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Abstract: As a major agricultural hazard, drought frequently occurs due to a reduction in precipitation
resulting in a continuously propagating soil moisture (SM) deficit. Assessment of the high spatial-
resolution SM-derived drought index is crucial for monitoring agricultural drought. In this study,
we generated a downscaled random forest SM dataset (RF-SM) and calculated the soil water deficit
index (RF-SM-SWDI) at 30 m for agricultural drought monitoring. The results showed that the RF-SM
dataset exhibited better consistency with in situ SM observations in the detection of extremes than
did the SM products, including SMAP, SMOS, NCA-LDAS, and ESA C(IJ, for different land cover
types in the U.S. and yielded a satisfactory performance, with the lowest root mean square error
(RMSE, below 0.055 m®/m3) and the highest coefficient of determination (R?, above 0.8) for most
observation networks, based on the number of sites. A vegetation health index (VHI), derived from a
Landsat 8 optical remote sensing dataset, was also generated for comparison. The results illustrated
that the RF-SM-SWDI and VHI exhibited high correlations (R > 0.5) at approximately 70% of the
stations. Furthermore, we mapped spatiotemporal drought monitoring indices in California. The
RF-SM-SWDI provided drought conditions with more detailed spatial information than did the
short-term drought blend (STDB) released by the U.S. Drought Monitor, which demonstrated the
expected response of seasonal drought trends, while differences from the VHI were observed mainly
in forest areas. Therefore, downscaled SM and SWDI, with a spatial resolution of 30 m, are promising
for monitoring agricultural field drought within different contexts, and additional reliable factors
could be incorporated to better guide agricultural management practices.

Keywords: soil moisture; agricultural field drought; soil water deficit index; high spatial resolution

1. Introduction

Driven by the imbalance between rainfall and evapotranspiration, drought is a natural
hazard associated with a lack of water resources [1], threatening the ecological environment,
economic development, and even human existence [2]. Under the threat of global warming,
the frequency and severity of drought have increased since the second half of the 20th
century [3-5]. With the widespread effects of drought, agricultural systems are facing
significant and intense shocks in both developed and developing countries [6-9]. Therefore,
accurate monitoring and assessment of agricultural drought are of primary importance for
promoting food security and social stability [10-12].
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In the 20th century, academics in the U.S. initiated research on drought monitoring
based on rainfall observations [13-15]. The proposal of the “Palmer index” [16] was a major
milestone in drought monitoring research (Liu et al., 2016). The index collectively refers
to three indices, namely the Palmer drought severity index (PDSI) [17-19], the Palmer
hydrological drought index (PHDI) [20-22] and the Palmer Z index (ZIND) [23-25], and it
has been widely applied in drought monitoring and assessment across various countries
and fields. In the late 20th century, notable progress was achieved in the development
of satellite-based technology for the spatiotemporal monitoring of drought [26], which
benefits from remote sensing, a mainstream Earth observation tool that provides abundant
contextual data and key variables related to drought occurrence mechanisms [27-29]. For
instance, the evaporative drought index (EDI) is commonly used for drought monitor-
ing based on the quantification of evapotranspiration anomalies in time series [30]; the
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) can
effectively indicate drought conditions through vegetation growth conditions or produc-
tivity obtained by multispectral sensors [31-33]; and the standardized soil moisture index
(SSI) and soil water deficit index (SWDI) can be used to assess the water stress in soil layers
to characterize the intensity, frequency, and distribution of drought over a large geographic
area [34-36]. With the focus and research of international organizations and domestic and
foreign scholars regarding agricultural drought in recent years, the relevant monitoring
indicators have become increasingly abundant [11]. The vegetation health index (VHI)
quantifies agricultural drought stress using the function of crop water demand, and its
ability to monitor drought has been recognized by many studies [37-39].

The disruption of the surface water balance due to precipitation deficits is the dominant
factor in the uncertainty about changes and the evolution of drought [40]. This process
is often manifested as agricultural drought reflected by soil moisture (SM) drought, in a
narrow sense [2,11]. Therefore, the acquisition of a reliable SM dataset is the premise of
drought monitoring at the field scale. Since the beginning of the 21st century, active aperture
radar tools, such as the Advanced Scatterometer (ASCAT) [41], and passive microwave
radiometers, such as the Soil Moisture Active Passive (SMAP) [42] and Soil Moisture
and Ocean Salinity (SMOS) sensors [43], have been successfully launched, providing the
continuous monitoring of global SM levels. Based on these single remote sensing SM
datasets, more combination products and data assimilation products, such as the European
Space Agency Climate Change Initiative (ESA CCI), or the longer time series [44] Global
Land Data Assimilation System (GLDAS) [45] and the European Center for Medium-Range
Weather Forecasting (ECMWF) system [46], have also been produced to meet the diversified
needs of SM applications for generating more reliable SM datasets [47,48]. Nevertheless,
the spatial resolution of these SM products reaches the level of tens of kilometers, which
could be most commonly used for monitoring extensive drought trends and their evolution
at continental and even global scales [49,50].

Surface SM, as a major factor limiting crop growth [51,52], can be applied to two types
of indices, according to the emphasis on agricultural drought monitoring: a univariate
statistical index based on time-series data and a comprehensive index based on soil hy-
draulic parameters [53,54]. The univariate statistical indices used for drought monitoring
are based on the long-term average or percentile of SM data to determine whether the
current SM level is normal; these indices include the soil moisture anomaly (SMA) [55],
soil moisture percentile (SMP) [56], soil moisture deficit index (SMDI) [57], and SSI. Zeri
et al. (2022) calculated the SMA based on simulated SM data for the 1979-2018 period over
the Brazilian semiarid region and reported that this indicator exhibited notable negative
values during El Nifio years, performing similarly to the standard precipitation index (SPI)
in identifying drought events during the rainy and cropping seasons [58]. Wambua (2019)
analyzed the spatiotemporal characterization of agricultural drought by using SMDI based
on hydrometeorological data from 1970 to 2010 at eight stream flow gauge stations in the
upper Tana River basin and found an increasing rate in risk and severity of drought at
high altitudes and during the dry seasons [59]. Zhang et al. (2021) evaluated the duration,
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severity, and frequency characteristics of drought in China from 1979 to 2014 according to
the SSI using a grid derived from GLDAS and ESA CCI products, and the results suggested
that the two SM datasets exhibited significantly correlated (p < 0.05) results over 70% of the
regions, realizing the precise monitoring of extreme drought events reported around the
country [60]. However, these indices can only indicate SM anomalies over a long time series
and impose strict requirements on the quality and volume of the data. More importantly,
these studies did not consider the physical mechanism involved in the drought process,
resulting in a failure to explain the state of agricultural drought from a crop water stress
perspective [61].

Comprehensive indices, including the soil moisture index (SMI) and SWDI, can be
used to monitor drought conditions within the framework of soil available water by
incorporating soil water dynamic parameters. Kedzior and Zawadzki (2017) mapped
the spatial distributions of the SMI based on SMOS data across the Vistula catchment
in Poland from 2010 to 2014, demonstrating the ability of the SMI to assess the risk of
agricultural drought [62]. The SWDI, which is based on the field water capacity and wilting
point, fully captures the relationship between SM and the plant physiological state and
overcomes the limitation of the length of SM data time series; thus, the SWDI is more
promising for describing short-term agricultural drought conditions [63,64]. Mishra et al.
(2017) computed the SWDI derived from SMAP data and subsequently compared it to the
in situ atmospheric water deficit (AWD) index, revealing high agreement between these
two indices for drought monitoring across the U.S [65]. Martinez-Fernandez et al. (2016)
calculated the SWDI derived from SMOS products from 2010 to 2014 in Spain based on
different approaches to obtain soil water dynamic parameters (including a long time series
of SM data, in situ data parameters, and pedotransfer function estimates), demonstrating
their ability to reflect SM balance dynamics and track agricultural drought via a comparison
between the crop moisture index (CMI) and AWD [35]. However, previous studies on the
SWDI have commonly been based on kilometer-scale SM products, which homogenize
heterogeneous soil and land cover types within the same grid and fail to provide a detailed
reference for monitoring agricultural field drought [66]. Zhu et al. (2019) calculated the
SWDI derived from the L-band radiometer SMAP to monitor agricultural drought in the
Xiang River Basin of China [67]. Although a relatively accurate distribution and temporal
evolution of drought in the study area were obtained, the complex variations affected by
surface heterogeneity were difficult to depict on a finer scale due to the limitation of the 36
km coarse spatial resolution [68,69].

The spatial resolution of SM products in agricultural application is required to be in
the tens to hundreds of meters [70]. Global microwave SM products display coarse grids of
tens of kilometers, making it difficult for them to provide detailed spatial variations of SM
at local or even field scales [66]. Fang et al. (2021) used the SWDI and SMDI based on 1 km
downscaled SMAP SM data to monitor drought in Australia, and the resulting maps not
only showed the occurrence of drought in detail in the Murray-Darling River Basin, but also
tracked the deterministic factors of the drought conditions [71]. Therefore, it is more benefi-
cial to accurately analyze the influences of geographic factors [72] on agricultural drought
events based on a surface SM dataset with a high spatial resolution. There are three kinds of
SM downscaling methods, including satellite-based methods [73,74], geoinformation-based
methods [75,76], and machine learning-based methods [77], according to an overview of
previous studies. The complex nonlinear relationship between land-surface variables and
SM can be described comprehensively by using machine learning methods [78]. Further-
more, the downscaling model, developed based on the use of an excellent algorithm, makes
it possible to obtain a surface SM dataset at the tens of meters scale, thus achieving fine
agricultural drought monitoring.

In this study, we monitored agricultural drought based on surface SM data with a
spatial resolution of 30 m. The main objectives were threefold: (1) produce the surface
SM dataset based on the random forest algorithm (RF-SM) and evaluate its performance
using observational records from in situ SM stations and satellite-based SM products;
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(2) calculate the RF-SM-based agricultural drought index (RF-SM-SWDI) and compare it to
the VHI derived from the optical remote sensing satellite observations; and (3) analyze the
distribution and temporal evolution of drought in the substudy area in 2016.

2. Materials and Methods
2.1. In Situ SM Dataset

The International Soil Moisture Network (ISMN), established by the Vienna University
of Technology and managed by the International Center for Water Resources and Global
Change (ICWRGC) of the Federal Institute of Hydrology (FIH) of Germany, is a central-
ized data-hosting facility created for the calibration of remote sensing products and the
validation of land surface models [79]. The ISMN provides the harmonized fractional
volumetric SM (m?®/m?), while preserving the measurement methods and depths used by
the networks [80]. To obtain reliable surface SM, data from all networks and sites must
be filtered by measuring the depth (0-5 cm) and then applying quality flags (“G”, which
denotes good). With the use of the ISMN dataset (https://ismn.geo.tuwien.ac.at (accessed
on 15 June 2023)), we selected 242 stations from five networks (i.e., 81 stations from SCAN,
60 stations from SNOTEL, 46 stations from SOILSCAPE, 53 stations from USCRN, and
2 stations from iRON) distributed across the U.S., based on the availability of in situ data.
The locations of these stations, which maintain long-term hourly records of SM observation,
are shown in Figure 1. To develop the downscaling framework of surface SM, all stations
were divided into two parts: 170 stations were used as training models, and 72 stations
were used for testing the performance of the method.
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Figure 1. The spatial distribution of training and testing stations used in the downscaling framework.
The map of land cover types of the substudy area and the locations of the in situ observation stations
appear at the top left and bottom, respectively.

Moreover, we selected a substudy area with a size of 30 km x 30 km, located in
California, to analyze the spatial variability of drought distribution, thus demonstrating the
advantages of fine-scale drought monitoring. The substudy area covers most of western
Amador County, portions of eastern Sacramento County and southern EI Dorado County,
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and smaller portions of northern San Joaquin County and Calaveras County. The stations
in the substudy area are covered by the SOILSCAPE network and are mainly distributed in
shrubland areas.

2.2. Optical Remote Sensing Dataset

The reflectance dataset derived from Landsat 8 was downloaded and processed using
the Google Earth Engine (GEE) platform. The Landsat 8, Collection 2, Level-2 dataset
includes complete preprocessing and definite information on cloud states, and it is widely
used in land surface analysis and application. In this study, we obtained and computed the
data and imagery from the red band, near-infrared band, two shortwave-infrared bands,
and the surface temperature band, with a spatial resolution of 30 m, from the year 2016.

2.3. Soil Properties and Meteorological Dataset

Originally released as a “proof of concept” by the International Soil Reference Infor-
mation Center (ISRIC), SoilGrids V2.0 was designed and refined by Hengl et al. (2017) and
Poggio et al. (2021) to form a mature global standard soil profile dataset at a 250 m grid
resolution, namely [81,82]. In this study, we obtained the mean clay, sand, silt, and organic
matter contents at a depth of 5 cm from SoilGrids V2.0 (https://soilgrids.org (accessed on
10 November 2023)) and rescaled the data to 30 m using the bilinear interpolation algorithm.

ERADS is a reanalysis dataset, released by the European Center for Medium-Range
Weather Forecasts (ECMWEF), that uses a four-dimensional variational (4D-var) assimilation
scheme to produce data for atmospheric variables at 139 pressure levels, with a horizontal
resolution of 31 km at a 1 h time step [83]. In this study, we obtained the data and imagery
of the atmospheric temperature at 2 m, the 24 h total precipitation, the relative humidity,
and the wind at 10 m for the year 2016 from ERAS (https:/ /cds.climate.copernicus.eu
(accessed on 7 November 2023)).

2.4. Soil Moisture Products

The SMAP is a satellite mission launched by the National Aeronautics Space Adminis-
tration (NASA) in 2015 to retrieve global SM levels based on the brightness temperature [84].
There are different levels of SMAP products, and at Level 3, which serves as a daily com-
posite, the surface SM within the top 5 cm is retrieved, based on the brightness temperature
derived from a passive L-band radiometer [85]. In this study, we obtained SMAP passive
Level-3 product data and imagery with a grid resolution of 36 km for 2016 from the National
Snow and Ice Data Center (https://nsidc.org/data/smap (accessed on 11 November 2023)).

The SMOS is a satellite mission launched by the European Space Agency (ESA) in
2009 specifically dedicated to obtaining high-accuracy global surface SM and sea surface
salinity measurements [86]. Based on the L-band Microwave Emission of the Biosphere
(L-MEB) model, SMOS-INRA-CESBIO (SMOS-IC) simplifies complex parameters and
completes computations using the heterogeneous pixels to minimize the dependence on
auxiliary information [87]. In this study, we obtained SMOS-IC data and imagery with a
grid resolution of 25 km for 2016 from the Centre Aval de Traitement des Données SMOS
(https:/ /www.catds.fr (accessed on 14 November 2023)).

The NCA-LDAS is a data assimilation system developed by the U.S. Global Change
Research Program (USGCRP) using the NASA Land Information System (LIS) in the North
American Land Data Assimilation System (NLDAS) configuration [88]. The product includ-
ing the environment data records from 1979 to the present was generated by applying the
uncoupled Noah land surface model at 0.125° x 0.125° across the continental U.S. [89]. In
this study, we obtained data and imagery of the “SoilMoist0_10cm” layer of the daily NCA-
LDAS Noah-3.3 LSM with a spatial resolution of 0.125° for 2016 from the NASA Land Data
Assimilation System (https:/ /ldas.gsfc.nasa.gov/nca-ldas (accessed on 2 December 2023)).

The ESA CCI SM dataset is a multidecadal SM dataset derived from global satellite
observations released by the ESA for the Climate Change Initiative (CCI) program [44]. The
product harmonizes a merged active dataset, a merged passive dataset, and a combined
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active—passive dataset by integrating various single-sensor-derived SM products based
on the microwave backscatter or brightness temperature [90]. In this study, we obtained
combined ESA CCI V.06.1 data and imagery with a spatial resolution of 0.25° for 2016
from the Center for Environment Data Analysis (https://data.ceda.ac.uk (accessed on 20
November 2023)).

2.5. Methods
2.5.1. Surface Soil Moisture Derived from a Downscaling Framework (RF-SM)

The downscaling framework for surface SM was established based on variables ob-
tained from multiple satellite datasets, and the random forest (RF) algorithm was applied
to deconstruct SM to a fine scale at a 30 m spatial resolution (Figure 2). The framework
integrates four datasets into the model to accurately retrieve SM (Table 1). The first dataset
includes reflectance data from the red, near-infrared (NIR), shortwave infrared (SWIR),
and surface temperature (ST) bands from high spatial-resolution optical remote sensing,
Landsat 8 OLI, and TIRS Level-2 images. Soil properties from SoilGrids V.2.0, including
clay, sand, and silt, comprise the second dataset, which impact SM dynamics by influencing
water infiltration. The third dataset indirectly reflects SM variation under the influence of
land-air interactions and consists of meteorological data from ERA5, namely, atmospheric
temperature (T2m), precipitation, relative humidity (RH), and wind. The last dataset com-
prises SMAP, SMOS, ESA CCI, and NCA-LDAS, four coarse-resolution SM products, and
it plays a leading role in the model. In this study, an RF model was developed using in
situ observations from the ISMN. The optimal parameters were obtained through the five-
fold cross-validation method, based on the records from training stations and determined
by accuracy control based on the records from testing stations. The RF-SM dataset was
eventually generated for computing the SWDL
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Figure 2. Downscaling framework for the surface SM at 30 m through the integration of multi-
ple datasets.
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Table 1. The datasets used in the downscaling framework.
. - . Spatial Temporal
Datasets Details Description Variables Resolution Resolution
In situ dataset ISMN In situ SM SM Point Hourly
Red band SR_b4
. NIR band SR_b5
iﬁ’;fl gear;(;’z Landilat 8 surface SWIR band SR_b6 30m 16-day
5 reflectance SWIR band SR_b7
ST band ST_b10
Soil H Clay content Clay
Ot properties SoilGrids V.2.0 Sand content Sand 250 m Static
dataset : :
Silt content Silt
Relative humidity RH
Meteorological Atmospheric temperature T2m R
dataset ERA 5 Wind Wind 0.25 3h
Precipitation Precipitation
SMAP Satellite-derived SM 36 km Daily
Soil moisture SMOS-IC Satellite-derived SM 25 km Daily
products NCA-LDAS Model-derived SM 0.125° Daily
ESA CCI Satellite-derived SM 0.25° Daily

2.5.2. Soil Water Deficit Index (SWDI)

Based on the effect of SM on agricultural drought, the SWDI accounts for water deficit
accumulation and soil water storage [64] and has the potential to capture short-term SM
variations and track drought dynamics [35]. In this study, we applied the SWDI based
on surface SM, which has been proven to be a viable agricultural drought monitoring
strategy [35,65]. The SWDI can be calculated as follows:

SWDI = <9_9FC) x 10 1)
Bawc

0 awc = Orc — Owp )

where 6 denotes SM; 0rc denotes the field water capacity, which is the maximum water
capacity that the soil can maintain to be effective for crops; 6 4)yc denotes the available
water capacity, which refers to the difference between 6rc and 6y p (wilting point) and
can be calculated using Equation (2). In addition, the SWDI was proposed on the basis of
the concept of the water deficit index [91], which can be multiplied by 10 to convert this
fractional magnitude to a range of values with agricultural meaning [64].

The most critical issue in deriving the SWDI is the determination of the parameters
frc and O p. However, these data are typically unavailable in standard soil databases.
To address this issue, there are generally three ways for researchers to obtain or estimate
Orc and By p, i.e., using the SM time series [92,93], employing laboratory analysis [35], or
through pedotransfer functions (PTFs) [94]. In fact, the first method requires SM data with
a long enough time series to ensure the accuracy of these parameters, while the second
method consumes large amounts of manpower and time. Therefore, we applied regression
analysis-based PTFs to estimate 6rc and 6y p by using a soil property dataset. On the
basis of previous research and prior achievements [65,95], the PTF regression equation
developed by Saxton and Rawls (2006), using the soil physical properties (i.e., clay and
sand) and organic matter (OM) as independent variables, was applied in this study [96].
The predictive equations for these hydraulic parameters (i.e., frc and 6yyp) can be calculated
as follows:

Gwp = pr* + (0.14 X pr* — 0.02) (3)
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Owp™ = —0.024 x sand + 0.487 x clay + 0.006 x OM + 0.005(sand x OM) — 0.013 x (clay x OM)

+0.068 x (sand x clay) 4 0.031 @)
Orc = O™ + {1.283 X (Bpc™)? — 0.374x0pc* — 0.015} )
Opc™ = —0.251 x sand + 0.195 x clay + 0.011 x OM + 0.006(sand x OM) — 0.027 x (clay x OM) ©)

+0.452 x (sand x clay) + 0.299

2.5.3. Vegetation Health Index (VHI)

The VHI was first proposed by Kogan (1997), it and combines spectral and infrared
channels to characterize the vegetation stress related to water and temperature during
drought [97]. The VHI is derived from an integration of the vegetation condition index
(VCI) and the temperature condition index (TCI) [98] and can be expressed by merging
these, as defined in Equation (7), where « denotes the contribution of these two components
to the total vegetation health.

VHI = a x VCI + (1 —a) x TCI )

The VCI represents the vegetation growth state based on the moisture conditions in
the visible and near-infrared bands and can be calculated as follows:

(NDVI; = NDV 1)

=1
Vel =100 X DV T ae — NDV ) ®
_ NIR; — RED;
NDVIi = JIR. + RED; ©)

where NDV I; denotes the normalized difference vegetation index of pixel i and can be calcu-
lated by the reflectance in the red band (RED;) and near-infrared band (NIR;) (Equation (9).
NDV1,;, and NDVI,;x denote the minimum and maximum values of NDVI; in 2016,
respectively. The TCI represents the surface temperature conditions in the thermal infrared
band and can be calculated as follows:

(LSTyax — LST;)

TCI =100 x
(LSTmax - LSTmin)

(10)

where LST; denotes the land surface temperature of pixel i, and LST4x and LST,,;, are
the minimum and maximum values of LST; in 2016, respectively.

To ensure the consistency of the data, the Landsat 8, Collection 2, Level-2 dataset was
used as the basic information to calculate the NDVI and LST in this study. In addition, the
VCI and TCI were assigned equal contributions (i.e., « = 0.5) [99]

2.5.4. Evaluation Methods
(1) Model Evaluation Methods

To evaluate the performance of the RF-SM dataset, the coefficient of determination
(R?), root mean square error (RMSE), bias (Bias), and Kling—Gupta efficiency (KGE) [100]
were adopted as accuracy metrics. Each statistical indicator can be expressed as:

£ (5i-8)(si-0)]
Zf\il (Si - §)zzi1\i1 (0, — 6)2

RZ = (11)

1
RMSE = \/sz_l(si —0,)? (12)



Remote Sens. 2024, 16, 3372

9 of 27

. 1 N
Bias = NZizl(Si -0y (13)

where N is the sample size, and O; and S; are the observed and simulated values of the ith
sample, respectively. O and S are the average values of the observations and simulations,
respectively, for the corresponding sample sets.

The KGE integrates the correlation (), relative variability («, Equation (15)), and ratio
of the mean (8, Equation (16)) to provide a comprehensive model evaluation indicator
(Equation (14)). oo and og denote the standard deviations of the observations and simula-
tions, respectively, for the corresponding sample sets. jo and g denote the mean values of
the observations and simulations, respectively, for the corresponding sample sets. The KGE
is a measure of the Euclidean distance from a given point to the optimal point. Thus, the
value of all three components of the KGE is equal to 1 under ideal conditions and without
simulation errors.

KGE=1—/(r—12+ (@ —1+ (B—1)? (14)
N = Us/cro (15)
B = #s/uo (16)

(2) Evaluation of the Drought Indices SWDI and VHI

As indicated in Equation (1), when the SWDI is 0 or greater, the SM content completely
meets or even exceeds the field water capacity, and the soil exhibits no water deficit. A
negative SWDI value indicates that the soil is under water stress, and once the value is
below —10, the SM content dips below the lower limiting value of the available water
capacity [101]. At this point, crops cannot absorb enough water from the soil to compensate
for the transpiration loss, resulting in wilting of the leaves.

The VCI, TCI, and VHI are indices that represent the moisture, temperature, and
vegetation health conditions, respectively, on a scale of 0 to 100. Normally, a lower value
indicates higher stress and poorer vegetation health.

In this study, the following classification system was used for assessing agricultural
drought conditions (Table 2). The SWDI was adapted from Martinez-Fernandez et al.
(2015) [64], and the VHI was obtained from Kogan (2002) [102].

Table 2. SWDI and VHI classifications used in this study for different drought severities.

SWDI Value VHI Value Drought Severity
<-10 0to 10 Extreme drought
—10to =5 10 to 20 Severe drought
—5to —2 20 to 40 Moderate drought
—2to0 40 to 60 Mild drought
>0 60 to 100 No drought
3. Results

3.1. Evaluation of the RF-SM Dataset

In this study, we used SM records from 242 observation stations for model development
and evaluation, based on the downscaling framework, to obtain RF-SM data. To evaluate
the performance of the RF-SM data, we further verified the different SM products from two
aspects at the point scale. The SM data from in situ stations were compared with the RF-SM
data and the estimations of these four SM products from the corresponding pixels.

Figure 3 shows scatterplots between the RF-SM predictions and the in situ SM data.
The samples used to develop the model mostly exhibited low SM levels, resulting in
concentrations along the 1:1 line. We trained the SM downscaling framework based on the
RF algorithm, using available SM records from 170 in situ stations. Figure 3a shows that the
model exhibited favorable performance, with a high KGE value (0.85) and a low Bias value
(0.001 m3/m?3). The model was then validated based on in situ SM from the remaining
72 observation stations. Figure 3b shows that the RF-SM dataset yielded relatively accurate
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results, with a KGE value of 0.72 and a Bias value of 0.028 m3/m?3, compared to the SM
records from the observations. In addition, the downscaling framework might be slightly
overestimated at low SM levels and slightly underestimated at high SM levels within the
constraints of the sample distribution.

(@) (b)
0.5 - 7 05 N
R2=0.95 R2=0.66 e
RMSE = 0.026m*m* - 30 RMSE = 0.064m*>/m> "
0.4 | Bias=0.001m*m> , 4 04 | Bias = 0.028m¥m* 4 25
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Figure 3. Scatterplots of the comparison for the RF-SM data and SM derived from in situ observations
at (a) 170 training stations and (b) 72 independent validation stations. The color indicates the density
of the samples distributed in the area.

Figure 4 shows the permutation importance of RF-SM. The SM products achieved
higher importance scores for all the input variables, with NCA-LDAS scoring the high-
est. The variables derived from the soil properties and the Landsat 8 dataset displayed
moderate importance scores, and the meteorological reanalysis dataset exhibited the lower
importance scores, except in the case of RH. This result suggests that coarse-scale SM
products are important features in RF-SM, and that fine-scale soil properties contribute
more significantly to the model than does surface reflectance. It is difficult to achieve
a satisfactory model prediction by relying on a single dataset, while the integration of
multiple auxiliary variables will generate reliable SM results.

Permutation importance

NCA-LDAS
ESA CCI
SMAP
SMOS

Clay

RH

SR _b5

Sand

SR_b7

SR _b4

Silt

wind
ST_bl0
SR_b6

T2m
Precipitation

Feature

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Score
m SM product m soil property m meteorological stress m Landsat 8

Figure 4. Permutation importance of RF-SM. The features (i.e., input variables) include the SM
products (SMAP, SMOS, ESA CCI, and NCA-LDAS), the soil properties (clay, sand, and silt), and
the reflectance at visible and near-infrared bands (from SR_b4 to SR_b7), as well as the surface
temperature (ST_b10) derived from Landsat 8.
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We then described the distributions of SM derived from RF-SM, SMAP, SMOS, NCA-
LDAS, ESA CCI, and ground observations under six land cover types using boxplots.
Figure 5 shows lower SM values in the barren and shrubland types and higher SM values
in the cropland and forest types. Among the types with low SM values, the four products
exhibited specific errors and even produced overestimated values that significantly deviate
from the observations, while the median and extreme SM values derived from the RF-SM
dataset agree better with those derived from the in situ dataset. Among the types with
high SM values, the RF-SM distribution also remained stable and concentrated, with fewer
extreme values and results closer to the observed median. Compared with the in situ
observations, the RF-SM data achieved better consistency in terms of the data range and
distribution, especially for the grassland and savanna types.

T Insitu I RF-SM [ SMAP T SMOS [ NCA-LDAS [ ESACCI

0.8
0.6 s . . .
- . X
'EOA- £, £33 1
50.2- é+ + [% **++i%_
i : . g
+ I
M_Q;é@ ; 11T

Barren Cro;;land Forest Grassland Savanna Shrubland

Figure 5. Boxplots of the in situ SM, RF-SM data, and the four SM products (SMAP, SMOS, NCA-
LDAS, and KGE) for different land cover types. In the single boxplots, the red cross-dots denote
outliers; the lowest and highest lines denote minimum and maximum results, respectively, except for
extreme values (outliers); and the lower bound of the box, red line in the box, and upper bound of
the box represent the lower quartile (25%), the median, and upper quartile (75%), respectively.

We also compared the statistics (R%, RMSE, Bias, and KGE) of SM derived from the
RF-SM dataset and the four SM products based on the in situ stations of five observa-
tion networks to evaluate the reliability of the dataset. Figure 6 shows that all the SM
datasets exhibited the worst performance in the iRON network, with the lowest R? (from
0.01 to 0.34, p < 0.01) and the highest Bias values (from —0.086 to 0.094 m3/m?3). In the
SOILSCAPE network, the RF-SM dataset and the four SM products all exhibited their best
performance, with the highest KGE (from 0.14 to 0.86) and the lowest RMSE value (from
0.037 to 0.114 m3®/m?). In addition, SM levels derived from RF-SM, SMAP, NCA-LDAS, and
ESA CCI were higher than those derived from the observations (Bias > 0 in all networks),
while SM derived from SMOS was lower than the actual value (negative Bias ranging from
—0.086 to —0.015 m®/m?). Notably, the statistical metrics of the RF-SM dataset indicated
better and more stable performance across the five networks, yielding an optimal perfor-
mance, with favorable R? values ranging from 0.34 to 0.86 (p < 0.01), RMSE values ranging
from 0.037 to 0.065 m?/m?3, Bias values ranging from 0.004 to 0.025 m3/m?, and KGE values
ranging from 0.28 to 0.86. Therefore, we could conclude that the RF-SM dataset exhibits
relatively accurate SM estimates at 242 stations across the U.S., and therefore, it could be
considered as the basis dataset for follow-up drought monitoring.

To further analyze the temporal variations of RF-SM, the line charts of SM derived
from in situ measurements, microwave products, and RF-SM were plotted during 2016 at
three representative stations in the substudy area (Figure 7). RF-SM could well capture
the temporal variations in SM and respond to precipitation events. Although there is
high consistency across all SM data in terms of trends, RF-SM efficiently simulated SM
in summer and autumn, while coarse resolution products other than SMOS displayed
significant overestimates. In addition, in regards to the overestimation of SMOS during the
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growing season and its underestimation under rainfall deficiency, RF-SM also improved in
the integrated downscaling model using auxiliary variables.
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Figure 6. Diagrams of the statistics (R2, RMSE, Bias, and KGE) for the comparison between the RF-SM
dataset and the four SM products (SMAP, SMOS, NCA-LDAS, KGE) for the different observation networks.
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Figure 7. Temporal variations in precipitation (P) and surface SM derived from RF-SM and the four
products at the representative stations in the substudy area during 2016.
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To discuss the performance of the spatial distribution evaluation in RF-5M, we mapped
RF-SM in the substudy area during the four dates in 2016. Figure 8 showed the SM
simulation capability for RE-SM at the field scale, clearly reflecting the spatial heterogeneity
at 30 m x 30 m. Meanwhile, the spatial variation of SM was also affected by precipitation
events, and the lowest SM value in the whole area on 20 June occurred in the summer
drought period. The spatial features related to land cover types, such as higher SM levels
in the center shrubland areas on 13 February and 11 November, and lower SM levels in the
southwestern cropland areas on 20 June, which may be attributed to the varying degree of
impacts of near-surface conditions, including precipitation and temperature, on ground
vegetation, could be easily detected from the high-resolution SM maps.

13-Feb-2016

17-Apr-2016

20-Jun-2016

RF-SM (ms,m)
S

0.05 0.10 0.15 0.20 0.25 0.30
Figure 8. Spatial distributions of the RF-SM in the substudy area during 2016.

3.2. Comparison between the RE-SM-SWDI and VHI

The SWDI derived from the RF-SM dataset (RF-SM-SWDI) and the VHI derived
from the Landsat 8 data were calculated over the U.S. for 2016, and the two indices were
subsequently compared for all 242 in situ stations in regards to the Pearson correlation
coefficient (R). Figure 9 shows that the R values between the RF-SM-SWDI and VHI are
greater than 0.5 at most stations in the western mountain areas and plateau basins, but
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below 0.2 at most stations in the Great Plains area and along the east coast of the U.S.
Moreover, the R values were strongly influenced by the performance of the RF-SM dataset
in the five ground observation networks (Figure 6), which exhibited obvious differences
between the stations. The results from approximately 70% of the stations performed well
(R > 0.5), and those from more than 40% of the stations performed fairly well (R > 0.7) in
terms of the correlation between the RE-SM-SWDI and the VHIL

40° N

30°N

120°' W 100° W 80°W

40° N

30°N

120°'W

100° W 80°W

Pearson correlation coefficient

® R<02 @ 02<R<05 0 05<R<0.7 ® 0.7<R<09 @ R>09

Figure 9. Comparison between the RF-SM-SWDI and VHI based on the Pearson correlation coefficient
(R) from 242 in situ stations in 2016.

To analyze the temporal evolution of drought in 2016, we calculated the SWDI derived
from the observations and the RF-SM data at the three representative in situ SM stations
in the substudy area. Figure 10 shows the SWDI, based on in situ SM records (SM-SWDI)
available throughout the year, and RF-SM-SWDI, VHI, and precipitation (P) anomalies
extracted from the corresponding pixel values derived from the different datasets. The
three stations all exhibited typical seasonal characteristics of wet and rainy springs and
winters and dry and rainless summers and autumns. Drought occurred from May to
November, and the drought severity increased (the SWDI remained below 0, and the
VHI remained above 40), especially in September and October. Adequate rainfall in mid-
October supplemented the SM deficit and notably relieved the drought. When comparing
the different drought indices, the RF-SM-SWDI always agreed with the SM-SWD], reflecting
consistent drought conditions, and the method benefited from the highly accurate RF-SM
data. In addition, the temporal variations of the VHI were also similar to those of the SWDI,
with R values higher than 0.8 at all three stations.



Remote Sens. 2024, 16, 3372 15 of 27
- node 406 -
25 F —
E 1{ s0
E 15¢
4 o -
E=5r ~~ — 30 =
£z TN TN | . . . g \ATY*E
g w = T ) T T Pk T T T T T ) el
S =5t \ ’ 1 10
& ol -
—-15 -10
1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec
node 419
35 70
25 |
z " 1
E 15¢
25 =
25 | 1{ 30
B2 ANV N . B WA N e 2
=
) 1 10
= 1ot S
w8 -10
1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec
2 __ node 1023 0
= 4 50
\i st N
® = 5 F - 4 3 :
EZ- A R j , y y ) . , \ ; 0 >
Sr A } } } } } } } | |
= =3 r\—' ~o—/
: N A ~ 7 "\N\ 1 10
-10 | —_— a
w1 -10
1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec

P anomaly > 0 P anomaly <0 =—SM-SWDI

* RF-SM-SWDI —VHI

Figure 10. Temporal variations in SM-SWDI, RF-SM-SWDI, VHI, and precipitation (P) anomalies at

the representative stations in the substudy area in 2016.

3.3. Spatiotemporal Drought Monitoring at the Field Scale

To achieve spatiotemporal drought monitoring at the field scale, we mapped the
RF-SM-SWDI and VHI data at a spatial resolution of 30 m in the substudy area in 2016.
Figure 11 shows that drought occurred in June, and the data revealed specific distribution
patterns. According to the RE-SM-SWDI map, the frequency and severity of drought were
low in the eastern forest areas, while the western and central grassland areas experienced
mild to extreme drought. A few shrubland areas in the west revealed different drought
areas from those of the surrounding locations, which may be influenced by inaccurate SM
and soil hydraulic parameters. According to the VHI map, vegetation growth and surface
temperature stresses only occurred in June and were correlated with the distribution of land
cover types. Notably, there was mild drought in the forest areas with dense vegetation in the
east, while moderate or even extreme drought occurred in the grasslands and shrublands
in the western and central substudy areas. Moreover, the effect of the vegetation cover on
the VHI was also notable during an unusual drought in the northeastern cropland areas in
April, which may be related to crops exhibiting the early stages of growth.

In addition, Figure 12 shows the spatial distribution of correlation coefficients between
the RF-SM-SWDI and VHI. There was a high correlation between these two drought indices
in the substudy area, especially in the grassland cover areas (R > 0.7). Poor correlations
(R <0.2) occurred in the eastern and northern areas, possibly due to the complex topo-
graphic conditions, i.e., mountains and river valleys, as well as the vegetation conditions
affecting the accuracy of the drought indices. Therefore, although both the RF-SM-SWDI
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and VHI provide evident potential for monitoring agricultural field drought, their consis-
tency and differences should be further analyzed.

13-Feb-2016 17-Apr-2016 20-Jun-2016 11-Nov-2016
o . . .
h . . .
Drought severity

B Extreme drought 5 Severe drought Moderate drought #8Mild drought 8 No drought

Figure 11. Spatial distributions of the RF-SM-SWDI and VHI in the substudy area in 2016.

Figure 12. Comparison between the RF-SM-SWDI and VHI based on the Pearson correlation coeffi-
cient (R) in the substudy area in 2016.

4. Discussion
4.1. Utility of Surface SM Metrics for Monitoring Drought

SM, which is mainly derived from rainfall, accounts for only 0.005% of the global
water distribution [103] and is an important variable in meteorology, hydrology, and ecosys-
tems [104,105]. Surface SM usually refers to water in the surface layer of the unsaturated
soil zone [69]. This variable not only controls latent and sensible heat exchange between
the surface and atmosphere [106-108], but also directly influences the exchange of trace
gases on land [109], thereby regulating ecosystem dynamics and the terrestrial carbon
balance [110-112].

Based on the work of Sehgal et al. (2017), drought response analysis of an in situ
SM dataset for different soil layers showed that the surface SM is sensitive to short-term
variations in the water regime caused by evaporation [113,114]. There is a strong inter-
connection between surface and root zone SM levels in soil hydrological processes such
as infiltration and transport, resulting in severe SM stress in deeper soil profiles when
surface soil is persistently deficient in water [115,116]. Qiu et al. (2014) used ten years of
SM observations derived from the SCAN network to examine the impact of the vertical
measurement depth on mutual information using NDVI anomalies, which indicated that
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surface SM can effectively duplicate the SM information content at a depth of 60 cm and
suitably reflect the variability in vegetation [51]. It was suggested that the shallow penetra-
tion depth of microwave-based surface SM retrievals is no longer a major limitation for
agricultural drought monitoring [117]. Moreover, SM and precipitation achieve a positive
feedback mechanism in which dry soils limit precipitation and lead to even drier soils
via atmosphere-land coupling [118,119], which is important for predicting extreme pre-
cipitation events and analyzing drought evolution in areas notably controlled by surface
SM [120-122]. Therefore, surface SM exhibits certain agronomic significance and high
application potential in short-term agricultural drought monitoring [123].

Furthermore, unlike the coarse grid of SM products, RF-SM enables fine agricultural
drought monitoring at a higher spatial resolution. In the downscaling model, the introduc-
tion of SM products is critical. SMAP and SMOS, as representative products of L-band,
have been proven in previous studies to exhibit comprehensive performance in medium
vegetation cover areas [124,125], while NCA-LDAS and ESA CCI display higher spatial
resolution based on multi-product fusion, which makes SM disaggregation more accurate
at a fine scale [69]. Reflectance and ST variables from Landsat 8 are scale references for
downscaling models, in which red band, NIR band, and ST are important for retrieving
SM and related surface parameters [73], while the two SWIR bands can promote the de-
velopment of SM indices by responding to water absorption [126]. Soil properties are the
internal factors driving the spatial heterogeneity of SM, affecting the dynamic of surface SM
by controlling water infiltration [127] and characterizing the SM variation in more detail
under wet conditions [128]. Meteorological stress variables affect surface SM through the
process of the land—air interaction [129]. Although their contribution is weakened due to
the limitation of the coarse grid, the consideration of meteorological information helps to
explain the SM variation under more complex conditions from the perspective of the water
cycle [130]. Therefore, in collaboration with multiple datasets, RF-SM provides a highly
accurate surface SM dataset, with reasonable representation at 30 m spatial scale.

4.2. Performance of the RE-SM-SWDI

This study focused on applying a typical index (SWDI) reflecting the distribution
and temporal evolution of agricultural drought, which requires SM and soil properties
and makes use of 30 m downscaled SM data derived from the RF model to achieve high-
resolution drought monitoring at the field scale. Integrating multiple datasets through
machine learning algorithms, the RF-SM dataset retains the advantages of the existing
datasets (satellite-based products: SMAP, SMOS, and ESA CCI) and model-based products
(NCA-LDAS) [131] in regards to accuracy and disaggregates SM in the original coarse
grid on a finer scale, further meeting the monitoring and management needs for a small
geographic area [132].

4.2.1. Comparison between the RF-SM-SWDI and VHI

Both the SWDI and VHI are important indices for drought monitoring and severity
assessment [68]. On the basis of existing theories, the SWDI adopts the field water capacity
(6rc), which is considered to be the upper limit of the available water for crops [133], as the
limit when the soil begins to be subjected to water stress by introducing information on
soil properties. This suggests that once the SM content falls below 6rc, the optimal state for
the growing environment will be disrupted, triggering a test of the ability of crops to take
up water [61]. Moreover, the VHI severs as an indicator of the occurrence and severity of
drought through the characterization of crop physiological conditions in the visible and
near-infrared bands and the characterization of the canopy temperature in the thermal
infrared bands [134], providing a reliable foundation for its application in agricultural
drought monitoring [135].

Compared with the VHI, the RF-SM-SWDI showed substantial differences in the
results for both the distribution and temporal variations. On the one hand, the correlation
between the RF-SM-SWDI and VHI was poor in the forest area located in the eastern
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substudy area, which may have been affected by two factors. One is that the two drought
indices are derived from different satellite sensors. The calculation of the RF-SM-SWDI and
accuracy of the RF-SM data are closely related to the SM products derived from passive
microwave remote sensing, and the ability of these sensors to penetrate clouds and fog
is much greater than that of optical remote sensing products that generate the VHI [136].
Moreover, the error caused by the attenuation of microwave emissions from the vegetation
to the soil [137] has been greatly improved in the RF-SM dataset [138], while the VHI
mainly reflects canopy information [139], increasing the likelihood that vegetation health
conditions are misrepresented. Another factor is that drought-resistant forests develop
root systems that can absorb water in deeper soil layers to maintain vegetation health
when SM is deficient [63]. Thus, the low correlation between the vegetation condition
component of VHI (i.e., VCI) is particularly evident in forest areas (Figure 13a). On the
other hand, the VHI was proposed with the underlying assumption that there is a negative
correlation between the NDVI and LST; that is, the LST increases when drought occurs,
while the NDVI decreases under stress [140]. There was a notable correction between the
TCI and RF-SM-SWDI (R > 0.5) in most of the substudy area (Figure 13b), suggesting that
the response of the temperature conditions to SM changes occurred faster than that of the
vegetation conditions. Based on the temporal variation in the SWDI at the observation
stations (Figure 10), a quick response to precipitation occurred, resulting in fluctuations
in spring and winter that are consistent with the short-term heavy rainfall events. This
instability may be responsible for the relatively obvious variation in the spatial distribution
of the RF-SM-SWDI on different dates. Furthermore, the coupling relationship between
the LST and surface SM has been confirmed in numerous studies [141-143], resulting in
TCI achieving high correlation with SWDI, thus realizing the consistency between VHI and
RF-SM-SWDI in regards to drought monitoring.

Figure 13. Comparison between the RF-SM-SWDI and two VHI components: (a) VCI and (b) TCI,
based on the Pearson correlation coefficient (R) in the substudy area in 2016.

4.2.2. Spatiotemporal Consistency of Drought Monitoring

The occurrence of agricultural drought is often complicated by hydrological [2], mete-
orological [36], and physiological [11] factors that are difficult to monitor immediately and
exhaustively in space and time. A universal multi-indicator weighted “blended approach”
has been developed through coordinated monitoring efforts at the country level to address
the limitations of a single index for a particular region and a particular drought event [144].
As one of the first entities to use hybrid indicators, the U.S. Drought Monitor (USDM)
was founded in 1999 for assessing drought conditions across the U.S. [145]. With the
development of gridded surface meteorological (gridMET) datasets [146], high-resolution
(4-km) drought indices for the contiguous U.S. from 1979 to the present were produced
by the University of California Merced and computed by the Climate Engine platform
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(https:/ /app.climateengine.org/climateEngine (accessed on 20 December 2023)). The com-
bination of these drought indices for short (ranging from several days to several weeks) and
long (ranging from a few months to a few years) periods could provide targeted services
to decision makers in different fields [147]. In this study, we used the short-term drought
blend (STDB) variable from the gridMET Drought dataset, which combines PDSI (20%),
30-day SPI (20%), 90-day SPI (25%), and ZIND (35%), based on the professional judgment
of drought experts for consistency analysis of drought monitoring by the RF-SM-SWDL

Since the STDB dataset is updated every 5 days, representative drought monitoring
maps at corresponding time intervals were selected for comparison (Figure 14). According
to the comparison between the two indices at a grid scale of 4 km, the four days of drought
severity in the substudy area exhibited a consistent trend of gradual decrease from west
to east, which basically coincides with the RE-SM-SWDI results, particularly in regards
to the drought maps of February and April. In addition, the extent of drought increased
to the east, the drought severity increased from February to June, and the drought was
relieved by precipitation in late fall, resulting in no or mild drought in the middle of
November. The substudy area is located in the Mediterranean climate zone near the
west coast of the continental U.S, characterized by cold and humid winters but hot and
arid summers [148]. Encouragingly, the inevitability and severity of summer drought
events [149] are reflected by the RF-SM-SWDI, VHI, and STDB. However, Figure 14 shows
that the drought conditions in winter and spring (before May) are more serious than
those in autumn (after October), which is not suitably reflected in the drought maps of
the RF-SM-SWDJ, especially in the western and southeastern areas of the substudy area,
where the drought severity in mid-November was actually shown to increase. Moreover,
a survey by the USDM of the counties primarily covered by the substudy area (Amador
County and Sacramento County) also revealed extreme drought conditions during the
first half of 2016 (https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx (accessed
on 20 December 2023)). This result was due to multiyear precipitation deficiencies and
anomalously warm temperatures culminating in 2016, and these conditions were improved
by the abundant precipitation received in the winter of 2016-2017 [150]. Therefore, the
RF-SM-SWDI could yield a convincing spatial pattern, but there are still weaknesses in
terms of the representation of the evolution of drought over time.

13-Feb-2016 17-Apr-2016

20-Jun-2016 11-Nov-2016
¥

RF-SM-SWDI

RF-SM-SWDI
(resampled 4 km)

14-Feb-2016 19-Apr-2016 23-Jun-2016 15-Nov-2016
STDB
Soil water deficit index -10 -6 -2 2 6 10
Short Term Drought Blend -1 0.6 0.2 0.2 0.6 1

Figure 14. Spatial distributions of the RF-SM-SWDI, RE-SM-SWDI after resampling, and the short-
term drought blend (STDB) in the substudy area in 2016.
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4.3. Issues of Drought Monitoring with High Spatial Resolution

Based on RF-SM-SWD], this study achieved agricultural drought monitoring at a
high spatial resolution of 30 m, which compensates for the lack of coarse grids containing
composite SM and crop signals associated with terrestrial and atmospheric conditions.
With the advances in remote sensing technology, the development of data fusion meth-
ods [78], and even hyper-resolution sensors [28], will provide more detailed information
on the occurrence and evolution of drought. The RF-SM dataset not only fulfills the need
to identify and assess the severity and extent of drought at the field scale, but also, more
importantly, introduces various drought-related variables (e.g., spectral reflectance, LST,
and precipitation) into the fusion process, providing reliable supporting data for com-
puting relevant drought indices. Further, fine monitoring using a 30 m spatial resolution
contributes to the differentiation of crop types and the management of water and land
resources [151,152]. Therefore, the RF-SM-SWDI has the potential to become an effective
reference tool for agricultural regionalization and policy formulation at the county level.

Due to the inevitable constraints, our study must still be improved upon for practical
applications. First, it is difficult to track and monitor drought evolution with coordinated
temporal resolution because the availability of RF-SM data is limited by the cloud state of
the optical remote sensing dataset and the scanning mode of microwave remote sensors.
The application of data fusion [153] and data assimilation [154] methods could help to
generate both spatially and temporally continuous SM datasets in future research. Second,
the RF-SM-SWDI yielded satisfactory spatial heterogeneity at small scales and exhibited
differences in the impacts of microclimates on the severity of drought, but drought occur-
rence did not follow the defined scale [155]. It is necessary to comprehensively establish
additional spatial units, such as climate divisions and crop districts, to achieve agricultural
drought monitoring and early warning of drought conditions [156]. Finally, in addition to
soil properties and land cover types, the analysis of topography, vegetation phenology, and
agricultural management practices, such as irrigation, should be considered for accurate
high-resolution agricultural drought monitoring and assessment [157].

5. Conclusions

In this study, two drought indices at a 30 m spatial resolution, the RF-SM-SWDI, which
was calculated using an SM downscaling framework derived from multiple datasets, and
the VHI, which was calculated using optical remote sensing dataset obtained by Landsat
8, were utilized to monitor agricultural drought conditions over a small geographic area
in the U.S. in 2016. To conduct a comprehensive assessment, the RF-SM data was first
evaluated based on in situ observations, and the RF-SM-SWDI was then compared with
the VHI in terms of monitoring the drought distribution and evolution. In conclusion,
the RF-SM-SWDI, with a high spatial resolution, could be a promising tool for drought
monitoring, mainly due to the following:

(1) The RF-SM dataset yielded better performance results than the four single SM prod-
ucts when compared with the observed SM at in situ stations, whether based on
different land cover types or ISMN networks. When the utility of surface SM in
agricultural drought monitoring is recognized, RF-SM data exhibit significant value
in capturing drought conditions driven by SM because of their high spatial resolution.

(2) The SWDI relies on SM estimation and corresponding soil hydraulic parameters,
which effectively overcomes the limitations of drought research over certain time
periods. The RF-SM-SWDI exhibited a favorable correlation with the VHI at approx-
imately 70% of the stations. Further comparison of the substudy area showed that
the coupling of the LST and SM produced a strong correlation between the TCI and
SWDI, while the changes in vegetation conditions caused a significantly different
spatial patterns for the VCI and SWDI, which ultimately affected the difference in the
distribution and temporal variations of the RF-SM-SWDI and VHI related to the land
cover types.
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(38) The RF-SM-SWDI provided data for drought conditions which included more detailed
spatial information and demonstrated the seasonal evolution and patterns of the
different land cover types. Compared with the results of the STDB, the RE-SM-SWDI
recognized Mediterranean climate characteristics in the substudy area, accurately
monitoring summer drought events and drought mitigation in winter, which made
it possible to achieve real-time monitoring of short-term and flash droughts at the
field scale.

(4) Due to the limitations of the available datasets, the application of RF-SM-SWDI
exhibits some difficulties in long-term agricultural drought monitoring on a larger
geographical scale. Therefore, advanced data fusion and data assimilation technology,
along with more drought-related surface information, will help to accurately analyze
drought distribution and track drought evolution.

In the near future, we expect spatiotemporal SM datasets, with a high resolution, to be
generated and applied in agricultural drought monitoring, resulting in meaningful indices.
More importantly, accurate data regarding the extent and evolution of drought at multiple
levels could be used in controlling the spread of drought, mitigating severe consequences,
supporting agricultural policies and management practices, and ensuring crop yield and
economic benefits.
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