peel et al., 2007) (Figure 1b): BSk (Arid Steppe Cold), Dwa (Cold Dry Winter 
Hot Summer), Cwa (Temperate Dry Winter Hot Summer), Dfb (Cold Without dry season 
Warm Summer), and Cfa (Temperate Without dry season Hot Summer). There are also large 
differences in the agricultural characteristics including farming systems, variety types, and 
production levels. It is commonly divided into five subzones (Figure 1c) according to the 
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previous study on wheat planting zoning in China (Cai, 2010): NWS (Northwest spring 
wheat area), NW (Northern winter wheat area), HW (Huang-Huai winter wheat area), SWW 
(Southwest winter wheat area), YW (Yangtze River winter wheat area).

2.2. Data

2.2.1. Landsat images and preprocessing
In this study, Landsat-8 surface reflectance imagery (Collection 2 Level 2 Tier 1) from 2013 
to 2023 was acquired from Google Earth Engine. Given the growing season of winter 
wheat spans across 2 years, we selected Landsat time series from September 1 of the 
sowing year to June 30 of the subsequent year for winter wheat classification of each 
sowing year. To alleviate the cloud contamination effects, the reflectance value of the 
pixel with a cloud flag was replaced with an interpolated value from the two nearest valid 
observation. Other than the multi-spectral bands (Band 2–7, corresponding to blue, 
green, red, near infrared, shortwave infrared 1 and shortwave infrared 2 respectively), 
a suite of spectral indices were also calculated to enhance the crop spectral features for 
classification based on the previous studies on winter wheat mapping and winter rape
seed mapping (Table 1) (Chen et al., 2019; Dong et al., 2020; Qiu et al., 2015; Tian et al., 
2021; Wang et al., 2017; Xiao et al., 2005; Yang et al., 2021; Zang et al., 2020, 2023; Zhang 
et al., 2021). The cloud probability band was also input as a classification feature to 
represent the quality of the valid observation.

2.2.2. Field survey data
To verify the accuracy of the mapping results, we collected survey samples from 
multiple sources (Table 2 and Figure 2): 1) Field surveys were conducted in the 

Figure 1. Study area (a), Köppen climate zoning (b) and wheat planting zoning (c).
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sowing years of 2017, and 2022, resulting in 1001, and 587 point samples, respec
tively; 2) Visual interpretation of ultra-high-resolution images acquired by 
Unmanned Aerial Vehicles (UAVs) during the 2018 and 2019 sowing years yielded 
93 and 223 polygon samples; and 3) the open-access point samples (Qiu et al., 
2022) for the sowing years of 2015, 2016, 2020, 2021 were downloaded.

2.2.3. Other data
We obtained existing crop mapping products in this area (Table 3), including three winter 
wheat maps and a rapeseed map, for automatic sample generation. In addition, the 
provincial census data on the annual sowing area of winter wheat from 2013 to 2021 
were acquired from the China Agriculture and Forestry Database (CAFD) (https://data. 
stats.gov.cn/easyquery.htm?cn=C01) for comparison.

3. Method

The proposed winter wheat mapping methodology consists of three parts 
(Figure 3): (a) a large number of wheat and non-wheat samples are automatically 
generated using existing crop mapping products; (b) the study area is optimally 
zoned into different subzones based on the classification feature heterogeneity; (c) 
a specific classifier is trained in each subzone with corresponding training samples 
and is used for mapping winter wheat from 2013 to 2022 based on Landsat-8 OLI 
data.

Table 1. Spectral indices used for classification input.
Index Expression

NDVI Normalized Difference Vegetation 
Index

ρNIR � ρRED
ρNIRþρRED

NDPI (Chen et al., 2019; Wang et al., 2017) Normalized Difference Phenology Index ρNIR � α�ρREDþ 1� αð Þ�ρSWIR1ð Þ

ρNIRþ α�ρREDþ 1� αð Þ�ρSWIR1ð Þ
(α = 0.74)

EVI Enhanced Vegetation Index 2:5� ρNIR � ρRED
ρNIRþ6ρRED � 7:5ρBLUEþ1

LSWI (Xiao et al., 2002, 2004) Land Surface Water Index ρNIR � ρSWIR1
ρNIRþρSWIR1

DYI (Zang et al., 2020) Differential Yellow Index ρGREEN � ρBLUE

Table 2. Information of field survey samples.

Sowing 
Year

Sampling 
Time

Sample size

Sample 
Type

Equivalized number of 
30m pixels

Sample Sources
Winter 
wheat

Non-winter 
wheat

Winter 
wheat

Non-winter 
wheat

2015 / 12 / Point 12 / Qiu et al. (2022)
2016 / 95 / Point 95 / Qiu et al. (2022)
2017 2018.06 633 368 Point 633 368 GPS field survey
2018 2018.12 45 48 Polygon 2457 1323 UAV Interpretation
2019 2020.03 102 121 Polygon 3394 7144 UAV Interpretation
2020 / 28 / Point 28 / Qiu et al. (2022)
2021 / 18 / Point 18 / Qiu et al. (2022)
2022 2023.03–05 343 244 Point 343 244 GPS field survey
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3.1. Sample generation

We used three winter wheat maps and a rapeseed map in the sowing year of 2017 to 
generate training samples for Landsat data. The sample generation consists of two main 
steps (Figure 3a).

In the first step, areas with consistent labels among the four mapping data were 
selected to guarantee the reliability of the generated samples. Specifically, pixels 
classified as winter wheat in all three winter wheat maps and as non-rapeseed in 
the rapeseed map were selected for the wheat sample set. Similarly, pixels 

Figure 2. Distribution of field survey samples.

Table 3. Crop mapping products used for sample generation.

Sowing 
Year Product Type

Spatial 
Resolution 

(m) Data source

Officially 
reported 
accuracy 

(OA)

2017 Winter wheat map 30 Mapped by the CBAH (Qiu et al., 2017) method with the 
Sentinel-2 data from Sep. 2017 to Jun. 2018

87.9%*

Winter wheat map 30 30 m winter wheat distribution map of China for four years 
(2016–2019) (Dong et al., 2020)

89.9%

Winter wheat map 20 Winter wheat map in Northern China (2017–2018) (Dong 
et al., 2020)

89.9%

Rapeseed map 20 China rapeseed map (2017–2021) (Zang et al., 2023) 94.9%

*This accuracy is reported in Dong et al. (2020).
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classified as non-wheat in all three winter wheat maps were selected for the non- 
wheat sample set. Such a selection rule effectively minimizes the inclusion of 
potentially erroneous samples, but it also results in an under representation of 
the generated sample set. A major problem is that there are few rapeseed samples 
that can be selected into the non-wheat sample set because winter wheat and 
rapeseed have similar growth seasons and phenological features during growth, 
leading to overlap between spectral features (Figure 4), thus they are often mis
classified as the winter wheat in several winter wheat maps (Yang et al., 2023). This 
lack of rapeseed samples hinders the effective training of the classifier to distin
guish the winter wheat from the rapeseed.

In the second step, thus, a part of rapeseed pixels was randomly selected from 
the rapeseed map and added into the non-wheat sample set to increase its 
representativeness. The number of added rapeseed pixels (Nrapeseed) was deter
mined based on census data: 

where Srapeseed and Swinterwheat are the census areas of rapeseed and winter wheat in the 
study area in 2017; S is the total area of the study area; and N is the number of wheat 
samples generated. The inclusion of rapeseed samples ensured the diversity and repre
sentativeness of the non-wheat sample set.

Figure 3. The workflow of the proposed winter wheat mapping approach ((a) Sample Generation; 
(b) Optimal Zoning; (c) Mapping and Validation).
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3.2. An optimal zoning method for crop classification

Classification feature heterogeneity means that the classifier relies on classification fea
tures with different levels of importance in different zones. The underlying reason for this 
variation is that the classification process is influenced by a combination of crop spectral 
features, background feature type and remote sensing data availability. Therefore, the 
core principle of zoning is to maximize the internal similarity of classification features 
within one zone while minimizing the similarity across different zones. However, tradi
tional climatic zoning and agro-ecological zoning primarily consider climate or crop 
suitability features, which are inconsistent with the remote sensing classification features. 
To address this issue, we introduced a novel classification feature consistency index (CCI) 
to measure the similarity of classification features between two zones. Then, we devel
oped an optimal zoning method utilizing the classical quadtree region splitting algorithm 
with a splitting and merging criterion of the CCI.

3.2.1. Classification feature consistency index (CCI)
The CCI is used to measure the similarity of classification features between two zones. If 
two zones exhibit good consistency of classification features, they should be merged into 
a single zone where only one classifier is trained. In contrast, if a zone exhibits internal 
inconsistency in the classification features, it should be split into multiple subzones where 
different classifiers are trained. However, due to the high dimensionality of the classifica
tion features and their complex nonlinear relationship with the classification results, the 
consistency of the classification features between different zones is difficult to be 
expressed explicitly. To avoid this difficulty, we suggest that the similarity in classification 

Figure 4. Landsat-8 satellite-based normalized vegetation index (NDVI) time-series variation curves for 
winter wheat and rapeseed.
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features between two zones can be represented by the consistency degree of the outputs 
of two classifiers trained separately with the samples in these two zones. 

Assuming that Zone A and Zone B contain training sample sets TA and TB respectively, 
we use TA and TB to train two classifiers fA and fB. Here, the training sample set of each 
zone consists of 2000 wheat and 2000 non-wheat samples randomly selected from the 
sample set generated in Section 3.1. Then, a test sample set M ¼ m1; . . . ;mnf g is ran
domly selected from all other samples in Zone A and Zone B, and are classified using fA 

and fB, respectively. The consistency between the two classification results can be quan
tified by the overall accuracy metric (OAA,B):

A higher OAA, B indicates a higher consistency between two classification results and 
thus a higher similarity of the classification features of the two zones. However, we must 
also consider the presence of Bayesian errors (ErrorBayes) of the classifiers, i.e. completely 
random classification errors. Even classifiers trained on sample sets with identical features 
will have random inconsistencies in their classification results on the same test samples. It 
may cause the OAA,B index to underestimate the consistency of classification features 
between different zones. Therefore, in this study, CCIA,B between two zones is defined as 
the sum of OAA,B and ErrorBayes: 

where ErrorBayes can be approximated as the training error due to the fact that the 
training error of a model infinitely converges to the Bayesian error when there are 
adequate training samples (Zhou, 2016). In this study, we computed the average training 
error rates of the two classifiers as the Bayesian error.

3.2.2. Quadtree region splitting based on classification feature consistency
Building upon the quadtree region splitting algorithm (Horowitz & Pavlidis, 1976), we devel
oped a zoning process based on the CCI criterion. It consists of two main steps (Figure 3b).

In the first step, a top-down splitting process was applied to the study area using 
a quadtree algorithm. The entire study area is firstly divided into four subzones labeled as 
A, B, C, and D. The CCIs between every pair of subzones (CCIA,B, CCIA,C, CCIA,D, CCIB,C, CCIB,D, 
and CCIC,D) were calculated using the method described in Section 3.2.1. If the minimum 
value of these indices (CCImin) is below a predefined threshold, it indicates a significant 
difference in the classification features among the four subzones. In such case, the 
quadtree region splitting result is retained. Conversely, if CCImin is above the threshold, 
it suggests no difference in classification features among subzones, and the region 
splitting process is halted. Subsequently, the quadtree region splitting process is repeated 
for the newly obtained zone through splitting until either there are no zones that can be 
further split (CCImin > Threshold). In addition, the splitting will also be stopped if the 
available samples in the subzone are less than 2000 or the maximum number of splits 
(Split_Num) has been reached.

The second step involves a bottom-up merging process. After the splitting process, 
a queue of zones to be grown is obtained. Initially, all subzones are considered as seed 
points, meaning they are potential zones to be merged. From the seed queue, a zone Z0 is 
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selected. Its neighboring zones, denoted as Z1; . . . ; Zp
� �

, are then searched. The CCI 
between zone Z0 and its neighboring zones is sequentially compared. The neighboring 
zone with the highest CCI, denoted as Zmax, is selected. 

If the CCIZ0;Zmax exceeds the predefined threshold, indicating no significant differences 
between two neighboring zones, the two zones are merged. The resulting merged zones are 
subsequently appended to both the “to be grown” queue and the seed queue. Conversely, if 
CCIZ0;Zmax is below the threshold, it signifies substantial classification feature difference 
between zone Z0 and all its neighboring zones. Consequently, zone Z0 is eliminated from 
the seed queue, preventing its merge with other zones. This iterative process continues until 
the seed queue becomes empty, ultimately yielding the final merged zone results.

3.2.3. Details of the zoning method implementation
Random forest was chosen as the classifier to compute the CCI, owing to its robustness and 
efficiency in large-scale land cover and crop classification studies (Li et al., 2021; Liu et al., 2018; 
Tran et al., 2022; Xing et al., 2021). Two parameters should be set during the quadtree region 
splitting process: the maximum number of splits (Max_split_number) and the split-merge 
threshold (Threshold). For our study area, Max_split_numer was set to 5, which correspond to 
the smallest zoning unit in the crop classification. And the CCI threshold was set to 0.97 
through empirical trials.

3.3. Annually mapping of winter wheat and accuracy validation

After generating a substantial number of training samples and obtaining a set of optimal 
subzones, we randomly selected 4,000 wheat samples and 4,000 non-wheat training samples 
in each subzone to train its own classifier. Although the subzones have different spatial sizes, 
we use the equal number of training samples in each subzone because the heterogeneity of 
the classification features is comparable among different subzones generated by the pro
posed splitting-merging process. It is also noted that we use a larger training sample size than 
that used in the zoning stage (2,000 wheat samples and 2,000 non-wheat samples) because 
the subzones become larger and contain more available samples after the merging process. 
These trained classifiers of the subzones were then employed for annually winter wheat 
mapping from 2013 to 2022 using Landsat 8 OLI data (Figure 3c). To assess the mapping 
accuracy, we calculated various metrics including overall accuracy (OA), producer accuracy 
(PA), and user accuracy (UA) using the available validation samples for each year. Furthermore, 
we compare the winter wheat area derived from our produced maps with the census area 
obtained from the China Agriculture and Forestry Database (CAFD) at province level.

4. Results

4.1. Optimal zoning result

Based on the proposed optimal zoning method, the entire study area was divided into six 
subzones (Figure 5), and it is evident that the zoning differs significantly from the 

504 Y. LIU ET AL.



commonly used climatic and wheat planting zones (Figure 1b,c). The intermediate steps 
of the optimal zoning process are shown in Figure 6a, where the study area was first split 
and then merged until the proposed CCI-based criterion was reached. For each splitting 
and merging step, the classification accuracies (OA) were also calculated based on the 
validation samples (Figure 6b). In the splitting process, the OA first increased and then 
decreased. This is reasonable because the classification difficulty commonly decreases 
when a large study area is divided into smaller subzones. However, when the divided 
subzones are too small, the generated samples probably become less representative 
because the sample diversity decreases, leading to a low classification accuracy. In the 
merging process, the accuracy continuously increases and reaches the highest value in 
the final merging step. It indicates that the proposed optimal zoning method is able to 
acquire the best zoning map for winter wheat classification.

4.2. Winter wheat mapping results

Based on the optimal zoning result and the generated samples (Figure 5), six different 
classifiers for each subzone were trained by the corresponding training samples. Then, 
these trained classifiers were respectively used for classifying winter wheat from 2013 to 
2022 in their corresponding subzones. Finally, the 30 m winter wheat maps in the North 
China Plain from 2013 to 2023 were generated.

Figure 5. Optimal zoning results and the distribution of training samples in each subzone.
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The winter wheat maps generated from Landsat data (Figure 7a) show similar 
spatial patterns with previous studies (Dong et al., 2020; Qiu et al., 2017; Zhang 
et al., 2021). However, our data additionally reflect the long-term changes of winter 
wheat thanks to the long time series of Landsat 8 OLI since 2013. We calculated winter 
wheat coverage in 5-km grid for each year and conducted linear trend analysis for 
each grid from 2013 to 2022. As shown in Figure 7b, there is a significant spatial 
heterogeneity in the long-term trend of winter wheat coverage. In general, obvious 
decreasing trends are observed in southern boundary of winter wheat planting region, 
including southern Hubei and central Anhui, which might be induced by the dryland- 

Figure 6. (a) The splitting and the merging process of the study area. (b) The change of classification 
accuracy (OA) during the splitting and merging process.

Figure 7. (a) Produced 30 m winter wheat map in 2022; (b) change trend of winter wheat from 2013 to 
2022 at 5-km grid. The urban boundary is accessed from He et al. (2019).
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to-paddy policy in these two provinces (Yang, 2021; Zhu, Li, et al., 2021; Zhu, Zou, 
et al., 2021). In comparison, areas with increasing trends are more prominent in the 
northern part of the study area, such as Hebei, northern Shandong, and northeastern 
part of Guanzhong region (a plain region across Shaanxi and Shanxi provinces). This 
northward shift of winter wheat planting areas might be attributed to a combination 
of factors, such as expanded irrigation and climate warming (Fan et al., 2020). 
Furthermore, scattered areas with decreasing winter wheat could also be found 
around the urban areas due to the urban expansion.

Figure 8 illustrates four detailed examples of the winter wheat changes. Overall, the 
extracted winter wheat match well with the Landsat images acquired in April or May 
when the winter wheat should show a dark green color. Figure 8a (located in Gu’an 
County, Hebei Province) shows a decrease of winter wheat recently, due to the cropland 
fallow since 2020; Figure 8b (located in Xiong’an New Area, Hebei Province) shows 
a significant reduction of winter wheat, because of the large-scale construction in 
Xiong’an New Area an; Figure 8c (located in Zhoushan County, Henan Province) illustrates 
a rapid increase of winter wheat, driven by the increased irrigation in the region; Figure 8d 
(located in Jiangling County, Hubei Province) shows a decrease of winter wheat, because 
of the conversion of winter wheat fields into paddy rice fields.

4.3. Quality evaluation of winter wheat map

4.3.1. Accuracy assessment based on field survey samples
The classification accuracy of winter wheat was calculated for each year from 2015 to 
2022, based on the field survey sample. Since the samples accessed from Qiu et al. (2022) 
only contained positive samples without negative samples, only the PA was calculated. As 
shown in Table 4, the OA for each year ranged from 85.2% to 94.3%; the Kappa coefficient 
ranged from 0.692 to 0.873; and the PA ranged from 75.0% to 97.0%. The accuracy 
validation results indicate that our method can map the winter wheat with reasonable 
accuracies across different years.

4.3.2. Comparison with census data
The winter wheat areas obtained from the winter wheat maps were compared with the 
census area at the provincial level for the years of 2013–2020. Figure 9 shows that there is 
a good consistency between the mapped area and the census area with an R-squared 
value of 0.949.

4.3.3. Comparison with existing mapping products derived from Sentinel-2 data
Since Sentinel-2 data have higher spatial and temporal resolution, it is reasonable to 
assume that the winter wheat maps derived from Sentinel-2 data have higher reliability 
and thus can also serve as references for evaluating our produced winter wheat maps 
based on Landsat data. As shown in Table 5, our produced winter wheat maps have good 
agreement with the maps derived from Sentinel-2 data. The OA calculated based on these 
Sentinel-2 derived maps range from 80.4% to 89.3%. Considering that these Sentinel-2 
derived maps also contain classification errors (officially reported OA ranged from 88% to 
94%), such a level of agreement indicates that our produced map based on Landsat data 
is not much worse than the Sentinel-derived maps.
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Figure 8. Spatial details of winter wheat maps in different years.
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Figure 10 further shows several detailed comparisons of our winter wheat maps and 
other Sentinel-2 derived maps for the years of 2017 and 2022. In general, our map shows 
similar spatial pattern to the Sentinel-2 derived maps in most examples. However, the 

Table 4. The accuracy indices of the winter wheat maps from 2015 to 2023.
Sowing Year PA UA OA Kappa

2015 75.0% / / /
2016 87.4% / / /
2017 93.5% 93.7% 92.4% 82.6%
2018 97.0% 94.3% 94.3% 87.3%
2019 96.4% 89.1% 92.3% 84.7%
2020 89.3% / / /
2021 83.3% / / /
2022 89.8% 85.6% 85.2% 69.2%
Average 89.0% 90.7% 91.1% 81.0%

Figure 9. The comparison of the mapped area of winter wheat with the census area at the province 
level during 2013–2020.

Table 5. Accuracies assessment based on Sentinel-2 derived 
maps.

Reference map Sowing year OA

TWDTW (Dong et al., 2020) 2016–2018 80.4%
PTDTW (Dong et al., 2020) 2017 87.9%
CBAH (Qiu et al., 2017) 2017 89.3%
ATDG (Yang et al., 2023) 2021–2022 85.0%
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Sentinel-2 derived maps, especially ATDG, exhibit more detailed parcel boundaries due to 
the higher spatial resolution.

5. Discussion

5.1. Superiority of the proposed optimal zoning method in crop mapping

Previous studies have made many improvements in various aspects of crop mapping with 
remote sensing data, including fusing more data sources (Blickensdörfer et al., 2022; Gu 
et al., 2023; Werner et al., 2024), developing more advanced classifiers or matching 
methods (Belgiu & Csillik, 2018; Li et al., 2024; Wang et al., 2021); generating training 
samples with less labor (Belgiu et al., 2021; Xuan et al., 2023; Zang et al., 2023); and 
designing more effective classification features (Qu et al., 2021; Xu et al., 2023; Zang et al., 
2020). However, little attention was paid to improving the zoning strategy commonly 
used in large-scale crop mapping. The zoning strategies used in previous studies were 
often originally designed for other purposes (e.g. climate classification, agricultural man
agement), thus might not be suitable for crop mapping.

This study firstly developed a specific zoning method for crop mapping by maximizing 
the internal similarity of classification features within one zone while minimizing the 
similarity across different zones. To verify the superiority of the proposed optimal zoning 
method over traditional zoning methods in winter wheat mapping, we compared the 
classification accuracy based on the proposed zoning method with those based on 
Köppen climate zoning, the wheat planting zoning (Figure 1), and the non-zoning. For 
each zoning method, we repeated the 10 times of the classification experiments (4,000 
positive and negative training samples of winter wheat each randomly selected in each 
subzone). The mean and standard deviation of OA are reported in Table 6. Accuracies 
were only evaluated for the years of 2017, 2018, 2019, and 2022, because the sample sets 
in these years include both the positive and negative samples. The superiority of the 
proposed optimal zoning methods over other zoning methods varies across different 
years due to the different spatial distribution of the validation samples. In 2017 and 2018, 
the validation samples are mainly located in northern areas (Figure 2) with relatively 
simple crop structures, resulting in high classification accuracies for all zoning methods. In 
2019, the validation sample set includes samples from rapeseed planting areas in Hubei 
province. Due to the similar phenology of rapeseed and winter wheat in this region, 
traditional zoning methods show particularly low classification accuracies for this year. In 
contrast, the proposed zoning method achieves much better accuracy by generating 
a subzone D (Figure 5) in this area to train a specific classifier that can effectively 
discriminate between these two crops.

We also investigate the accuracy improvements of the optimal zoning method relative 
to non-zoning method in different subzones (Table 7). Significant improvements can be 
found in subzones D and F due to their diversified planting types such as winter rapeseed, 
paddy rice, and other crops with growing seasons overlapping with winter wheat. Such 
complicated cropping structure greatly reduces the classification accuracy and thus 
provides improvement opportunities for the optimal zoning method. For subzones 
A and B, the crop diversity is low (there is few other winter crop), leading to high 
classification accuracies. Thus, the potential benefits of optimal zoning are limited. For 
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Figure 10. Details of winter wheat maps obtained using the optimal zoning method and other 
methods for the years 2017(a) and 2022(b).
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subzones C and E, both methods achieve 100% accuracy; however, it is meaningless due 
to the very limited validation samples. In summary, the optimal zoning method mainly 
contributes to reducing the classification difficulty in the areas with complicated cropping 
types, which is consistent with its designing objective.

We further examine the similarity and the difference in the spatial pattern of 
different zoning results (Figure 11). Large mountain ranges often form the important 
boundaries among different zones due to the significant climate difference between 
two sides of the mountains. For example, all of the three zoning maps have similar 
boundaries near Qinling mountains range, a famous boundary between north and 
south China. And the proposed zoning and Köppen climate zoning maps also show 
consistent boundaries near Taihang mountain range. But Taihang mountain range is 
not included in the wheat planting zoning because of no wheat planting in its west 
side. Huaihe river, also a famous landmark for separating north and south China due to 

Table 6. Accuracy assessment of the classification results based on different zoning methods. Bold 
font and underlining indicate the highest and second highest accuracy, respectively.

Sowing year

Mean OA ± Standard derivation

Non-zoning Climate zoning Wheat planting zoning Optimal zoning

2017 93.0%±0.2% 92.4%±0.2% 92.1%±0.3% 92.4%±0.5%
2018 94.6%±0.2% 94.1%±0.1% 92.8%±0.1% 94.4%±0.2%
2019 77.9%±0.3% 86.1%±1.7% 85.8%±1.0% 92.5%±1.0%
2022 84.0%±0.2% 84.1%±0.4% 85.2%±0.3% 85.4%±0.3%
Average 87.4%±0.2% 89.2%±0.6% 89.0%±0.4% 91.2%±0.5%

Table 7. Accuracy improvements of the optimal zoning compared to non-zoning in different 
subzones.

Zone Optimal Zoning Non-zoning Improved OA Number of samples

A 94.1% 94.4% –0. 3% 3673
B 93.7% 93.9% –0. 2% 1108
C 100% 100% 0 24
D 73.0% 67.5% 5.5% 5170
E 100% 100% 0 2
F 87.1% 83.0% 4.1% 5929
Average 91.3% 89.8% 1.5%

Figure 11. Different spatial patterns of different zoning results: optimal zoning (a), Köppen climate 
zoning (b) and wheat planting zoning (c).
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the 0°C isotherm in January, is also considered to be a zoning boundary in both the 
Köppen climate zoning and the wheat planting zoning. However, there is actually no 
sharp climate transition across this river. Thus, it is reasonable to be excluded in our 
proposed zoning result. Instead, our method generates a north-south boundary 
between zones C and F, which does not exist in the other two traditional zoning 
results. It might be induced by the elevation rise from east to west in this region. In 
the northeast part of the study area, the proposed zoning boundaries are somehow 
coincided with both the Köppen climate zoning boundaries and the administrative 
boundary of Shandong and Hebei province. Both the climate and the agricultural 
policy difference could contribute to separate subzones in this area. In summary, the 
proposed zoning method directly considers the classification features that could vary 
across different natural and artificial conditions, thus can better benefit the crop 
mapping compared to the traditional zoning methods that mainly consider the natural 
factors.

5.2. Sensitivity analysis of CCI threshold

The CCI threshold (Threshold) is the most important parameter in the splitting and 
merging process, deciding whether to split down or merge up. In order to explore the 
effect of threshold setting on zoning and crop mapping accuracy, we compared the 
zoning and classification results at different CCI thresholds, i.e. 0.99, 0.97, and 0.95 
(Figure 12 and Table 8). It shows that the classification accuracy achieves the best when 
the CCI threshold is 0.97.

Overall, if the CCI threshold is too high (0.99), the generated subzones become 
relatively small, leading to inadequate diversity of generated samples for classifier train
ing. And if the threshold is too low (0.95), the subzones become too large, resulting in 
high heterogeneity of classification features. However, no matter how the CCI threshold is 
set, 0.97, or 0.99, or 0.95, the corresponding mapping accuracy is better than that of other 
zoning methods.

Figure 12. Optimal zoning results based on different CCI thresholds: 0.95 (a), 0.97 (b) and 0.99 (c).
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5.3. The potential and challenges of winter wheat mapping in a longer term

In this study, we mapped the winter wheat only after 2013 because Landsat-8 OLI was 
launched in 2013. However, the Landsat 5 TM and Landsat 7 ETM+, which have similar 
spatial, spectral and temporal resolutions with Landsat 8 OLI, have been available since 
1984. They thus can support for a much longer term of winter wheat mapping in the study 
area. Unfortunately, it remains several challenges in transferring the proposed mapping 
approach to the elder Landsat data. Firstly, while the USGS assumes that all Level 1 
Landsat data are radiometrically calibrated and consistently geolocated, spectral incon
sistency is still inevitable due to the different wavelength sensitivities (Sulla-Menashe 
et al., 2016; Teillet et al., 2001). Secondly, the proposed optimal zoning for winter wheat 
mapping was determined based on the CCI calculated in 2017. While it is reasonable to 
assume that the optimal zoning is stable in a ten-year term, it is likely to shift in the longer 
term due to the climate change, crop technique advancement and economic develop
ment. Thirdly, we trained the classifiers by the training samples in 2017 and used them to 
classify winter wheat in the other years. It is acceptable if the classification features keep 
stable across different years. However, the wheat growth condition and phenology could 
vary across different years, thus also alter the classification features and lead to a decrease 
in classification accuracy (Gadiraju & Vatsavai, 2020). Therefore, it is crucial to develop 
transferring technology with the consideration of the sensor inconsistence, zoning shift
ing and classification feature varying, for a longer-term mapping of winter wheat in the 
study area.

5.4. Remaining issues

There are some remaining issues to be resolved in this study.
First, although the 30 m resolution is the highest available for long-term mapping of 

winter wheat, mixed pixels are still unavoidable. Mixed pixel effect not only introduces 
about classification uncertainty but also brings about area bias in the fragmented agri
cultural landscapes (Dong et al., 2022; Ozdogan & Woodcock, 2006). Thus, it should be 
noticed that the comparison with census data provides only a reference rather than 
a rigorous validation (Dong et al., 2020). Spectral unmixing or sub-pixel mapping techni
ques offer potential solutions to the issue. However, obtaining the required training 
samples with coverage information presents significant challenges, thereby limiting 
their applications at a large scale.

Table 8. Comparison of classification result accuracy of different CCI thresh
olds. Bold font indicates that accuracy ranks first, and underlining indicates 
that accuracy ranks second.

Sowing year

Mean OA ± Standard derivation

0.99 0.97 0.95

2017 92.2% ± 1.0% 92.4% ± 0.5% 91.8% ± 1.0%
2018 92.4% ± 0.8% 94.4% ± 0.2% 93.9% ± 0.3%
2019 90.8% ± 1.0% 92.5% ± 1.0% 86.7% ± 0.7%
2022 85.0% ± 1.0% 85.4% ± 0.3% 84.7% ± 1.0%
average 90.1% ± 1.0% 91.2% ± 0.5% 89.3% ± 0.8%
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Second, insufficient observation frequency is another serious challenge for crop map
ping based on Landsat data. Previous studies have demonstrated that insufficient effec
tive observations can significantly reduce the mapping accuracy of crops such as winter 
wheat and winter rapeseed (Dong et al., 2020; Zang et al., 2020). Spatio-temporal fusion of 
Landsat and MODIS data might offer a potential solution to this issue.

Third, although we particularly consider excluding winter rapeseed in the pro
posed approach, there are still other crops that could potentially be confused with 
winter wheat. For example, garlic is an important winter crop with a similar phenol
ogy to winter wheat in this study area, which is likely to introduce mapping errors in 
our produced winter wheat maps. However, such mapping errors should be marginal 
for two reasons. On the one hand, garlic accounts for a very small proportion (less 
than 1%) of winter crops in the study area. On the other hand, although garlic is not 
specifically considered in the mapping approach, the strict selection rule of the 
winter wheat samples (i.e. the intersection of three wheat maps) helps to exclude 
the misclassified garlic pixels in the sample set.

Finally, the validation samples were mainly collected along roadsides for saving cost, 
which may lead to biases in the representativeness of the samples. Rigorous accuracy 
assessment requires better sampling strategies (Olofsson et al., 2014; Stehman & Foody, 
2019), but these are constrained by labor and time costs.

6. Conclusion

This study established a mapping approach for annual winter wheat in the North China 
Plain based on Landsat data. Firstly, a sample generation rule is specifically designed for 
winter wheat mapping in this area by considering the confusion between winter wheat and 
rapeseed in the existing crop mapping products. Secondly, an optimal zoning method for 
crop classification is proposed to reduce the classification feature heterogeneity over a large 
area. Comparative experiments showed that the proposed zoning method effectively helps 
to improve the mapping accuracy compared to the traditional zoning methods. It indicates 
that the proposed optimal zoning method can reduce the classification difficulty on the 
sparse Landsat time-series data and thus has potential to support long-term crop mapping.

With the proposed approach, we produced annual 30 m winter wheat map from 2013– 
2022 in the North China Plain, which achieves a good classification accuracy and a good 
agreement with census data. The produced map is opened for public to support further 
analysis of spatiotemporal dynamics of winter wheat in the North China Plain.
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