
Citation: Wang, J.; Zhang, Q.; Xie, H.;

Chen, Y.; Sun, R. Enhanced

Dual-Channel Model-Based with

Improved Unet++ Network for

Landslide Monitoring and Region

Extraction in Remote Sensing Images.

Remote Sens. 2024, 16, 2990. https://

doi.org/10.3390/rs16162990

Academic Editor: Amin

Beiranvand Pour

Received: 21 June 2024

Revised: 3 August 2024

Accepted: 13 August 2024

Published: 15 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Enhanced Dual-Channel Model-Based with Improved Unet++
Network for Landslide Monitoring and Region Extraction in
Remote Sensing Images
Junxin Wang 1, Qintong Zhang 1, Hao Xie 1 , Yingying Chen 1 and Rui Sun 1,2,*

1 Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
202111079160@mail.bnu.edu.cn (J.W.); qintongz@mail.bnu.edu.cn (Q.Z.);
202111079279@mail.bnu.edu.cn (H.X.); 202111079225@mail.bnu.edu.cn (Y.C.)

2 State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University,
Beijing 100875, China

* Correspondence: sunrui@bnu.edu.cn

Abstract: Landslide disasters pose significant threats to human life and property; therefore, accu-
rate and effective detection and area extraction methods are crucial in environmental monitoring
and disaster management. In our study, we address the critical tasks of landslide detection and
area extraction in remote sensing images using advanced deep learning techniques. For landslide
detection, we propose an enhanced dual-channel model that leverages EfficientNetB7 for feature
extraction and incorporates spatial attention mechanisms (SAMs) to enhance important features.
Additionally, we utilize a deep separable convolutional neural network with a Transformers module
for feature extraction from digital elevation data (DEM). The extracted features are then fused using
a variational autoencoder (VAE) to mine potential features and produce final classification results.
Experimental results demonstrate impressive accuracy rates of 98.92% on the Bijie City landslide
dataset and 94.70% on the Landslide4Sense dataset. For landslide area extraction, we enhance the
traditional Unet++ architecture by incorporating Dilated Convolution to expand the receptive field
and enable multi-scale feature extraction. We further integrate the Transformer and Convolutional
Block Attention Module to enhance feature focus and introduce multi-task learning, including seg-
mentation and edge detection tasks, to efficiently extract and refine landslide areas. Additionally,
conditional random fields (CRFs) are applied for post-processing to refine segmentation boundaries.
Comparative analysis demonstrates the superior performance of our proposed model over traditional
segmentation models such as Unet, Fully Convolutional Network (FCN), and Segnet, as evidenced
by improved metrics: IoU of 0.8631, Dice coefficient of 0.9265, overall accuracy (OA) of 91.53%,
and Cohen’s kappa coefficient of 0.9185 on the Bijie City landslide dataset; and IoU of 0.8217, Dice
coefficient of 0.9021, overall accuracy (OA) of 96.68%, and Cohen’s kappa coefficient of 0.8835 on the
Landslide4Sense dataset. These findings highlight the effectiveness and robustness of our proposed
methodologies in addressing critical challenges in landslide detection and area extraction tasks, with
significant implications for enhancing disaster management and risk assessment efforts in remote
sensing applications.

Keywords: landslide detection; dual-channel model; feature fusion; variational autoencoder;
improving Unet++ model

1. Introduction
1.1. Background and Motivation

Landslide detection and region extraction from remote sensing imagery are imperative
tasks in geospatial analysis, essential for hazard assessment, disaster management, and
environmental conservation [1]. Landslides, characterized by the sudden movement of
soil, rock, and debris down a slope, pose significant threats to human life, infrastructure,
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and ecosystems [2]. Remote sensing technologies offer invaluable tools for monitoring
and assessing landslide occurrences over large spatial scales, enabling timely response and
mitigation efforts.

Landslide susceptibility models can be broadly categorized into heuristic models,
physically based models, statistical models, and machine learning models.

Heuristic models are based on experience and expertise, establishing landslide suscep-
tibility evaluation criteria by analyzing factors such as terrain, geology, and rainfall. For
example, Stanley et al. (2017) used a heuristic fuzzy approach to combine data on slope [3],
faults, geology, forest loss, and road networks to create a global landslide susceptibility
map, which was evaluated using the Global Landslide Catalog developed by NASA.

Physically based models describe the mechanisms and development processes of land-
slides through numerical simulations and physical experiments. Representative physical
models include the finite element method and discrete element method. For example,
Medina et al. (2021) proposed the Fast Shallow Landslide Assessment Model [4], and
Guo et al. developed a Python QGIS plugin named FSLAM to simulate regional landslide
susceptibility [5].

The significance of landslide detection in remote sensing lies in its ability to provide
early warning systems and facilitate risk assessment in landslide-prone areas. Traditional
methods for landslide detection primarily rely on manual interpretation of satellite imagery
or aerial photographs, which are often labor-intensive, time-consuming, and subjective.
Moreover, these methods may lack the spatial resolution and coverage required for com-
prehensive landslide mapping and monitoring.

In recent years, we have witnessed a paradigm shift in landslide detection, with deep
learning techniques, particularly convolutional neural networks (CNNs), emerging as
potent tools for automated and data-driven solutions, as evidenced by pioneering studies
such as the one by Wu and Liu et al. [6]. Advances in CNN architectures, including Visual
Geometry Group (VGG), ResNet, and DenseNet [7,8], along with the incorporation of
attention mechanisms highlighted by Gao et al. [9] and the advent of transfer learning,
have significantly enhanced the accuracy and robustness of landslide detection models,
mitigating data scarcity issues and improving feature extraction capabilities.

Semantic segmentation techniques, pivotal for accurately delineating landslide areas
in remote sensing imagery, have made significant advancements through the integration of
deep learning methodologies, as evidenced by seminal works such as Cheng et al. [10] and
Zhang et al. [11,12], which demonstrate the efficacy of CNNs in pixel-wise classification;
further strides have been made by Wang et al. [13] and Ye et al. [14] in addressing challenges
such as class imbalance and boundary refinement using UNet, SegNet, and their variants,
while recent innovations by Li et al. [15] and Zhou et al. [16] highlight multi-scale feature
fusion and Conditional Random Fields (CRFs) to enhance segmentation accuracy and
mitigate boundary ambiguities.

Despite significant progress, numerous challenges remain in the field of landslide
detection and area extraction from remote sensing data [17,18]. One major issue is the
effective integration of heterogeneous data modalities, such as optical images and digital
elevation models (DEMs), to enhance classification accuracy and robustness. The fusion
of these diverse data sources necessitates complex algorithms capable of handling dif-
ferent resolutions, noise levels, and data formats to extract meaningful information [19].
Additionally, accurately delineating landslide boundaries poses a significant challenge.
Differentiating between landslide and non-landslide areas requires high-resolution seg-
mentation techniques to capture complex spatial variations and subtle texture differences.
Existing segmentation algorithms often struggle with these fine-grained details, resulting
in imprecise boundary definitions and classification errors [13,20–22].
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1.2. Contribution

Addressing the current challenges and limitations of deep learning in the field of
remote sensing, this paper proposes innovative methods for landslide detection and region
extraction, with the main contributions as follows:

(i) Enhanced Dual-Channel Model for Landslide Detection: We developed a novel
model integrating optical imagery and Digital Elevation Model (DEM) data, employing
EfficientNetB7 for image data and a deep separable convolutional neural network with
Transformer modules for DEM data. The model incorporates a spatial attention mech-
anism and a variational autoencoder (VAE) for feature fusion, demonstrating excellent
classification performance across various datasets.

(ii) Improved UNet++ Architecture for Landslide Area Extraction—DCT-Unet++
model: We have innovatively proposed a model named DCT-Unet++. We enhanced the
UNet++ architecture by incorporating Dilated Convolution (‘D’) for multi-scale feature ex-
traction and integrating Channel and Spatial Attention Mechanisms (‘C’) and Transformer
(‘T’). Multi-task learning with segmentation and edge detection, along with Conditional
Random Fields (CRFs) for post-processing, allows our model to outperform traditional
models such as Unet, FCN, and Segnet in various metrics, including IoU, Dice coefficient,
Overall Accuracy, and Cohen’s Kappa coefficient.

By leveraging cutting-edge deep learning techniques, our contributions offer robust so-
lutions to complex landslide analysis challenges, enhancing disaster management strategies
and advancing environmental science and engineering.

In the next section, this paper elaborates on the principles of the two proposed model
architectures: the enhanced dual-channel model for landslide recognition and a DCT-
Unet++ model for landslide area segmentation. The third section details the experimental
design, presenting the performance results of the proposed models compared to more
than ten classic models across three landslide datasets for both recognition and segmen-
tation tasks. The discussion section provides a comprehensive and comparative analysis
of the models’ performance, objectively discussing their strengths and areas for improve-
ment. Finally, the conclusion section summarizes the entire study and highlights several
promising directions for future research. The code related to the experiment is stored at
https://github.com/xinxin2021110/DCT-UNETplusplus, accessed on 12 August 2024.

2. Methodology
2.1. Enhanced Dual-Channel Model

The dual input model constitutes a groundbreaking advancement in the realm of
landslide image detection, harnessing the synergistic potential of optical imagery and
Digital Elevation Model (DEM) data to augment feature extraction and elevate classification
efficiency [23]. The model innovatively employs a Variational Autoencoder (VAE) to
fuse two distinct data modalities (optical images capturing surface attributes and DEM
data) [19].

The architecture of the dual input model manifests as a composite entity comprising
two distinct pathways dedicated to processing image and DEM data independently, cul-
minating in a fusion stage orchestrating the assimilation of gleaned features (As shown
in Figure 1).

https://github.com/xinxin2021110/DCT-UNETplusplus
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Figure 1. Enhanced dual-channel model framework for realizing the landslide image recognition task.

2.1.1. Image Pathway

The image pathway initiates with the deployment of a pre-trained EfficientNetB7
model to elicit high-order features from the optical imagery [24]. This convolutional cas-
cade engenders a hierarchical abstraction of spatial intricacies and visual characteristics
entrenched within the images [25]. Furthermore, the integration of a spatial attention
module bolsters the discernment of salient features pervading the image feature maps,
formulated as follows (as shown in Figure 2):

Spatial Attention = Conv2D
(
1, (1, 1), activation = ‘sigmoid′)(X) (1)

Enhanced Feature = Multiply([X, Spatial Attention]) (2)

where X denotes the input feature map.
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Figure 2. Network architecture diagram of EfficientNetB7 to implement image data characteristics.

2.1.2. DEM Pathway

The DEM pathway is predicated upon a bespoke CNN architecture tailored to the
exigencies of terrain data processing [26]. Herein, separable convolutional layers take
center stage to cull features from the DEM, with a specific focus on delineating terrain
attributes such as slope, elevation, and aspect [27]. Moreover, the infusion of a transformer
block fortifies the DEM pathway with self-attention mechanisms (as shown in Figure 3),
endowing the model with the acumen to discern pertinent spatial relationships intrinsic to
the terrain data, formulated as follows:

Transformer Block Output = TransformerBlock(X) (3)

where X denotes the input feature map.
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2.1.3. Feature Fusion

After extracting features from both image and DEM paths, the features from these two
sources are combined. The combined feature map is then processed using the encoder block
of a variational autoencoder to mine the latent feature vectors. These latent feature vectors
are subsequently input into the classifier of the model to complete the region classification
task. This fusion approach leverages features from both modalities, preserving the inherent
information from each data modality while enhancing the model’s ability to capture the
synergistic correlations between optical and terrain attributes.

The VAE module (as shown in Figure 4) is depicted as follows:

(1) Encoder Module:

At the helm of the feature fusion endeavor lies the encoder module, which can distill
high-dimensional input features into compact latent representations [28,29]. Mathemati-
cally, the encoder module comprises a hierarchical stack of dense layers, culminating in
the computation of latent mean (µ) and log-variance (log

(
σ2)) vectors, encapsulating the

essence of the input feature manifold.

zmean = Dense(x) (4)

zlog (var) = Dense(x) (5)

Here, x represents the input feature tensor.

(2) Latent Space Sampling:

Leveraging the Gaussian reparameterization trick, the latent space sampling mecha-
nism imbues the VAE with stochasticity, facilitating the synthesis of diverse yet semantically
meaningful feature representations. By sampling from a latent space governed by µ and
log

(
σ2), the VAE engenders a diverse repertoire of feature representations conducive to

robust classification performance.

z = µ + exp
(

1
2
· log

(
σ2

))
· ϵ (6)

Here, ϵ signifies a random noise vector sampled from a standard normal distribution.
σ represents the standard deviation of the latent space distribution.
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2.2. Improving the Unet++ Network for Image Region Extraction: DCT-Unet++ Model

To address the challenge of mountain landslide region extraction, we have metic-
ulously crafted a novel image segmentation model (as shown in Figure 5). This model
improves upon the traditional Unet++ architecture by replacing the convolutional kernels
with dilated convolutions, thereby expanding the receptive field and enabling multiscale
feature extraction. Additionally, we integrate the Convolutional Block Attention Module
and Transformer attention mechanisms to enhance the model’s focus on critical features.
As a result, this model is referred to as the DCT-Unet++ model.
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Figure 5. An improved Unet++ network framework for realizing the landslide area segmentation
task—DCT-Unet.

Furthermore, at the top-level output of the decoder, the model employs multitask
learning, including segmentation and edge detection tasks. This efficient approach enables
the effective extraction and further refinement of mountain landslide regions.

2.2.1. Encoder

The encoder module is composed of five convolutional blocks, each integrating dilated
convolutions and CBAM for feature extraction and enhancement [30,31]. Dilated convo-
lutions, with increasing dilation rates, are strategically employed to expand the receptive
field and capture multi-scale contextual information. The CBAM module dynamically
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recalibrates feature maps, emphasizing relevant spatial and channel-wise features. The
encoder can be expressed as:

Encoder =
{

CBAM(1)
d1

◦ DilatedConv(1)
k1

◦ MaxPooling(1), . . . , CBAM(5)
d5

◦ DilatedConv(5)
k5

}
(7)

where CBAM(i)
di

represents the Channel and Spatial Attention Module tailored to each

convolutional block, DilatedConv(i)
ki

signifies dilated convolutions with kernel size ki, and

MaxPooling(i) denotes max-pooling operations following each convolutional block.

2.2.2. Convolutional Blocks

Each block comprises two convolutional layers followed by a CBAM module, enhanc-
ing feature representation and spatial awareness.

After the core of the encoder (Conv Block 5), the Transformer module is inserted
into our model, a sophisticated mechanism for aggregating contextual information and
capturing the long-range dependencies inherent in remote sensing imagery. By integrating
Layer Normalization, MultiHead Attention, and Position-wise Feedforward Networks,
the Transformer block fosters intricate feature interactions and global context awareness.
Mathematically, the Transformer module unfolds as:

Transformer Block = LayerNorm → MultiHeadAttention
→ Residual Connection → LayerNorm
→ Feedforward Network → Residual Connection

(8)

2.2.3. Decoder

The decoder in DCT-Unet++ orchestrates the restoration of spatial resolution and
facilitates feature fusion with encoder layers to refine segmentation accuracy. Employing
a combination of upsampling, concatenation, and convolutional operations, the decoder
reconstructs detailed structures while preserving contextual information. The decoder’s
intricate architecture is encapsulated as:

Decoder =
{

UpSampling(1) ◦ Concat(1) ◦ Conv(1), . . . , UpSampling(4) ◦ Concat(4) ◦ Conv(4)
}

(9)

where UpSampling(i) denotes the upsampling operation, Concat(i) signifies concatenation
with corresponding encoder features, and Conv(i) represents convolutional operations
within each decoder block.

2.2.4. CBAM Modules: Feature Recalibration and Attention Mechanisms

After each deconvolution layer of the DCT-Unet++ decoder is output, it is embedded
into the CBAM module, serving as pivotal components for feature recalibration and at-
tention mechanisms, accentuating salient features and delineating subtle boundaries. The
CBAM module is characterized by:

CBAM = ChannelAttention ◦ SpatialAttention (10)

where ChannelAttention and SpatialAttention represent mechanisms for channel-wise and
spatial-wise feature recalibration, respectively.

2.2.5. Composite Loss Function

The composite loss function in the DCT-Unet++ model is a holistic measure that
integrates multiple loss components to comprehensively optimize segmentation perfor-
mance. Each loss component captures distinct aspects of segmentation fidelity, boundary
delineation, and spatial overlap between predicted and ground truth masks.
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The composite loss function is a weighted sum of the Cross-Entropy, Dice, IoU, and
Boundary losses, facilitating comprehensive optimization for semantic segmentation. It is
expressed as:

Composite Loss = CrossEntropy + Dice + IoU + Boundary Loss. (11)

Each loss component contributes to capturing different aspects of segmentation fidelity
and spatial agreement, ensuring robust performance across diverse remote sensing scenarios.

By amalgamating cutting-edge architectural components and loss formulations, the
DCT-Unet++ model transcends conventional segmentation frameworks, demonstrating
superior performance in image region extraction tasks. Leveraging advanced mechanisms
such as Transformer-based context aggregation and CBAM-guided feature refinement, this
model establishes a new paradigm in semantic segmentation.

2.3. Conditional Random Fields (CRFs) for Post-Processing of the DCT-Unet++ Model

The integration of Conditional Random Fields (CRFs) with the DCT-Unet++ model
(As shown in Figure 6) represents a sophisticated approach aimed at refining segmentation
outputs and enhancing the overall quality of segmentation results [32].
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2.3.1. Probabilistic Refinement

Following the initial segmentation performed by the DCT-Unet++ model, the CRF post-
processing step refines the probabilistic output map generated by the model. This refinement
is crucial for mitigating noise and inconsistencies inherent in raw segmentation outputs.

P(Y|X) =
1

Z(X)
exp

{
−∑

i
ψu(yi|xi)− ∑

i,j
ψp

(
yi, yj

∣∣xi, xj
)}

(12)

In this equation, P(Y|X) represents the conditional probability of the label assignment
Y given the observed data X, ψu is the unary potential reflecting the likelihood of assigning
label yi to pixel xi, and ψp is the pairwise potential enforcing smoothness by considering
the relationship between neighboring pixels (i, j).

2.3.2. Spatial Consistency Enhancement

CRF leverages spatial constraints to enforce consistency among neighboring pixels,
thereby fostering smoother transitions between segmented regions. By considering pixel
affinities and spatial relationships, CRF facilitates the delineation of coherent and contigu-
ous regions within the segmentation output.

E(X, Y) = ∑
i

ψu(yi|xi) + ∑
i,j

ψp
(
yi, yj

∣∣xi, xj
)

(13)

Here, E(X, Y) represents the energy function to be minimized, where the unary po-
tential ψu quantifies the cost of assigning label yi to pixel xi, and the pairwise poten-
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tial ψp enforces spatial consistency by penalizing dissimilar label assignments among
neighboring pixels.

The integration of CRF post-processing with the DCT-Unet++ model represents a syn-
ergistic approach to semantic segmentation in remote sensing applications. By leveraging
spatial constraints and probabilistic refinement, CRF enhances the quality and coherence
of segmentation outputs, thereby facilitating more accurate and interpretable results in
various remote sensing tasks.

3. Experimental Results and Analysis
3.1. The Design of Experiments
3.1.1. Selection of Models for Comparison

(1) Models on the landslide image recognition task

In selecting the comparative models for our experimental comparison in image recog-
nition, we aimed to cover a wide spectrum of architectures and combinations to compre-
hensively evaluate the performance of our proposed model. We chose ResNet50, VGG16,
MobileNetV2, DenseNet121, InceptionV3, Xception, EfficientNetB0, ResNet152V2, and
NASNetMobile due to their popularity and widespread use in the field of deep learn-
ing [33–41]. These models represent a diverse range of architectures, including traditional
convolutional neural networks (CNNs) such as VGG16 and ResNet50, lightweight models
such as MobileNetV2 optimized for mobile and embedded devices, densely connected net-
works such as DenseNet121, and advanced architectures such as InceptionV3 and Xception,
which incorporate different types of convolutional operations. Additionally, we combined
these models with each other to explore the potential benefits of ensemble methods and
hybrid architectures. This comprehensive selection allows us to conduct a thorough com-
parison of our proposed model against a diverse set of state-of-the-art baselines, providing
insights into its effectiveness and robustness in image recognition tasks.

(2) Models on image segmentation task

In designing our experimental comparison for the image segmentation task, we metic-
ulously selected a diverse set of models to comprehensively evaluate the performance
of our proposed methodology. We included well-established architectures such as UNet,
FCN, Segnet, and Linknet [42–50], which have been widely used as benchmarks in the
field of semantic segmentation. These models represent different approaches to semantic
segmentation, ranging from fully convolutional networks such as FCN to encoder–decoder
architectures such as UNet. Additionally, we incorporated advanced models such as
Deeplabv3, which utilizes atrous convolution and multi-scale features, and PSPNet, which
leverages pyramid pooling modules for capturing contextual information at different
scales. Furthermore, we explored hybrid architectures and ensemble methods by com-
bining VGG16 with FCN and incorporating attention mechanisms in UNet, aiming to
investigate the potential improvements in segmentation performance. By including this
diverse set of models, we aimed to conduct a comprehensive evaluation of our proposed
methodology against state-of-the-art baselines, providing insights into its effectiveness and
generalizability across different segmentation architectures and approaches.

3.1.2. Selection of Indicators for Model Evaluation

In our experimental design, the selection of appropriate evaluation metrics is crucial
for accurately assessing the performance of our proposed methodologies in both image
recognition and segmentation tasks.

For image recognition, precision, recall, F1 score, and support were selected to gauge
the model’s ability to classify images accurately while considering class distribution. Con-
versely, for image segmentation, we opted for metrics such as IoU, Dice coefficient, accuracy,
precision, recall, F1 score, overall accuracy (OA), and kappa coefficient to assess the model’s
performance in delineating object boundaries and accurately segmenting images. These
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metrics offer a comprehensive evaluation, capturing various aspects of model performance
essential for both tasks.

3.1.3. Experimental Conditions and Hyperparameter Tuning

In this project, the landslide remote sensing image recognition model and its compari-
son model were trained under the same conditions and number of epochs. Specifically, the
models were trained on a computer equipped with an RTX 4090 GPU, using TensorFlow
2.9.0 and Python 3.8. The training consisted of 20 epochs with a batch size of eight, utilizing
the Adam optimizer (learning rate = 0.0001) and a categorical crossentropy loss function.
Similarly, the landslide remote sensing image segmentation model and its comparison
model were trained under the same conditions. These models were also trained on a
computer with an RTX 4090 GPU, using TensorFlow 2.9.0 and Python 3.8, for 100 epochs
with a batch size of four. Above is a detailed summary of the hyperparameter tuning results
for the two models (as shown in Table 1).

Table 1. Summary table of hyperparameter design for two models.

Parameter Enhanced Dual-Channel Model DCT-Unet++ Model

Input Image Size 224 × 224 256 × 256
Batch Size 8 8

Number of Epochs 20 100
Optimizer Adam (learning rate = 0.0001) Adam (learning rate = 0.0001)
Data Split Training = 80:20 Training = 70:30

Dropout Rate 0.5 None
Number of Heads in Multi-Head Attention 4 8
Key Dimension in Multi-Head Attention 64 128

Intermediate Layer Dimension 512 4× key dimension (512)
Number of Transformer Attention Layers 1 1

Activation Function in Classification Head Softmax Sigmoid

Loss Function Categorical Crossentropy Composite loss function (cross-entropy +
Dice + IoU)

3.1.4. Datasets

(1) Bijie Landslide Dataset

The Bijie Landslide Dataset, meticulously curated by Ji et al. [25]. from Wuhan
University, represents a vital resource for evaluating landslide detection algorithms. This
dataset was downloaded from the URL http://study.rsgis.whu.edu.cn/pages/download/,
accessed on 12 August 2024, comprising 770 landslide images and 2003 non-landslide
images. Cropped from TripleSat satellite imagery, the dataset encompasses a diverse array
of terrain types and land cover classes (as shown in Figure 7). Each sample, with varying
sizes and resolutions, is annotated with corresponding shapefiles delineating landslide
boundaries, facilitating accurate model evaluation.

(2) Landslide4Sens Dataset

The Landslide4Sense dataset, curated for the Landslide4Sense competition by the
Institute of Advanced Research in Artificial Intelligence (IARAI), was downloaded from the
URL https://www.kaggle.com/datasets/tekbahadurkshetri/landslide4sense, accessed on
12 August 2024 [51] and serves as a benchmark for large-scale landslide detection utilizing
multi-source satellite remote sensing imagery, spanning various landslide-affected regions
globally from 2015 to 2021. In this experiment, we aim to assess the universality and
generalizability of our algorithm by comparing its performance against the previously
utilized Bijie City dataset.

http://study.rsgis.whu.edu.cn/pages/download/
https://www.kaggle.com/datasets/tekbahadurkshetri/landslide4sense
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Comprising training/validation/test subsets, the Landslide4Sense dataset encom-
passes 3799, 245, and 800 images, respectively. Each image patch integrates 14 bands,
including multispectral data from Sentinel-2 (B1–B12), slope data from ALOS PALSAR
(B13), and digital elevation model (DEM) from ALOS PALSAR (B14). With all bands stan-
dardized to a resolution of approximately 10m per pixel, the image tiles have dimensions
of 128 × 128 pixels and are annotated at the pixel level.

To address data imbalance and ensure robust comparison in training effectiveness,
preprocessing steps involve the segmentation processing of the H5 dataset. This includes
synthesizing RGB three-channel color images from selected bands and masking data to
delineate landslide and non-landslide areas. Additionally, to enhance dataset balance
and volume, we preprocessed the dataset. Each sample is subdivided into 3 × 3 smaller
samples, with criteria for categorizing samples as landslide or non-landslide based on the
proportion of white areas (as shown in Figure 8).

(3) CAS Landslide Dataset

The CAS Landslide Dataset represents a significant advancement in large-scale multi-
sensor landslide detection [52], specifically tailored for deep learning applications. With
20,865 images sourced from nine regions worldwide, this dataset integrates satellite and
drone data to address the challenges encountered in landslide identification. Unlike existing
datasets, which often exhibit limitations in terms of size, coverage, sensor diversity, and
resolution, the CAS Landslide Dataset offers a substantial resource for facilitating rapid
and efficient landslide identification endeavors (as shown in Figure 9).
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In our study, we utilized the Moxi Platform Unmanned Aerial Vehicle (UAV) 1m
dataset, situated in Ganzi County, Sichuan Province, China. This dataset captures the
aftermath of a debris flow incident in August 2005, resulting in significant infrastructure
damage and economic losses. Preprocessing involved converting pixel values to delineate
landslide-affected areas, facilitating subsequent segmentation tasks. However, due to the
dispersed nature of landslide occurrences and the absence of Digital Elevation Model
(DEM) data, the experiment focused solely on landslide area extraction.

Three different landslide datasets were collected for training the new model, with the
model’s predictive capabilities varying across these datasets.

(1) Bijie Landslide Dataset: Curated by Ji et al. from Wuhan University, this dataset
comprises 770 landslide images and 2003 non-landslide images from TripleSat satellite
imagery. It features diverse terrain types and land cover classes, with annotated shapefiles
for accurate landslide boundaries. This dataset is characterized by concentrated landslide
areas with large landslide regions, making it suitable for both landslide detection and
segmentation tasks.

(2) Landslide4Sens Dataset: Created for the Landslide4Sense competition by IARAI,
this dataset includes 3799 training images, 245 validation images, and 800 test images, inte-
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grating 14 bands (multispectral data, slope data, and DEM) from various global landslide-
affected regions between 2015 and 2021. The dataset is balanced through preprocessing,
including synthesizing RGB images from selected bands. It represents a middle ground be-
tween the Bijie and CAS datasets in terms of landslide area distribution, making it suitable
for both detection and segmentation tasks.

(3) CAS Landslide Dataset: This large-scale dataset includes 20,865 images from nine
global regions, integrating satellite and drone data. Specifically tailored for deep learning
applications, it captures the aftermath of a debris flow incident in Ganzi County, Sichuan
Province, China. The dataset lacks DEM data and focuses on high-resolution UAV imagery,
with landslide areas being more scattered. Therefore, it is suitable only for landslide
segmentation tasks.

The differences among these datasets—such as the concentration and size of landslide
areas, the inclusion of DEM data, and the distribution of landslide regions—highlight the
proposed model’s adaptability to various scenarios. The Bijie and Landslide4Sens datasets
support both landslide detection and segmentation tasks due to their comprehensive data,
while the CAS dataset, lacking DEM data, is restricted to segmentation tasks. This diversity
in datasets allows for an in-depth exploration of the model’s performance in detecting
landslides under different conditions.

3.2. Experiments on Dataset 1: The Bijie Landslide Dataset
3.2.1. Landslide Image Recognition Performance

(1) Enhanced Dual-Channel Model

For the task of landslide image recognition, we partitioned the dataset into training
and testing sets in an 8:2 ratio. It can be observed that the model has reached a relatively
stable convergence state after 20 training epochs (Figure 10).
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Our enhanced dual-channel model achieves exemplary performance in classifying
landslide and non-landslide images, as evidenced by the precision, recall, and F1 score
metrics (Table 1). With precision and recall scores of 0.99 for both classes, the model demon-
strates exceptional ability in correctly identifying landslide occurrences while minimizing
false positives and negatives. The high F1 score (0.99) underscores its balanced perfor-
mance in terms of precision and recall, indicating robustness in handling imbalanced class
distributions (as shown in Table 2, Figure 10).
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Table 2. Classification performance effect of the enhanced dual-channel model on the landslide image
recognition task using the Bijie Landslide Dataset.

Precision Recall F1 score Support

non-landslide 0.99 0.99 0.99 399
landslide 0.98 0.98 0.98 156
Accuracy 0.99 555
macro avg 0.99 0.99 0.99 555

weighted avg 0.99 0.99 0.99 555
non-landslide 0.99 0.99 0.99 399

(2) Comparative Analysis

In comparison to classic models for dual-channel image recognition, our model stands
out prominently, exhibiting superior performance across all key evaluation metrics. No-
tably, while some models achieve competitive results in individual metrics (for example,
the combined model of MoibileNet and DenseNet121 and the combined model of Efficient-
NetB0 and ResNet152V2), none match the comprehensive performance achieved by our
proposed approach (as shown in Table 3).

Table 3. Comparison of performance results on image recognition tasks using the Bijie Landslide
Dataset.

Accuracy Precision Recall F1 Score

Restnet50 + CNN 0.8799 0.8894 0.8707 0.8582
VGG16 + InceptionV3 0.9275 0.9288 0.9263 0.9275

ResNet50 + MobileNetV2 0.9275 0.9300 0.9250 0.9275
MobileNetV2 + Xception 0.9495 0.9519 0.9472 0.9459

MoibileNet + DenseNet121 0.9716 0.9744 0.9688 0.9716
MobileNetV2 + InceptionResNetV2 0.8630 0.8785 0.8481 0.8491

DenseNet121 + VGG16 0.8593 0.8694 0.8495 0.8369
InceptionV3 + MobileNetV2 0.9459 0.9459 0.9459 0.9459

VGG19 + MobileNetV2 0.8805 0.8838 0.8772 0.8791
InceptionV3 + DenseNet121 0.9666 0.9675 0.9656 0.9688

MobileNetV2 + Xception 0.7363 0.8382 0.6565 0.6703
EfficientNetB0 + ResNet152V2 0.9538 0.9547 0.9528 0.9559

NASNetMobile + Xception 0.5494 0.5114 0.5936 0.5489
Our model 0.9892 0.9892 0.9892 0.9892

3.2.2. DCT-Unet++ Model Performance in Landslide Image Segmentation

(1) DCT-Unet++ Model

Subsequently, for landslide area extraction, we split the dataset into training and
testing sets in a 7:3 ratio and employed our improved DCT-Unet++ model. Our improved
DCT-Unet++ model excels in landslide area segmentation (as shown in Figure 11). Our
model achieved an IoU of 0.8631, indicating a high degree of overlap between predicted and
ground truth regions. Additionally, the Dice coefficient reached 0.9265, further reflecting the
model’s ability to accurately describe landslide areas with minimal misclassifications. Fur-
thermore, all other metrics of our model also achieved excellent results, further confirming
the outstanding performance of our model on this task.



Remote Sens. 2024, 16, 2990 15 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 26 
 

 

and ground truth regions. Additionally, the Dice coefficient reached 0.9265, further re-
flecting the model’s ability to accurately describe landslide areas with minimal misclassi-
fications. Furthermore, all other metrics of our model also achieved excellent results, fur-
ther confirming the outstanding performance of our model on this task. 

Figure 11. Loss and Accuracy change curve during DCT-Unet++ model training process. 

(2) Comparative Analysis 
Comparative evaluation against classic models commonly used for image segmenta-

tion tasks reaffirms the superiority of our DCT-Unet++ model. While some models exhibit 
competitive performance in specific metrics (Unet, PSPNet model), our model consistently 
outperforms them across a comprehensive range of evaluation criteria (as shown in Figure 
12, Table 4). 

Figure 11. Loss and Accuracy change curve during DCT-Unet++ model training process.

(2) Comparative Analysis

Comparative evaluation against classic models commonly used for image segmen-
tation tasks reaffirms the superiority of our DCT-Unet++ model. While some models
exhibit competitive performance in specific metrics (Unet, PSPNet model), our model
consistently outperforms them across a comprehensive range of evaluation criteria (as
shown in Figure 12, Table 4).

Our model performed best in terms of IoU (0.8631) and Dice coefficient (0.9265), in-
dicating superior overlap and consistency between predicted and ground truth regions
compared to other models. Furthermore, our model demonstrated outstanding perfor-
mance in accuracy, precision, recall, and F1 score, achieving values of 0.9855, 0.9505, 0.9038,
and 0.9265, respectively. This suggests that our model excels in both classification accuracy
and the quality of predicting positive and negative samples compared to other models.
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Regarding overall accuracy (0.9153) and Kappa coefficient (0.9185), our model also achieved
the highest scores, indicating superior classification performance and consistency with
ground truth across the entire dataset compared to other models.
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Table 4. Comparison of performance results on the image segmentation task using the Bijie Landslide
Dataset.

IoU Dice
Coefficient Accuracy Precision Recall F1 Score Overall

Accuracy (OA)
Kappa

Coefficient

UNet 0.8529 0.9206 0.9841 0.9300 0.9115 0.9206 0.9231 0.9118
FCN 0.8436 0.9151 0.9832 0.9377 0.8937 0.9151 0.9050 0.9058

Segnet 0.8185 0.9002 0.9801 0.9155 0.8854 0.9002 0.8966 0.8891
linknet 0.8303 0.9073 0.9815 0.9199 0.8950 0.9073 0.9064 0.8970

Deeplabv3 0.7440 0.8532 0.9716 0.8958 0.8145 0.8532 0.8248 0.8376
VGG16 + FCN 0.6050 0.7539 0.9543 0.8292 0.6911 0.7539 0.6998 0.7289

PSPNet 0.8543 0.9214 0.9844 0.9424 0.9014 0.9214 0.9128 0.9128
FC-DenseNet 0.6962 0.8209 0.9663 0.8883 0.7630 0.8209 0.7726 0.8024

Attention-Unet 0.7267 0.8417 0.9675 0.8308 0.8530 0.8417 0.8638 0.8236
UNetSE 0.8529 0.9206 0.9843 0.9402 0.9018 0.9206 0.9133 0.9119

Our model 0.8631 0.9265 0.9855 0.9505 0.9038 0.9265 0.9153 0.9185

3.3. Experiments on Dataset 2: Landslide4Sense Dataset
3.3.1. Landslide Image Recognition Performance

(1) Enhanced Dual-Channel Model

Our enhanced dual-channel model achieves commendable performance in landslide
image recognition. For the non-landslide image category, the model achieved a high level
of accuracy and comprehensiveness in its predictions. For the landslide image category, the
model’s performance was slightly inferior, but still reached a commendable level. With an
overall accuracy of 0.95 (as shown in Table 5), the model showcases robustness in accurately
classifying both landslide and non-landslide images, crucial for effective disaster risk
management. The macro average (0.93) and weighted average (0.95) further demonstrate
the model’s balance in handling different classes and its overall accuracy.

Table 5. Classification performance effect of the enhanced dual-channel model on the landslide image
recognition task in the Landslide4Sens Dataset.

Precision Recall F1 Score Support

non-landslide 0.97 0.96 0.96 4434
Landslide 0.90 0.91 0.91 1733
Accuracy 0.95 6167
macro avg 0.93 0.94 0.93 6167

weighted avg 0.95 0.95 0.95 6167
non-landslide 0.97 0.96 0.96 4434

(2) Comparative Analysis:

Comparative evaluation against classic models for dual-channel image recognition
reveals the superior performance of our proposed approach. Our model consistently out-
performs other models across key evaluation metrics, exhibiting higher accuracy, precision,
and recall, as well as a higher F1 score (as shown in Table 6). Although certain models may
have demonstrated outstanding performance on specific metrics, they have not attained
the comprehensive performance exhibited by our model.
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Table 6. Comparison of performance results in the image recognition task in the Landslide4Sens
Dataset.

Accuracy Precision Recall F1 Score

Restnet50 + CNN 0.8531 0.8641 0.8423 0.8233
VGG16 + InceptionV3 0.9066 0.9044 0.9088 0.9116

ResNet50 + MobileNetV2 0.9194 0.9188 0.9201 0.9173
MobileNetV2 + Xception 0.8995 0.9028 0.8961 0.8931

MoibileNet + DenseNet121 0.9323 0.9315 0.9331 0.9273
MobileNetV2 + InceptionResNetV2 0.8487 0.8561 0.8414 0.8459

DenseNet121 + VGG16 0.8874 0.8633 0.9130 0.8459
InceptionV3 + MobileNetV2 0.9102 0.9101 0.9102 0.9116

VGG19 + MobileNetV2 0.5994 0.5155 0.7160 0.5942
InceptionV3 + DenseNet121 0.9116 0.9086 0.9146 0.9116

MobileNetV2 + Xception 0.9209 0.9231 0.9186 0.9173
EfficientNetB0 + ResNet152V2 0.9315 0.9344 0.9286 0.9301

NASNetMobile + Xception 0.8838 0.8870 0.8806 0.8717
Our model 0.9470 0.9473 0.9470 0.9471

3.3.2. DCT-Unet++ Model Performance in Landslide Area Extraction

(1) DCT-Unet++ Model

In the landslide area extraction task, our improved DCT-Unet++ model showcases
significant performance improvements, achieving an IoU of 0.82, Dice coefficient of 0.90,
and overall accuracy of 0.97, with precision and recall scores of 0.91 and 0.90, respectively.

(2) Comparative Analysis:

In the task of landslide area segmentation, based on dataset 2, our model demonstrates
stable and outstanding performance, with most metrics ranking among the top (as shown
in Table 7, Figure 13). However, it is noteworthy that on this dataset, the recall rate resides
at a moderately elevated level, potentially indicating instances of false negatives. Therefore,
there remains room for further enhancement in improving recall. Nonetheless, overall,
our model maintains its leading position in the comprehensive evaluation across a range
of metrics.

Table 7. Comparison of performance results of the image segmentation task in the Landslide4Sens
Dataset.

IoU Dice
Coefficient Accuracy Precision Recall F1 Score Kappa

Coefficient

UNet 0.8197 0.9009 0.9678 0.8932 0.9089 0.9009 0.8817
FCN 0.8241 0.9036 0.9688 0.9008 0.9063 0.9036 0.8850

Segnet 0.8231 0.9030 0.9686 0.8980 0.9080 0.9030 0.8842
linknet 0.8179 0.8998 0.9681 0.9092 0.8906 0.8998 0.8808

Deeplabv3 0.6718 0.8037 0.9381 0.8211 0.7870 0.8037 0.7670
VGG16 + FCN 0.5346 0.6967 0.9110 0.7724 0.6345 0.6967 0.6452

PSPNet 0.8217 0.9021 0.9681 0.8912 0.9133 0.9021 0.8831
FC-DenseNet 0.8153 0.8983 0.9669 0.8900 0.9067 0.8983 0.8785

Attention U-Net 0.8159 0.8986 0.9670 0.8907 0.9067 0.8986 0.8789
UNetSE 0.8270 0.9053 0.9693 0.9002 0.9105 0.9053 0.8870
UNetDC 0.8205 0.9014 0.9688 0.9171 0.8862 0.9014 0.8828

Our model 0.8217 0.9021 0.9686 0.9068 0.8975 0.9021 0.8835
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3.4. Experiments on Dataset 3: CAS Landslide Dataset

In comparison with other models, our model shows its heightened accuracy in pixel-
level predictions and improved capability to capture target positions and boundaries.
Moreover, in terms of accuracy (0.9319) and Kappa coefficient (0.7996), DCT Unet++
also performs well, signifying a considerable consistency between predicted results and
ground truth.

However, in precision (0.8978) and recall (0.7943), DCT Unet++ falls slightly behind
some other models, such as Segnet and Linknet, suggesting the presence of misclassifica-
tions or missed detections to some extent (as shown in Table 8, Figure 14).
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Table 8. Comparison of the performance results of the image segmentation task in the CAS Landslide
Dataset.

IoU Dice
Coefficient Accuracy Precision Recall F1 Score Kappa

Coefficient

UNet 0.7158 0.8344 0.9293 0.9045 0.7743 0.8344 0.7897
FCN 0.7153 0.8340 0.9287 0.8984 0.7782 0.8340 0.7889

Segnet 0.7468 0.8551 0.9379 0.9242 0.7955 0.8551 0.8159
linknet 0.7452 0.8540 0.9378 0.9286 0.7905 0.8540 0.8148

Deeplabv3 0.6292 0.7724 0.9048 0.8580 0.7023 0.7724 0.7129
VGG16 + FCN 0.5816 0.7355 0.8823 0.7613 0.7113 0.7355 0.6599

PSPNet 0.7177 0.8357 0.9294 0.9001 0.7798 0.8357 0.7910
FC-DenseNet 0.7393 0.8501 0.9358 0.9185 0.7912 0.8501 0.8095

UNetSE 0.7114 0.8314 0.9280 0.9012 0.7716 0.8314 0.7859
Our model 0.7284 0.8429 0.9319 0.8978 0.7943 0.8429 0.7996

Upon analysis, it is believed that the dispersed distribution of landslide areas in this
dataset poses a challenge to the model’s identification, as DCT Unet++ excels more in
detecting concentrated and larger landslide regions. Nonetheless, our model continues to
maintain a leading position in overall performance and the accurate identification of areas
affected by landslides.

4. Discussion
4.1. Generalizability and Universality of Model Algorithms

The experimental results presented in this study demonstrate the efficacy and ro-
bustness of our model algorithms across diverse datasets and geographical regions. The
performance analysis on the Bijie Landslide Dataset showcased the exceptional capabilities
of our enhanced dual-channel model in landslide image recognition. Achieving preci-
sion and recall scores of 0.99 for both landslide and non-landslide instances, the model
demonstrated remarkable accuracy and consistency in classifying images. Furthermore, our
improved DCT-Unet++ model exhibited superior performance in landslide area extraction,
with high IoU, Dice coefficient, accuracy, precision, recall, and F1 score metrics.

By conducting comprehensive evaluations on the other distinct datasets (the Bijie City
Dataset, Landslide4Sense Dataset, and CAS Landslide Dataset), the experiment proved the
generalizability and universality of our proposed methodologies in landslide detection and
segmentation tasks. However, it is important to note that our model’s performance on the
CAS Landslide Dataset, which includes more dispersed and smaller-scale landslide areas,
was slightly lower in precision and recall compared to larger, more concentrated landslides.
Specifically, on the CAS dataset, our model achieved a precision of 0.8978 and a recall of
0.7943, which indicates a need for further improvement in these challenging conditions.
This performance decline may be due to the difficulty of effectively capturing the features
of dispersed and small-scale landslide areas, and future work should focus on improving
the model to better identify these complex terrain features.

4.2. Comparative Analysis and Model Superiority

In comparative analyses against classic models for both landslide image recognition
and area extraction tasks, our proposed methodologies consistently outperformed alterna-
tive approaches. Across various evaluation metrics, including accuracy, precision, recall, F1
score, IoU, and Dice coefficient, our models exhibited superior performance, underscoring
their efficacy and reliability. For example, on the Bijie Landslide Dataset, our enhanced
dual-channel model achieved an accuracy of 0.9892, surpassing models such as ResNet50
+ MobileNetV2 (accuracy of 0.9275) and MobileNetV2 + Xception (accuracy of 0.8995).
Similarly, our DCT-Unet++ model demonstrated an IoU of 0.8631 and a Dice coefficient of
0.9265 on the same dataset, outperforming traditional models such as UNet (IoU of 0.8529
and Dice coefficient of 0.9206) and Segnet (IoU of 0.8185 and Dice coefficient of 0.9002).
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On the Landslide4Sense dataset, our enhanced dual-channel model’s overall accuracy
of 0.9470 was higher than MobileNet + DenseNet121 (accuracy of 0.9323) and EfficientNetB0
+ ResNet152V2 (accuracy of 0.9315). Additionally, the DCT-Unet++ model achieved an IoU
of 0.8217 and a Dice coefficient of 0.9021, outperforming models such as PSPNet (IoU of
0.8217, Dice coefficient of 0.9021) and UNetSE (IoU of 0.8270, Dice coefficient of 0.9053).
These results highlight the stability and superior performance of our model across different
datasets.

For the CAS Landslide Dataset, our model achieved an IoU of 0.7284 and a Dice
coefficient of 0.8429, while Segnet and Linknet achieved slightly higher IoU and Dice
coefficients (Segnet: IoU of 0.7468, Dice coefficient of 0.8551; Linknet: IoU of 0.7452, Dice
coefficient of 0.8540). Despite these results, our model’s accuracy (0.9319) was higher
compared to UNet (accuracy of 0.9293) and FCN (accuracy of 0.9287). These findings
indicate that while our model excels in most scenarios, further refinement is needed for
more complex and dispersed landslide regions.

It is noteworthy that while some models may achieve comparable or nearly equivalent
performance to our model on certain evaluation metrics, none can match the overall
excellence exhibited by our model. This emphasizes the superiority and effectiveness of
our model algorithms in leveraging multi-source satellite remote sensing data for landslide
detection and segmentation tasks.

4.3. Future Research Directions

While our study yielded promising results, there are avenues for future research to
explore. From the experiments, it is evident that our model excels particularly in the
detection of large-scale landslide areas, whereas it may exhibit less precision in segmenting
smaller and scattered landslide regions. For instance, in the Landslide4Sense dataset,
our model achieved an overall accuracy of 0.9686 but showed a moderate recall rate of
0.8975, indicating instances of false negatives. This phenomenon may be due to the more
challenging nature of capturing features of small-scale landslide areas, necessitating more
fine-grained feature extraction and enhancement mechanisms to improve the model’s
recognition capabilities.

Therefore, further refinement of model architecture and optimization strategies to
enhance model generalization represents a crucial avenue for future research, enabling
the model to achieve superior performance on datasets with unique characteristics. Fur-
thermore, investigations into transfer learning and domain adaptation techniques could
facilitate the deployment of our models in diverse geographical regions with varying
terrain and environmental conditions. Additionally, the incorporation of additional region-
specific feature data obtained through remote sensing, such as slope data, holds promise
for significantly improving detection accuracy. Specifically, utilizing high-resolution remote
sensing data and more advanced image processing techniques can more accurately capture
the subtle changes in landslide areas, thereby improving the detection and segmentation
accuracy of the model. Additionally, developing more efficient post-processing algorithms,
such as Conditional Random Fields (CRFs), can further refine segmentation boundaries
and enhance the overall performance of the model.

By addressing these challenges, future research endeavors can continue to advance
the state-of-the-art methods in landslide detection and contribute to the development of
more effective disaster management solutions.

5. Conclusions

This paper introduces innovative algorithms for landslide detection and segmentation
using multi-source satellite remote sensing imagery. Our methodologies, applied across
three distinct datasets—the Bijie City Dataset, Landslide4Sense Dataset, and CAS Landslide
Dataset—demonstrate consistent effectiveness and robustness.

Our enhanced dual-channel model, which leverages EfficientNetB7 for feature extrac-
tion and incorporates spatial attention mechanisms (SAMs), excels in recognizing landslide
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images with impressive precision and recall scores across all three datasets. Additionally,
the integration of a deep separable convolutional neural network with a Transformers
module for feature extraction from digital elevation data (DEM) and subsequent feature
fusion using a variational autoencoder (VAE) represents a significant innovation in the field.
This approach not only improves the accuracy of landslide detection but also enhances the
model’s ability to mine potential features from diverse data sources.

Similarly, our improved DCT-Unet++ model, which incorporates Dilated Convolution
to expand the receptive field and enables multi-scale feature extraction, shows superior
performance in accurately delineating areas affected by landslides. The integration of
Transformer and CBAM attention modules further enhances feature focus, while the in-
troduction of multi-task learning for segmentation and edge detection tasks significantly
refines landslide area extraction. Post-processing with conditional random fields (CRFs) fur-
ther optimizes segmentation boundaries, demonstrating our model’s advanced capability
compared to traditional segmentation models such as Unet, FCN, and Segnet.

The practical implications of our research are profound for disaster management
and risk assessment. By enabling precise identification and detailed mapping of landslide
occurrences, our models provide crucial support for early warning systems, urban planning
and infrastructure development, insurance and financial services, environmental and land-
use management, research and development in geosciences, and many other social aspects.

Looking ahead, future research may focus on refining model architectures, explor-
ing transfer learning techniques, and addressing challenges associated with diverse geo-
graphical regions and dataset characteristics. Advancements in landslide detection and
segmentation will not only lead to more effective disaster management solutions but will
also significantly enhance community safety and resilience in landslide-prone areas.
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