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• A hybrid model is proposed to generate
a novel long-term global GPP dataset.

• Random forest has a great advantage in
integrating various environmental
factors.

• Terrestrial water storage exerts the
greatest control over photosynthesis.

• There is an optimal air temperature for
photosynthesis.
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A B S T R A C T

Distinguishing gross primary productivity (GPP) into sunlit (GPPsu) and shaded (GPPsh) components is critical for
understanding the carbon exchange between the atmosphere and terrestrial ecosystems under climate change.
Recently, the two-leaf light use efficiency (TL-LUE) model has proven effective for simulating global GPPsu and
GPPsh. However, no known physical method has focused on integrating the overall constraint of intricate
environmental factors on photosynthetic capability, and seasonal differences in the foliage clumping index (CI),
which most likely influences GPP estimation in LUE models. Here, we propose the TL-CRF model, which uses the
random forest technique to integrate various environmental variables, particularly for terrestrial water storage
(TWS), into the TL-LUE model. Moreover, we consider seasonal differences in CI at a global scale. Based on 267
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global eddy covariance flux sites, we explored the functional response of vegetation photosynthesis to key
environmental factors, and trained and evaluated the TL-CRF model. The TL-CRF model was then used to
simulate global eight-day GPP, GPPsu, and GPPsh from 2002 to 2020. The results show that the relative prediction
error of environmental stress factors on the maximum LUE is reduced by approximately 52 % when these factors
are integrated via the RF model. Thus the accuracy of global GPP estimation (R2

= 0.87, RMSE = 0.94 g C m− 2

d− 1, MAE = 0.61 g C m− 2 d− 1) in the TL-CRF model is greater than that (R2 = 0.76, RMSE = 2.18 g C m− 2 d− 1,
MAE = 1.50 g C m− 2 d− 1) in the TL-LUE model, although this accuracy awaits further investigation among the
released GPP products. TWS exerts the greatest control over ecosystem photosynthesis intensity, making it a
suitable water indicator. Furthermore, the results confirm an optimal minimum air temperature for photosyn-
thesis. Overall, these findings indicate a promising method for producing a new global GPP dataset, advancing
our understanding of the dynamics and interactions between photosynthesis and environmental factors.

1. Introduction

Gross primary productivity (GPP) is defined as the total amount of
carbon dioxide (CO₂) taken up by all leaves through vegetation photo-
synthesis over a unit of time (Chapin et al., 2002). GPP is a key variable
in evaluating the terrestrial carbon cycle and measuring vegetation
response to climate change (Beer et al., 2010). Therefore, accurately
estimating GPP at different spatial and temporal scales is crucial for
understanding the global carbon cycle, ecosystem functions, and climate
changes (Anav et al., 2015; Badgley et al., 2019; Zhang et al., 2019).

Recently, numerous light use efficiency (LUE, ε) models have shown
significant potential in studying the spatiotemporal dynamics of
terrestrial GPP at global or regional scales (Zhao and Running, 2010;
Dong et al., 2015; Zhang et al., 2015b; Yuan et al., 2019) because of the
few required parameters, such as the maximum ε (εmax), concise
frameworks, easy to implementation (Dong et al., 2015; de Mattos et al.,
2020), and use of digestible remote sensing data (Wu et al., 2010). GPP
is strongly linked to the vegetation canopy structure (Cheng et al., 2015;
Xu et al., 2019), which can be effectively depicted by the vegetation
clumping index (CI). The two-leaf light use efficiency (TL-LUE) model
(He et al., 2013) improves GPP estimation by separating the canopy into
sunlit and shaded leaves on the basis of the CI and has been shown to
outperform the MOD17 GPP model in various ecosystems (Zhou et al.,
2016). In the TL-LUE model, canopy GPP can be decomposed into the
GPP of sunlit (GPPsu) and shaded leaves (GPPsh). Solar-induced chlo-
rophyll fluorescence (SIF), which is highly related to GPP is emitted
mainly from sunlit leaves (Lee et al., 2015; Pinto et al., 2016), so GPPsu is
further used to refine the relationship between SIF and GPP. Addition-
ally, the GPPsu is applied to retrieve several key photosynthetic pa-
rameters such as the maximum carboxylation velocity (Xie et al., 2018).
Because shaded leaves can effectively absorb diffuse solar radiation, so
the GPPsh has a dominant field for vegetation under cloudy skies and
dense vegetation (Han et al., 2020). Hence, the GPPsh can be utilized to
investigate the response of carbon uptake to changes in the fractions of
solar radiation on a large scale. Accurate estimation of GPPsu and GPPsh
is essential for understanding the intrinsic mechanisms regulating
vegetation photosynthesis processes.

Seasonal changes in CI reflect variations in the vegetation canopy
(Pisek et al., 2015; He et al., 2016; Wei et al., 2019). With advancements
in long-term global CI products, incorporating the temporal variation in
CI into remote sensing and land surface simulations has become feasible
(Fang, 2021). Our latest study proposed a TL-CLUE model that considers
the seasonal differences in CI in the TL-LUE model (Li et al., 2023). As a
result, the accuracy of GPP estimation across the North American
continent is improved by approximately 9.76 % when TL-CLUE uses
three CI estimations (Ω) from different seasons. Sunlit leaves absorb
direct and diffuse radiation, whereas shaded leaves absorb only diffuse
radiation (Rap et al., 2018). Nevertheless, GPPsh increases with
increasing in LAI and diffuse radiation (Chen et al., 2012b). Addition-
ally, electron transport speed and the maximum carboxylation rate limit
the photosynthesis rate of shaded and sunlit leaves, respectively (Chen
et al., 1999; DE, 1997).

Key differences among LUE models lie in the calculation of canopy

absorbed photosynthetically active radiation (APAR) and the scale of
environmental stress factors on εmax (σ) (He et al., 2013; Zhang et al.,
2015b). Previous studies have reported that differences among five LUE
models are likely caused by different calibrations of εmax and de-
scriptions of σ (Xie et al., 2020). Environmental stress factors are a
primary source of uncertainty in GPP estimation. First, most LUE
models, such as EC-LUE and MOD17, focus on only two or three, or five
environmental factors (Wang et al., 2018b). Second, a single indicator or
analytic formula is often insufficient to capture the complex responses of
vegetation photosynthesis to environmental changes, particularly under
extreme conditions. For example, the vapor pressure deficit, soil water
content, and plant evaporate fraction explain only 20 %, 6 %, and 36 %
of the monthly LUE variation, respectively (Zhang et al., 2015a). Third,
most LUE models integrate environmental factors via either the multi-
plication principle or the law of minimum (LOM). Specifically, the
multiple principle states that the total σ is the product of the σ of various
environmental stress factors, and is used in most LUE models including
theMOD17, VPM, and TL-LUEmodels. The LOMmeans that the final σ is
the smallest value of σ among all environmental stress factors, which is
adopted in the EC-LUE, CCW, and CFLUX models. These two methods
usually fail to detect the coupling effects among various environmental
factors, although they are relatively easy to manipulate. Moreover, there
is spatial heterogeneity in the effects of the same environmental variable
on vegetation photosynthesis. For example, air temperature can better
explain GPP variation in northern cold sites (Reichstein et al., 2007) but
is not a dominant in some tropical biomes, such as savannas and woody
savannas (Ma et al., 2014). Finally, differences in the description and
calculation of environmental stress factors among various LUE models
also lead to errors.

The exploration the synergy of merging machine learning (ML) and
process-based models in the modeling of earth system science is prom-
ising (Reichstein et al., 2019). To reduce uncertainties in GPP estimation
caused by environmental stress factors, a comprehensive scale of diverse
environmental stress factors to εmax must be explored by leveraging
advanced techniques. With the development of ML methods, various
temporal variables of a model can be taken from vast datasets (Geer,
2021), potentially providing an integrated strategy for improving σ by
incorporating various environmental stress factors. Combining the eddy
covariance (EC) technique with ML methods offers a valuable oppor-
tunity to study ecosystem responses to climate change (Tramontana
et al., 2020), even though EC has been widely used to measure carbon
exchange between the atmosphere and ecosystems. ML methods can
detect nonlinear relationships and interactions in complex data, which is
used in to improve the understanding of the of environmental stress
factors of the TL-LUE model. Recent studies have emphasized the po-
tential of ML in optimizing parameters (Beucler et al., 2020; Han et al.,
2020; Yuval and O'Gorman, 2020). Thus, coupling mechanistic and
learning models represents a mutual complement between “rationalism”
and “empiricism”, which has advanced scientific studies (Bergen et al.,
2019). Hybrid models aim to efficiently access Earth observation data by
replacing uncertain parameters and processes with ML techniques, while
maintaining interpretability and physical consistency (Kraft et al.,
2022). These models can improve the predictability of earth systems or
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components, helping to gradually eliminate errors caused by earth sys-
tem models and artificial simplifications (Brenowitz and Bretherton,
2018).

In this study, we first update the TL-CLUE model on a global scale,
and then employ the random forest (RF) technique to integrate the
comprehensive control of multiple environmental factors on vegetation
photosynthesis intensity and to further improve global GPP estimation
by embedding the RF submodule into the TL-CLUE model (TL-CRF),
which could realize complementary natural advantages. Before simu-
lating the global GPP, the TL-CRFmodel is trained and evaluated on data
from 267 global EC flux sites. Additionally, we explored the functional
response of vegetation photosynthesis to vital environmental factors.
The primary objectives of this study are: a) to reduce the uncertainty of σ
estimation by integrating various environmental factors via the RF
technique, b) to investigate the functional relationships between vege-
tation photosynthesis and key environmental factors, and c) to explore
the temporal-spatial changes in global GPP, GPPsu, and GPPsh. This
study provides a reference for assessing global terrestrial productivity
and provides our insights into the response of GPP to environmental
changes.

2. Data

2.1. Eddy covariance flux data

Flux data derived from FLUXNET2015 (www.fluxdata.org) and
AmeriFlux (https://ameriflux.lbl.gov/) have the standard formats of
eddy covariance (EC) flux data, advanced quality control, and process-
ing methods, which cover different global regions (Pastorello et al.,
2020a). Unlike FLUXNET2015, which only covers from 2001 to 2014,
AmeriFlux provides a longer period from 2000 to 2022. The recently
published AmeriFlux FLUXNET provides high-quality flux data with an
outlier filter, missing value filling, and uncertainty analysis. In the EC
flux data, GPP is separated from NEE (net ecosystem exchange) by light-
response curves (Reichstein et al., 2005). The data are divided into
different groups with multiple quality labels ranging from 0 to 1 on the
basis of the proportion of great data (observed data, high quality gap
data) to the whole dataset, of which 30-min and eight-day data with
quality labels greater than 0.8 are selected. Simultaneously, to reduce
measurement errors, the study selected sites that can provide at least 90
% of the meteorological data and flux data as research sites. The con-
sistency between the site descriptions of the vegetation and MODIS land
cover (LC) type version 6.1 (MCD12Q1.061) data products was checked,
and 267 EC flux sites were selected for the study. The eight-day data is
aggregated from 30-minute data that are longer than 5 days to coincide
with the temporal resolution of the remote sensing data. The analysis
variables are selected from eight-day flux data, including GPP, solar
shortwave radiation, air temperature, and vapor pressure deficit (VPD).
According to the site description of vegetation and MODIS LC, the dis-
tribution of sites in different vegetation types is 52 for ENF (evergreen
needleleaf forest), 34 for DBF (deciduous broadleaf forest), 11 for MF
(mixed forest), 23 for OSH (open shrub), 6 for WSA (woody savannas),
50 for GRA (grassland), 9 for SAV (savannas), 32 for CRO (crop), 35 for
WET (wetland), 7 for EBF (evergreen broadleaf forest), 2 for DNF (de-
ciduous needleleaf forest), and 6 for CSH (close shrub).

2.2. MODIS data

The MOD15A2H.061 product (Myneni et al., 2021) provides an
eight-day leaf area index (LAI) with a spatial resolution of 500 m from
2002 to 2020, which generally acts as an important LAI resource for LUE
models. The vegetation canopy structure, represented by the LAI, is the
key mediating factor for the response of GPP to environmental factors
(Zheng et al., 2024). The measuring radius of the EC tower is approxi-
mately 20–100 times greater than the height of the EC tower and can
range from tens of meters to tens of kilometers (Schmid, 1997; Chen

et al., 2012a). Therefore, LAI data (2× 2 pixels for 1× 1 km) are used for
sites approximately 10 m high for CRO, GRA,WSA, OSH, CSH,WET, and
SAV, and LAI data (6 × 6 pixels for 3 × 3 km) are used for those higher
than 10 m for ENF, DBF, EBF, DNF, andMF (Zhou et al., 2016). Savitzky-
Golay Logistics (Savitzky and Golay, 1964) have been used for
smoothing the temporal series of the LAI to weaken noise caused by
clouds, fog, ground ice, snow, and atmospheric pollution, and the
handling process is implemented via the “prospectr” function of the
“savitzkyGolay” package in R (version 4.4.0). Additionally, the LAI is
screened by data quality control to reduce the influence of low-quality
data on GPP estimation.

The MODIS LC data (Friedl and Sulla-Menashe, 2022), with a spatial
resolution of 500 m from 2001 to 2021, originate from the NASA Earth
Observing System Data and Information System (EOSDIS), which is
generated by an integrated decision tree (Friedl et al., 2010). The LC is
classified into 17 types of land cover based on the International Geo-
sphere Biosphere Program (IGBP), which abides by the vegetation of the
EC tower site. Hence, the site vegetation is determined by combining the
MODIS LC data and vegetation descriptions of the EC site. Additionally,
the MODIS LC (MCD12Q1) is also used for simulating the global GPP.

The MODIS CI is retrieved from the MODIS bidirectional reflectance
distribution function (BRDF) on the basis of the modified kernel-driven
BRDF model (Jiao et al., 2016, 2018). There are significant seasonal
differences in CI, which are greater in the leaf-off season than in the leaf-
on season, particularly for DBF andMF (Yin et al., 2022), which have the
potential to reflect changes in the vegetation canopy (Pisek et al., 2015;
He et al., 2016; Wei et al., 2019). Ignoring these seasonal differences in
CI would lead to errors in the estimations of GPP (Chen et al., 2012b).
With the development of long-term global CI products, temporal dif-
ferences in CI have been incorporated into studies involving remote
sensing and land surface simulations (Fang, 2021).

2.3. Meteorological data

The hour data (GMAO, 2015a, 2015b, 2019) with a spatial resolution
of 0.5 × 0.625◦ from 1980 to 2024 were provided by Modern Era
Retrospective analysis for Research and Application, Version 2 (MERRA-
2), which was developed by Goddard Earth Observing System Version 5
(GEOS-5) (Rienecker et al., 2011) and utilized by the Global Modeling
and Assimilation Office (GMAO). MERRA-2 uses an enhanced assimi-
lation system to reduce the uncertainty and passes the verification of site
data, which has been used for the simulation of GPP (Wu et al., 2010;
Wang et al., 2017). The increase in GPP is driven mainly by climate
change (Xu et al., 2022). The following variables for the study are
selected from MERRA-2: surface incoming shortwave flux (SSF), total
cloud area fraction (FCA), wind speed (Ws), minimum air temperature
(Tamin), mean air temperature (Ta), maximum air temperature (Tamax),
dew point temperature (Td) at a height of 2m, soil temperature at layer 1
(Ts), precipitation (P), and terrestrial water storage (TWS). TWS not only
contains water content from soil moisture, but also incorporates un-
derground, land surface, snow, and biome water (Humphrey et al.,
2018), which is a critical component of the global water and energy
balance. These variables are aggregated into an eight-day scale. The VPD
is calculated according to the dew points Td and Ta as follows:

SVP = 6.112× e
17.67×Ta
243.5+Ta

RH = e
17.625×Td
243.04+Td−

17.625×Ta
243.04+Ta

VPD = SVP×(1 − RH)

SVP is the saturated vapor pressure (hPa), and RH is the relative hu-
midity (Zheng et al., 2020).
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2.4. Soil properties

The SoilGrids (Hengl et al., 2017) system provides various global soil
property data with a spatial resolution of 250 × 250 m at seven layers of
0, 5, 15, 30, 60, 100, and 200 cm, including soil organic carbon (SOC),
soil bulk density (Sd), cation exchange capacity (CEC), pH, and soil
texture (%) such as sand, silt, and clay, of which SOC, Sd, soil nitrogen
(Sn), soil silt (St), and soil clay (Sy) are selected and aggregated to depths
of 0–30 cm.

2.5. USGS digital elevation model

The GMTED2010 elevation dataset (https://earthexplorer.usgs.
gov/) with three spatial resolutions of 30, 15, and 7.5″ aggregated the
best global elevation (Elev) data, which were derived from a corporation
between the United States Geographical Survey (USGS) and the National
Geographical-Intelligence Agency (NGA). The GMTED2010 is more ac-
curate than the previous GTOPO30 dataset and is widely used in vege-
tation growth, hydrological process, cartography, and meteorological
analyses.

3. Model and methods

3.1. TL-LUE model

The TL-LUEmodel, which is based on the algorithm from the MOD17
GPP model, separates the APAR of the vegetation canopy into the APAR
of sunlit and shaded leaves via CI. The fundamental equation is as fol-
lows:

GPP = f(PAR, LAI, θ, β, α,Ω, εmsu, εmsh)× σ (1)

The estimation of GPP specifically is as follows:

GPP = (εmsu ×APARsu + εmsh ×APARsh)× σ (2)

where εmsu and εmsh are the εmax values of sunlit and shaded leaves,
respectively, APARsu, APARsh is the APAR (MJ m− 2 d− 1) of sunlit and
shaded leaves, respectively, and σ is the scale of the environmental stress
factors on εmax. These parameters can be calculated as follows:

APARsh = (1 − α)×
[
PARdif − PARdifu

LAI
+C

]

× LAIsh (3)

APARsu = (1 − α)×
[

PARdir ×
cos(β)
cos(θ)

+
PARdif − PARdifu

LAI
+C

]

× LAIsu

(4)

where α is the canopy albedo, which depends on the vegetation type; β is
the sun-leaf angle in the spherical canopy, which is usually set to 60◦, θ is
the solar zenith angle; PARdif and PARdir are the diffuse, and direction
partition of PAR, respectively; PARdifu is the scattering PAR of the can-
opy (Chen et al., 1999); C is the multiple scattering of PAR inside the
canopy; LAIsh and LAIsu are LAI of shaded and sunlit leaves (Chen et al.,
1999), which is expressed as follows:

LAIsu = 2× cos(θ) ×
(

1 − e
− 0.5×Ω×LAI

cos(θ)

)

(5)

LAIsh = LAI − LAIsu (6)

where Ω is the estimation of the foliage CI.
The parameter σ in Eq. (1) can be calculated as follows:

σ = g(Tamin)× h(VPD) (7)

g(Tamin) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
Tamin − Tamin min

Tamin max − Tamin min

1

Tamin ≤ Tamin min
Tamin min < Tamin < Tamin max
Tamin ≥ Tamin max

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8)

h(VPD) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
VPDmax − VPD

VPDmax − VPDmin

1

VPDmax ≤ VPD
VPDmin < VPD < VPDmax
VPDmin ≥ VPD

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9)

where Tamin is the lowest daily air temperature. Tamin_min, VPDmin,
Tamin_max, and VPDmax are specific parameters highly correlated with
vegetation type (Zhou et al., 2016). These parameters of the TL-LUE
model have already been calculated and verified on the basis of site
data from global flux networks (Wu et al., 2015; Zhou et al., 2016).

3.2. Seasonal CI estimations on a global scale

The CI is a crucial vegetation structure parameter for distinguishing
sunlit and shaded leaves, and thus accurately estimates canopy-scale
GPP in the TL-LUE model (Chen et al., 2003). Furthermore, the sea-
sonal differences in CI are potentially useful for mirroring the variation
in the vegetation canopy in different leaf growth seasons (He et al.,
2016). To investigate the effectiveness of the seasonal variation in CI for
integrating various environmental stress factors on the basis of the RF
model, the seasonal CI differences on a global scale are estimated on the
basis of this latest research (Li et al., 2023), further updating the TL-
CLUE model to a global scale by dividing the one-year leaf life cycle
into different seasons for three latitudinal zones and averaging the
corresponding seasonal Ω. Specifically, in this study, the northern
hemisphere (NH) is the region north of 30◦N excluding Greenland; the
southern hemisphere (SH) is the region south of − 30◦N excluding
Antarctica; and the tropics (Trop) is the region between the NH and SH
(− 30◦N ~ 30◦N). In the NH and SH, the one-year cycle of leaf growth is
divided into leaf-off (LOS), leaf-scattered (LSS), and leaf-gathered (LGS)
seasons on the basis of four phenological thresholds from the MODIS
land surface phenology (LSP) product (MCD12Q2 V061). For Trop, one
year is viewed as one entire cycle of leaf life because there are no
obvious seasonal differences in CI (Yin et al., 2022). Then, the Ω values
of the corresponding seasons for the twelve global vegetation types in
the three regions are determined according to previous work (Li et al.,
2023).

3.3. ML algorithm

MLmodels, such as RF, can resolve the complex relationships among
various variables through nonparametric, nonlinear, and flexible asso-
ciations, despite the lack of explicit causation in mechanistic models.
The ML method is powerful for precisely recognizing complex re-
lationships and patterns in multiple variable datasets (Kraft et al., 2020),
which provides a way to reduce the uncertainties caused by various
environmental factors in LUE models. Among them, RF (Breiman, 2001;
Cutler and Zhao, 2001) combines CART decision tree construction and
the bagging integration algorithm, randomly selects features of the
nodes on the basis of the parallel combination of decision trees and uses
voting to determine the best model, which is a complex and strong
classifier (Surhone et al., 2010) consisting of multiple weak classifiers
(decision trees). The RF model not only is easy to run, has a computation
cost, is robust to outliers, and effectively avoids overfitting, but also
simulates the complex relationships among numerous driving variables
fewer parameters than mechanism models (Breiman, 2001), which have
been successfully used in the remote sensing community (Tramontana
et al., 2016). The RF model can characterize the temporal changes and
magnitude of GPP well, particularly for MF and ENF (Chang et al.,
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2023). The study also considered other ML models such as artificial
neural networks (ANNs), support vector machines (SVMs), and gradient-
boosted regression trees (GBRTs). In this study, on the basis of the global
EC flux sites, these ML models for each vegetation type were trained and
verified via tenfold cross-validation by the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE).
As a result, the RF model outperforms the other models; thus, it is
selected for the study.

3.4. Design of a hybrid model

The objective of this study is to reduce the uncertainty of global GPP
estimation by integrating diverse environmental stress factors via RF
technique after considering the seasonal differences in CI, which mainly
includes five parts: 1) the TL-CLUE model is updated to a global scale
according to our latest published work (Li et al., 2023); 2) analysis of
temporal variation and uncertainty in the σ for different vegetation
types; 3) improving the σ estimation by integrating multiple environ-
mental stress factors via the RF technique, and further improving global
GPP estimation by embedding the RF submodule into the TL-CLUE; 4)
the ecological response of vegetation photosynthesis to key environ-
mental factors; and 5) the spatial and temporal patterns of global GPP,
GPPsu, and GPPsh from 2002 to 2020 based on the TL-CRF model.

The relationships between numerous environmental factors and GPP
are generally nonlinear (Bao et al., 2022). Multiple environmental stress
factors constrain the Ɛmax, but the TL-LUE model considers only the VPD
and daily minimum air temperature, which undoubtedly leads to un-
certainty in GPP estimation. Climate variables play a critical role in
global GPP prediction (Lu et al., 2024). The estimation of σ is expected
to be improved by integrating various environmental factors, including
meteorology, vegetation, topography, and soil properties via the RF
model. On the basis of 70 % random selection of the global 267 EC flux
site, in theory, the real σ value can be derived via the TL-CLUE model,
and the calculation process is implemented in R platform (version 4.3.0).
The RF model (Eq. 10) is trained to describe the quantitative relation-
ship between σ and many environmental factors including TWS, VPD,
Tamin, Ts, Ws, Tamax, FCA, St, Sn, Elev, Sd, Sy, SOC, and P. As a result, this
study intends to improve global GPP estimation (Eq. (11)). Embedding
this RF submodule into the TL-CLUE framework (TL-CRF) can also be
performed on R platform (version 4.3.0). Moreover, the relative
importance of each explanatory variable to σ is qualified by the increase
in the percentage of mean squared error (%IncMSE) based on the RF
algorithm (Breiman, 2001; Chipman et al., 1998).

σ = r
(
TWS,Ts,VPD,Tamin,Tamax,Ws,P, FCA, Elev, St , Sn, Sd, Sy, SOC

)
(10)

GPP = f(Ωi,PAR, LAI, θ, β, α, εmsu, εmsh)× σ (11)

where Ωi is Ω in the ith season for each vegetation type.

3.5. Model evaluation and statistical analysis

On the basis of a test dataset (30 % of the 267 global EC flux sites),
global σ and GPP estimations for different vegetation types were
assessed via R2 (Eq. (12)), RMSE (Eq. (13)), MAE (Eq. (14)), and RPE
(relative predictive errors) (Eq. (15)). The effects of seasonal differences
in CI on global GPP estimations were evaluated against 267 global EC
sites via R2 (Eq. (12)), RMSE (Eq. (13)), Bias (Eq. (16)), and relative to
the mean predictive bias (Rbias). The consistency between the estimated
and the observed values was interpreted via linear regression at the
eight-day, monthly, and annual scales. Eight-day GPP anomalies were
calculated by subtracting the monthly mean from the eight-day value.
To ensure that the RF model is more effective than the analytic formula
is, the scales of VPD and Tamin to εmax are calculated via the RF algorithm
and the analytic formula from the TL-LUE model, respectively. To bal-
ance running speed and accuracy, the TL-CRF model is driven by four

main explanatory variables (4EV) and fourteen explanatory variables
(14EV).

To explore the ecological significance of the driving variables used in
the RF model, the functional relationships between key environmental
factors and vegetation photosynthesis were analyzed via the piecewise
averaging method (Liu et al., 2020) for each two consecutive months
during the growing season (Tramontana et al., 2020). Specifically, the
VPD, TWS, Tamin, and σ are all divided into ten equal subsets according
to ten percentile thresholds, such as the 10th, 10th, ……, and 90th
percentile, respectively. For each subset of TWS, Tamin, and VPD are
decoupled so that their effects on σ can be separated. The functional
relationships between the σ and VPD for the two months are then
explored on the condition that the TWS value is limited to its 50th ~
60th percentile. Analogously, the functional relationships between σ
and TWS and Tamin for each double month are investigated when the
VPD is restricted to the 50th ~ 60th percentiles. The above statistical
processes are implemented in R the platform (version 4.3.0).

R2 =

∑n

i=1
(vmi − vo)2

∑n

i=1
(voi − vo)2

(12)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(voi − vmi)2

n

√
√
√
√
√

(13)

MAE =

∑n

i=1

⃒
⃒
⃒
⃒voi − vmi

⃒
⃒
⃒
⃒

n
(14)

RPE =
RMSE
vo

(15)

Bias =

∑n

i=1
vmi − voi

n
(16)

where vo and vm are the observed values and simulated values, respec-
tively. Where i and n represent the ordinal value, and size of the
resample, respectively.

3.6. Global GPP simulations from 2002 to 2020

Currently, a spatial resolution of 0.05 × 0.05◦ is widely used in
numerous global or regional carbon cycle studies (Bi et al., 2022; Chen
et al., 2021; Li and Xiao, 2019). Additionally, this spatial resolution is at
a medium level among all the inputs in the study, realizing a perfect
balance between the estimated accuracy and computational efficiency.
Hence, this study simulated global GPP, GPPsu, and GPPsh with a spatial
resolution of 0.05 × 0.05◦ from 2002 to 2020 on the TL-CRF model
driven by various environmental variables including SSF, LAI, LC, TWS,
VPD, Tamin, Ts, Ws, Tamax, FCA, St, Sn, Elev, Sd, Sy, SOC, and P, which
have different data sources leading to different spatial resolutions and
geographic coordinate systems. Therefore, the spatial data of these
variables must be unified to the same geographic projection (WGS84)
and resampled to the same spatial resolution of 0.05× 0.05◦. The LCwas
resampled to 0.05◦ × 0.05◦ via the nearest neighbor technique in ArcGIS
(version 10.6.0). Additionally, we used the modified cosine interpola-
tion function (Zhao et al., 2006) to spatially interpolate Elev, LAI,
meteorological variables (temperature, precipitation, etc.), and soil
properties (soil organic carbon, soil silt, etc.) into 0.05◦ × 0.05◦, which
was implemented in MATLAB (R2020a). The modified cosine function
improves the accuracy of the meteorological inputs. In theory, meteo-
rological variables from one edge to adjacent edges are impossible to
abruptly change. These global spatial data are aggregated on an eight-
day scale. This study explores the seasonal changes and spatial
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patterns of global GPP, GPPsu, and GPPsh.

4. Results

4.1. Contribution of the seasonal CI to global GPP estimation

The uncertainties in global GPP estimation are reduced by the TL-
CLUE model, with lower RMSE, bias, and Rbias values (Table 1).
Compared with the TL-LUE model, the Rbias in the TL-CLUE model is
reduced by approximately 9.2 % for the NH with three Ωs, 4.6 % for
Trop with one Ω, and 11.1 % for SH with three Ωs (Table 1), which can
be attributed to the fact that three Ωs from different seasons more
accurately reflect the seasonal changes in the vegetation canopy during
different leaf growth stages. The bias of GPP estimation in the TL-CLUE
model is lower than that in the TL-LUE model in the NH, with the pre-
dicted values aligning more closely with the observed values. The RMSE
of the TL-CLUE model is approximately 1.2–1.6 g C m− 2 d− 1 for DNF,
OSH, SAV, and CSH, 2.3–3.1 g C m− 2 d− 1 for WSA, ENF, GRA, and WET,
and 3.8–4.5 g Cm− 2 d− 1 for CRO, MF, EBF, and DBF in the NH (Table 1),
with the maximum occurring in DBF and the minimum occurring in
DNF. There are differences in the reduction in uncertainties in GPP
estimation among various vegetation types. Overall, the global GPP
estimation is improved by approximately 8.3 % (Rbias) in the TL-CLUE
model when three Ωs from three leaf growth stages are incorporated.

Compared with that of the TL-LUE model, the regression line in the
TL-CLUE model is closer to the 1:1 theoretical line in the Northern
Hemisphere, Tropics, and Southern Hemisphere (Fig. 1). Compared with
that of the TL-LUE model, the RMSE of the TL-CLUE model is reduced by
approximately 8.6 % for NH, 6 % for Trop, and 10.1 % for SH (Fig. 1),
indicating that the fluctuation in GPP estimation can be mitigated by
accounting for seasonal differences in CI. The bias in the TL-CLUEmodel
is approximately 0.28 g C m− 2 d− 1 lower than that in the TL-LUE model,
and the slope is also closer to 1 (Fig. 1). The uncertainties of the global

eight-day GPP estimation are reduced in the TL-CLUE model by incor-
porating the seasonal differences in the CI.

4.2. Seasonal cycles of σ and its estimation evaluations

4.2.1. Mean seasonal cycles of eight-day σ
σ exhibited obvious seasonal changes that were greater in the leaf-on

season than the leaf-off season, particularly for arbor vegetation such as
DNF, ENF, MF, and DBF (Fig. 2). Notably, there is great uncertainty in
the σ value measured by the SD for various vegetation types (Fig. 2).
Compared with ENF, DBF, MF, and DNF, there is a frequent partial
fluctuation in the entire seasonal cycle of σ in OSH, CSH, WSA, and SAV,
although the range of σ is narrower. Similar seasonal magnitudes and
cycles of σ are observed for WSA and SAV (Fig, 2). In the leaf-off season,
the σ with uncertainty is approximately 0.18–0.23 (0.25) for MF and
ENF; 0.28–0.32 (0.15–0.26) for CRO, DBF, and SAV; 0.34 (0.28–0.43)
for CSH, GRA, and WET; and 0.43–0.68 (0.19–0.28) for EBF, OSH, CSH
and WSA (Fig. 2). The differences in the σ between the leaf-off season
and leaf-on season are approximately 0.55 for DBF, 0.56 for ENF, 0.60
for MF, 0.13 for OSH, 0.45 for CRO, 0.31 for GRA, 0.01 for WSA, 0.34 for
SAV, 0.33 for WET, 0.21 for EBF, and 0.36 for CSH (Fig. 2), which in-
dicates that there is a significant seasonal difference in the σ for most
vegetation types. Additionally, in the leaf-on season, the σ with the
corresponding uncertainty is approximately 0.84 (0.13) for DBF, 0.74
(0.17) for ENF, 0.82 (0.11) for MF, 0.62 (0.25) for OSH, 0.77 (0.28) for
CRO, 0.66 (0.23) for GRA, 0.57 (0.22) for WSA, 0.62 (0.14) for SAV,
0.67 (0.29) for WET, 0.89 (0.09) for EBF, 0.80 (0.18) for CSH and 0.67
(0.11) for DNF (Fig. 2). The results show great uncertainty in σ, which
likely leads to a large error in the GPP estimation in the TL-CLUE model.

4.2.2. Accuracy of σ estimated via the RF algorithm
The RF model notably improves the precision of the σ estimation,

which is particularly evident under the 14EV setting. Comparative

Table 1
Comparison of eight-day GPP estimation between the TL-CLUE and TL-LUE models for different vegetation types in the NH, Trop, and SH, respectively. The TL-CLUE
model improves the overall accuracy of the GPP estimation by approximately 9.18 for NH, 4.61 for Trop, and 11.07 % (Rbias) for SH by incorporating the seasonal
differences in CI.

Region IGBP TL-CLUE TL-LUE Difference

RMSE Bias Rbias (%) RMSE Bias Rbias RMSE Bias Rbias

NH CRO 3.79 1.13 29.67 4.03 1.48 38.78 − 0.24 − 0.35 − 9.11
DBF 4.49 2.52 58.88 4.87 2.85 66.71 − 0.38 − 0.33 − 7.83
ENF 2.86 0.83 21.97 3.16 1.07 28.45 − 0.30 − 0.24 − 6.48
MF 3.82 1.56 39.05 4.12 1.81 45.40 − 0.30 − 0.25 − 6.34
GRA 3.12 1.21 43.95 3.48 1.50 54.31 − 0.36 − 0.29 − 10.35
OSH 1.26 0.38 40.70 1.37 0.43 46.21 − 0.11 − 0.05 − 5.50
WSA 2.27 1.47 85.92 2.64 1.76 103.21 − 0.38 − 0.29 − 17.29
SAV 1.35 0.84 56.06 1.56 1.00 66.27 − 0.20 − 0.15 − 10.21
CSH 1.61 0.06 2.43 1.73 0.22 9.03 − 0.12 − 0.16 − 6.59
WET 3.57 1.75 61.80 3.96 2.08 73.61 − 0.39 − 0.33 − 11.82
EBF 4.17 2.53 59.76 4.96 3.21 75.72 − 0.79 − 0.68 − 15.95
DNF 1.21 0.72 30.83 1.26 0.78 33.47 − 0.05 − 0.06 − 2.64
All 2.79 1.25 44.25 3.10 1.52 53.43 − 0.30 − 0.27 − 9.18

Trop DBF 1.74 0.96 21.40 1.93 1.19 26.77 − 0.19 − 0.24 − 5.36
ENF 1.96 0.73 21.20 2.21 1.07 30.87 − 0.25 − 0.33 − 9.68
GRA 2.40 1.75 56.51 2.58 1.91 61.70 − 0.18 − 0.16 − 5.19
WSA 2.99 2.34 42.75 3.26 2.66 48.49 − 0.27 − 0.31 − 5.73
SAV 2.44 1.55 51.73 2.60 1.72 57.32 − 0.16 − 0.17 − 5.59
CSH 1.84 0.33 6.53 1.86 0.39 7.53 − 0.02 − 0.05 − 1.00
WET 6.61 0.76 10.17 6.74 0.96 12.93 − 0.12 − 0.21 − 2.76
EBF 5.87 5.20 63.10 6.23 5.61 68.09 − 0.36 − 0.41 − 4.99
DNF 1.27 − 0.66 − 25.16 1.25 − 0.63 − 23.98 0.02 − 0.03 − 1.18
All 3.01 1.44 27.58 3.18 1.65 32.19 − 0.17 − 0.21 − 4.61

SH MF 5.53 − 4.99 − 63.63 5.37 − 4.82 − 61.45 0.16 − 0.17 − 2.18
GRA 2.51 1.74 71.39 2.75 1.96 80.08 − 0.24 − 0.21 − 8.68
WSA 3.06 2.56 82.12 3.41 2.78 89.34 − 0.35 − 0.22 − 7.22
SAV 1.99 1.71 128.31 2.38 2.05 154.15 − 0.39 − 0.34 − 25.84
WET 2.93 2.16 111.80 3.29 2.45 126.95 − 0.36 − 0.29 − 15.15
EBF 5.03 2.80 37.80 5.65 3.34 45.17 − 0.62 − 0.54 − 7.37
All 3.51 1.00 61.30 3.81 1.29 72.37 − 0.30 − 0.30 − 11.07
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Fig. 1. Consistency between the GPP observations and GPP estimations in the TL-CLUE (a1− a4) and TL-LUE (b1− b4) models in the NH (a1, b1), Trop (a2, b2), SH
(a3, b3), and global (a4, b4)regions. The blue line is a linear regression line and the black line represents the 1:1 theoretical line.
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analysis reveals that the overall RMSE and RPE for the 2EV scenario are
approximately 32.4 and 33.8 % lower than those for the 2AV scenario
(Fig. 3), indicating that the RF model can capture nonlinear mutual
relationships among environmental factors, surpassing the simple ana-
lytic formula employed in the LUE models. Furthermore, the overall
value of R2 demonstrates a hierarchical trend across the different
explanatory variable scenarios, with the highest value observed for
14EV, followed by 4EV, and the lowest for 2EV. Correspondingly, the
overall RMSE and RPE exhibit an inverse rank, with the lowest values
recorded for 14EV, followed by 4EV, and the highest for 2EV (Fig. 3).
These findings affirm that incorporating more environmental stress
factors refines σ estimations, facilitated by the RF algorithm. Comparing
14EV to 4EV, a notable improvement is observed, with the overall R2

being approximately 16.4 % higher and the overall RMSE and RPE being
approximately 11.8 % and 14.8 % lower, respectively. However, the
computational efficiency of the 4EV outperforms that of the 14EV.
Additionally, the RPE varies across vegetation types, ranging from
approximately 1.5 to 27 % for different vegetation types. Notably, the
lowest RPE was observed in DNF, whereas the highest RPE occured in
CRO (Fig. 3).

4.3. Validation of GPP estimation against sites

4.3.1. Accuracy of GPP estimation in different models
The performance of the TL-CRF model surpasses that of the TL-CLUE

model, as evidenced by significantly lower RMSE and MAE values, along
with a higher R2, indicating that global GPP estimation is improved by
integrating multiple environmental factors via the RF technique. Spe-
cifically, the RMSE and MAE of 2EV are approximately 40.4 and 43.4 %
lower than those of 2AV (Fig. 4), respectively, underscoring the ad-
vantages of the RF algorithm in capturing the complex interactions
among various driving variables. Furthermore, compared with the 2EV
scenario, the inclusion of additional explanatory variables (4EV and
14EV) leads to remarkable improvements. The R2 values increase by
approximately 9 % and 13 % for 4EV and 14EV, respectively, whereas
the RMSE decreases by approximately 18 % and 28% (Fig. 4), indicating
improved global GPP estimations with the increasing explanatory vari-
ables. Notably, the 14EV scenario results in a 0.03 higher R2 than the
4EV scenario does, with approximately 12 % lower RMSE and MAE
values (Fig. 4), further confirming the efficacy of integrating a broader
range of explanatory variables. Moreover, variations in GPP estimation

Fig. 2. Global changes (black points) in the eight-day σ for different vegetation types over 2002–2020 based on analysis data from study sites located in the Northern
Hemisphere; the grey bar represents the σ uncertainty measured by the standard deviation (SD). There is great seasonal variation in σ, particularly for ENF, DNF, EBF,
and MF. However, its uncertainty cannot be ignored, which most likely threatens the global GPP estimation in the TL-LUE model.
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accuracy across different vegetation types can be observed (Fig. 4). In
the TL-CRF model driven by 14EV, the R2 values range from approxi-
mately 0.77 to 0.94, with the highest R2 observed in DBF and the lowest
in CRO (Fig. 4). Correspondingly, the MAEs vary across vegetation
types, with the lowest values observed in OSH and the highest in CRO
(Fig. 4). Compared with those of the TL-CRF model driven by 14EV and
the TL-CLUE model, the R2 values are increased by approximately 20 %
~47 %, whereas both the RMSE and MAE are reduced by approximately
43 %~88 % across different vegetation types (Fig. 4). These findings
highlight the significant reduction in uncertainties in GPP estimation
through the integration of numerous environmental factors the RF
model.

4.3.2. Consistency of GPP estimations with GPP observations
The GPP estimated by the TL-CRF model is greater than that esti-

mated by the TL-CLUEmodel, which is consistent with the observed GPP
for eight-day, monthly, and yearly values and for the eight-day average
values with respect to the monthly values (Fig. 5). The R2 of the TL-CRF
model is approximately 0.9 for eight-day scales, 0.91 for month scales,
and 0.92 for year scales, demonstrating a gradual increase with
increasing time scale for the correlation between the GPP estimation in
the TL-CRF model and the observed GPP (Fig. 5). In terms of bias, the
RMSE of the TL-CRF model (0.43 g C m− 2 d− 1) is lower than that of the
TL-CLUEmodel (0.59 g Cm− 2 d− 1) (Fig. 5). Additionally, the correlation
of the eight-day GPP estimation anomaly with the GPP observation
anomaly is notably greater in the TL-CRF model (R2 = 0.45) than that in
the TL-CLUE model (R2 = 0.34) (Fig. 5).

Fig. 3. Comparison of the σ estimation in the TL-CLUE model driven by two environmental stress factors (VPD and Tamin) via the analytic formula (2AV), two
explanatory factors (VPD and Tamin) (2EV), four main explanatory factors (TWS, Tamin, Ts, and VPD) (4EV), and fourteen explanatory factors (14EV) via the RF model
for different vegetation types. The σ estimation based on 2EV is significantly more precise than that based on 2AV, which might be attributed to the fact that the RF
technique can capture the complex nonlinear relationships between VPD and Tamin as opposed to the analytic formula employed in the TL-LUE model. Moreover,
increasing the number of explanatory variables in the RF model leads to the high accuracy of σ estimation.

Fig. 4. Comparison of the eight-day GPP estimation among the four scenarios of integrations of environmental stress factors for different vegetation types; its legend
is the same as that in Fig. 3.
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Fig. 5. Comparison of the consistency of the observed GPP and GPP estimated by the TL-CRF (a1− a4), and TL-CLUE (b1− b4) models on the eight-day (a1, b1),
monthly (a2, b2), and annual (a3, b3) scales, and eight-day anomalies (a4, b4). Compared with the regression line (blue solid line) of the TL-CLUE model, that of the
TL-CRF model is closer to the 1:1 theoretical line represented by the black solid line, regardless of the eight-day, monthly, and annual scales.
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4.4. Effects of the environmental variables on σ

4.4.1. The relative importance of the explanatory variables to σ
The relative importance of environmental stress factors to the σ can

be categorized into four ties: ranging from approximately 35 to 50 % for
TWS, Tamin, Ts, and VPD, 29 % for Tamax andWs, ranging from 20 to 24%
for St, Elev, Sd, Sy, Sn, SOC and FCA, and 17 % for P (Fig. 6). TWS with a
relative importance of 49.55 %, was the most influential environmental
factor (Fig. 6), implying its significant impact on vegetation photosyn-
thesis.. Notably, Tamin with a relative importance of 41 %, stands out as
the most essential temperature stress factor for εmax relative to Ts and
Tamax (Fig. 6). In contrast, soil properties exhibit lower significance than
do meteorological factors (Fig. 6), with soil silt emerging as the most
influential soil stress factor. These results underscore the considerable
necessity of incorporating TWS and Tamin into LUE models as they serve
as better indicators of water and temperature, respectively, thereby
improving σ estimation.

4.4.2. Functional relationships between σ and meteorological factors
To distinctly illustrate the functional connections between GPP and

three meteorological factors, VPD, TWS, and Tamin, the study used point
density to weaken the interference of some abnormal points to accen-
tuate the dominant curve shape. Fig. 7 shows that the respective func-
tional response of σ to VPD, TWS, and Tamin is clearly and slightly
differed across the three analyzed growth periods (Fig. 7), despite the
possible changes caused by the intrinsic ecosystem properties. As shown
in the data with relatively high point density in Fig. 7a, b, c, the func-
tional relationships between the σ and VPD show a strong and negative
correlation, particularly at the growth peak (June–July). The functional
response of σ to TWS follows the expected increase in σ with TWS but a
sudden turning point might be due to occasional extreme weather
events. The functional response of σ to Tamin can be expressed by the bell
curve (Fig. 7), which is in line with the current knowledge. There is an
optimal value for the minimum air temperature.

4.5. Spatial and temporal patterns of global GPP, GPPsu, and GPPsh

The annual global GPP exhibited considerable spatial heterogeneity
from 2002 to 2020 (Fig. 8). Regions with low annual GPP values, less
than 500 g C m− 2 a− 1, are predominantly observed in most Australia,
southern South America, central Asia, and northern China at 65◦N. In-
termediate annual GPP values (1000–2000 g C m− 2 a− 1) are found in
belt regions between 45 and 60◦N (Fig. 8). Conversely, high annual GPP,
ranging from 2500 to 4000 g C m− 2 a− 1, is primarily concentrated in the
Amazon, Congo Basin, northern regions of South America, Middle Af-
rica, Southeast Asia, the U.S. corn belt, and western Europe (Fig. 8).
During summer, spatial GPP patterns mirror those of the annual GPP,
despite substantially lower magnitudes, ranging from 1500 to 2000 g C
m− 2 a− 1 (Fig. 8). The spatial patterns and magnitudes of GPP in spring
are analogous to those in fall. However, during winter, the GPP is near
0 across much of the northern hemisphere. Additionally, these results
also revealed significant seasonal differences in global GPP.

Irrespective of season, the spatial patterns of both GPPsh and GPPsu
(Fig. 9) closely resemble those of the GPP (Fig. 8). The GPPsh tends to
surpass the GPPsu near the equator and in the regions between 45 and
60◦N (Fig. 9). The annual GPPsh exceeds the GPPsu by approximately
500 g C m− 2 a− 1. Both GPPsh and GPPsu exhibit the highest values in
summer, followed by those in fall and spring, and the lowest values
occur in winter (Fig. 9). Regardless of the season, the contribution of
GPPsh to the total GPP was greater than that of GPPsu to total GPP. An
increase in the LAI and diffuse solar radiation would lead to high GPPsh,
thereby increasing GPP. Therefore, the GPP, GPPsu, and GPPsh datasets
provided by this study could be employed to explore the differences and
connections in GPP between sunlit and shaded leaves, and further study
the internal mechanisms of different carbon assimilation processes.

5. Discussions

Our study is novel in that it compiles a fresh global GPP dataset of
sunlit and shaded leaves via various environmental stress factors and
seasonal changes in canopy structure and investigates the respective
photosynthetic roles of these environmental variables. The results
demonstrate that the TL-CRF model (R2 = 0.87, RMSE = 0.94, MAE =

0.61 g C m− 2 d− 1) significantly outperforms the TL-LUE model (R2 =

0.76, RMSE = 2.18, MAE = 1.5 g C m− 2 d− 1) (Fig. 4). This hybrid model
uses qualitative hypotheses and respects physical principles, allowing
the TL-CRF model to harness the advantages of both process-based and
data-driven approaches. To further evaluate the accuracy of GPP esti-
mation in the TL-CRF model, it is crucial to compare it with other
published GPP products, which is essential for assessing global or
regional vegetation productivity.

Unlike the linear analytic formula in the TL-LUEmodel, the RFmodel
improves the global GPP estimation by capturing nonlinear relation-
ships between VPD and Tamin (Fig. 4), which may be linked to the
various parameterization strategies and structures of the model and
environmental gradients (Pastorello et al., 2020b). The relationship
between the target variable and driven variables in the ML model is
determined mainly by data statistics rather than by imperfect assump-
tions. The TL-CRF model rarely assumes that the GPP is positive and that
σ ranges from 0 to 1. In contrast to the analytic formula of the TL-LUE
model, the RF model has few established connections between the aim
variable and driven variables, which is robust to this incomplete or
incorrect formula. These traits of the ML are suitable forresearch
because the response patterns of vegetation physiological processes to
environmental factors vary with vegetation type and element. A typical
example is the stress effect of complex environmental factors on
photosynthetic capacity.

Although the RF model is known for its robustness and excellent
ability to address complex relationships, the computational complexity
of evaluating predictor combinations likely becoming a limiting factor,
particularly when working with large ecological datasets. In the

Fig. 6. The relative importance of the explanatory variables to σ is determined
via the RF algorithm. TWS is the most important environmental factor and has a
strong influence on vegetation photosynthesis.
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ecological community, to capture complex environmental gradients and
temporal changes, datasets are generally large and contain many envi-
ronmental variables (Cutler et al., 2007), which leads to high compu-
tational costs. Additionally, an increase in the number of decision trees
generally improves the accuracy of the model but also increases the
computational time. The RF model can utilize parallel processing to
significantly reduce the training time of the model. Each tree in the RF
model can be individually constructed. Moreover, the computational
efficiency can also be improved by some optimizing tools and library
functions such as the “randomFroest” package in the R platform.

The incorporating of more driving variables leads to more accurate
global GPP estimation in the TL-CRF model. Regardless of magnitude or
trend, our results are more consistent with the GPP observations, which
can be attributed to the fact that the ML algorithm can detect the explicit
or implicit features related to photosynthesis from many driven vari-
ables, which can hardly be modeled physically. The physical formula
generally requires the clear role of a single variable in an ecosystem and
its quantitative relationship with the aim variable. Additionally, GPP is
closely related to vegetation type (Xu et al., 2019), climate factors

(Wang et al., 2018b, 2020; Baldocchi, 2020), and soil moisture (Stocker
et al., 2019). These are incorporated in the study, which provides the TL-
CRF model with rich helpful information to improve global GPP esti-
mation. Different vegetation types and characteristics influence the
proportional contributions of biological and abiotic factors to water use
efficiency (Zhao et al., 2021). For example, precipitation during the
growing season is a significant factor for GPP in different regions of the
Mongolian Plateau (Ding et al., 2024), even though TWSwas found to be
more influential on a global scale.

Most carbon cycle models based on traditional water indices such as
precipitation, drought indices, and soil moisture most likely underesti-
mate the response of vegetation to drought (Humphrey et al., 2018).
This study reveals that TWS is the most important environmental factor
(Fig. 6). TWS integrates all water fluxes, regulating exchanges among
different Earth system components (Tapley et al., 2019), and offers a
thorough assessment of drought conditions (Zhao et al., 2017).
Furthermore, changes in TWS are closely related to variations in
droughts, floods, and global sea levels (Scanlon et al., 2018; Wang et al.,
2018a). Therefore, TWS is a more adaptive water indicator than soil

Fig. 7. Univariate ecosystem functional relationships between σ and VPD (hPa, a–c), TWS (mm, d–f), and Tamin (◦C, g–i) based on the global EC site data for each two
months of the growing season. The analysis data are classified into ten bins on the basis of σ and three meteorological factors. The red dots represent the means of
each corresponding bin, the yellow lines represent the mean fluctuations measured by the standard deviation (SD), the gradient purple dots represent the distri-
butions of site-specific raw data by point density, and the red lines represent the functional relationships between the σ and three meteorological factors.
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moisture in reflecting the ecological response of vegetation photosyn-
thesis to changes in water. The MERRA-2 product used in the study
provides a global gridded TWS estimation by combining multiple ob-
servations from the ground, airplane, and satellite with models (Gelaro
et al., 2017). The TL-CRF model could detect the feedback of the water
cycle on changes in the ecosystem since it also uses the MERRA-2 TWS as
input in this study.

Indeed, the quality of site data may be one of the main sources of
uncertainty in the hybrid model that needs to be addressed. The
observation radius of an EC tower generally ranges from hundreds of
meters to kilometers, leading to variability in the carbon footprint. EC
towers measure gas flux between the land and atmosphere by detecting
turbulence generally driven by wind speed. This study indirectly con-
siders the effect of footprint variability on flux observations by using
wind speed as an input. However, the uncertainty caused by the carbon
footprint remains a significant concern. Additionally, inaccuracies in
flux data processing, such as imperfect GPP separation methods and
incomplete gap-filling algorithms (Moffat et al., 2007), can affect the
training and evaluation of the ML model (Jung et al., 2020). The EC flux
data used in this study were processed through a standard and
comprehensive data processing pipeline, ensuring their reliability for
the training model. Moreover, the distribution and density of sites pose a
challenge to the accuracy of the hybrid model. In this study, 267 EC sites
from the FLUXNET2015 and Ameriflux datasets were used to construct
the TL-CRF model, reducing the uncertainty caused by insufficient site
numbers, particularly in Europe and North America where site obser-
vations are intensive. Therefore, increasing the number of EC sites and
improving data quality in ecologically sensitive regions, such as the
Qinghai–Tibet Plateau and the Amazon rainforest, are fundamental for
further studies of the carbon cycle and its response to environmental
changes.

To estimate the global seasonal differences in the CI, the one-year
leaf life cycle is divided into three periods, namely, the leaf-off, leaf-
scattered, and leaf-gathered seasons, according to the four phenological
thresholds of the MODIS LSP product, which are calculated via the
nnhanced vegetation index 2 (EVI2). EVI2 is widely used to evaluate and

monitor vegetation growth and health, particularly for phenological
occurrences. However, variations in vegetation structure are not
immediately detected by relative vegetation indices. Generally, the in-
crease in leaf greenness, represented by the chlorophyll concentration,
lags behind the changes in canopy structure (Li et al., 2022). Therefore,
MidGreenup was selected as the start date of the leaf-gathering season in
this study instead of Maturity from the MODIS LSP product.

Although we selected high-quality MODIS CI data inverted by the
hotspot-adjusted model with a backup algorithm (Jiao et al., 2018), CI
data retrieved from remote sensing directional observations tend to
remain uncertain. First, insufficient BRDF information, particularly for
the reconstructed BRDF information, can affect the inversion of key land
surface parameters such as CI because of viewing angles. Second, CI
retrieval from remote sensing data is influenced by reflectance under-
estimation in hotspot regions (Dong et al., 2015), whereas the hotspot
effect has already been more accurately reconstructed by the optimized
kernel-driven RossThick-LiSparseReciprocal BRDF model (RTLSRJ)
(Jiao et al., 2018), which improves the geometric–optical kernel and
combines it with hotspot adjustment of the volumetric kernel (Jiao et al.,
2016). Additionally, CI product uncertainty could also be caused by
heterogeneous pixels and short-term fluctuations, which are not elabo-
rated in this study due to space limitations. Hence, future work should
be undertaken to develop an advanced CI product to promote further
understanding of the structure and temporal changes in global vegeta-
tion (Wei et al., 2019). Considering the seasonal differences in CI re-
duces the overestimation of the eight-day global GPP estimation by
approximately 8.3 %. However, the potential information on the sea-
sonal CI likely does not play a remarkable role in the integration process
of the seasonal variation in multiple environmental factors based on the
RF algorithm.

This study improves global GPP estimation by incorporating multiple
environmental stress factors. Nevertheless, vegetation photosynthesis is
also disturbed by accidental processes such as wildfires and abrupt
permafrost thaw. These emergencies are not currently included in most
land surface process models. Additionally, a hybrid model generally
requires enormous datasets as inputs to drive. Recently, although

Fig. 8. Spatial patterns of global GPP in spring (a), summer (b), fall (c), winter (d), and year (e) from 2002 to 2020.
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remote sensing observations have accumulated abundant continuous
large-scale datasets, it is necessary to coordinate these data from
different resources before inputting them into the model. Hence, there is
an urgent need to improve the temporal and spatial resolutions of
datasets, which are essential for estimating the carbon cycle and
capturing irregular variations in transition areas, particularly for mixed
vegetation. The development of data assimilation techniques (Khaki
et al., 2020; Huang et al., 2024) and spatial interpolation methods
(Zakeri and Mariethoz, 2021; Hu et al., 2019) could help overcome this
challenge. A big data frame algorithm also facilitates the processing of
plentiful remote sensing data in cloud-computing platforms such as the
Google Earth Engine (GEE) (Sun et al., 2019). Moreover, computing
power is another limiting factor for hybrid models. With improvements
in computing power and algorithm optimization such as parallel pro-
cessing and cloud-computing, significant progress has been made in
terms of computing power.

The TL-CRF model provides a new pathway for estimating global or
regional GPP, even other key ecological indicators. From a methodo-
logical perspective, the TL-CRF model is an example of basic hybrid

modeling that couples a machine learning technique with a process-
based model (Reichstein et al., 2019). The TL-CRF model enhances the
flexibility in modeling diverse ecosystems and climate conditions, which
improves the applicability of hybrid models in diverse environmental
scenarios. It is also essential for ML from only diagnostic applications to
geographical process predictions, to support research on climate change
and the development of mitigation strategies (Reichstein et al., 2019).
The GPP products generated in this study would be highly interesting for
the precise management of agriculture and forests and for climate
change mitigation. Some new vegetation indices that have emerged in
recent decades are expected to advance the study of vegetation pro-
ductivity. For example, the long-term GPP dataset based on near-
infrared reflectance of terrestrial vegetation (NIRv) better captured
seasonal and interannual changes in terrestrial GPP (Wang et al., 2021).
Recently, the increase in data flow from Earth observation systems and
the accessibility and availability of powerful artificial intelligence tools,
particularly within the ML community, have promoted numerous in-
novations and developments to overcome current shortcomings in Earth
system models (Irrgang et al., 2021).

Fig. 9. Comparison of spatial characteristics of global GPPsh and GPPsu based on the TL-CRF model for different seasons from 2002 to 2020.
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6. Conclusions

The goal of this study was to improve global GPP estimation by
embedding the RF submodule into the TL-LUE model. Before various
environmental stress factors are integrated, the seasonal variations in
canopy structure are considered by averaging the CIs. The main results
are as follows:

(1) The TL-CRF model outperforms the TL-CLUE model, showing
superior performance (ΔR

2 = 0.11, ΔRMSE = − 1.24, ΔMAE = − 0.89
g C m− 2 d− 1) and greater consistency with GPP observations at
eight-day (R2 = 0.9), monthly (R2 = 0.91), and annual (R2 =

0.92) scales.
(2) TWS was found to be the most important water stress factor,

suggesting that TWS has greater potential to reflect the con-
straints of water content on vegetation photosynthesis. This
highlights the necessity of incorporating TWS into LUE models.

(3) Analysis of the functional relationships confirmed that there is an
optimal value of air temperature for vegetation photosynthesis,
particularly at peak growth.

(4) This study simulated the global GPP, GPPsu, and GPPsh from 2002
to 2020 via the TL-CRF model, which exhibited significant spatial
heterogeneity and seasonal variation. The annual GPPsu was
approximately 500 g C m− 2 a− 1 lower than the annual GPPsh.

This study provides potential as an ecological and environmental
basis for mitigating global warming and managing ecosystems. There
are few constant patterns in the functional response of vegetation
photosynthesis to environmental factors in terrestrial ecosystems. The
comprehensive control of photosynthesis intensity by environmental
stress factors is crucial for the assessment of large-scale carbon ex-
change. Despite these encouraging results, future work is needed to
further examine the accuracy of GPP estimation by comparing it with
other published GPP products such as MODIS GPP. With intelligent
remote sensing coming, future work should be undertaken to intelli-
gently retrieve carbon cycle parameters by automatically selecting the
main driven data from multisource remote sensing big data on the basis
of multiscale synthesis observations of satellites, airplanes, and fields.
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