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A B S T R A C T

Land evapotranspiration (ET) primarily involves vegetation transpiration, canopy interception loss, and soil 
evaporation. Previous studies have made significant progress in total ET estimation; however, substantial 
challenges remain in partitioning ET on a regional scale, largely due to the intricate water and energy balance 
that is disrupted by vegetation cover changes. The accuracy of land surface models in representing ET compo-
nents may be constrained by their inadequate consideration of vegetation dynamics. In this study, we integrate 
satellite leaf area index (LAI) and fraction of vegetation coverage (FVC) into the Variable Infiltration Capacity 
model (VIC) to improve ET partitioning ability in the Loess Plateau of China, a region that has experienced 
substantial vegetation dynamics. The results showed that satellite dynamic vegetation parameters in modeling 
are effective in improving the estimation of ET components compared with the default/static vegetation pa-
rameters. Considering LAI dynamics in the model enhances the representation of the inter- and intra-annual 
variations in vegetation transpiration and canopy interception loss. Dynamic FVC reasonably allocates transpi-
ration to soil evaporation, capturing evaporation in forest gaps effectively. This effect is particularly relevant in 
arid and semi-arid regions. Among the ET components, transpiration was the most sensitive to the two dynamic 
vegetation parameters, followed by canopy interception loss and soil evaporation. Through the VIC model with 
dynamic vegetation parameters, our study revealed that soil evaporation was twice that of transpiration in the 
Loess Plateau, which is consistent with its semi-arid region and relatively sparse vegetation coverage. Our study 
offers valuable insights regarding the use of vegetation coverage for partitioning ET and highlights the advantage 
of integrating satellite vegetation products into land surface models.

1. Introduction

Evapotranspiration (ET) serves as a crucial nexus within the water, 
energy, and carbon cycles (Mianabadi et al. 2019; Wang et al. 2014; 
Yang et al. 2023; Zhou et al. 2016). ET can typically be partitioned into 
vegetation transpiration (Et), soil evaporation (Es), canopy interception 
loss (Ec), snow sublimation (Esn), and evaporation from open water. 
Excepting open water evaporation, these components are strongly 
influenced by vegetation dynamics (Good et al. 2017; Liu et al. 2020; 
Yang et al. 2023). Against the backdrop of global greening (Chen et al. 
2019; Piao et al. 2020), changes in vegetation introduce substantial 
uncertainties into the accurate partitioning of ET (Cao et al. 2022; Li 
et al. 2020; Yang et al. 2023). Accurate ET components are essential for 

agricultural water management and assessing ecological project bene-
fits. Therefore, understanding the mechanisms of ET components is 
crucial in regions facing high water stress, ensuring food security, and 
maintaining ecological and environmental conditions (Mu et al. 2007; 
Song et al. 2018).

Previous studies have employed various technologies to estimate ET 
and its components, including remote sensing-based models, field ex-
periments, and process-based land surface models. Regarding remote 
sensing-based models, while they cannot directly extract ET from sat-
ellite images, they can integrate satellite data (e.g., vegetation param-
eters and energy balance products) with physical or empirical formulas 
to estimate ET and its components (Mu et al. 2007; Tian et al. 2013; 
Zhang et al. 2019). Over the past several decades, such remote sensing- 
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based models have been the primary approach for regional and global 
ET estimation because of the availability of various remote sensing 
products (Bastiaanssen et al. 1998a; Bastiaanssen et al. 1998b; Zhang 
et al. 2008). However, partitioning ET using remote sensing-based 
models remains challenging, partly because these models oversimplify 
physical processes, such as neglecting the contribution of water con-
straints during the evaporation process. (Lian et al., 2018; Miralles et al., 
2016; Talsma et al., 2018b). Alternatively, in field experiments to esti-
mate ET, models based on field-measured data have been proposed to 
estimate Et and other components (Duursma et al. 2013; Fisher et al. 
2008; Jiao et al. 2018; Jiao et al. 2015; Jung et al. 2019; Sus et al. 2014). 
However, owing to the constraints imposed by various local conditions, 
field experiments often focus more on an individual ET component than 
on all components or the full water balance at a point scale (Schlesinger 
and Jasechko 2014; Zhang et al. 2023). For example, after using a global 
field experiment dataset to estimate Et, Gao et al. (2022) highlighted the 
importance to consider both biotic and abiotic factors when estimating 
other ET components. This undoubtedly poses greater challenges for 
experimental instruments and field conditions during monitoring.

Process-based land surface models, including the Variable Infiltra-
tion Capacity (VIC) model (Liang et al. 1994), Noah Multi- 
parameterization (Noah-MP) model (Chen et al. 1996), and Commu-
nity Land Model (CLM) (Oleson et al. 2004), offer several advantages in 
estimating ET and its components (Ge et al. 2011; Yeh et al. 2011; Zhang 
et al. 2017). By coupling water and energy balances with biogeophysical 
processes to capture large-scale ET, these process-based models enable a 
deeper comprehension and explication of ET (Haddeland et al. 2006). 
Consequently, they have extensive applications at the regional and 
global scales (Jiang et al. 2022; Lawrence et al. 2007; Luo et al. 2016). 
Nevertheless, ET component estimation remains controversial owing to 
the inadequate consideration of vegetation dynamics during ET 
partitioning.

Process-based land surface models generally apply land cover in-
formation within a region to partition ET into biotic (e.g., Et and Ec) and 
abiotic (i.e., Es) components (Haddeland et al. 2006). The subsequent 
estimation of Et and Ec depends on vegetation structure dynamics, such 
as the leaf area index (LAI) (Liang et al. 1994; Yang et al. 2021). Process- 
based models are typically subject to the representation of vegetation 
conditions and generally adopt two approaches to address vegetation 
dynamics. The first approach couples a dynamic vegetation module to 
the CLM or Noah-MP (Hosseini et al. 2022; Jasechko et al. 2013; Law-
rence et al. 2019; Sato et al. 2014), utilizing vegetation physiology and 
biophysical formulations to derive vegetation dynamics (Dickinson et al. 
1998). The second approach integrates satellite vegetation parameters 
into a physical model, such as the VIC model, to capture the dynamic 
state of vegetation (Bohn and Vivoni 2016; Jiang et al. 2022; Meng et al. 
2020; Xie et al. 2015). However, dynamic vegetation modeling remains 
characterized by substantial uncertainty because of the complexity of 
biophysical processes (Anav et al. 2013; Cadule et al. 2010; Shu et al. 
2022; Sitch et al. 2015), whereas satellite products are reliable means for 
obtaining regional and global vegetation dynamics. Nevertheless, the 
extent to which satellite dynamic vegetation parameters can enhance ET 
partitioning in land surface models remains unclear.

To elucidate the role of satellite vegetation parameters in estimating 
the ET components in land surface models, in this study we applied a 
representative VIC model as an example. Selecting the Loess Plateau 
(LP) region in China as the study area where vegetation recovery 
occurred. By integrating remote sensing vegetation parameters, we first 
investigated the influence of these parameters on the performance of ET 
partitions at a point scale. Our study then identified the sensitivity of the 
ET components to the dynamics of the LAI and fraction of vegetation 
coverage (FVC) under different climatic conditions. Finally, we explored 
the responses of ET components to vegetation greening at a regional 
scale in the Loess Plateau. This study enhances ET components estima-
tion accuracy by integrating satellite vegetation parameters. Such inte-
gration provides a reference for accurately assessing water consumption 

in ecological projects and studying water use efficiency in agriculture.

2. Data and methods

2.1. Study area

The LP is situated in the upper and middle reaches of the Yellow 
River in China and covers a total area of 632,520 km2 (Fig. 1a). The 
region experiences a continental monsoon climate characterized by hot 
and rainy summers and cold and dry winters. The precipitation distri-
bution is spatially uneven, with an annual precipitation of approxi-
mately 200 mm in the northwest and 750 mm in the southeast (Liu et al. 
2023). In terms of precipitation conditions, the LP region can be divided 
into humid (HU), subhumid (SH), arid (AR), and semi-arid (SA) zones. 
The annual ET in the region is around 390 mm, increasing at a rate of 
5.73 mm yr− 1 (Jiang et al. 2022). Around 2000, the Chinese government 
initiated the Grain for Green Project to restore the ecological environ-
ment in the LP (Jiang et al. 2021; Zhang et al. 2022), leading to signif-
icant vegetation greening (Fig. 1b, c). The predominant vegetation types 
in the area include grasslands, forests, and shrubs, with vegetation 
improving gradually from the northwest to the southeast (Fig. 1a). The 
extensive range of climatic conditions and pronounced vegetation 
variation renders the LP favorable for detecting the role of satellite 
vegetation products in partitioning ET with generalizable findings.

2.2. Data availability

The basic inputs for the VIC model include meteorological data, soil 
parameters, vegetation parameters, land cover types, and topographic 
data. Meteorological data on precipitation, maximum and minimum 
temperatures, and relative humidity were obtained from the China 
Meteorological Administration (https://data.cma.cn/). In this study, 
571 sites in and around the LP for which these data were available were 
selected for spatial interpolation (Jiang et al. 2022; Meng et al. 2017; Xie 
et al. 2015). The temporal scale of the data is daily, from 2000 to 2020. 
For subsequent experiments, meteorological data were interpolated at 
resolutions of 0.01◦ and 0.0625◦. The 0.01◦ data were used to drive the 
model for evaluation and point-scale experiments, whereas the 0.0625◦

data were employed to simulate the ET components across the entire LP. 
The soil and vegetation parameters were obtained from widely used 
datasets provided via the VIC website (https://vic.readthedocs.io/en/ 
master/Datasets/Datasets/). Nijssen et al. (2001) compiled and 
released this dataset, which has been widely utilized. Land cover types 
were derived from Landsat TM images to generate a multi-year 1 km 
resolution raster dataset of land cover in China, available at the National 
Earth System Science Data Center (https://www.geodata.cn/). During 
the study period from 2000 to 2020, there was minimal change in land 
cover types in the study area; thus, we used data from 2010 as the basis. 
Topographic data were acquired using a digital elevation model pro-
vided by the United States Geological Survey (https://earthexplorer. 
usgs.gov/) and employed for accurate elevation during site validation 
and point experiments.

The satellite vegetation parameters within the study area were rep-
resented by the LAI and FVC, both of which were obtained from the 
Global LAnd Surface Satellite (GLASS, https://www.geodata.cn) (Liang 
et al. 2021). The GLASS LAI product derived from MODIS surface 
reflectance data using a bidirectional long short-term memory model 
(Ma and Liang 2022; Xiao et al. 2014; Xiao et al. 2016). This model 
effectively utilizes global LAI datasets, along with temporal and spectral 
information from MODIS surface reflectance. The GLASS FVC product 
was developed using a multivariate adaptive regression spline approach 
based on MODIS data (Yang et al. 2016). The FVC product has been 
intensively evaluated using high-resolution satellite and ground mea-
surement data with favorable performance (Jia et al. 2016; Jia et al. 
2018).

To evaluate the ET and its components estimated using the VIC 
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model, in this study we leveraged multiple covariance flux towers and 
field experimental sites. The observational data for ET were obtained 
from covariance flux towers, whereas the ET components (e.g., Et, Es, 
Ec) were derived from diverse field experiments. Detailed information 
and references are presented in Table 1 and 2. Et was predominantly 
observed using the sap flow method, Es using a micro-lysimeter, and Ec 
using a pluviometer. Additionally, owing to the challenges in acquiring 
experimental data on a daily scale, the evaluation of ET components was 
conducted on a monthly scale. Considering the spatial representative-
ness of the field experimental sites, we conducted model validation at a 
spatial resolution of 0.01◦ (approximately 1 km2 for a grid cell). Pearson 
correlation coefficient (R), root mean square error (RMSE), and bias 
metrics were used to evaluate model accuracy.

2.3. Land surface model for ET partitioning

The VIC model (version 4.2. d) was used to partition ET (Liang et al. 
1994). VIC is widely recognized as a land surface hydrological model 
with extensive applications in Earth system science and hydrology- 
related engineering (Jiang et al. 2022; Leng et al. 2015; Long et al. 
2014). It utilizes regular grid cells to simulate surface energy and water 
balance. Within each grid cell, the model considers multiple sub-grid 
cells representing various vegetation types and bare land. The model 
calculates water and energy balances for each land cover type at a sub- 
grid scale, then aggregates these according to the proportions of each 
land cover type within the grid.

The VIC model is capable of estimating four ET components: Es, Et, 
Ec, and Esn. The Penman–Monteith equation was first used to model the 
potential ET before calculating the actual Es based on the soil moisture 
function. VIC then delineated ET based on internal vegetation cover 
calculations within each grid (Fig. 2a), which can be expressed by the 
following formula: 

ET =
∑N

n=1
Cn • (Ecn +Etn)+CN+1 • Es+ Esn, (1) 

where Cn represents the FVC of the nth vegetation type, CN+1 is the bare 
land fraction. Under default conditions, when the VIC model calculates 
the ET component within grid cells, it assumes uniform vegetation 
coverage (e.g., forest or shrubs) for sub-grid land cover types catego-
rized as vegetation, that is, FVC=1.

The computation of ET in the VIC model was based on the con-
strained Penman–Monteith equation, where the aerodynamic resistance 
was set to zero. This simplification resulted in the Penman equation 
being employed to calculate potential ET: 

Ep =
Δ(Rn − G) + ρaCpD/ra

λ(Δ + γ)
, (2) 

where Ep represents potential ET (mm day− 1), and Δ signifies the slope 
of the saturation vapor pressure curve at the given temperature (Pa K− 1), 
dependent on temperature. Rn is the net radiation (W m− 2), G is the 
ground heat flux (W m− 2), ρa is the density of air at constant pressure (kg 
m− 3), Cp represents the specific heat of the air (J kg− 1 K− 1), D is the 
vapor pressure (kg m− 3), λ is the latent heat of vaporization (J kg− 1), γ is 
the psychrometric constant (Pa K− 1), ra is the aerodynamic resistance (s 
m− 1), and ra is calculated as such (Monteith et al. 1994): 

ra =
1

Cwun(Z2)
, (3) 

where un(Z2) is the wind speed at the nth level of surface cover class Z2, 
and Cw is the transfer coefficient for water which is estimated based on 
the atmospheric stability as follows (Louis 1979): 

Cw = 1.351 • a2 • Fw, (4) 

where a2 is the drag coefficient for the case of near-neutral stability 
given by: 

a2 =
K2

[

In
(

Z2 − d0
Z0

)]2, (5) 

where K is von Karman’s constant and the VIC model takes 0.4, d0 is the 
zero plane displacement height, and Z0 is the roughness length. Fw in Eq. 
(4) is calculated below: 

Fig. 1. (a) The locations of observation sites for ET and its components, experimental point locations, vegetation types, and precipitation zoning on the LP, trends 
and significant (p < 0.05) regions of FVC (b) and LAI (c) change in the LP from 2000 to 2020.

Table 1 
Basic information for ET observations on Loess Plateau.

Flux station Lat., Lon. Year(month) Vegetation 
type

Haibei shrubland (HB1) 37.62◦, 
101.32◦

2002–2004 
(1–12)

OSH

Haibei alpine Tibet 
(HB2)

37.37◦, 
101.18◦

2002–2004 
(1–12)

GRA

Changwu (CW) 35.25◦, 
107.68◦

2008–2009 (7–9) GRA

Yuzhong (YZ) 35.95◦, 
104.13◦

2008–2009 (7–9) GRA
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Fw = 1 −
9.4RiB

1 + c • |RiB|1/2, RiB < 0 (6) 

Fw =
1

(1 + 4.7RiB)2, 0 ≤ RiB ≤ 0.2 (7) 

where RiB is the bulk Richardson number, and c is expressed as (Liang 
et al. 1994): 

c = 49.82 • a2 •

(
z2 − d0

z0

)

. (8) 

For the ET components, Ec is calculated as follows: 

Ec = f •
(

Wi

Wim

)2
3
Ep

ra

ra + ro
, (9) 

where f is the fraction of the time step at which Ec occurs, Wi is the 
amount of water that the canopy intercepts (mm), and Wim is the 
maximum amount of water that the canopy can intercept (mm). Wim can 
be calculated based on the LAI as follows: Wim = KL • LAI, where KL is a 

constant, taken to be 0.2 mm following (Dickinson 1984). Finally, ro 
represents the architectural resistance caused by the humidity gradient 
between the vegetation canopy leaves and the air above them (s/m).

Et is calculated as follows: 

Et = (1 − f)Ep
ra

ra + ro + rc
+ f •

(

1 −

(
Wi

Wim

)2
3
)

Ep
ra

ra + ro + rc
, (10) 

where rc is the canopy resistance (s/m) given by: 

rc =
r0cgsm

LAI
, (11) 

where r0c is the minimum canopy resistance and gsm is the soil moisture 
stress factor depending on the water availability in the root zone. The 
expression of gsm is as follows: 

g− 1
sm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1,Wj ≥ Wcr
j

Wj − Ww
j

Wcr
j − Ww

j
,Ww

j ≤ Wj < Wcr
j

0,Wj < Ww
j

, (12) 

where Wj is the soil moisture content in layer j, j = 1, 2, and 3. Wcr
j is the 

critical value above which transpiration is not affected by moisture 
stress in the soil, and Ww

j is the soil moisture content at the permanent 
wilting point.

Es is only computed for bare land, and was assumed from Layer 1. 
When this layer reaches saturation, Es is computed at the potential 
evaporation rate; otherwise, its evaporation vary based on differences in 
the infiltration capacity, topography, and soil characteristics. The 
equation for calculating Es is as follows: 

Es = Ep

⎛

⎝
∫ As

0
dA+

∫ 1

As

i0
im
(

1 − (1 − A)1/bi
) dA

⎞

⎠, (13) 

where im is the maximum infiltration capacity (mm), As is the fraction of 
saturated bare soil, and i0 is the corresponding point-infiltration ca-
pacity. A is the fraction of the area for which the infiltration capacity is 
less than the current infiltration capacity i, and bi is the infiltration shape 
parameter.

Esn is directly calculated based on the adjusted energy balance. 
Energy exchange between the atmosphere, canopy layer, and snow oc-
curs only at the surface layer. For specific details on the calculation of 
Esn as well as the mentioned parameters and variables, please refer to 
the original VIC paper (Liang et al. 1994). For model calibration and 
validation, the parameter values, except for LAI and FVC, were obtained 
from Jiang et al. (2022), in which the water balance, including the total 

Table 2 
Basic information for ET components observations. The tick (√) means the data are available. ENF is evergreen needleleaf forest, DBF is deciduous broadleaf forest, 
and DNF is deciduous needleleaf forest, the same below.

Station Lat., Lon. Et Es Ec Year 
(month)

Method Vegetation 
type

Reference

Tuqiaogou (TQG) 37.62◦, 
110.05◦

√ √ √ 2003–2004 
(5–10)

Micro-lysimeter, portable photosynthesis system ENF (Tian 2005)

Yangjuangou 
(YJG1)

36.70◦, 
109.52◦

√ 2013–2014 
(5–9)

Sap flow, 
micro-lysimeter

DBF (Jiao et al. 2015)

Yangjiuangou 
(YJG2)

36.40◦, 
109.52◦

√ √ √ 2015–2016 
(6–9)

Sap flow, 
micro-lysimeter

DBF (Jiao et al. 2018)

Diediegou 
(DDG)

35.97◦, 
106.15◦

√ 2006 (6–9) Water balance, thermal dissipation probes, micro-lysimeter, 
pluviometer

DNF (Liu 2008)

Xiangshui River 
(XSR)

35.47◦, 
106.33◦

√ 2015 (5–10) Pluviometer DNF (Liu et al. 2017)

Mt daqingshan 
(MDQS)

40.78◦, 
111.25◦

√ 2016 (6–9) Pluviometer DBF (Wang et al. 
2017)

Zuli River 
(ZLR)

35.39◦, 
104.55◦

√ 2011 (5–9) Pluviometer ENF (Fang et al. 
2013)

Fig. 2. (a) A brief schematic representation of ET partitioning based on vege-
tation cover in the VIC model, (b) sub-grid with dense forest cover, and (c) sub- 
grid with sparse forest cover.
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ET and water discharge, was well evaluated, and acceptable perfor-
mance was achieved.

2.4. Dynamic vegetation parameters in ET partitioning

The VIC model considers both the water constraints within the grid 
cells and the energy balance process, endowing it with the advantage of 
reflecting clear physical processes and reliable performance. Previous 
studies predominantly used the VIC model’s default/static assumption, 
where LAI was prescribed with 12-month climatological values, and FVC 
was defined as the proportion of vegetated sub-grid cells within each 
grid cell. Under this assumption, VIC only considers the seasonal vari-
ation of LAI and a fixed FVC (i.e., FVC=1). Thus it disregards inter- 
annual variations in LAI and both inter- and intra-annual variations in 
FVC. According to the computation of Wim in Eq. (9) and rc in Eq. (10), 
variations in LAI strongly influence the estimation of Ec and Et. As 
illustrated in Eq. (1), the FVC within a grid cell is also important in ET 
partitioning. While a fixed FVC may introduce minor errors in densely 
vegetated areas (Fig. 2b), substantial uncertainties will arise in sparsely 
vegetated regions (Fig. 2c). Therefore, the static assumption of vegeta-
tion conditions introduces considerable uncertainty into ET estimation 
in the VIC model.

In this study, we examine a dynamic vegetation framework within 
VIC to address the limitations of the default assumption. In this frame-
work, daily-scale dynamic LAI and FVC data are integrated into the 
forcing dataset, replacing the default/static vegetation information. 
When employing dynamic vegetation parameters to partition ET, the 
GLASS LAI are used to compute Ec and Et for the computation of Wim in 
Eq. (9) and rc in Eq. (10), and the GLASS FVC are used to partition ET 
components according to Eq. (1). We prepared a daily scale satellite 
vegetation parameter-driven model to explore the effect of dynamic 
vegetation parameters on ET partitioning.

We designed two simulation scenarios at point scales: one using the 
default vegetation conditions (static LAI and FVC), and the other 
incorporating satellite vegetation parameters (dynamic LAI and FVC). 
We calculated the differences in the ET components between the two 
scenarios at three temporal scales: annual averages, inter- and intra- 
annual variations. The configuration of the experimental sites is elabo-
rated in detail in Section 2.5.

To investigate the sensitivity of ET and its components to dynamic 
vegetation conditions, we further designed a series of scenarios with 
various scale factors for the LAI and FVC at point scales. Based on the 
mean LAI in the study area (LAIs = 1.23 m2 m− 2), we prescribed scale 
factors varying from zero to 1.5; thus, 15 scenarios were evaluated with 
mean LAI values ranging from zero to 1.85 m2 m− 2. Given the mean FVC 
in the study area (FVC=0.4), the scale factors were prescribed from 0.1 
to 1.1, resulting in 11 scenarios with FVC values ranging from 0.04 to 
0.41. It should be noted that the default FVC in the VIC was 1.0, as 
explained in Subsection 2.3. The upper limit of the FVC was 1.0; 
therefore, we considered the maximum scale factor value only up to 1.1 
times the original FVC to prevent regions with high FVC from exceeding 
this limit.

To explore the effect of temporal variations in LAI and FVC on the 
VIC model simulation of ET and its components, we proposed the 
following sensitivity coefficient (Sankarasubramanian et al. 2001): 

Sx =
dE/E
dx/x

=
dE
dx

•
x
E
, (14) 

where E represents the ET and its components, x represents the dynamic 
vegetation parameters, and Sx is the sensitivity coefficient. Sx can be 
understood as the percentage change in the ET and its components 
resulting from a certain percentage change in the dynamic vegetation 
parameters over time. A larger absolute value of the sensitivity coeffi-
cient indicates a stronger effect of the factor on the ET and its 
components.

2.5. Experimental design

The effects of dynamic vegetation on ET partitioning may vary with 
climatic conditions. We examined this effect at a point scale and selected 
study sites from four different climatic conditions according to long- 
term average annual precipitation: AR (annual precipitation < 200 
mm), SA (annual precipitation between 200 and 400 mm), SH (annual 
precipitation between 400 and 800 mm), and HU (annual precipitation 
> 800 mm) regions. The experimental sites were selected according to 
three criteria: (1) vegetation parameters (LAI or FVC) at the study site 
varied significantly (P<0.05) among years during the study period, 
assessed with the Mann-Kendall trend test; (2) vegetation type at the 
sites primarily specified as forest; and (3) relatively uniform spatial 
distribution of the vegetation across the entire study area, with each site 
covering at least six grid cells (approximately 6 km2) to eliminate po-
tential uncertainties from variability in individual grid cells. Based on 
these criteria, we defined 15 sites for the four climatic conditions, as 
shown in Table 3. The distribution of the 15 sites is shown in Fig. 1a 
along with the vegetation types and stratum boundaries.

3. Results

3.1. Model evaluation

First, we evaluated the VIC model with and without dynamic satellite 
vegetation parameters. As shown in Fig. 3, the VIC model was capable of 
simulating the temporal variations in ET. Under default conditions, the 
average R value was 0.46, with a lower accuracy observed at specific 
stations (Fig. 3c). Following the incorporation of the satellite vegetation 
parameters, the VIC model demonstrated improved ET simulation ac-
curacy, with an average R value of 0.75 and an average RMSE of 1.25 
mm day− 1.

For ET partitioning, the VIC model with default vegetation tended to 
overestimate Et and Ec (Figs. 4 and 5) and significantly underestimate Es 
(Fig. 6). Upon the inclusion of satellite vegetation parameters, the model 
demonstrated marked improvements: a substantial increase in R for Et 
by 0.89 (1620 %), with a mean decrease in RMSE of 12.68 mm mon− 1 

(65.77 %), and an average reduction in bias of 124.83 % (86.52 %). 
Similarly, it raised the average R for Ec by 0.48 (141.18 %), leading to an 
average decrease in RMSE by 17.50 mm mon− 1 (80.52 %) and an 
average reduction in bias by 676.28 % (94.87 %). In the simulation of Es, 
the inclusion of satellite vegetation parameters yielded an average R of 
0.73, an average RMSE of 5.03 mm mon-1, and an average bias of 40.02 
%.

3.2. Influence of dynamic LAI on ET partitioning

We first evaluated the influence of dynamic LAI on ET partitioning 
under the four climatic conditions. After incorporating dynamic LAI into 
the VIC model (Fig. 7), the overall mean of ET decreased slightly, with 
an average reduction of 6.98 mm yr− 1 (2.25 %). Among the different ET 
components, dynamic LAI resulted in increased Es and Et and decreased 
Ec and Esn, except under AR conditions. Under different climatic con-
ditions, the differences induced by dynamic LAI gradually diminished 
with increasing precipitation. In HU regions (Fig. 7d), the disparities in 
the ET components narrowed to within 2 %.

Incorporation of dynamic LAI markedly reshaped the components of 

Table 3 
Climatic conditions and study sites Settings.

Annual precipitation Climatic conditions name Number of experimental sites

0–200 mm Arid region (AR) 3
200–400 mm Semi-arid region (SA) 3
400–800 mm Subhumid region (SH) 6
800–1200 mm Humid region (HU) 3

D. Peng et al.                                                                                                                                                                                                                                    Journal of Hydrology 643 (2024) 131928 

5 



Fig. 3. The comparison of observed ET from four covariance flux towers (Obs.) with ET simulated by the VIC model under default conditions (VIC) and with the 
integration of dynamic vegetation parameters (VICd) on a daily scale at: (a) HB1 Station, (b) HB2 Station, (c) CW Station, (d) YZ Station.

Fig. 4. The comparison of observed Et from three field experiment stations (Obs.) with Et simulated by the VIC model under default conditions (VIC) and with the 
integration of dynamic vegetation parameters (VICd) on a monthly scale at: (a) TQG Station, (b) YJG2 Station, (c) DDG Station.

Fig. 5. The comparison of observed Ec from six field experiment stations (Obs.) with Ec simulated by the VIC model under default conditions (VIC) and with the 
integration of dynamic vegetation parameters (VICd) on a monthly scale at: (a) TQG Station, (b) YJG1 Station, (c) YJG2 Station, (d) XSR Station, (e) MDQS Station, 
(f) ZLR Station.
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ET regarding interannual variations (Fig. 8), primarily resulting in an 
increase in Es and Et and a decrease in Ec and Esn. Notably, the inter-
annual trends of Ec and Et were also altered, with accelerated interan-
nual variation in Et in AR and SA regions albeit delayed change in Ec 
(Fig. 8a, b). Conversely, the Ec trend was accelerated in the SH and HU 
regions (Fig. 8c, d). In comparison, dynamic LAI incorporation pre-
dominantly affected the Et and Ec components related to intra-annual 
variations (Fig. 9). In particular, the peak value of Et occurred earlier 
throughout the year (Fig. 9b, c, d), resulting in a deceleration of the 
intra-annual variation in Ec (Fig. 9a, b).

ET increased with higher LAI coefficients, exhibiting a pattern of 
rapid growth followed by a slower increase (Fig. 10). In particular, the 
proportion of Es decreased as LAI increased, showing a pattern of rapid 
decline followed by a gradual decrease. Alternatively, the proportion of 
Et initially increased and then decreased; this pattern became more 
pronounced with increasing precipitation in the respective regions. In 
turn, the proportion of Ec increased linearly, whereas that of Esn did not 
markedly change.

Moreover, the influence of the LAI on ET and its components grad-
ually diminished from AR to HU regions (Table 4). Among the ET 
components, Et and Ec exhibited the highest sensitivity to LAI changes, 
whereas the sensitivities of Es and Esn were relatively low.

3.3. Influence of dynamic FVC on ET partitioning

After incorporating dynamic FVC into the VIC model (Fig. 11), the 
overall mean of ET slightly increased, with an average rise of 17.15 mm 
yr− 1 (5.35 %). Among the different ET components, Et, Ec, and Esn were 
decreased, with Et experiencing the most notable decline, whereas Es 
was improved. Similar to the results obtained for dynamic LAI, the dif-
ferences induced by dynamic FVC gradually diminished with increased 
humidity. Notably, in the absence of dynamic FVC, over 70 % of the Es 
was allocated to other ET components in AR and SA regions (Fig. 11a, b), 
introducing substantial biases in the simulation of other ET components.

The effect of dynamic FVC was relatively small for interannual var-
iations; however, it enhanced the ET growth rate in the AR region 

Fig. 6. The comparison of observed Es from two field experiment stations 
(Obs.) with Es simulated by the VIC model under default conditions (VIC) and 
with the integration of dynamic vegetation parameters (VICd) on a monthly 
scale at: (a) TQG Station, (b) YJG2 Station.

Fig. 7. Simulated ET and its components under different LAI conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, and (d) HU. LAId represents dynamic 
LAI, and LAIs represents static/default LAI.

Fig. 8. Inter-annual variations in simulated ET and its components under 
different LAI conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, 
and (d) HU. LAId represents dynamic LAI, while LAIs represents static/ 
default LAI.
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(Fig. 12). Alternatively, dynamic FVC had minimal influence on the 
overall magnitude and trend of ET with regard to intra-annual varia-
tions, although it delayed the peak value of ET throughout the year. The 
effects of dynamic FVC on ET components were mainly manifested in Es 
and Et, with Es exhibiting a transition from negligible to notable intra- 
annual dynamics, and Et showing a substantial reduction (Fig. 13). 
Increasing humidity also gradually diminished the influence of dynamic 

FVC on these components.
ET gradually increased with increasing FVC coefficients in the AR 

and SA regions (Fig. 14a, b), whereas in the SH and HU regions, it 
initially increased and then decreased with increasing FVC coefficients 
(Fig. 14c, d). In particular, the proportion of Es decreased linearly with 
increasing FVC, that of Et showed a fluctuating upward pattern, whereas 
that of Ec exhibited logarithmic growth.

Fig. 9. Intra-annual variations in simulated ET and its components under different LAI conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, and (d) HU. 
LAId represents dynamic LAI, while LAIs represents static/default LAI.

Fig. 10. Sensitivity of ET and the components to LAI in VIC modeling across four climatic conditions: (a) AR, (b) SA, (c) SH, (d) HU. The shaded area represents the 
interquartile range of the ET, with the lower boundary corresponding to the 25% and the upper boundary to the 75%. The coefficient of LAI indicates the change 
magnitude of LAI relative the normal condition.
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Moreover, the influence of FVC on ET and its components gradually 
decreased from the AR to HU regions (Table 5). Among the ET compo-
nents, Et exhibited the highest sensitivity to changes in FVC, followed by 
Ec, Es, and Esn. Notably, ET and its components were more sensitive to 
changes in FVC than to changes in LAI.

3.4. Spatial variation of ET components on the LP

Given the favorable performance of VIC incorporating dynamic 
vegetation, we simulated the ET and its components on the LP using the 
VIC model under two scenarios: with the inclusion of satellite vegetation 
parameters or in a static or default state. Subsequently, the spatial dif-
ferences between the two scenarios were compared (Fig. 15). Across 
both scenarios, ET and its components exhibited an increasing trend 
from the northwest to southeast of the LP. Notably, with the incorpo-
ration of the satellite parameters, we observed a substantial increase in 
Es across the LP, particularly in the central forested regions (Fig. 15d, e, 
f). However, the inclusion of satellite dynamic vegetation parameters led 
to an overall decrease in both Et and Ec in the LP. Specifically, Et 
exhibited substantial reductions in the central and eastern regions 
(Fig. 15i), whereas Ec showed prominent decreases in the central region 
(Fig. 15l), with reductions of 139.63 and 41.88 mm yr− 1, respectively.

4. Discussion

4.1. Mechanism of ET partitioning in land surface hydrological modeling

The inclusion of dynamic LAI had a more pronounced influence than 
the static LAI on the interannual variability of Ec and ET as determined 
through VIC modeling. The dynamic LAI increased the interannual 
variability of Et (Fig. 8) relative to that using the VIC model with its 
default LAI (Liang et al., 1994). Under this default or static application, 
the LAI exhibited only intra-annual variability without interannual 
changes, resulting in a smoother Et variation profile (Fig. 16a). The in-
clusion of the dynamic LAI allowed the model to capture the interannual 
variability in vegetation growth. An increase in LAI directly augments 
the leaf stomatal conductance, leading to a reduction in transpiration 

Table 4 
The sensitivity of ET and its components to changes in LAI.

Climate 
zone

ET Et Ec Es Esn

AR 1.16 ±
0.88

3.00 ±
2.20

2.40 ±
1.84

0.98 ±
0.75

− 1.17 ±
0.93

SA 0.44 ±
0.21

0.93 ±
0.57

1.05 ±
0.56

0.27 ±
0.12

− 0.42 ±
0.28

SH 0.11 ±
0.56

0.08 ±
1.38

1.27 ±
0.58

− 0.53 ±
0.23

− 1.24 ±
0.87

HU 0.20 ±
0.22

0.43 ±
0.62

0.81 ±
0.37

− 0.62 ±
0.55

− 0.44 ±
0.31

Fig. 11. Simulated ET and its components under different FVC conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, and (d) HU. FVCd represents 
dynamic FVC, and FVCs represents static/default FVC.

Fig. 12. Inter-annual variations in simulated ET and its components under 
different FVC conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, 
and (d) HU. LAId represents dynamic FVC, while LAIs represents static/ 
default FVC.
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resistance and an increase in transpiration (Meinzer and Evolution, 
1993). This change was more evident in regions with limited water 
availability (i.e., AR and SA regions) (Fig. 8a, b). However, the VIC is 
sophisticated when considering soil moisture constraints on Et (Liang 
et al., 1994). Excessive transpiration induces soil moisture stress, 

thereby restricting the increase in Et (Fig. 16b). This explains the 
observed trend of an initial increase, followed by a decrease in the 
response of Et to the LAI coefficient (Fig. 10). In turn, the increase in the 
LAI directly enhanced the maximum interception capacity of vegetation, 
resulting in a linear increase in the proportion of Ec with the increase in 
the LAI coefficient (Fig. 10).

The most notable effect of dynamic FVC inclusion in the model was 
observed with regard to altering the pattern of ET partitioning, allowing 
for the simulation of forest gaps (Fig. 16b). This stems from the default 
setting of the VIC model, wherein during the computation of the vege-
tated tile, it is assumed that the tile is entirely veiled by vegetation (i.e., 
FVC=1.0) (Liang et al., 1994). Consequently, the model failed to account 
for the Es within these designated subgrids (Fig. 16a). With the incor-
poration of dynamic FVC, the model divides the grid cells based on the 
actual FVC at the current time for each subgrid, enabling the simulation of 
Es from forest gaps (Fig. 16b). Under water-limited conditions, that is, in 
AR and SA regions, the presence of forest gaps becomes more apparent. 
This explains why the ratio of Es to ET increased by over 70 % in AR and 
SA regions after introducing dynamic FVC (Fig. 11a, b). Our findings 
indicate that, under conditions of static vegetation cover, interstitial Es is 
misallocated to Et during ET partitioning, leading to an overestimation of 
Et. This overestimation was evident in our model validation using the 
field experiment results. For example, at the TQG and YJG2 sites (sites 
encompassing all ET components) (Fig. 4a, b; Fig. 5a, c), the VIC model 
under default conditions consistently overestimated both Et and Ec. Such 
discrepancies can engender considerable uncertainty in eco-hydrological 
vegetation research.

After incorporating dynamic LAI and FVC, Es increases while Et and 

Fig. 14. Sensitivity of ET and the components to FVC in VIC modeling across four climatic conditions: (a) AR, (b) SA, (c) SH, (d) HU. The shaded area represents the 
interquartile range of the ET, with the lower boundary corresponding to the 25% and the upper boundary to the 75%. The coefficient of LAI indicates the change 
magnitude of FVC relative the normal condition.

Table 5 
The sensitivity of ET and its components to changes in FVC.

Climate zone ET Et Ec Es Esn

AR 0.98 ± 0.70 3.70 ± 3.02 1.29 ± 0.79 0.85 ± 0.63 − 0.90 ± 0.76
SA 0.71 ± 0.21 1.36 ± 0.35 1.12 ± 0.63 0.42 ± 0.19 − 0.43 ± 0.25
SH 0.26 ± 0.51 0.35 ± 1.07 1.03 ± 0.54 − 0.15 ± 0.17 − 0.72 ± 1.49
HU 0.24 ± 0.20 − 0.03 ± 0.57 0.94 ± 0.44 − 0.51 ± 0.03 0.86 ± 0.50

Fig. 13. Intra-annual variations in simulated ET and its components under 
different LAI conditions across four climatic conditions: (a) AR, (b) SA, (c) SH, 
and (d) HU. FVCd represents dynamic FVC, while FVCs represents static/ 
default FVC.
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Ec decrease across the entire LP, with the greatest changes observed in 
the central forested regions. This adjustment reveals gaps in previous Es 
simulations erroneously allocated to Et and Ec. Spatially, regions with 
sparse vegetation in the northwest show smaller changes compared to 
densely forested areas in the central region, highlighting the critical 
need to integrate dynamic vegetation parameters for ET partitioning in 
forested regions.

4.2. Importance of considering vegetation dynamics for estimating ET 
components

Dynamic vegetation parameters in land surface modeling are 

effective in reducing the uncertainty in ET partitions. Among the 
currently available ET component products, significant variations exist 
in the proportions of different components across various datasets 
(Talsma et al., 2018a, Talsma et al., 2018b, Bowen et al., 2019, Miralles 
et al. 2016, Lian et al. 2018). For example, across different datasets, the 
T/ET ratio ranged from < 45 % to > 80 % (Bowen et al. 2019). This 
variability stems from the diverse assumptions made during the allo-
cation of ET components in different datasets, with particular uncer-
tainty in Es estimation (Talsma et al. 2018a). Moreover, Et is generally 
overestimated in existing products (Good et al. 2015). Our findings 
indicate that incorporating dynamic vegetation parameters considerably 
enhances the accuracy of ET partitioning in the VIC model compared to 

Fig. 15. ET and its components simulated by the VIC model under dynamic vegetation parameters (Column 1) and static/default conditions (Column 2), along with 
the differences between the two (Column 3, calculated as the dynamic vegetation parameter results minus static/default state results). Additionally, Esn is not 
presented and discussed here due to its relatively small magnitude.

Fig. 16. Difference in VIC model-simulated ET components between static vegetation (a) and dynamic vegetation (b). Here SM represents soil moisture, gsm rep-
resents the soil moisture stress factor, and rc represents canopy resistance.
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static vegetation conditions. This approach reduces uncertainty in Es 
(Fig. 6) and mitigates overestimations of Et and Ec (Figs. 4 and 5). 
Therefore, considering dynamic vegetation is crucial for reducing un-
certainty in ET allocation.

A few studies have shown that incorporating dynamic vegetation 
parameters enhances the reliability of ET simulations (Cao et al. 2022; 
Jiang et al. 2022; Paschalis et al. 2018; Wang et al. 2014; Wei et al. 2017; 
Yang et al. 2023). However, these studies generally focused on a single 
vegetation parameter. For example, Yang et al. (2022) considered FVC 
but overlooked LAI, while Bai et al. (2018) concentrated solely on dy-
namic changes in LAI and disregard changes in FVC. Our study illus-
trates that FVC and LAI exert distinct yet equally significant impacts on 
the simulation of ET components. Specifically, FVC changes the alloca-
tion pattern of ET components in forested areas, while LAI affects intra- 
and inter-annual trends in ET components. Therefore, accurately simu-
lating ET components in land surface hydrological models requires 
comprehensive consideration of dynamic FVC and LAI.

Vegetation dynamics from satellite retrieval offer advantages rela-
tive to vegetation growth modules in land surface models (Shu et al. 
2022, Anav et al. 2013, Cadule et al. 2010). In land surface models, such 
as the CLM and Noah-MP, the vegetation growth module, based on 
vegetation physiology, incorporates the relationships between envi-
ronmental variables and vegetation growth to simulate vegetation dy-
namics (Hosseini et al. 2022, Lawrence et al. 2019, Jasechko et al. 2013, 
Sato et al. 2014). However, owing to the assumptions in biophysical 
formulations, uncertainties in model parameters, and input data, the 
accuracy of these models remains problematic (Shu et al. 2022). 
Numerous studies have relied on satellite vegetation data to validate the 
performance of vegetation dynamics simulated by land surface models 
(Dickinson et al. 1998, Shu et al. 2022), supporting satellite vegetation 
data as the most dependable option for assessing genuine vegetation 
conditions in a given region. The vegetation dynamics module is 
particularly applicable for evaluating vegetation predictions and carbon 
cycling (Dickinson et al. 1998, Sato et al. 2014).

In the land surface models, when partitioning ET, the sensitivity to 
FVC was higher than that to LAI. This is because FVC directly influences 
the partitioning of ET component proportions. Specifically, Et showed 
the highest sensitivity to FVC (Table 5), primarily because in land sur-
face models, Et is calculated only in areas with vegetation cover. 
Alternatively, Es in vegetated areas was suppressed. Therefore, accu-
rately considering the dynamic changes in FVC is crucial for accurately 
simulating Et and Es. The FVC and LAI also have significant effects on Ec, 
as FVC and LAI respectively determine the spatial extent and overall 
magnitude of the Ec calculations. Notably, ET components exhibit 
heightened sensitivity to vegetation changes in AR and SA regions, 
where vegetation conditions are poorer, resulting in more pronounced 
disturbances to ET components. In particular, we focused solely on the 
LP region, which encompasses multiple climatic zones; however, the 
vegetation status within individual climatic zones may exhibit relatively 
uniform characteristics. Hence, we experimented with multiple vege-
tation parameter magnitudes to account for this variability. Similarly, to 
obtain the aforementioned findings, we incorporated the closely related 
variables LAI and FVC separately into the model and analyzed their 
distinct mechanisms for partitioning ET components.

5. Conclusion

This study investigated the role of satellite vegetation products in 
allocating ET components (i.e., Es, Et, Ec, and Esn) within land surface 
models. We employed the VIC model, which integrates water and energy 
balances but lacks a dynamic vegetation module. The results indicate 
that although the inclusion of dynamic vegetation parameters margin-
ally improves the ET estimation, it enhances the correlation coefficient R 
of the ET components by 0.70 and reduces the RMSE by 11.74 mm 
mon− 1. Among the various dynamic vegetation parameters, the inclu-
sion of dynamic LAI alters the inter- and intra-annual variations in Et 

and Ec, whereas dynamic FVC reshapes the distribution pattern of ET 
components, enabling the model to simulate canopy gaps in Es, thereby 
mitigating ET overestimation. Among different climatic zones, the effect 
of dynamic vegetation parameters is particularly pronounced in arid and 
semi-arid regions because of sparser vegetation compared with that in 
subhumid and humid regions. Increased vegetation led to a linear 
decrease in Es, a rapid initial increase in ET, followed by a gradual 
decrease and a linear increase in Ec, highlighting the sensitivity of ET 
components to vegetation dynamics. Temporally, Et exhibited the 
highest sensitivity to vegetation dynamics, followed by Ec and Es. Across 
the entire LP region, the incorporation of satellite vegetation parameters 
resulted in a 192.25 mm yr− 1 increase in Es, which was primarily 
concentrated in the central forested areas, whereas Et decreased by 
139.63 mm yr− 1 and Ec decreased by 41.88 mm yr− 1.

Our findings underscore the notable effect of satellite vegetation 
parameters on the allocation of ET within land surface models, partic-
ularly highlighting how dynamic FVC alters the distribution patterns of 
ET components. These results provide a theoretical groundwork for 
more precisely evaluating the hydrological effects of ecological resto-
ration projects and the influence of vegetation greening on the water 
cycle.
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