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ABSTRACT 
 

The diameter of roots is crucial to study the geometric 
characteristics of subsurface root structure. Due to the 
invisibility of the underground root system, its diameter 
parameters are also difficult to obtain directly. Therefore, 
estimating the diameter based on ground-penetrating radar B-
Scan images is challenging. In this study, CycleGAN-guided 
multi-objective integration neural network (CMI-Net) was 
constructed to simultaneously extract root diameter and 
location. The CMI-Net includes two sub-networks: 
CycleGAN and YOLOv4-Hyperbolic Position and Diameter 
(YOLOv4-HPD). The former ensures that the YOLOv4-HPD 
model, trained on the simulated datasets, can be used in the 
field environment. The latter can accurately identify the root 
objects and estimate the root diameter. The performance of 
the model was evaluated using simulated test dataset and field 
control experimental dataset. The model’s availability in 
estimating root diameter was demonstrated by the 
experimental results. 
 

Index Terms— Root diameter estimation, CycleGAN, 
YOLOv4-HPD, GPR 
 

1. INTRODUCTION 
 

Plant roots can improve their adaptability to the 
subsurface soil environment by adjusting root size, root 
biomass, and root length [1]. Root diameter, among these 
factors, is crucial for studying the geometric characteristics 
of subsurface root structure [2]. However, obtaining root 
diameter information under field conditions is difficult 
because field investigations are often destructive, laborious, 
and time-consuming [3]. Ground Penetrating Radar (GPR) 
has been successfully used as a tool for nondestructive 
detection of plant roots to estimate root diameter parameters 
[4]. 

Previous studies merged the raw GPR data into a 
mathematical model of hyperbolic reflections and then 
calculated the relevant parameters based on the fitted 
hyperbola [5, 6]. However, the shape of the hyperbola is not 
sensitive to the diameter information, and it is not easy to 
estimate the diameter of the subsurface root by hyperbola 

fitting with high accuracy. Hao Liang et al. reported that the 
prediction results of the BP neural network model were more 
stable compared to the least squares regression model [7]. 
However, the method is based entirely on simulated 
experiments, which require further experiments using 
inhomogeneous roots and soils, and the actual dielectric 
constants of roots and soils are not readily available for 
practical field applications. 

The CycleGAN-guided multi-objective integrated neural 
network (CMI-Net) model is proposed in this study to extract 
root information features from simulated GPR images and 
establish their relationship with root diameter, eventually 
being able to estimate both the precise location and diameter 
of root objects simultaneously on a given real-world GPR 
image.  
 

2. MATERIALS AND METHODS 
 
2.1. CMI-Net Model 

The overall network structure of CMI-Net model is 
shown in Fig. 1 and consists of two sub-networks: one is the 
CycleGAN, which is used for domain migration to generate 
the diameter training dataset of roots with complex 
background in the field; The other one is the YOLOv4-HPD 
(YOLOv4-Hyperbolic Position and Diameter) model, which 
is proposed on the basis of YOLOv4 and improved for the 
YOLOv4-Hyperbola model by further expanding the 
prediction head so that it can estimate the diameter parameter 
simultaneously on the foundation of the predicted position. 
 

 
 

Fig. 1. The overall framework of CMI-Net 
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The CycleGAN is a ring network formed by two mirror-
symmetric Generative Adversarial Network (GAN) with two 
generators and two discriminators, divided into forward 
network (source domain X to target domain Y) and reverse 
network (target domain Y to source domain X) [9]. In this 
study, a large number of real root diameter training dataset is 
not available, but a large number of real root dataset with 
unknown diameter information and simulated root dataset 
with known attribute information are available. The domain 
adaptation model is just right for the purpose of training on 
the simulated data and then applying it to the measured data. 

The YOLOv4-HPD is a network used to extract the 
location and diameter parameters of the root target based on 
YOLOv4-Hyperbola [8], as shown in Fig. 2. YOLOv4-HPD 
adds a diameter prediction branch to YOLOv4-Hyperbola 
and redesigns the loss function. The output dimension of 
YOLOv4-HPD becomes 17-D, which includes the location 
information of the root (detection box, hyperbolic vertex, and 
four hyperbolic tail points) and the attribute information of 
the root (diameter). 

 
Fig. 2. YOLOv4-HPD network structure 

 
2.2. Data Description 
 
2.2.1. Field Datasets 

The root diameter validation dataset was collected from 
a single root burial control experiment conducted in the same 
study area. A sample of shrub roots of different diameters, 
relatively straight and of uniform length, was selected as 
shown in Fig. 3b. Tow sand trenches were excavated in a flat 
clearing, each with a length of 3 m and a depth of 0.5 m. The 
holes were drilled in the trench wall on one side of the vertical 
sand trench. Six coarse shrub roots were inserted and a 
hollow was left. Considering the effect of root signal on the 
image, the experiment was divided into two groups, the first 
group of root samples was perpendicular to the horizontal 
ground, and the second group of root samples was at an angle 
of 30° from the ground. The depth of root samples in the first 
group was 0.3 m, and in the second group was 0.2 m. The 
spacing between roots was 0.4 m. After the root samples were 
inserted (as shown in Fig. 3a), the excavated soil was refilled 
and the clearing was releveled. The portable GPR system then 
detected the buried root samples in the subsurface following 
a preset measuring line (horizontal angle of 90° between the 
measuring line and the root samples). There were two 
experimental sand trenches, so four GPR images containing 
the reflected signals from the root samples were used for 
model validation. For the GPR images obtained for root 
detection in the field, the steps of data preprocessing include 
detrending, dewow filtering, background removal, and 

amplitude gain [10], these operations are realized by 
MATGPR software [11]. 

 
Fig. 3. Schematic of the control experimental design.  

 
2.2.2. Synthetic Datasets 

The GprMax V2.0 [12] was used to generate simulated 
dataset of root samples with different diameters for training. 
In this experiment, the size of the geometric domain was set 

to 1.8 m0.5 m and the center frequency of GPR was still set 
to 900 MHz. The diameters of roots were set to 6 gradients, 
10 mm, 14 mm, 18 mm, 22 mm, 26 mm, 30 mm. The 
dielectric constants of roots and soil were set in three groups 
in the experiment where the dielectric constants of roots were 
9.21, 12.01, and 14.81, and the dielectric constants of soil 
were 3.70, 4.90, and 6.50. They were combined two by two 
to produce nine sets of dielectric constant differences. 

Fig. 4. Examples of different root GPR images in two simulated 
scenarios 

 
To enhance the model's learning of the root object's 

diameter information in GPR images, simulation scenarios 
are divided into two categories (as shown in Fig. 4): Class I 
is the same diameter roots placed at different horizontal 
positions and different depths, and the soil dielectric constant 
and root dielectric constant are varied in turn to obtain six sets 
of simulation data; Class II is the different diameter roots 
placed at different horizontal positions and different depths, 
and the soil dielectric constant and root dielectric constant are 
changed in turn to obtain two sets of simulation data. Each 
group simulated 450 images, and a total of 3600 simulated 
GPR root images with different attribute information were 
obtained as training data for the domain adaptation model. 
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2.3. Experimental Setup and Evaluation Metrics 
 

The CMI-Net model experiment setting is generally 
divided into two parts. Firstly, the experimental setup of 
CycleGAN is introduced. A total of 2418 images acquired 
from simulation and field experiments, were chosen as the 
source domain dataset and target domain dataset, respectively. 
The ratio of training, and test datasets is 1:1The batch size is 
2, the initial learning rate is set to 0.0002, and a total of 100 
epochs are trained. Secondly, the experimental setup of 
YOLOv4-HPD is introduced. A total of 3600 generator-
generated image were used. The ratio of training, validation, 
and test datasets is 7:2:1. The batch size was 6, the initial 
learning rate was set to 0.01, and a total of 200 epochs were 
trained. 
 

3. RESULTS AND DISCUSSION 
 
3.1. Results of Domain Adaptation  
 

Different simulated images will generate different real-
word background images under different weight parameters. 
In order to make the YOLOv4-HPD model better applied to 
field measured data, this study uses simulated data as much 
as possible to generate sample images similar to the real 
situation. As shown in Fig. 5, a1-e1 are simulated GPR 
images of roots with different depths, horizontal positions, 
dielectric constants, and diameters, and a2-e2 are samples 
with different backgrounds generated by the trained 
CycleGAN model. 

 
Fig. 5. (a1)-(c1) Original simulation images. (a2)-(c2) Domain 

migration results. 
The results show that the shape and opening size of the 

hyperbolic signal are well preserved and successfully 
converted from a homogeneous background to a non-
homogeneous background similar to the measured image. 
The brightness and texture of the images are greatly improved. 
It can be seen that the trained CycleGAN model can generate 
high-quality domain migration images and achieve more 
realistic style migration effects. 
 

3.2. Results of Root Diameter Estimation  
 

The YOLOv4-HPD model was trained with 200 epochs, 
and 360 images were used for model testing, including 270 
images of scenario I and 90 images of scenario II. The trained 
YOLOv4-HPD model localized root objects on 360 test 
images while estimating root diameter parameter. The object 
detection evaluation indexes Precision, Recall, F1, and 
APIoU=0.5 and the keypoint evaluation index APoks=0.5 [13] 
all reached above 0.95 on the test dataset. Fig. 6 shows the 
detection results using YOLOv4-HPD on the test dataset. 
Figs. 6a-f is the image in scenario I, and the real root 
diameters on the image are 10 mm, 14 mm, 18 mm, 22 mm, 
26 mm and 30 mm respectively. Figs. 6g-h is the image in 
scenario II, and the root diameters from left to right in Fig. 6g 
are 10 mm, 18 mm and 26 mm respectively, and the root 
diameters from left to right in Fig. 6h are 14 mm, 22 mm and 
30 mm respectively. It can be seen that YOLOv4-HPD can 
not only accurately identify and locate each hyperbola, but 
also accurately extract root diameter parameters at different 
depths, with the error of about 1 mm. 

 

 
Fig. 6. (a)-(b) Image detection results of scenario I. (c)Image 

detection results of scenario II. 
 
3.3. Model Generalization Verification 
 

The measured data from control experiment are used  to 
validate the generalization performance of the YOLOv4-
HPD model trained on a pseudo-target domain dataset (Y ̂) 
(Fig. 7). As shown in Fig. 7, a total of 19 root signals were 
presented on the GPR images and 56% of the measured root 
samples had absolute diameter errors of less than 2 mm. More 
than half of the root samples had a relative error of less than 
15% in diameter estimation. The YOLOv4-HPD, which is not 
trained on the measured data set, is still applicable on the 
measured data and can achieve high accuracy in locating and 
predicting the root diameter, and it has strong transferability. 

 
4. DISCUSSION 

 
Traditionally, the root diameter is estimated by 

constructing an empirical relationship between the root 
diameter and the amplitude or waveform parameters of the 
radar reflected signal [14, 15]. For example, Cui et al.(2010) 
utilized the electromagnetic  waveform parameter  (∆T) 
manually extracted from the A-Scan data measured by GPR 
as an independent variable to build a linear regression model 
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to estimate the root diameter. The RMSE of the regression 
model on the validation data is 3.53 mm. Whereas the 
maximum RMSE of the root diameter extracted by the CMT-
Net model developed in this study is 1.72mm on the test data, 
and the RMSE estimated for the measured root sample 
diameter is only 3.30mm (Fig.7). Compared with the 
traditional method, the accuracy of the root diameter 
estimation has significantly improved. The construction 
process of these traditional methods varies depending on the 
study area and soil background, and the radar reflection signal 
parameters utilized are also different, resulting in a lack of a 
unified method and process for data pre-processing and root 
diameter extraction. The extraction of radar reflection signal 
parameters mostly relies on manual interpretation, which is 
subjective and needs to be further adjusted and tested in 
practical application. However, the CMT-Net model 
developed in this study can overcome these problems. 

 

 
Fig. 7. Detection results of YOLOv4-HPD on real dataset 

 
5. CONCLUSION 

 
In this study, A novel deep learning model, CMI-Net, 

for root object localization and root diameter extraction on 
GPR B-Scan images was constructed using measured data 
collected by a GPR system with 900 MHz antenna and 
simulated data generated by GprMax V2.0. The CMI-Net 
model was effectively validated on both simulated and 
measured data. The hyperbolic signals reflected from all root 
samples on the measured data were correctly located, and the 
root diameter estimation results showed that 56% of the root 
samples had absolute root diameter errors within 2 mm. 
These results all indicate the applicability of the CMI-Net 
model for accurately locating root locations and estimating 
root diameter parameters in field experiments. This method 
helps to reconstruct the three-dimensional structure of the 
below-ground root system, which in turn helps to analyze the 
correlation between above-ground and below-ground 
characteristics of plants at the regional scale. 
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