Downloaded from https://www.pnas.org by Ligiang Zhang on April 1, 2024 from |P address 210.31.76.107.

PNAS

ENVIRONMENTAL SCIENCES

EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES

Check for
updates

Spatial spillovers of violent conflict amplify the impacts of
climate variability on malaria risk in sub-Saharan Africa

Qiwei Yu®', Ying Qu®' (), Ligiang Zhang®* (%), Xin Yao®
Chenghu Zhou®?, Isiaka Lukman Alage®, and Suhong Liu®

,Jing Yang?, Siyuan Chen?, Hui Liu®, Qihao Wang®, Mengfan Wu?, Junpei Tao® (%),

Edited by Alan Hastings, University of California, Davis, CA; received May 31, 2023; accepted February 2, 2024

Africa carries a disproportionately high share of the global malaria burden, accounting
for 94% of malaria cases and deaths worldwide in 2019. It is also a politically
unstable region and the most vulnerable continent to climate change in recent
decades. Knowledge about the modifying impacts of violent conflict on climate—malaria
relationships remains limited. Here, we quantify the associations between violent
conflict, climate variability, and malaria risk in sub-Saharan Africa using health surveys
from 128,326 individuals, historical climate data, and 17,429 recorded violent conflicts
from 2006 to 2017. We observe that spatial spillovers of violent conflict (SSVCs) have
spatially distant effects on malaria risk. Malaria risk induced by SSVCs within 50 to
100 km from the households gradually increases from 0.1% (not significant, P>0.05)
to 6.5% (95% CI: 0 to 13.0%). SSVCs significantly promote malaria risk within
the average 20.1 to 26.9 °C range. At the 12-mo mean temperature of 22.5 °C,
conflict deaths have the largest impact on malaria risk, with an approximately 5.8%
increase (95% CI: 1.0 to 11.0%). Additionally, a pronounced association between
SSVCs and malaria risk exists in the regions with 9.2 wet days per month. The results
reveal that SSVCs increase population exposure to harsh environments, amplifying
the effect of warm temperature and persistent precipitation on malaria transmission.
Violent conflict therefore poses a substantial barrier to mosquito control and malaria
elimination efforts in sub-Saharan Africa. Our findings support effective targeting of
treatment programs and vector control activities in conflict-affected regions with a high
malaria risk.

violent conflict | malaria risk | climate change | sub-Saharan Africa

Substantial progress has been made in mitigating the vector-borne disease burden in
Africa since 2000 (1, 2). In 84 malaria-endemic countries, there were an estimated 247
million malaria cases in 2021 (3). In 2019, 94% of all malaria cases and deaths took place
in Africa (4), with most of them occurring in sub-Saharan Africa (5). Existing evidence
indicates that climate variability, such as seasonal variations in rainfall and temperature,
may enhance the expansion of falciparum malaria in Southern Africa and high-elevation
regions of Eastern Africa (6, 7), and it has an important impact on infectious disease
intervention and vector control efforts (5, 6, 8-10). Traditional disease surveillance
(11) as well as the implementation of traditional treatment and control programs, e.g.,
spraying campaigns or continuous monitoring of drug efficacy, may be hampered in areas
subjected to violent conflict (12). In addition to the rapidly changing climate, Africa is
one of the most politically unstable continents in recent decades. Embroiled in conflicts
throughout history (13), Africa has experienced an average of 28 conflicts per year since
1989 (14). As a vector-borne disease, malaria is sensitive to environmental conditions
(15), which can be greatly worsened by violent conflict.

Coupled with disastrous humanitarian consequences, including injuries and deaths,
violent conflict often causes forced migration, refugee flows, and destruction of physical
environments and societal infrastructure (16). Such conflict can affect areas far from where
it occurs, motivating the term spatial spillovers of violent conflict (SSVCs) (17). SSVCs
often cause considerable damage to environments, increase human—malaria contact, and
expand mosquito habitats (18). They imply not only that the effects of violent conflict
may be much more severe than the literature thus far suggests but also that policy
responses focusing on conflict zones may be suboptimal (17). However, few previous
studies have assessed the association of SSVCs with malaria transmission in Africa, and
the assessments are independent of some key climatic and environmental factors (19-21).
As a result, the information obtained from the studies is typically incomplete, contested,
and biased regarding the impact of violent conflict on malaria risk. Taken together,
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these factors raise uncertainty about the extent to which violent
conflict can explain the patterns of malaria risk (19, 22).

Given the changing climate and sustained conflicts with no
clear indication of a slowdown in Africa, we aim to quantify
the synergistic effects of climate variability and SSVCs on
malaria risk in politically unstable regions. Since public health
infrastructures in most African countries are underprepared
and geographically unequal (6), quantification is critical to
comprehensively understand the human costs of violent conflict
and climate variability for planning appropriate policy responses.

Formulating and implementing an effective response requires
examining the effect of climatic factors such as temperature and
precipitation on malaria transmission in conflict zones. Here,
we investigate the synergistic effects by combining econometric
methods with disparate datasets related to malaria, climate,
and violent conflict (Materials and Methods). The malaria data
used are collected from Demographic and Health Surveys
(DHSs, https://www.dhsprogram.com/data/) conducted from
2006 to 2017, covering a total of 239,865 surveyed families
and 1,392,429 family members in 15 sub-Saharan African
countries, although DHSs might face disruptions in some conflict
regions. Based on the data, we obtain the surveys from 128,326
individuals participating in malaria testing and comprehensive
information about households as well as individuals. We estimate
monthly air temperature at 2 m above ground level (TMP) and
monthly wet days (WET) in different exposure periods using
the Climatic Research Unit Time Series (CRU TS) dataset. The
conflict data recorded 17,429 violent conflicts during 2005 to
2017 in sub-Saharan Africa and are captured from the Uppsala
Conflict Data Program (UCDP) (SI Appendix, Fig. S1). The
UCDP, as a standardized violent conflict dataset, allows us
to identify the distance between conflict and DHS household
locations and determine the range of the conflict impacts on
malaria risk.

For the identification strategy, we employ a panel regression
model with high-dimensional fixed effects to explore the SSVCs
(with different distances to DHS households) as well as the syn-
ergistic effects of SSVCs and climate variability on malaria risk in
sub-Saharan Africa. To explore the impacts of SSVCs on malaria
risk varying with climatic factors, we incorporate conflict deaths,
climate factors (such as temperature and rainfall), and their
interactions in this model. This helps to aid in robustness against
unobserved confounders (Materials and Methods). Our results
demonstrate that SSVCs play a significant role in exacerbating
malaria risk, particularly in regions with warm temperatures (20.1
to 26.9 °C at the 12-mo timescale) and frequent precipitation
(at least 9.2 wet d/mo at the 12-mo timescale). We find two
potential explanations for the increased malaria risk, including
a decrease in household economic conditions due to excess
deaths among male members and an increase in the exposure
of nonimmune populations caused by refugee flows and forced
population displacement.

In summary, the contributions of our study are twofold. 1)
Most previous studies have focused on the direct relationship
of armed conflict with malaria risk at a national scale. Our
study provides household-centered evidence that armed conflict
increases malaria risk more than expected by considering SSVCs
on a fine-grained scale, whereas existing studies underestimate the
impacts. 2) This study explores the synergistic effects of SSVCs
and climate variability on malaria risk in sub-Saharan Africa.
Using decadal comprehensive datasets and a panel regression
model with high-dimensional fixed effects, we examine how
SSVCs amplify the impacts of climate variability on malaria risk,
emphasizing the importance of mitigating conflict and climate
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change for reducing malaria transmission. Our findings can help
effectively target treatment initiatives and vector control efforts in
politically unstable regions with a high malaria risk, thus bringing
us closer to a malaria-free world.

Results

The Conflict-Malaria Relationship. To examine the impact of
conflict deaths at different distances to DHS households on
malaria risk, we use a series of concentric ring buffers with
different sizes centered at each household and count the conflict
deaths within each ring (Fig. 1). To address the biases from
different areas of rings and explore the linear trends on the
logarithmic scale, we apply the normalization and logarithmic
transformation of conflict deaths (Materials and Methods). We
present the reason for choosing the household location rather
than the conflict location as the ring center (SI Appendix,
Note S1). According to a prior study (23), we set the radius of
the outermost ring to 250 km as the maximum distance affected
by conflict.

Using the 50 km-wide rings (Fig. 1 A and B), for specific
sites, we observed that the impacts of conflict deaths increased
initially and then decreased with increasing distance between
the household location and the conflict site. Specifically, conflict
deaths in the 50- to 100-km range from the households had the
largest impact on malaria risk, leading to an 11.4% increase in
malaria risk with a 1% increase in conflict deaths (95% CI: 2.5
to 20.4%). To dissect the variation in the conflict impacts, we
divided the 50 km-wide rings into the 10 km-wide rings (Fig.
1 C and D). The impacts of conflict deaths increased the most
from the range of 50 to 60 to 90 to 100 km, with an increased
risk from 0.1% (nonsignificant, P> 0.05) to 6.5% (95% CI: 0
to 13.0%). As a result, we observed the spatially distant effects of
conflict deaths that can be described as SSVCs, especially in the
distance of 50 to 100 km to households. We used the conflict
deaths in the 50- to 100-km range as the independent variable of
interest in the regression model for further analyses.

Robustness Checks. We conducted multiple analyses to mitigate
potential biases in the estimates as follows. 1) To limit the impact
of the modifiable areal unit problem (MAUP) (24), we utilized
rings with two additional widths, i.e., 20 km and 30 km. The
estimates of conflict deaths aligned with the observed trends as 10
km- and 50 km-wide rings were used, wherein the effect first in-
creased and then decreased with increasing distance (S Appendix,
Fig. §2). 2) To mitigate the biases arising from climate sensitivity,
annual climate trends, and administrative obstacles for refugees,
we performed alternative specifications that incorporated 38
additional control variables in the baseline specification. That
is, three types of climate variables, including TMP, monthly
precipitation (PRE), and monthly diurnal temperature range
(DTR) of the 1st, 2nd, ..., and 12th mo preceding the household
surveys, made up the 36 control variables. The remaining two
control variables were the distances from household locations to
provincial and national boundaries. The results obtained from
the alternative specification were consistent with those of the
baseline specification (SI Appendix, Fig. S3). 3) To address the
concern that the province fixed effects might absorb most of
the variation in the independent variable (conflict deaths), we
adopted alternative specifications including five other sets of
fixed effects. We found that the estimates were similar to the
results of the baseline regression (S/ Appendix, Fig. S4). 4) A
potential issue for our estimate was the bias caused by the
nonrandom samples of conflict deaths (conflicts are more likely
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Effects of conflict deaths on malaria risk. Two ring widths are used to count conflict deaths: 50 km (A and B) and 10 km (C and D). The geographic

area of SSVCs for each surveyed individual is represented by a circle with a 250-km radius centered at the household location. The regression model used to
support these results includes 128,326 observations. The circles and lines (A and C) indicate the estimates of conflict deaths and their 95% Cls, and full results

are presented in S/ Appendix, Tables S1 and S2.

to be observed in locations closer to where news organizations
can report) or some hard-to-observe time-varying factors, such
as economic conditions, grievances, and happenstance. As a step
toward addressing these concerns, the number of abductions
committed by armed groups (within a 50-km radius of the
household) was selected as the instrumental variable (IV) to re-
estimate the effect of conflict deaths on malaria risk using the two-
stage least squares (2SLS) (SI Appendix, Method S1). Under the
premise that the IV was strongly correlated with malaria risk (F
statistic>10), we found that conflict deaths that occurred between
50 and 100 km to the surveyed households were significantly
associated with malaria risk (S/ Appendix, Table S3). We provided
the details on how the IV was satisfied with the exclusion
restriction in Materials and Methods. 5) We explored the impacts
of conflict deaths using the inverse hyperbolic sine transformation
and another normalization method (using a different Divisor,
detailed in Materials and Methods) in alternative specifications.
As presented in S/ Appendix, Fig. S5, our findings indicated
that these alternative specifications produced similar estimates
in terms of statistical significance compared with the baseline
specification.

The Linkage of Conflict Deaths with Climate-Related Malaria
Risk. The distant destruction triggered by conflict increased
population exposure to harsh environments, exacerbating
malaria transmission. Therefore, the malaria risk resulting from

PNAS 2024 Vol. 121 No. 15 e2309087121

population exposure to conflict would be more pronounced if
the climate was favorable for malaria-carrying mosquitoes. To
validate this hypothesis, we introduced two climate variables,
TMP and WET, and formed an interaction term (including the
direct effects) by interacting them with conflict deaths (50 to 100
km). The climate variables were thus considered the moderators
in the regression model (Materials and Methods). The exposure
periods of each household were set to 3, 6, 9, and 12 mo before
the survey date and were used to evaluate the effects of the climate
on both short and long timescales.

Asshown in Fig. 2, the relationship between conflict deaths (50
to 100 km) and malaria risk showed an inverted U shape across
the four timescales of the TMP exposure when TMP was taken
as the moderator. Specifically, conflict deaths were significant in
the middle range of temperature (P < 0.05) and nonsignificant in
the lower and higher temperature ranges (P > 0.05). For instance,
conflict deaths had a significant impact on malaria risk within
the temperature range of 20.1 to 26.9 °C in the 12-mo exposure
periods (Fig. 2D). An average TMP of 22.5 °C over 12 mo
induced the largest impact of conflict deaths on malaria risk,
with an improvement of approximately 5.8% in malaria risk
(95% CI: 1.0 to 11.0%) compared with individuals who did
not experience conflicts (no conflict death). This suggested that
22.5 °C was a suitable temperature for malaria transmission and
mosquito breeding, which was consistent with previous studies

(25, 26).
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Fig. 2. Marginal effects of conflict deaths (50 to 100 km) on malaria risk moderated by climate factors. The selected moderators are TMP (A-D) and WET (E-H).
The circles and lines in all subfigures denote the estimated effects of conflict deaths and their 95% Cls. The regression model (Materials and Methods) used to
support these results includes 128,326 observations. The histograms below the plot of estimates illustrate the distribution of observed values for TMP and

WET.

Considering that most of the precipitation ranges in our
samples were sparse (S Appendix, Fig. S6), we used WET as the
moderator and included it in the interaction term. We obtained
similar outcomes when we examined the impact of conflict deaths
throughout four timescales, that is, conflict deaths had a greater
impact on malaria risk as WET increased (Fig. 2 E-H). For
instance, the significant impact of conflict deaths was observed as
WET was over 9.2 d/mo at the 12-mo timescale (Fig. 2H). The
findings suggested that WET was associated with malaria risk
(27, 28), and a significant association existed between conflict
deaths and malaria risk in areas with frequent rainfall.

To identify the sites that were vulnerable to malaria risk
induced by conflict with uneven climate exposures, we selected
two climate factors, i.e., the 12-mo mean of TMP and mean
of WET, as the moderators to map the marginal effects of
conflict deaths in sub-Saharan Africa during 2006 to 2017. When
TMP was taken as the moderator, the map illustrated in Fig. 34
highlighted the vulnerability of malaria driven by the synergistic
effect between conflict deaths and TMP in Central and Eastern
Africa (S] Appendix, Fig. S7 provides the regional divisions of sub-
Saharan Africa). In particular, the areas with pronounced impacts
(5 to 6%) were geographically distributed in the highlands of
Eastern and Southern Africa as well as Madagascar, where the
12-mo mean TMP was between 20.5 and 24.4 °C, a temperature
range considered beneficial for mosquito survival and malaria
transmission (8, 29).

Based on the maps shown in Fig. 3B and SI Appendix, Fig.
S8, we observed the spatial associations between the malaria risk
induced by conflict and the different climate zones in sub-Saharan
Africa. The areas with the most significant impacts of conflict
deaths on malaria risk were predominantly located in the tropical
rainforest climate zones and the basin of Lake Victoria, which is
the largest lake on the African continent, as well as Madagascar.
These regions provided vital breeding grounds for mosquitoes in
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the form of standing water derived from rainfall (27) (at least
10.6 d/mo of WET over 12 mo), serving as essential larval and
pupal habitats.

Conflict deaths were mainly concentrated in Central and
Eastern Africa, especially in Mali, Nigeria, Sudan, South Sudan,
Ethiopia, Somalia, and DR Congo during 2006 to 2017 (Fig.
3C). To reflect the diverse severity of conflict and the moderating
effects of climate on the conflict—malaria response across different
regions, we overlaid any two maps from Fig. 3 A-C to obtain
the visual representations in Fig. 3 D—F. As shown in Fig. 3 D-
F, the dark regions were primarily found in the Eastern African
highlands, including Ethiopia, eastern DR Congo, and South
Sudan. The findings underscored that in the three countries,
more attention should be paid to the amplified vulnerability of
malaria risk caused by conflict when the following two catalysts
were combined: suitable temperature (20.5 to 24.4 °C of TMP
over 12mo) and frequent precipitation (at least 10.6 d/mo of
WET over 12 mo).

The Mechanism of the SSVCs Impacts. As shown in Fig. 4 A-D,
we noted that SSVCs altered the demographic composition
of houscholds by reducing the proportion of adult men in
households. The proportion of adult men aged 15 to 49 in
households decreased by 1.1% (95% CI: 0.2 to 2.0%) for every
1% increase in conflict deaths (50 to 100 km) during 2006 to
2017. However, children aged 0 to 14, adult women aged 15
to 49, and elderly people above 50 did not exhibit substantial
changes. During conflict, adult men were often conscripted or
murdered, which indirectly exacerbated household vulnerability
(30, 31). As shown in Fig. 4F, malaria risk declined by 2.2%
(95% CI: 0.7 to 3.7%) as the proportion of adult men in
households increased by 1%. In agrarian societies, adult men
were typically the primary income earners for their families (32).
As depicted in Fig. 4F, a higher proportion of adult men was
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associated with less time to get water and greater odds that the
households had access to drinking water, electricity, refrigerators,
higher income (defined in SI Appendix, Note S2), and mosquito
nets. Thus, in sub-Saharan African countries, the high mortality
rates of working-aged males resulting from SSVCs were disastrous
for household income, as well as access to infrastructure and
healthcare resources (33). We defined households with a high
and medium malaria risk based on TMP and WET (as illustrated
in SI Appendix, Fig. S9). Specifically, the households with a
TMP of 20.5 to 24.4 °C or WET >10.6d/mo were defined
as households with a climate-related high malaria risk, and those
with a TMP of 18.0 to 20.5 °C or 24.5 to 26.9 °C or the WET
of 7.0 to 10.6 d/mo were defined as households with a climate-
related medium malaria risk. The results in S/ Appendix, Table
S9 confirmed that the SSVC-related decrease in the proportion
of adult men was still significant among the households with
climate-related high and medium malaria risks.

SSVCs led to substantial increases in the number of refugees
or internally displaced people and increased the pressures on
host countries and regions due to limited resources and inade-
quate infrastructures. This promoted the competition between
immigrants and local impoverished populations for resources
including the share of limited public facilities (e.g., toilets and
water sources) and medical services (e.g., available mosquito nets),
which increased human—malaria contact and reduced access to
healthcare systems (20, 34). Additionally, refugees residing in
settings other than designated camps (35) might use irregular
modes of travel. There was a significant association between
subnational violent conflicts, especially for those occurring within
a 50 to 100 km radius, and a reduced likelihood of individuals
being able to obtain bed nets (S/ Appendix, Fig. S10). The

forced migration caused by conflict and logistical disruptions

PNAS 2024 Vol. 121 No. 15 e2309087121

resulted in a shortage of resources and an enhanced likelihood of
interaction between nonimmune and immune populations (36).
This, in turn, might enhance malaria risk. As shown in Fig. 54,
households with poor socioeconomic conditions had a higher
malaria risk resulting from SSVCs compared to those with good
living conditions. In comparison to all samples, households with
climate-related medium and high malaria risks (TMP of 18.0 to
26.9 °C or WET > 7.0 d/mo) were more likely to contain a
higher percentage of malaria-vulnerable households, particularly
those without electricity, improved sources of drinking water, or
improved sanitation services (Fig. 5B).

Discussion

Climate change has been identified as a key driver for malaria
resurgence in Africa (37, 38). However, the risk and mortality
of vector-borne diseases in a specific geographic area are jointly
determined by climate factors and the factors such as household
socio-demographics, public health systems, and SSVCs. These
factors interact with each other, and the effect of one factor may
be moderated by the processes related to other factors (39). The
recent and ongoing emergence of malaria in sub-Saharan Africa
underscores the considerable impacts of climate variability and
violent conflict on the risk and prevalence of the disease.
Violent conflict has caused an increased spread of malaria by
degrading environments as well as impeding access to preventive
measures (40), health services and treatment (41) and by
increasing the population exposure to Anopheles mosquitoes
during irregular travel, which may reduce access to the healthcare
systems (20, 34). Our study reveals a discernible pattern of the
relationship between conflict deaths and malaria risk, character-
ized by the effects varying with distance changes. Specifically, the
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impact of conflict deaths is nonsignificant in locations proximate
to the participating households, grows as distance increases, and
subsequently diminishes. This pattern can be attributed to two
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the impact of violent conflict on households far from the conflict
may have intensified, partly owing to population displacement
(23, 36, 41, 42). Our findings highlight a marked SSVC that is
possibly caused by displacement, showcasing a surge in malaria
risk (or disease transmission) within a certain range (50 to 100
km). In contrast to individual violent conflicts, which are more
frequently observed at shorter distances (<200 km), SSVCs
resulting from multiple violent conflicts at greater distances (>200
km) may lead to less noticeable or more random impacts on
malaria. We provide quantitative evidence of SSVCs, revealing
the distance at which conflict exerts its impact and the magnitude
of its influence on malaria risk. Our results imply that SSVCs
may be on par with, or even surpass, the direct impact caused by
the conflict itself (<50 km) on malaria transmission (43).

Our study indicates that the climate suitable for malaria-
carrying mosquitoes is a crucial factor that exacerbates the distant
impact of conflicts on malaria risk. Malaria risk in sub-Saharan
Africa has been amplified by the effect of warm temperature
or persistent rainfall in the regions with high conflict deaths. By
examining the marginal effects of both the TMP and WET on the
conflicts’ distant effect on malaria risk, we find that the Eastern
African highlands in Ethiopia, DR Congo, and South Sudan are
particularly vulnerable regions that witness a greater proliferation
in malaria risk under the combined influence of SSVCs and
climate. This finding is consistent with those of previous studies
showing that these highlands are emerging hotspots for malaria
risk due to climate change over the past few decades (8, 10, 44—
46). The highlands in Eastern Africa experienced incessant violent
conflicts from 2006 to 2017. If civil unrest continues, the delivery
of health interventions is hard to achieve, and the malaria burden
in these regions is subjected to rising temperatures. Additionally,
climate change may enhance the malariogenic potential, leading
to the re-emergence of malaria epidemics in Africa (8, 47).
Predictions regarding the shifting suitability of malaria indicate
that new endemic regions may emerge in Southern and Central
Africa, where people have little or no immunity to the disease
(48). The emergence of malaria owing to violent conflict and
climate change presents a considerable challenge for delivering
health interventions and protecting vulnerable populations. This
reveals the urgent need for robust malaria control measures in
these regions.

Finally, we present two types of empirical evidence that SSVCs
increase population exposure to malaria-carrying mosquitoes.
First, SSVCs result in a decline in the proportion of adult men
(aged 14 to 49y) in households, leaving behind a large number
of women and children as widows and orphans (30, 31). Reports
from Rwanda (49-51) indicate that female- and widow-headed
households are particularly vulnerable to poverty and health
issues, further promoting malaria risk. Evidence from our study
indicates that these households may be prevalent in the regions
highly vulnerable to climate-related malaria risk. Second, SSVC-
related forced migration is associated with an increase in malaria
risk. Our findings reveal that large populations in sub-Saharan
African countries are vulnerable to malaria because they lack ac-
cess to electricity, high-quality sanitation, and improved sources
of drinking water. Vulnerability is particularly acute in the areas
with a climate-sensitive malaria risk, which enhances permanent
vector breeding habitats and increases vector-human contact
rates. Malaria can be imported by refugees carrying parasites,
including resistant strains, and can result in a repeat occurrence
of endemic transmission (52-54). Additionally, a large number
of nonimmune refugees may flee to areas with a high malaria
prevalence, where they will be highly exposed to mosquitoes,
especially in areas with favorable vector environments (36, 42).

PNAS 2024 Vol. 121 No. 15 e2309087121

Displaced populations are often far from health facilities (16, 55),
and their health needs may differ from those of local residents.
This strains the capacity of local health systems and increases the
risk of infectious disease. Importantly, the limited availability of
insect repellent or mosquito nets in villages located in conflict
zones further promotes the exposure of civilians or refugees to
mosquito vectors (56).

This study is helpful for accurately detecting the areas subjected
to climate variability and armed conflict where populations
are apt to be exposed to the Anopheles mosquito vector and
Plasmodium malaria parasite. Our findings highlight the need
to consider how SSVCs exacerbate climate effects on malaria
risk for policy planning and the implementation of infectious
disease control interventions. They allude to the potential for
mitigating malaria risk in sub-Saharan African countries by
reducing conflict alongside other important factors, such as
environmental degradation and climate change, and thus have
implications for mitigating the impacts of infectious diseases.

There are limitations in this study. First, ongoing violent
conflicts may hinder the DHSs in some conflict areas, which
makes the data locally incomplete and potentially biased. It is
possible to underestimate the impacts of SSVCs in proximity
to conflict areas since the surveys are more likely to cover
households that are less impacted by conflicts. Moreover, missing
households in conflict areas may encounter humanitarian crises
(57) and have limited access to health care (58), which further
exacerbates local vulnerability to malaria. Second, conflicts may
not be documented in the areas far from news organizations
according to the UCDP reports (59). This potentially causes
the overestimated impacts of conflict deaths. Third, unavailable
data such as population dissatisfaction with governments and
community-level socioeconomic inequality still hinder us from
checking the exogeneity of the IV to some unobserved variables
related to malaria transmission and interventions. Finally, the
observed increase in malaria risk can be triggered by severe
antimalarial drug shortages, self-treatment, high rates of relapse,
and reinfection, which limit our ability to fully explain the
changes and resistance. If information about refugee flows at
a subnational level is obtained, the impacts of conflict deaths
will be estimated more precisely. High-frequency mobile phone
data may enable us to accurately identify the impact of forced
immigration or internal displacement on public health (60).

Materials and Methods

Data. The malaria data are derived from the DHSs which are a set of
nationally representative household surveys conducted periodically in low-
income and middle-income countries worldwide. We capture the data from
55 DHSs between 2006 and 2017, covering 15 sub-Saharan African countries
(https://www.dhsprogram.com/data/). The data come from 239,865 surveyed
households and 1,392,429 family members, distributed across 8,428 DHS
cluster points (S/ Appendix, Fig. S1). Malaria risk is measured as a binary
variable. Notably, 128,326 people with complete personal information are
tested for malaria risk. They comprise two groups: children aged 0 to 5 and adult
women aged 15 to 49. In our samples, the average malaria risk is 18%, and the
human malaria species is Plasmodium falciparum.

Violent conflict data are captured from the UCDP Georeferenced Event Dataset
(GED)Globalversion22.1, whichis UCDP's most disaggregated dataset, covering
individual events of organized violence (phenomena of lethal violence occurring
ata given time and place) (61). These events are sufficiently fine-grained to be
geo-coded down to the village level, with temporal durations disaggregated to
a single day. As the explanatory variable of the primary concerns, we calculate
the conflict deaths recorded by the UCDP in the 12 mo before the date of the
DHS.
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We obtain historical climate data from the 0.5°latitude by 0.5°longitude
monthly gridded climate dataset of CRU TS version 4.06 (62). Using ArcGIS Pro
3.0 software, we extract the raster values of the climate variables (i.e., TMP, PRE,
WET, and DTR) according to the location of each surveyed household.

Previous studies provide evidence of a correlation between the normalized
difference vegetation index (NDVI) and malaria risk (63, 64). We include the
NDVIin the baseline model specification as a control variable. The NDVI data are
obtained from the MODIS VI products with a 250 m spatial resolution (MOD13,
http://modis.gsfc.nasa.gov/, date accessed: 2022/10/31). We calculate the mean
of the NDVI within a 5-km buffer centered at each DHS household point.

The dataset of the abductions committed by armed groups is captured from
the Armed Conflict Location and Event Data Project (ACLED) (65). This dataset
includes 2,360 abductions from 2005 to 2017 (covering the period of the DHSs)
in sub-Saharan Africa.

Normalization and Transformation for the Independent Variable of
Interest. The rings used to count the conflict deaths have different areas, which
influence the magnitudes of the estimates and introduce biases. To address this
issue, we normalize the variable of the conflict deaths based on the ring area
(Eq. 1).

—  Death
Death = .ez'a , [1]
Divisor

where Death is the conflict deaths within each ring for a 12-mo period (prior to
the DHS survey), and Death is the normalized Death. Divisor is determined by
the ring area and used for the normalization.

As listed in Table 1, we provide two types of Divisor (i.e., Divisor1 and
Divisor2). Divisor1 is used in the main regression model and its value is 1%
of the ring area (unit: km?). Divisor2 is the ring area and is employed in the
alternative specification for robustness tests. Since Divisor2 is 100 times larger
than Divisor1, replacing Divisor1 with Divisor2 in the specification may lead to
anincrease of two orders of magnitude in the estimates. Whether the magnitude
change of the estimates brings the change in the statistical significance of the
estimates remains to be examined in the baseline specification and alternative
specification.

Inaddition, we use the natural logarithm Log_death of Death(Eq. 2)to explore
the lineartrend of the conflict deaths on the logarithmicscale. Log_deathistaken
as the independent variable of interest in the main regression. We also conduct
arobustness check by replacing the logarithmic transformation with the inverse
hyperbolicsine transformation (i.e., arcsinh(Death + 1)) in the main regression.

Log_death = log(Death + 1), (2]

where Death + 1 is used to avoid the logarithm of zero when Death = 0.

The Main Regression Model. We use a panel regression with high-
dimensional fixed effects to estimate the impact of conflict deaths at different
distances to DHS households on malaria risk. The baseline specification of the
estimated strategy is shown in Eq. 3.

Table 1. The values of Divisor based on the ring areas

Variables of
conflict deaths Ring area Divisor1 Divisor2

Conflict deaths in 2,500z km? 25x 2,500
0 to 50 km

Conflict deaths in 7,500z km? 75x 7,500
50 to 100 km

Conflict deaths in 12,5007 km? 125x 12,5007
100 to 150 km

Conflict deaths in 17,5007 km? 175x 17,500x
150 to 200 km

Conflict deaths in 22,5007 km? 225 22,500z

200 to 250 km

https://doi.org/10.1073/pnas.2309087121

n

Majpoym = > _ Belog_deathyp, o + upy + opm
k=1

+ 6Xihpym + €ihpym (3]

where Maj , , , ry is @ binary variable, indicating that the result of the malaria
test of individual i in household h in a province p in month mo year y is positive
(Maj pp ,m = 1)ornegative(Ma;p, , ry = 0).nin > ByLog_deathy p, . m
is related to the width of the selected ring buffer. For the 50 km-wide ring, n = 5.
We then obtain the 12-mo sum of the conflict deaths with distances of 0to 50 km,
50to 100 km, 100 to 150 km, 150 to 200 km, and 200 to 250 km, respectively,
from the location of household h. Log_deathk/hly,m (k =1,2,3,4,5) denotes
the value of the logarithmic transformation and normalization of the sum. yp,y
and op,m indicate province-by-year fixed effects and province-by-month fixed
effects. Province-by-year fixed effects control for year-specific shocks in each
province, such as macroeconomic trends, and industrial or population structural
changes. Province-by-month fixed effects control for month-specific shocks in
each province, such as seasonality in malaria risk or monthly local events.
€ h,py,m IS the error term.

We underscore two additional crucial considerations for the incorporation
of province-level fixed effects. First, variables such as TMP and PRE that are
highly correlated with malaria risk would be absorbed by household-level
fixed effects. Consequently, we adopt province-level fixed effects in the main
regression. Second, to enhance the model's precision in capturing variations and
heterogeneity within these provinces but also to avoid the absorption of critical
factors, we incorporate the interaction between the province and residence type
(urban orrural people), rather than solely relying on the province, as the province
fixed effects we used.

To minimize the influence of the observed confounders, we control for three
sets of confounders in the vector X;p, ,, r,. The first set consists of the factors
related to the climate and environment, including the 12-mo means of TMP, PRE,
and NDVI before each survey. The second set is the household-related variables
suchas the sex of the household head, the number of mosquito nets, transporta-
tion availability such as motorcycles and cars, main floor materials, and the num-
berofroomsforsleeping. Thefinal setofvariables are the variables aboutindivid-
ualsincluding age, sex, the relationship with the household head, and whether
he/she is a usual resident (or visitor) (please refer to S/ Appendix, Table $10 for
a detailed description of the control variables and their descriptive statistics).

Robustness Checks. We perform several robustness tests to validate the
sensitivity of our estimates. First, to limit the issue of the MAUP problem,
particularly the scale effect (66), we compare the magnitudes of the estimates,
as rings with different sizes are selected.

Second, a concern of the baseline specification of our model is that climate
variability may influence malaria risk in a certain month or season in specific
locations. To address the concern of this issue, we replace the 12-mo mean of
each climate factor(including TMP, DTR, and PRE) with its respective values of the
1st, 2nd, ..., and 12th mo before the DHSs. In addition, conflicts can be affected
by provincial and national boundaries, and refugees and displaced people
encounter obstacles in crossing provincial and national borders (67). Thus, we
include two variables that represent the distance between each survey pointand
the provincial as well as national boundaries in the baseline specification.

Another potential issue for the identification is that province-level fixed
effects may absorb most of the variation in the independent variable. To address
the concern of this issue, we compare the results of the specifications with
the inclusion of six different sets of fixed effects, that is, province-by-year
+ province-by-month (baseline specification), country-by-year + province-by-
month, province-by-year + country-by-month, country-by-year + country-by-
month, province + year-by-month, and country + year-by-month fixed effects.

Additionally, to address the concerns about the potential impacts of the
selection biases and the omitted time-varying variables in the main regression,
we select the number of abductions committed by armed groups (within a
50-km radius from the households) as the IV to re-estimate the effect of conflict
deaths on malaria risk. For the IV to be valid, it should have a strong correlation
with malaria risk and meet the exclusion restriction. As listed in S/ Appendix,
Table S3, the necessary strong correlation is verified in the first-stage regressions

pnas.org
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(Kleibergen-Paap F-statistics > 10). The exclusion restriction can be justified if
the IV is independent of the confounders related to malaria risk and only affects
the risk through the conflicts. The requirement is satisfied by the following two
conditions. First, abduction may be uniformly distributed over space and time
at the city or subprovincial level (68), especially when we control for province-
by-year and province-by-month fixed effects. To demonstrate the exogeneity
of abduction for malaria risk, we conduct a series of exogeneity checks, and all
resultsare listed in S/ Appendix, Tables S4-S6. We find that the IV is uncorrelated
with socioeconomic conditions at the household level (several studies used the
DHS household samples to represent regional poverty (69-71)), climate and
environment, population density, the number of medical facilities, the price of
staple food, and the potential governmentinfluence in the region (measured by
the distance to the capital, and the distances to the boundaries of provinces and
countries). Second, abductions committed by armed groups aim to acquire funds
forarmed activities (72). Out of the 2,360 abductions in the ACLED dataset (65),
we find that none of them resulted in fatalities. Of the abductions, only nine were
connected to the destruction of buildings, and one was connected to a hospital.
Furthermore, militants were unlikely to remain in the same locations after the
abductions, and they probably fled to other areas for ransom demands (73).
These findings suggest that abductions may have little impact on local malaria
transmission and interventions. We give the details of the 25LS estimation in
Sl Appendix, Method S1.

For testing model robustness when adopting the inverse hyperbolic
sine transformation and another normalization method (replacing Divisor1
with Divisor2 in the regression), we undertake three alternative specifica-
tions, including the specifications adopting arcsinh(Death/Divisor 1 + 1)
(inverse hyperbolic sine transformation), log(Death/Divisor 2 + 1), and
arcsinh(Death/Divisor 2 + 1) (using both of inverse hyperbolic sine trans-
formation and Divisor 2). We compare their estimates with those of the baseline
specification (log(Death/Divisor 1 + 1)).

Synergistic Effects of Conflict Deaths and Climate on Malaria Risk. We
construct an interaction term of conflict deaths and climate factors (TMP, PRE,
and WET) in Eq. 3, to explore the synergistic effects between conflict deaths
and climate on malaria risk. The specific estimation strategy is presented
in Eq. 4.

Maj p,py,m = B(Conflicty, , oy x Climatey, , ) + aConflicty, , y + mp,y
+opm + 6Xihpym + € pym [4]
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where Conflicty, , , is a binary variable. Conflicty, , ,, = 1if a conflict (50 to
100 km) occurs and causes more than one death; otherwise, Conf/icthlylm =0.
Climatey, , , represents the climate variable, which is taken as the moderator

including TMP, PRE, or WET. To identify the effects of both short- and long-term
climate-related exposures within a year, the 3-, 6-, 9-, and 12-mo means of
each climate variable before household h is investigated are all considered
in the regression model. Conflicty , ., x Climatey, , , is the interaction term,

and its coefficient g represents the significant difference in malaria risk due to
climate variability between the individuals experiencing and not experiencing
the conflict which causes more than one death.

Mechanism of the ssvCs. We use the following three models to explain
the mechanism of SSVCs: a) SSVCs reducing the proportion of adult men in
households; b) the relationship between the decreased proportion of adult men
and malariarisk; and ¢) the vulnerability of disadvantaged populations to malaria
risk due to SSVCs. The model used for (a) and (b) is similar to Eq. 3, while the
one for (c) is similar to Eq. 4 except that we replace the moderator. Please refer
to S/ Appendix, Methods S2-S4 for detailed descriptions of these three models.

Data, Materials, and Software Availability. The household and individual
datasets are available from https://www.dhsprogram.com/ (74). The conflict
dataset is available from http://www.pcr.uu.se/data/ (75). The product that
provides NDVI is available from https://modis.gsfc.nasa.gov/ (76). The climate
dataset is available from https://crudata.uea.ac.uk/cru/data/hrg/ (77). The
abduction dataset is available from http://www.acleddata.com/ (78). The
population dataset from WorldPop is available from https://www.worldpop.org
(79). The food price dataset is available from https://dataviz.vam.wfp.org/
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sub-saharan-africa (81). The maps of Africa used in this study is available
from https://www.gadm.org/ (82). The codes for the regression analysis and
figures are available from https://github.com/qiweiyu1223/SSVC_climate_
malaria (83).

ACKNOWLEDGMENTS. This work was supported by the National Natural Sci-
ence Foundation of China under Grant 41925006, 42293272, and 42201368,
and the Fundamental Research Funds for the Central Universities under Grant
310421101.

18. 1. K. Fletcher et al., Synergies between environmental degradation and climate variation on malaria
re-emergence in southern Venezuela: A spatiotemporal modelling study. Lancet Planet. Heal. 6,
€739-6748(2022).

19. L. Sedda, Q. Qi, A. J. Tatem, A geostatistical analysis of the association between armed conflicts and
Plasmodium falciparum malaria in Africa, 1997-2010. Malaria J. 14, 500 (2015).

20. A. Ahmed et al., Eliminating malaria in conflict zones: Public health strategies developed in the Sri
Lanka Civil War. BMJ Global Health 6, €007453 (2021).

21. M. Molaee Zadeh, K. Shahandeh, S. Bigdeli, H. R. Basseri, Conflict in neighboring countries, a great
risk for malaria elimination in Southwestern Iran: Narrative review article. Iran. J. Public Heal. 43,
1627-1634(2014).

22. T.Caizhi, T. Chao, C. Yu, C. XingShu, L. YongJun, Correlation of armed conflicts and malaria
epidemics in central Africa. J. Third Milit. Med. Univ. 41, 719-722 (2019).

23. 0.J. De Groot, The spillover effects of conflict on economic growth in neighbouring countries in
Africa. Defence Peace Econ. 21, 149-164 (2010).

24. A.S. Fotheringham, D. W. S. Wong, The modifiable areal unit problem in multivariate statistical
analysis. Environ. Plann. A: Econ. Space 23, 1025-1044 (1991).

25. T.K.Yamana, A. Bomblies, E. A. B. Eltahir, Climate change unlikely to increase malaria burden in
West Africa. Nat. Climat. Chang. 6, 1009-1013 (2016).

26. E. A Mordecai et al., Optimal temperature for malaria transmission is dramatically lower than
previously predicted. Ecol. Lett. 16,22-30(2013).

27. J.M. Caldwell et al., Climate predicts geographic and temporal variation in mosquito-borne disease
dynamics on two continents. Nat. Commun. 12,1233 (2021).

28. G.H. Stresman, Beyond temperature and precipitation: Ecological risk factors that modify malaria
transmission. Acta Trop. 116, 167-172 (2010).

29. M. J. Friedrich, Effect of warming temperatures on malaria incidence. JAMA 311, 1489
(2014).

30. T.Briick, K. Schindler, The impact of violent conflicts on households: What do we know and what
should we know about war widows? Oxford Dev. Stud. 37, 289-309 (2009).

31. C. M. Ormhaug, P. Meier, H. Hernes, Armed conflict deaths disaggregated by gender. PRIO Paper
23(2009).

32. Y.K. Do, M. A. Bautista, Tobacco use and household expenditures on food, education, and
healthcare in low- and middle-income countries: A multilevel analysis. BMC Public Health 15,
1098(2015).

https://doi.org/10.1073/pnas.2309087121

9 of 10


https://www.pnas.org/lookup/doi/10.1073/pnas.2309087121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2309087121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2309087121#supplementary-materials
https://www.dhsprogram.com/
http://www.pcr.uu.se/data/
https://modis.gsfc.nasa.gov/
https://crudata.uea.ac.uk/cru/data/hrg/
http://www.acleddata.com/
https://www.worldpop.org
https://dataviz.vam.wfp.org/
https://data.humdata.org/dataset/health-facilities-in-sub-saharan-africa
https://data.humdata.org/dataset/health-facilities-in-sub-saharan-africa
https://www.gadm.org/
https://github.com/qiweiyu1223/SSVC_climate_malaria
https://github.com/qiweiyu1223/SSVC_climate_malaria

Downloaded from https://www.pnas.org by Ligiang Zhang on April 1, 2024 from |P address 210.31.76.107.

33
34
35.
36.
37.
38.
39.

40.

41,
8.
43.
44,
45.
46.

47.
. S.J.Ryan, C. A. Lippi, F. Zermoglio, Shifting transmission risk for malaria in Africa with climate

49.
50.

51.

52.

53.
54.
55.
56.
57.

58.

T.Yamano, T. S. Jayne, Measuring the impacts of working-age adult mortality on small-scale farm
households in Kenya. World Dev. 32, 91-119 (2004).

K. Wickramage, R. G. Premaratne, S. L. Peiris, D. Mosca, High attack rate for malaria through
irregular migration routes to a country on verge of elimination. Malar. J. 12, 276 (2013).

A H. Amara, S. M. Aljunid, Noncommunicable diseases among urban refugees and asylum-seekers
in developing countries: A neglected health care need. Globaliz. Heal. 10, 24 (2014).

J. G. Montalvo, M. Reynal-Querol, Fighting against Malaria: Prevent wars while waiting for the
“"miraculous” vaccine. Rev. Econ. Stat. 89, 165-177 (2007).

A. Bennett et al., The relative contribution of climate variability and vector control coverage to
changes in malaria parasite prevalence in Zambia 2006-2012. Paras. Vect. 9, 431(2016).

J. Lubinda, U. Haque, Y. Bi, B. Hamainza, A. J. Moore, Near-term climate change impacts on
sub-national malaria transmission. Sci. Rep. 11,751 (2021).

J. Rocklév, R. Dubrow, Climate change: An enduring challenge for vector-borne disease prevention
and control. Nat. Immunol. 21, 479-483 (2020).

S. Spencer et al., Malaria in camps for internally-displaced persons in Uganda: Evaluation of an
insecticide-treated bednet distribution programme. Trans. R. Soc. Trop. Med. Hygiene 98, 719-727
(2004).

C. Siriwardhana, K. Wickramage, Conflict, forced displacement and health in Sri Lanka: A review of
the research landscape. Confl. Health 8,22 (2014).

A M. Ibafiez, S. V. Rozo, M. J. Urbina, Forced migration and the spread of infectious diseases.

J. Health Econ. 79, 102491 (2021).

A. Hoeffler, M. Reynal-Querol, Measuring the Costs of Conflict (World Bank, Washington, DC,
2003).

D. . Stern et al., Temperature and malaria trends in highland East Africa. PLoS One 6, €24524-
(2011).

G. Zhou, N. Minakawa, A. K. Githeko, G. Yan, Association between climate variability and malaria
epidemics in the East African highlands. Proc. Natl. Acad. Sci. U.S.A. 101, 2375-2380 (2004).

L. Chaves, C. Koenraadt, Climate change and highland malaria: Fresh air for a hot debate. Quart.
Rev. Biol. 85, 27-55(2010).

J. A Patz et al., Regional warming and malaria resurgence. Nature 420, 627-628 (2002).

change: A framework for planning and intervention. Malar. J. 19, 170 (2020).

C. Newbury, H. Baldwin, Aftermath: Women in postgenocide Rwanda (2000).

B. Nowrojee, Shattered lives: Sexual violence during the Rwandan genocide and its aftermath.
Human Rights Watch 3169 (1996).

M. Buvinic, M. Das Gupta, U. Casabonne, P. Verwimp, Violent conflict and gender inequality: An
overview. World Bank Res. Obser. 28, 110-138(2013).

G. W. Fegan, A. M. Noor, W. S. Akhwale, S. Cousens, R. W. Snow, Effect of expanded insecticide-
treated bednet coverage on child survival in rural Kenya: A longitudinal study. Lancet 370,
1035-1039 (2007).

R. M. Prothero, Population movements and problems of malaria eradication in Africa. Bull. World
Health Org. 24, 405-425(1961).

A.J.Tatem, D. L. Smith, International population movements and regional Plasmodium falciparum
malaria elimination strategies. Proc. Natl. Acad. Sci. U.S.A. 107, 12222-12227 (2010).

P. H. Wise, The epidemiologic challenge to the conduct of just war: Confronting indirect civilian
casualties of war. Daedalus 146, 139-154 (2017).

T. First et al., Dynamics of socioeconomic risk factors for neglected tropical diseases and malaria in
an armed conflict. PLoS Neglect. Trop. Dis. 3, €513 (2009).

S. K. Lischer, The global refugee crisis: Regional destabilization & humanitarian protection.
Daedalus 146, 85-97 (2017).

L. Ruckstuhl, C. Lengeler, J. M. Moyen, H. Garro, R. Allan, Malaria case management by community
health workers in the Central African Republic from 2009-2014: Overcoming challenges of access
and instability due to conflict. Malar. J. 16, 388 (2017).

10 of 10 https://doi.org/10.1073/pnas.2309087121

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

T. Pettersson, M. Oberg, Organized violence, 1989-2020. J. Peace Res. 58, 597-613

(2021).

X. H.Tai, S. Mehra, J. E. Blumenstock, Mobile phone data reveal the effects of violence on internal
displacement in Afghanistan. Nat. Hum. Behav. 6, 624-634(2022).

R. Sundberg, E. Melander, Introducing the UCDP georeferenced event dataset. J. Peace Res. 50,
523-532(2013).

. Harris, T. J. Osborn, P. Jones, D. Lister, Version 4 of the CRU TS monthly high-resolution gridded
multivariate climate dataset. Sci. Data 7, 109 (2020).

J. Gaudart et al., Modelling malaria incidence with environmental dependency in a locality of
Sudanese savannah area. Mali. Malar. J. 8, 61(2009).

G. Texier, V. Machault, M. Barragti, J. P. Boutin, C. Rogier, Environmental determinant of malaria
cases among travellers. Malar. J. 12, 87 (2013).

C. Raleigh, R. Kishi, A. Linke, Political instability patterns are obscured by conflict dataset scope
conditions, sources, and coding choices. Human. Soc. Sci. Commun. 10, 74 (2023).

D. E. Jelinski, J. Wu, The modifiable areal unit problem and implications for landscape ecology.
Lands. Ecol. 11,129-140 (1996).

E. Alden, Is border enforcement effective? What we know and what it means J. Migrat. Hum. Sec. 5,
481-490(2017).

S.E. Otu, M. U. Nnam, Does theory matters: Constructing an integrated theoretical framework to
describe kidnapping for ransom in Nigeria. Aggress. Violent Behav. 40, 29-38 (2018).

S. Alkire, J. M. Roche, A. Vaz, Changes over time in multidimensional poverty: Methodology and
results for 34 countries. World Dev. 94, 232-249 (2017).

R. Naidoo et al., Evaluating the impacts of protected areas on human well-being across the
developing world. Sci. Adv. 5, eaav3006 (2023).

I. McCallum et al., Estimating global economic well-being with unlit settlements. Nat. Commun.
13,2459 (2022).

S. Merkling, E. Davis, Kidnap & ransom insurance: A rapidly growing benefit. Compen. Benefits
Rev. 33, 40-45(2001).

N.S. Akpan, Kidnapping in Nigeria's niger delta: An exploratory study. J. Soc. Sci. 24, 33-42
(2010).

ICF, The DHS Program website. Funded by USAID. http://www.dhsprogram.com. Accessed 7 July
2021.

Department of Peace and Conflict Research, Uppsala University. UCDP Georeferenced Event
Dataset (GED) Global version 23.1. https://ucdp.uu.se/downloads/. Accessed 4 February

2024.

NASA LP DAAC at the USGS EROS Center. MOD13Q1.061 Terra Vegetation Indices 16-Day Global
250m. https://modis.gsfc.nasa.gov/. Accessed 7 December 2021.

National Centre for Atmospheric Science. CRU TS v. 4.07. https://crudata.uea.ac.uk/cru/data/hrg/.
Accessed 10 December 2021.

Armed Conflict Location & Event Data Project (ACLED). https://www.acleddata.com. Accessed 15
December 2021.

WorldPop Hib. The spatial distribution of population in 2020. https://hub.worldpop.org/geodata/
summary?id=24777. Accessed 30 September 2022.

World Food Programme. Global Food Prices Database (WFP). https://data.humdata.org/
organization/wfp. Accessed 10 March 2022.

World Health Organization's Global Malaria Programme. A spatial database of health facilities
managed by the public health sector in sub Saharan Africa. https://data.humdata.org/dataset/
health-facilities-in-sub-saharan-africa. Accessed 30 December 2022.

Global Administrative Areas. GADM database of Global Administrative Areas. https://www.gadm.
org. Accessed 27 July 2023.

Q. Yu, Codes and data for the spatial spillovers of violent conflict amplify the impacts of climate
variability on malaria risk in sub-Saharan Africa. Github. https://github.com/giweiyu1223/SSVC_
climate_malaria. Deposited 9 March 2024.

pnas.org


http://www.dhsprogram.com
https://ucdp.uu.se/downloads/
https://modis.gsfc.nasa.gov/
https://crudata.uea.ac.uk/cru/data/hrg/
https://www.acleddata.com
https://hub.worldpop.org/geodata/summary?id=24777
https://hub.worldpop.org/geodata/summary?id=24777
https://data.humdata.org/organization/wfp
https://data.humdata.org/organization/wfp
https://data.humdata.org/dataset/health-facilities-in-sub-saharan-africa
https://data.humdata.org/dataset/health-facilities-in-sub-saharan-africa
https://www.gadm.org
https://www.gadm.org
https://github.com/qiweiyu1223/SSVC_climate_malaria
https://github.com/qiweiyu1223/SSVC_climate_malaria

	Materials and Methods

