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Abstract: Vegetation net primary productivity (NPP) is a key indicator for assessing vegetation
dynamics and carbon cycle balance. Xinjiang is located in an arid and ecologically fragile region
in northwest China, but the current understanding of vegetation dynamics in the region is still
limited. This study aims to analyze Xinjiang’s NPP spatial and temporal trends, using random forest
regression to quantify the extent to which climate change and human activities affect vegetation
productivity. CMIP6 (Coupled Model Intercomparison Project Phase 6) climate scenario data help
assess vegetation restoration potential and future risks. Our findings indicate that (1) Xinjiang’s NPP
exhibits a significant increasing trend from 2001 to 2020, with three-quarters of the region experiencing
an increase, 2.64% of the area showing significant decrease (p < 0.05), and the Ili River Basin showing
a nonsignificant decreasing trend; (2) precipitation and radiation are major drivers of NPP variations,
with contribution ratios of 35.13% and 30.17%, respectively; (3) noteworthy restoration potential exists
on the Tian Shan northern slope and the Irtysh River Basin, where average restoration potentials
surpass 80% relative to 2020, while the Ili River Basin has the highest future risk. This study explores
the factors influencing the current vegetation dynamics in Xinjiang, aiming to provide references
for vegetation restoration and future risk mitigation, thereby promoting sustainable ecological
development in Xinjiang.

Keywords: net primary productivity; Xinjiang; climate change; risk assessment

1. Introduction

Vegetation net primary productivity (NPP) is a fundamental metric to measure the
productive capacity of plant ecosystems, playing an important role in the assessment of
terrestrial ecological dynamics [1]. As a core component of the soil–plant–atmosphere
continuum, vegetation influences the material cycling and energy exchange between the
Earth’s surface and the atmosphere [2]. As the most dynamic component of terrestrial
ecosystems, vegetation is usually influenced by factors including CO2 levels, solar radiation,
atmospheric circulation patterns, and human activities [3]. The effects of these influencing
factors show in various indicators of vegetation. NPP represents the solar energy converted
into chemical energy through photosynthesis by vegetation, indicating the amount of
organic carbon remaining in terrestrial ecosystems after subtracting their own respiratory
consumption. NPP is a crucial parameter of ecosystem function, with its variations asso-
ciated with plant growth, development, and reproduction. As one of the most important
indicators of vegetation degradation and recovery [4], NPP accurately reflects the response
of vegetation to climatic factors and human activities. Hence, the comprehensive study of
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the spatiotemporal dynamics of vegetation NPP and its underlying determinants is impor-
tant for the sustainable utilization of vegetation resources, the exploitation of vegetation
production potential, and the mitigation of vegetation degradation [5].

To date, numerous studies have conducted attribution analyses on the factors influ-
encing vegetation changes based on NPP and their respective magnitudes of influence [6].
In the field of climatic influences on vegetation dynamics, recent studies have primarily
focused on temperature [6], precipitation [7], CO2 concentration [8], and other climatic vari-
ables [9]. Studies on the effects of human activities on vegetation dynamics have focused on
shifts in land use types [10], governmental interventions aimed at vegetation conservation
in the study area [11], and fluctuations in grazing intensities [12]. Overall, research on
the mechanisms by which individual climate factors influence vegetation productivity is
now relatively mature. Some studies have explored the combined effects of climate factors
and human activities, further investigating their impact on vegetation growth through
various research methodologies [13] and across diverse vegetation types [14]. However,
there are still shortcomings in integrating climate factors and human activities for a com-
prehensive analysis. Furthermore, current research tends to focus on the impacts of two
broad categories—climate and human activities—on vegetation cover. There are fewer
quantitative analyses of how specific factors within these categories contribute to changes
in vegetation cover. Additionally, research on the impacts of human activities is often
limited to analyses of land use change.

In the face of multiple influencing factors, assessing the current restoration potential
and future change risks of vegetation is another critical concern for many scholars. Veg-
etation restoration, as a prerequisite for ecological restoration, affects various ecological
functions, including soil and water conservation, carbon sequestration, and biodiversity.
Vegetation restoration potential is the theoretical maximum potential that vegetation can
reach during the restoration process [15]. Currently, common methods to quantify vegeta-
tion restoration potential mainly include field-based investigations [16] and constructing
indicator systems [17]. These methods are used to explore the benefits of ecological restora-
tion measures on vegetation protection [18] and to predict the time of vegetation restoration
under different restoration modes [19]. Future change risk assessment involves analyzing
the trends and risks of vegetation growth under various potential environmental variables
in future climate scenarios [20]. The goal is to reduce the frequency of environmental risk
events and hazards, enhance the level of environmental risk prevention and control, and
provide a scientific basis for environmental protection [21]. However, existing research
has mainly focused on large-scale vegetation greenness changes, lacking a comprehensive
quantitative assessment and overall analysis of the restoration potential and future change
risks inherent to specific regional vegetation dynamics.

Currently, as a typical arid climate region, Xinjiang continues to face challenges such
as incomplete analysis of influencing factors, insufficient quantitative analysis of factor
contributions, and an inadequate framework for assessing vegetation dynamics. Xinjiang,
located in the arid regions of northwest China, is characterized by fragile ecological en-
vironments. Due to its distinctive geographical positioning and climatological attributes,
Xinjiang’s terrestrial ecosystems are highly sensitive to climate change [22]. In recent years,
climatic perturbations have led to challenges in Xinjiang, including diminished soil mois-
ture and a perturbed plant–water equilibrium. These changes have resulted in vegetation
degradation, exacerbating the difficulties in sustainably managing natural resources within
the region [23]. Meanwhile, human activities, including extensive grazing practices and
grassland reclamations, have compounded the negative impact on vegetation. Climate
change acts as an intrinsic driver, while human activities act as external drivers [24]. Under
the combined influence of these factors, issues such as grassland degradation and land
desertification in Xinjiang are becoming increasingly prominent. Additionally, due to
Xinjiang’s distinctive topographical contours, epitomized by its “three mountains and two
basins” typology, the effects of climate change and human activities show significant spatial
heterogeneity in the region [25]. Against this backdrop, local governments face prolonged
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challenges in devising effective management strategies and assessing the extent to which
vegetative ecosystems are impacted by human and climatic influences. Hence, evaluating
the spatial potential for future vegetation recovery and degradation risks is an urgent issue
that requires attention.

Based on the above reasons, we believe that the influencing factors and future change
risks of vegetation in Xinjiang, as a typical ecologically fragile region, warrant further
investigation. Thus, this study systematically analyzes the spatiotemporal characteristics of
vegetation NPP in Xinjiang from 2001 to 2020. It evaluates the impacts of climate change and
human activities on vegetation and introduces innovative methods to assess the potential
space for vegetation restoration and to quantitatively predict future risks. This research
systematically evaluates the multidimensional changes in vegetation in Xinjiang, China. It is
critical for understanding the mechanisms of vegetation degradation, implementing sound
ecological management, and has far-reaching implications for the sustainable management
of vegetation resources in Xinjiang [26].

2. Materials and Methods
2.1. Study Area

Xinjiang is located in the northwestern part of China, with geographical coordinates
between 34◦22′N–49◦33′N and 73◦22′E–96◦21′E, as shown in Figure 1. Covering approx-
imately 1.66 million km2, it comprises one-sixth of China’s total land area. Situated in
the heartland of the Eurasian continent, Xinjiang’s landscape is characterized by a mix of
mountains and basins. From north to south, the region encompasses the Altai Mountains,
Junggar Basin, Tianshan Mountains, Tarim Basin, and Kunlun Mountains, presenting a
typical geographical configuration known as the “three mountains and two basins”. As
one of the driest regions in China, Xinjiang is a typical arid area, characterized by a tem-
perate continental climate with scarce precipitation. The annual average precipitation is
merely 145 mm, only 23% of the national average of 630 mm [27]. Abundant sunlight and
significant diurnal temperature variations are notable climatic features [28]. The region’s
unique geographical location and distinctive terrain lead to significant spatial differences
in climate conditions, including temperature, precipitation, and radiation.
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Soil types in Xinjiang include brown pedocal, sierozem, gray–brown desert soil, and gray
desert soil [29]. According to the landcover data (as shown in Table 1), most areas of Xinjiang are
barren, desert and grassland account for about 69% and 25% of the total area in 2020, respectively.
And the ecological environment is fragile, characterized by a limited variety and low coverage
of vegetation, forming a pattern of a mountain–oasis–desert ecological environment influenced
by topography [30]. This study focuses on the Xinjiang Uygur Autonomous Region, delineating
five major areas: the Irtysh River Basin (IR), northern slopes of the Tianshan Mountains (NTM),
Ili River Basin (IlR), Turpan Basin (TB), and Tarim River Basin (TR). These areas are divided
primarily by “watersheds” and “county-level administrative boundaries”, from north to south
and from west to east (as shown in Figure 1). Among these areas, the Irtysh River Basin,
northern slopes of the Tianshan Mountains, and Ili River Basin belong to northern Xinjiang,
while the Turpan Basin and Tarim River Basin are part of southern Xinjiang.

Table 1. Comparison of the area share of each LULC type in Xinjiang and five regions in 2001 and 2020.
XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of the Tianshan Mountains, Ili
River, Turpan Basin, and Tarim River, respectively.

LULC Type Year XJ IR NTM IlR TB TR

Forest
2001 0.21% 1.35% 0.19% 2.68% 0.00% 0.01%
2020 0.25% 1.65% 0.21% 3.31% 0.01% 0.01%

Grassland
2001 23.86% 84.39% 54.64% 61.81% 9.09% 10.88%
2020 24.85% 83.73% 54.57% 62.33% 9.91% 12.39%

Cropland 2001 2.87% 1.26% 4.97% 25.34% 0.36% 1.66%
2020 4.19% 2.69% 8.65% 24.19% 0.51% 2.73%

Urban and built up 2001 0.17% 0.20% 0.46% 0.53% 0.13% 0.08%
2020 0.17% 0.20% 0.46% 0.56% 0.13% 0.08%

Desert
2001 71.80% 11.41% 38.94% 8.36% 90.37% 86.03%
2020 68.94% 10.31% 35.14% 8.11% 88.94% 82.80%

Water body 2001 1.09% 1.39% 0.80% 1.28% 0.50% 1.34%
2020 1.60% 1.42% 0.97% 1.50% 0.50% 1.99%

2.2. Data Sources

The annual average primary productivity data for this study come from the National
Earth System Science Data Center, spanning from 2001 to 2020, with a 500 m spatial res-
olution. Derived from an enhanced version of the light-use efficiency model (EC-LUE),
the GLASS primary productivity data account for factors like saturated vapor pressure
deficit and atmospheric CO2 concentration, effectively capturing the spatiotemporal varia-
tions in global vegetation productivity and modeling its interannual changes [31,32]. The
datasets were reprojected to the WGS84 coordinate system using the ArcGIS 10.4 software
to maintain spatial consistency.

The MCD12Q1 land use dataset originates from the National Aeronautics and Space
Administration (NASA) and is distributed by the MODIS Land Science team. This dataset
covers 2001 to 2020 with a 500 m resolution and annual temporal resolution. The MCD12Q1
product has been widely employed in analyzing land use changes in China relative to
climate factors [33,34]. This study adopts the classification scheme proposed by the In-
ternational Geosphere-Biosphere Programme (IGBP) as the foundational framework [35],
and based on the needs of this study, consolidates the original 17 land use categories into
6 overarching categories [36]: (1) Forest: Evergreen Needleleaf Forests, Evergreen Broadleaf
Forests, Deciduous Needleleaf Forests, Deciduous Broadleaf Forests, Mixed Forests, Closed
Shrublands, and Woody Savannas are grouped under this classification; (2) Grassland:
Open Shrublands, Savannas, Grasslands, and Permanent Wetlands are grouped under
this classification; (3) Cropland: Croplands and Cropland/Natural Vegetation Mosaics
are grouped under this classification; (4) Urban and built up: Urban and Built-up Lands
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are consolidated into this classification; (5) Desert: Barren is subsumed within this cate-
gory; (6) Water body: Permanent Snow and Ice and Water Bodies are grouped under this
classification. This reclassification aligns with the study’s goals to investigate key land
use dynamics.

The climate data utilized in this study are sourced from the ERA5 dataset provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF). Representing
the fifth iteration of global atmospheric reanalysis products developed by ECMWF, ERA5
combines model simulations with observations for a comprehensive global atmospheric
dataset. Specifically, the 10 m wind speed data employed in this study are sourced from
the ERA5 Monthly dataset, characterized by a spatial resolution of 0.25◦ and encompassing
the temporal range from 1979 to 2020. Concurrently, the 2 m air temperature data, total
precipitation data, and downward shortwave radiation data are obtained from the ERA5
Land Monthly dataset, with a spatial resolution of 0.1◦ and covering the period from
1950 to 2023. Based on the premise that climate is similar at larger spatial scales [37–39],
these datasets were resampled to 500 m resolution using bilinear interpolation in ArcGIS
10.4 to ensure uniformity in spatial analysis.

The CO2 data utilized in this study were obtained from the World Data Center for
Greenhouse Gases (WDCGG). Among the extant CO2 monitoring stations across China,
only the Qinghai Wulan Guan station (WLG) provides data spanning the period from 2001
to 2020. Consequently, this study relies on the synthetic annual mean CO2 measurements
from the WLG station for the years 2001 to 2020, serving as a proxy for the interannual
CO2 concentration levels in Xinjiang. Previous studies have indicated minimal differences
in average CO2 data within Chinese regions [40], hence the CO2 data from the WLG site
remains highly representative for CO2 levels in Xinjiang.

The livestock data utilized in this research were obtained from the Xinjiang Statistical
Yearbook. Data on the number of livestock at the end of each year from 2001 to 2020
were extracted and standardized into sheep units [41]. Employing county-level vector
maps of Xinjiang and the ArcGIS 10.4 software, spatial interpolation procedures were
performed to generate county-level livestock density maps for 2001 to 2020, representing
grazing intensity. Grazing pressure is an important factor influencing vegetation growth
and changes in NPP [42]. The conversion ratios for livestock to sheep units were as follows:
goats = 1, cattle and horses = 5, donkeys = 3, pigs = 1.5 [41]. Analyzing livestock density
along with other environmental and climatic variables helps clarify the impact of human
activities on vegetation dynamics in ecologically sensitive areas such as Xinjiang.

This study simulates the trend of future vegetation NPP in Xinjiang from 2021 to 2050
under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate scenarios using future climate model
data from CMIP6 (Coupled Model Intercomparison Project Phase 6) to evaluate vegetation
risks under varying climate conditions. The CMIP 6 climate simulation data are derived
from the BCC-CSM2-MR experiment [43]. BCC-CSM2-MR is a medium-resolution monthly
climate system model developed by the National (Beijing) Climate Center (BCC) with
a time range of 1850–2100 and a spatial resolution of 1◦. This model has demonstrated
effectiveness in simulating climate conditions in China, providing detailed validation of
key climate factors such as temperature, precipitation, and radiation that are essential
for vegetation growth [44,45]. The study used a deep learning method to obtain future
vegetation NPP data with a spatial resolution of 0.05◦ for the years 2025–2050, based on
CMIP6 meteorological data. The data test set achieved an R2 of 0.894 and an RMSE of 0.330,
indicating that this method has high predictive accuracy and model reliability in vegetation
modeling in China [46]. Information on the various types of future climate scenarios used
in the study is shown in Table 2.
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Table 2. The introduction of different future climate scenarios [47].

Name Difficulty of Climate
Change Adaptation

Difficulty of Climate
Change Mitigation Description

SSP1-2.6 Low Low

Sustainable development pathway. Low resource intensity and
reduced reliance on fossil fuels, balanced development within

and among economies, technological advancement, with a strong
emphasis on preventing environmental degradation.

SSP2-4.5 Medium Medium

Middle-of-the-road pathway. The world continues to develop
according to the typical trends of the past few decades, with

reduced dependence on fossil fuels, but uneven development
among low-income countries.

SSP5-8.5 Low High

Fossil fuel development pathway. Emphasizes traditional
economic development, with an energy system dominated by
fossil fuels, but deepened regional cooperation and economic
globalization, characterized by strong economic growth and

highly engineered infrastructure.

The source, spatial resolution, and resampling methods for all data are shown in
Table 3. The reprojected and resampled datasets were validated against their original
resolutions to ensure that the resampling and interpolation processes did not introduce
significant errors. This validation included comparing key statistical properties and spatial
patterns before and after resampling, confirming the reliability of the unified dataset for
subsequent analyses.

Table 3. The introduction of data category, parameters, sources, spatial resolution, and resampling
methods, all spanning 2001–2020.

Data Category Data Parameter Data Source Spatial Resolution Resampling Method

Remote sensing data NPP GLASS products 500 m

Meteorological data

2 m air temperature ERA5-Land monthly products 0.1◦ Bilinear
Precipitation ERA5-Land monthly products 0.1◦ Bilinear

Downward shortwave radiation ERA5-Land monthly products 0.1◦ Bilinear
10 m wind speed ERA5 monthly products 0.25◦ Bilinear

CO2 WLG station data Site scale Bilinear

Human activity data Land use/cover MCD12Q1 dataset 500 m
Livestock data (sheep units) Xinjiang Statistical Yearbook County scale Bilinear

Future climate
simulation data Future NPP CMIP6 1◦ Deep learning

2.3. Methods
2.3.1. Trend Analysis

This study utilizes a linear fitting equation to analyze the trend of vegetation pro-
ductivity. For each pixel of the NPP image, its value reveals the situation of vegetation
productivity within that pixel. The overall pattern of vegetation productivity change in Xin-
jiang over the study period is analyzed, and the overall trend of NPP change is determined
through linear regression of time series data as follows:

NPP = a× year + b (1)

where NPP represents the values of the NPP (net primary productivity) data; a denotes the
slope value of the fitted equation, reflecting the degree of temporal change in vegetation
productivity trends; and b signifies the intercept of the fitted equation. The p-value is
computed for the NPP time series data through the t-test to ensure that the trend in NPP
change holds statistical significance. The significance of the NPP trend is determined based
on whether the p-value is ≤0.05.
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2.3.2. Significance Test

The Mann–Kendall test serves as a robust statistical method employed to assess
the significance of monotonic trends elucidated through the Theil–Sen estimator. Hence,
in previous studies, the Theil–Sen estimator has frequently been paired with the Mann–
Kendall test to indicate the trend of change for each pixel [3]. The specific calculations of
the Theil–Sen estimator are as follows:

TSNPP = median
(NPPj − NPPi

j− i

)
, 2001 ≤ i < j ≤ 2020 (2)

where TSNPP represents the Theil–Sen estimator data value; i and j denote the years; and
NPPi and NPPj represent the NPP values for the i and j years, respectively.

The Mann–Kendall test is a widely applicable statistical methodology utilized to
ascertain the significance of Theil–Sen estimator outcomes within a given time series
dataset. Distinguished by its non-parametric nature, this test method remains robust even
in the presence of missing or outlier values, rendering it particularly suitable for assessing
trend significance within extensive time series datasets [48]. A significant result from the
Mann–Kendall test indicates a significant trend in vegetation pixel changes within the time
series data. Conversely, a nonsignificant result indicates trend stability (i.e., no discernible
trend). The specific calculation formula is as follows:

Z =


Ts−1√
Var(Ts)

, Ts > 0

0, Ts = 0
Ts+1√
Var(Ts)

, Ts < 0

 (3)

Ts =
n−1

∑
j=1

n

∑
i=j+1

sgn
(

NPPj − NPPi
)

(4)

sgn
(

NPPj − NPPi
)
=


1, NPPj − NPPi > 0
0, NPPj − NPPi = 0
−1, NPPj − NPPi < 0

(5)

Var(Ts) =
n(n− 1)(2n + 5)

18
(6)

where NPPi and NPPj, respectively, represent the values of pixels i and j; and n indicates
the length of the time series. A pixel is deemed to pass the Mann–Kendall test and exhibit a
significant trend only when |Z| > Z1−α/2. In this study, |Z| > 1.96 is considered to pass
the significance test at a 95% confidence level, indicating a significant trend in the pixel.

2.3.3. Factor Contribution Analysis

Typically, external hydrothermal meteorological conditions determine the large-scale
patterns of ecosystems, primarily reflected in the spatial distribution of different vegetation
types. Simultaneously, within the same vegetation type, there are still some differences
due to local climatic variations. Based on this, we divide the impact of external factors
on vegetation growth into average contributions and residual contributions. The average
contributions reflect the effects of hydrothermal conditions on the vegetation distribution,
which is the dominant factor determining the spatial distribution and changes in vegetation
NPP; the residual contribution is defined as the remaining impact of external factors on
vegetation NPP after controlling for vegetation type. The total contribution of climate
to vegetation can be calculated by summing these contributions. And LULC acts as an
intermediary, linking these two contributions.

Previous studies have demonstrated the potential of segregating vegetation parame-
ters influenced by climate and human activity factors [49,50], utilizing random forests [51]
to analyze these parameters and ascertain their impact levels [52], which helps identify
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individual contributions to ecosystem dynamics. Accordingly, we employed random forest
regression (RFR) to analyze the average and residual contributions of six key factors related
to vegetation dynamics: annual average temperature (TEM), annual total precipitation
(PRE), annual average downward shortwave radiation (SRAD), annual average wind speed
(Wind), annual livestock density (LD), and annual average carbon dioxide (CO2). These fac-
tors significantly influence vegetation growth and productivity. Among them, temperature
and precipitation primarily drive vegetation biomass accumulation and distribution [53],
while radiation and wind speed impact photosynthesis and water evapotranspiration
efficiency [54]. Rising CO2 levels affect photosynthesis rates, crucial for studying global
climate change [8]. Additionally, livestock density reflects the pressure of human activities
on vegetation [12]. The specific calculation steps are as follows:

(1) Average contributions: Using the sliding window method, we defined the study
area window, in which 80% of pixels consistently represent the same land class over
multiple years. For each window identified with consistent land use, we extracted the
average values of four key climate features (temperature, precipitation, solar radiation,
and wind speed) [6] as the feature set. We used RFR to predict vegetation NPP based
on these environmental features, implemented using Python 3.9 and the sklearn package.
The robustness of this model allows for handling complex variable interactions. Feature
importance was evaluated by measuring the increase in prediction error when each feature’s
data are altered, keeping others constant. The contribution rate is calculated based on the
feature importance scores generated by the model. Since both NPP data and the various
influencing factors are annual-scale data, each factor at each pixel contains 20 samples. The
importance of each feature was assessed through the feature importance scores generated
by the model, calculated as follows:

MI j =
FI j

∑n
i=1 FIi

(7)

where FIj represents the feature importance of the j factor; and MIj is the normalized feature
importance of the j factor. Using this method, the mean contribution of each factor can be
calculated.

To combat sample imbalance across land use categories, we established a sampling
strategy using the median count of sample windows from all categories as the threshold.
For categories exceeding this threshold, a random subset of samples matching this threshold
was selected to ensure a balanced representation in our model training.

(2) Residual contribution: We calculated residual contributions by using the average
multi-year NPP as the baseline and regressing the difference between actual and baseline
NPP for each pixel using a random forest regressor. The independent variables of the
random forest include the current year’s precipitation, temperature, downward shortwave
radiation, wind speed, livestock density, and CO2. The random forest regressor is trained,
and its R2 is calculated as R2

0. Furthermore, to quantify the contribution of each independent
variable, the mean decrease accuracy (MDA) metric is employed [51]. MDA is a widely
accepted measure of factor attribution [55] and has been applied in various geoscientific
fields [56].

For a multiple-factor regression model, the contribution of each factor can be calculated as

VI j = R2
0 − R2

j , 1 ≤ j ≤ n (8)

where R2
j is the R2 value calculated based on the original distribution and following the

fitted regression model for the j variable, and R2
0 is the R2 value when the independent

variables are uncorrected. The formula for calculating the contribution of each factor is
shown in Equation (7), where VIj in Equation (8) corresponds to FIj in Equation (7), and
MIj represents the contribution of the j factor.
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Through the two steps described above, the average and residual contributions of
the influencing factors can be calculated. By subsequently overlaying these results, the
comprehensive contributions of each influencing factor can be determined.

2.3.4. Potential Analysis

Overexploitation and unsustainable economic activities can degrade a landscape [57].
However, once these disturbances are reduced or have ceased, ecosystems can naturally
recover to their optimal state due to their inherent resilience mechanisms [58]. The gap
between the optimal vegetation condition and the current vegetation condition can be
defined as the vegetation restoration potential (VRP). In this study, based on the principle
of “similar habitats have similar VRP”, under similar habitat conditions, vegetation growth
should be fundamentally similar. The current vegetation status at each pixel location is
represented by the NPP value of that pixel for the current year, and the optimal growth
status can be represented by the maximum NPP value at similar habitat locations [59,60].
Considering the spatial variability of environmental variables affecting vegetation growth,
we employ a local window model and obtain a sliding-window-based similar habitat
potential model (SWSHPM) [61]. Since NPP data are usually represented in a regular grid
format, i and j are used to denote the row and column numbers of the data, respectively.
Therefore, the VRP of row i and column j can be expressed as

VRPij(V1, V2, · · · , VN) = Max
(
uijt, R

)
1 ≤ k ≤ m
1 ≤ l ≤ n

yb ≤ t ≤ ye

NPPkl(V1, V2, · · · , VN)− NPPij(V1, V2, · · · , VN) (9)

where VRPij(V1, V2, · · · , VN) denotes the vegetation restoration potential (VRP) at the
current location in row i and column j, and V1, V2, · · · , VN denote the environmental vari-
ables at the current location, assuming there are N environmental condition variables. The
Max

(
uijt, R

)
NPPkl

1≤k≤m,1≤l≤n,yb≤t≤ye
(V1, V2, · · · , VN) is computed by identifying the maximum NPP value

derived from pixels within the NPP dataset spanning various years (with yb representing
the starting year and ye representing the ending year), selecting the value corresponding
to the current location among these variables, and subsequently, returning this maximal
value. Suppose the local window has m rows and n columns, where NPPij(V1, V2, · · · , VN)
represents the NPP value obtained for the current pixel in the given year. In this study,
the search scope is limited to grid cells of the same land use type as the current location,
with the temporal span restricted to the years spanning from 2001 to 2020. Additionally,
comparisons were made among variables under different window ranges. It was observed
that climatic variables exhibit only slight changes within a local range of 10 km, thus their
impact on vegetation growth can be disregarded.

The Vegetation Restoration Potential Ratio Index (VRPRI) is delineated as the ratio of
vegetation restoration potential (VRP) values to the actual NPP values in 2020. To alleviate
potential data uncertainties, the 95th percentile of the NPP distribution histogram is used
instead of the maximum value during computation. Subsequently, the computed results
are categorized into five distinct levels: low potential (<25%), lower potential (25–50%),
medium potential (50–75%), higher potential (75–100%), and high potential (>100%).

3. Results
3.1. Spatiotemporal Analysis of NPP

During the timeframe spanning 2001 to 2020, both the interannual difference and the
average NPP of vegetation in Xinjiang exhibited significant spatial distribution differences
(Figure 2). Quantitatively, areas with high NPP values (>400 gC/m2·a) were primarily
distributed in the IlR, the IR, and the northwest corner of the NTM. In contrast, regions with
low NPP values (<100 gC/m2·a) were mainly distributed in the hinterland of the Junggar
Basin in the NTM and the edge of the Tarim Basin in the TR region. Over 71% of the territory
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manifested vegetation NPP less than 200 gC/m2·a, and 49.06% of the area recorded an
average NPP value below 100 gC/m2·a. Merely 14.58% of the area showed vegetation NPP
values exceeding 300 gC/m2·a, with just 7.22% of the regions featuring high NPP values
(>400 gC/m2·a). Notably, vegetation NPP in northern Xinjiang was significantly higher
than in southern Xinjiang. The IlR recorded the highest average NPP from 2001 to 2020,
at 369.50 gC/m2, while the TB had the lowest annual average NPP, at only 17.76 gC/m2.
Spatially, NPP gradually decreased from the Ili River Valley, Tianshan Mountains, Altai
Mountains, and Kunlun Mountains towards the Junggar Basin and Tarim Basin. The IlR
region exhibited relatively high overall NPP values, as evinced by the boxplot in Figure 2e.
However, there is a significant decrease in the NPP value during 2011–2020 (Figure 2c,d).
In the TB, NPP values were mainly concentrated within the central oasis belt, making it the
region with the smallest distribution span of NPP within all areas (Figure 2e). Meanwhile,
the overall NPP values in the TR region were relatively low and fluctuated over the
20-year period.
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Figure 2. Annual difference and mean values of vegetation NPP in Xinjiang from 2001 to 2020.
(a–d) represent the difference between the four study periods of 2001–2005, 2006–2010, 2011–2015, and
2016–2020, respectively. The units of NPP are all gC/m2·a. (e) Box plots of NPP averages for the whole
of Xinjiang and the five major regions. XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River,
north slope of the Tianshan Mountains, Ili River, Turpan Basin, and Tarim River, respectively.

From a region-wide perspective, there was an evident increasing trend in NPP across
Xinjiang from 2001 to 2020 (Figure 3i). The average NPP increased from 50.73 gC/m2 in
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2001 to 58.58 gC/m2 in 2020, indicating an overall increase of 7.85 gC/m2, with an average
annual growth rate of 0.39 gC/m2. Over these 20 years, notable interannual variations
in the average NPP of Xinjiang were observed, with discernible fluctuations from 2001 to
2008, reaching a nadir of 49.05 gC/m2 in 2008. Subsequently, NPP showed an upward
trajectory from 2008 to 2013, experienced a sharp decline in 2014, then rebounded and
reached its peak value of 65.15 gC/m2 in 2016. However, in the following four years, except
for a slight increase between 2018 and 2019, there was a decreasing trend in NPP. Spatially,
approximately 75.05% of the vegetation NPP showed an increasing trend in 2020 compared
to 2001 across Xinjiang (Figure 3c). As shown in Figure 3a, the decreasing trend of NPP
values is obvious in the Ili Valley region, while there is a more noticeable increasing trend of
vegetation NPP in the south and west sides of the Junggar Basin. Among these, 29.56% of
the pixels displayed PS, predominantly concentrated in the southern segment of the NTM,
the TR, and the TB. Additionally, 45.49% of the pixels indicated PNS, primarily dispersed
near the IR and the confluence of the NTM with the TR. Furthermore, 22.23% and 2.64% of
the regions demonstrated NNS and NS, respectively, primarily distributed in the northwest
sector of the IlR and the NTM.
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Figure 3. Spatial and temporal trends of the NPP from 2001 to 2020 in Xinjiang. (a) Spatial distribution
of the Sen slope of NPP change in Xinjiang from 2001 to 2020; (b) The spatial distribution of the
annual mean NPP trend in Xinjiang from 2001 to 2020. (c) The stack bar of the trend grouped by
types of significance in major regions and the whole of Xinjiang. The fold line graph of the NPP mean
trend in five areas (d–h) and the whole of Xinjiang (i) from 2001 to 2020. NS, NNS, NC, PS, and PNS
denote negative significant, negative non-significant, nonsignificant change, positive significant, and
positive nonsignificant, respectively; XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River,
north slope of the Tianshan Mountains, Ili River, Turpan Basin, and Tarim River, respectively.

Across the five major regions, an analysis of the study period reveals fluctuating
increases in NPP across the IR, the NTM, the TB, and the TR, with a particularly notable
interannual increase in the TR. However, the IlR showed a nonsignificant decreasing trend
(Figure 3e), marked by two significant fluctuations occurring from 2006 to 2009 and from
2013 to 2017, while the remaining years were relatively stable. Each region reached its
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maximum annual average NPP between 2015 and 2016, with the IlR having the highest
average at 422.85 gC/m2. The IR and the NTM both reached their lowest values in 2008,
at 141.14 gC/m2 and 92.27 gC/m2, respectively. The TR experienced its lowest value of
19.11 gC/m2 in 2009. In the IlR, the lowest value during the study period, 302.59 gC/m2,
was observed in 2014. Conversely, the TB, with the lowest average value among the five
major regions, witnessed an increase in NPP values over the 20-year period compared to
2001, reaching 13.97 gC/m2. Overall, interannual fluctuations were higher in northern
regions of Xinjiang compared to southern regions.

Spatially, the TR and the TB exhibit distinct growth trends in vegetation NPP
(Figure 3f,h), with proportions of NPP values increasing by 91.59% and 92.03%, respectively,
and only 8.37% and 7.93% experiencing decreases in vegetation NPP. In the TB, the central
oasis region shows a significant upward trend. In the TR region, areas of significant increase
are concentrated at the edge of the Tarim Basin, while areas of nonsignificant increase are
distributed around the region, with decreases in NPP occurring sporadically. The IR shows
a noticeable decrease in vegetation NPP, with 54.35% of vegetation exhibiting a declining
trend. Among these, 8.86% show a significant decline, constituting the highest proportion
of declining pixels among all regions. Except for the central area of the Ili River Valley and
its boundaries with adjacent regions, numerous patches of NPP decline are scattered across
the region. The vegetation NPP changes in the NTM are complex, featuring an overall
increasing trend. Approximately 22.54% of vegetation exhibits PS, and 43.89% show PNS,
mainly distributed in the southern part of the Junggar Basin. A total of 33.46% of vegetation
shows a decreasing trend and is relatively dispersed. Changes in the IR appear relatively
stable, with 20.06% of the area showing significant changing trends. Among these, 18.84%
of vegetation demonstrates PS, while 1.22% exhibits an NS trend.

3.2. Impacts of Influencing Factors on NPP
3.2.1. Change in Influencing Factors

From 2001 to 2020, precipitation in the Xinjiang region showed spatial differentiation,
with generally higher levels in the western and northern parts compared to the eastern
and southern regions (Figure 4a). The Ili River Valley, influenced by its unique topog-
raphy and oceanic moisture influx, served as a core area for precipitation in Xinjiang.
Additionally, certain areas along the NTM exhibited relatively concentrated precipitation.
The spatial pattern of annual average temperature in Xinjiang was almost the opposite of
precipitation. Mountainous areas experienced lower temperatures, whereas basins had
higher temperatures, a phenomenon substantially influenced by terrain features. This
temperature gradient was particularly evident in regions such as the NTM and the IlR.
Downward shortwave radiation exhibited a distinct distribution characteristic of higher in
the south and lower in the north, decreasing from south to north, with high values mainly
concentrated near the Kunlun Mountains in the south. The spatial variability in average
wind speed across Xinjiang from 2001 to 2020 was higher in the east and lower in the west.
This trend corresponded to the mountainous terrain in the west and the basins and deserts
dominating the southeast, indicating a positive correlation between elevation and wind
speed. Additionally, the spatial distribution of livestock density was closely related to
vegetation growth. Areas of higher livestock density were notably concentrated in the Ili
River Valley and the northwest part of the NTM (Figure 4e). In contrast, the central areas of
the Tarim Basin in the south and the eastern part of the TB were primarily desert regions
with lower livestock density.
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Using the Theil–Sen estimation method, the trends in various influencing factors
from 2001 to 2020 were obtained (Figure 4f–j). Precipitation variation remained relatively
stable in most areas, with significant increases observed in the southeastern part of the
Altai Mountains, the Tarim River Basin, and the central oasis belt of the TB. Conversely,
noticeable decreases were noted in the southwestern part of the IlR and the NTM region.
The annual average temperature in Xinjiang exhibited an overall increasing trend during
the study period. In the TR region, changes were more intricate, with a distinct upward
trend in the southern region and numerous patches of decline in the western and central
parts. Overall, most regions in Xinjiang exhibited a shift towards warmer and wetter
climatic conditions. Downward shortwave radiation in Xinjiang showed spatial variations,
with a northward increase and a southward decrease, alongside a westward increase and an
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eastward decrease. The IlR and the NTM in northern Xinjiang showed significant upward
trends, while the TR and the TB primarily exhibited downward trends. Wind speed changes
in northern Xinjiang remained relatively stable, with some areas showing an upward trend.
Conversely, wind speed variations in southern Xinjiang were more intricate, with slight
increases observed in the southern part of the TR and notable decreases in the central
part of the Tarim Basin. In the vicinity of basin boundaries, growth and decline trends
intermingled. However, in the surrounding areas of the TB, declines predominated for
livestock density in most counties, and cities in western Xinjiang showed a slight increase,
with overall upward trends observed in the IlR and IR regions, with particularly significant
increases in the IlR. The NTM and TR regions exhibited more intricate changes, with
varying degrees of increase and decrease observed.

3.2.2. Contribution Analysis

According to the comprehensive contribution results shown in Figure 5b, precipitation
is the most significant factor affecting the variation in vegetation NPP in Xinjiang among
the six selected influencing factors, accounting for 35.13% of the total contribution across
Xinjiang. The comprehensive contribution of precipitation to NPP is relatively high across
all five regions, with particularly notable effects in the southern Altai Mountains within
the IR region, the southern part of the Junggar Basin within the NTM region, and the
northern part of the Tarim Basin within the TR region (Figure 5b). Downward shortwave
radiation contributes 30.17% to the vegetation NPP, making it another important factor in
Xinjiang. Its dominant impact areas are relatively concentrated, mainly distributed in the
northwest corner of the NTM region and the eastern part of the IlR region. The contribution
of downward shortwave radiation is particularly significant in the IlR region, accounting
for 31.06%.
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Figure 5. The contribution of each factor to NPP given by random forest. (a) is the result of the
residual contribution; (b) is the result of the combined contribution when the average and residual
contributions are superimposed. (c) shows the average of the comprehensive contribution of each
factor for each pixel in the five regions and the whole of Xinjiang. Each pixel in (a,b) shows the highest
contributing factor of the six factors: precipitation, temperature, sinking shortwave radiation, wind
speed, livestock density, and CO2. PR, TEM, SRAD, Wind, LD, and CO2 denote the precipitation,
temperature, downward shortwave radiation, wind speed, livestock density, and CO2, respectively;
XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of the Tianshan Mountains,
Ili River, Turpan Basin, and Tarim River, respectively.
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Temperature is the third highest contributing factor, accounting for 17.61% of the total
contribution. Its high contribution areas are relatively scattered and fragmented across
all five regions, with dominant patches in each. Among the four hygrothermal condition
factors, wind speed has the lowest comprehensive contribution, accounting for 8.37%, with
fewer areas primarily influenced by it. And its residual contribution is more obvious near
the Altai Mountains, as can be seen in Figure 5a. The comprehensive contribution of CO2 is
4.81%, and combining Figures 5a and 5b we can see that it has a significant impact on the
southern side of the Junggar Basin in the NTM area and the northern side of the Tarim Basin
in the TR region. Livestock density, a factor closely related to human activities, contributes
only 3.9% to the overall vegetation NPP in Xinjiang, with high values concentrated in areas
with notable annual variations in livestock, such as the Ili Valley and the Altai Mountains.
Among these, livestock density has a more significant comprehensive contribution to the
IlR region, accounting for 7.22%.

3.3. Restoration Potential and Degradation Risk
3.3.1. Restoration Potential

The spatial distribution of the VRPRI shown in Figure 6a reveals significant spatial
variability in the potential for vegetation restoration is observed in the study area, with a
multi-year average VRPRI of 73%. Regions with high potential values are predominantly
clustered in the NTM, the southern Altai Mountains, and the oasis zone in the central part
of the TB. Particularly, the NTM exhibit numerous pixels with high potential values, with
the highest mean among the five major regions, while the IlR has the lowest annual average
VRPRI (Figure 6b). Additionally, the average results show that the relative potential values
in the IR are relatively high, with average values exceeding 80%. This suggests that despite
the NPP values in the NTM and the IR not inherently being elevated (Figure 2), substantial
potential exists for future vegetation productivity in these regions. Additionally, VRPRI
values in the Altai Mountains, Tianshan Mountains, and Kunlun Mountains all exhibit low
potential values, whereas numerous pixels with high potential values are distributed along
the mountainous slopes and oasis zones of basins.
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Figure 6. Spatial distribution and statistics of the VRPRI in Xinjiang. (a) Spatial distribution of the
VRPRI; (b) box plots of the ratio of the VRPRI across the whole of Xinjiang and the five regions. XJ,
IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of the Tianshan Mountains, Ili
River, Turpan Basin, and Tarim River, respectively.

3.3.2. Degradation Risk

This study uses future climate scenario data sourced from SSP1-2.6, SSP2-4.5, and
SSP5-8.5 in CMIP6 to assess the potential risks to NPP in Xinjiang from 2025 to 2050 under
different climate development conditions. The Mann–Kendall test and Theil–Sen estimation
are conducted on NPP data spanning the timeframe, and the results are combined to define
regions with significantly decreasing NPP as high-risk areas, regions with nonsignificant
decreases as medium-risk areas, regions with nonsignificant changes as low-risk areas, and
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regions with a projected upward trend in the future as no-risk areas. Figure 7a–c illustrate
the spatial distribution of risk levels, while Figure 7d–f present the proportions of each risk
level within Xinjiang and its five major regions.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 6. Spatial distribution and statistics of the VRPRI in Xinjiang. (a) Spatial distribution of the 
VRPRI; (b) box plots of the ratio of the VRPRI across the whole of Xinjiang and the five regions. XJ, 
IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of the Tianshan Mountains, 
Ili River, Turpan Basin, and Tarim River, respectively. 

3.3.2. Degradation Risk 
This study uses future climate scenario data sourced from SSP1-2.6, SSP2-4.5, and 

SSP5-8.5 in CMIP6 to assess the potential risks to NPP in Xinjiang from 2025 to 2050 under 
different climate development conditions. The Mann–Kendall test and Theil–Sen estima-
tion are conducted on NPP data spanning the timeframe, and the results are combined to 
define regions with significantly decreasing NPP as high-risk areas, regions with nonsig-
nificant decreases as medium-risk areas, regions with nonsignificant changes as low-risk 
areas, and regions with a projected upward trend in the future as no-risk areas. Figure 7a–
c illustrate the spatial distribution of risk levels, while Figure 7d–f present the proportions 
of each risk level within Xinjiang and its five major regions. 

 
Figure 7. Risk of change in NPP in Xinjiang from 2025 to 2050. (a–c) Spatial distribution of change 
risk under scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5; (d–f) proportion of each risk class in Xinjiang 
and the five regions. XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of 
the Tianshan Mountains, Ili River, Turpan Basin, and Tarim River, respectively. 

Spatially, under the SSP1-2.6 and SSP2-4.5 scenarios, certain areas within the IlR, the 
western regions of the NTM, and western side of the TR exhibit degradation risks. In con-
trast, under the SSP5-8.5 scenario, the overall degradation risk in Xinjiang is relatively 
low, with only the northwestern side of the Tianshan Mountains and areas near the Altai 
Mountains showing signs of degradation risk. Quantitative analysis shows that under the 
SSP1-2.6 and SSP2-4.5 scenarios, nearly 50% of the IlR falls within high-risk and medium-

Figure 7. Risk of change in NPP in Xinjiang from 2025 to 2050. (a–c) Spatial distribution of change
risk under scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5; (d–f) proportion of each risk class in Xinjiang
and the five regions. XJ, IR, NTM, IlR, TB, and TR denote the Xinjiang, Irtysh River, north slope of the
Tianshan Mountains, Ili River, Turpan Basin, and Tarim River, respectively.

Spatially, under the SSP1-2.6 and SSP2-4.5 scenarios, certain areas within the IlR, the
western regions of the NTM, and western side of the TR exhibit degradation risks. In
contrast, under the SSP5-8.5 scenario, the overall degradation risk in Xinjiang is relatively
low, with only the northwestern side of the Tianshan Mountains and areas near the Altai
Mountains showing signs of degradation risk. Quantitative analysis shows that under the
SSP1-2.6 and SSP2-4.5 scenarios, nearly 50% of the IlR falls within high-risk and medium-
risk zones, indicating significant vulnerability to future vegetation degradation, which
is consistent with the current NPP change patterns (Figure 3). Furthermore, under the
SSP2-4.5 and SSP5-8.5 scenarios, more than 8% of pixels in the IR and NTM regions exhibit
notable future risks. In the SSP5-8.5 scenario, the high-risk proportion in the northern slope
of the Tianshan Mountains reaches nearly 20%.

4. Discussions
4.1. NPP Response to Various Influencing Factors

The rapid growth of global climate change and urbanization is impacting various compo-
nents of terrestrial ecosystems worldwide [62], thereby subjecting vegetation to unprecedented
risks. Xinjiang, a typical arid regions in northwest China, stands out as one of the areas most
acutely vulnerable to these global changes [63]. Changes in various climatic factors have
caused fluctuations in the interactions between land and atmosphere systems, affecting vege-
tation growth and resulting in interannual variations and spatial heterogeneity in vegetation
NPP [24]. Therefore, a comprehensive analysis of the combined effects of multiple factors on
vegetation is essential for better maintaining global carbon balance.

The analysis of the spatiotemporal variation trends in vegetation NPP indicates that
from 2001 to 2020 NPP in Xinjiang overall exhibited a significant increasing trend, which
may be related to changes in hydrothermal conditions [6]. Regionally, the shifts in trends
across the four major areas of the IR, NTM, TB, and TR are consistent yet show notable
spatial discrepancies. As shown in Figure 3c, the TB and TR regions exhibit relatively high
proportions of PS and PNS changes, aligning with the changes in precipitation shown
in Figure 4f. The overall increase in NPP observed in the IR and NTM is related to the
transition of other vegetation types to forests (as shown in Table 1), possibly resulting from
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policies such as the “Three North Shelterbelt Program” [10]. Hydrothermal conditions
are a determining factor in the distribution of land use categories, which in turn deter-
mines the spatial distribution of vegetation NPP. Given that forests have the highest NPP
among vegetation types, their proliferation contributes to the rise in NPP values. However,
these areas also exhibit a relatively high prevalence of NNS regions, possibly due to local
overgrazing, as indicated by LD contributions shown in Figure 5c at 5.93% and 3.92% in
the two major regions, respectively. Despite the adoption of measures such as grazing
prohibition periods for Xinjiang grasslands since the inception of the “Grain for Green”
policy in 2003 to align grazing with vegetation recovery, implementation challenges due to
topographical constraints have precipitated a decline in grassland NPP [6,14]. In contrast
to other regions, the IlR region exhibits a nonsignificant decreasing trend, likely related to
precipitation. As shown in Figure 4f, there has been a significant decrease in precipitation
in the IlR region from 2001 to 2020. Adequate precipitation supports the growth of local
vegetation in areas characterized by high vegetation cover and productivity values, while
diminishing precipitation levels may lead to vegetation degradation. Previous studies have
also highlighted the correlation between diminished precipitation and reduced NPP in the
IlR [64]. Grazing density may also contribute to the decrease in vegetation NPP in this area
to some extent [14].

Various factors contribute to spatial heterogeneity in Xinjiang due to topographical,
altitudinal, and latitudinal variations, leading to diverse fluctuations in NPP. Among these
factors, precipitation has the highest contribution rate, accounting for 35.13%, which plays
a significant role in influencing the variation in vegetation NPP in Xinjiang, consistent with
previous research findings [65]. The study found that the synergy between hydrothermal
conditions is particularly important for the growth of vegetation in Xinjiang [30]. In arid
climates, limited water conditions make the impact of hydrothermal factors on vegetation
growth more pronounced. For example, in higher altitude mountainous areas, an increase
in temperature can benefit vegetation growth to some extent. However, in desert areas,
if the temperature rises without a corresponding increase in precipitation, it may lead to
intensified drought conditions, potentially hindering vegetation growth. This is especially
true in areas with high summer temperatures, where the negative impacts of insufficient
rainfall may be amplified. In addition, the influence of radiation on the distribution and
change in vegetation NPP was also dominant and consistent across patches, a view that
has been confirmed in previous studies [66].

CO2 also influences changes in vegetation NPP in Xinjiang. As shown in Figure 5c,
regions predominantly influenced by CO2 are mainly distributed around the NTM and
the TR, where vegetation NPP has generally increased. Previous research has shown that
a moderate increase in atmospheric CO2 concentration can enhance vegetation’s access
to CO2 and its fertilization effect, thereby increasing terrestrial carbon sinks and affecting
vegetation NPP [67]. In addition, previous studies have shown that complex hydrothermal
conditions create a rich variety of land use categories, and that different land use types lead
to notable disparities in surface vegetation coverage, resulting in significant divergences
in NPP values [65]. It is worth noting that the policy of converting farmland to forests
and grasslands, implemented since 1999, has significantly impacted land use types and
vegetation productivity. This policy has promoted ecological restoration and mitigated
land degradation [29]. The implementation of ecological engineering and government
policies [68], along with the increasing pressure on land due to China’s urbanization
process [69], has led to adjustments in the land use structure of Xinjiang from 2001 to 2020,
and influenced changes in vegetation NPP.

4.2. Restoration Potential and Degradation Risk Assessment

Based on the “similar habitat principle” and statistical analyses, the mean Vegetation
Restoration Potential Ratio Index (VRPRI) in Xinjiang is 0.73. The NTM and the IlR exhibit
relatively high values of VRPRI. As shown in Figure 2, these areas possess a relatively
good vegetation foundation and are characterized by favorable climatic conditions and
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unique topography, which facilitate plant growth by providing conditions conducive to
vegetation recovery, such as meltwater from ice and snow. In addition, areas in Xinjiang
with lower elevations and gentler slopes have higher potential for vegetation recovery,
consistent with previous studies [70]. This may be attributed to the richer vegetation types
in low-elevation and low-slope areas of Xinjiang, which has higher levels of biodiversity,
thereby facilitating vegetation recovery after disturbance. However, vegetation changes are
influenced by multiple factors, with human activities significantly impacting the restoration
potential of vegetation in Xinjiang. Notably, governmental policies play a pivotal role in
the recovery of vegetation NPP [15,71]. Moreover, regulations on forest fire prevention,
forest pest management, relevant leading industries for economic development, and the
promotion of ecotourism development are all conducive to exerting positive influences on
vegetation recovery [15,72,73].

Under different future climate development scenarios, we predict that a considerable
number of pixels in the IlR, the MTM, and the IR will exhibit a high-risk degradation level
in the future (Figure 7). These regions have inherently high vegetation NPP (Figure 2) and
are situated within terrain characterized by unique topographical features and complex and
variable climates, which may lead to increased NPP risks in the future. Furthermore, in the
context of global warming, with rapid industrial, agricultural, and population growth, there is
increasing demand for water resources in the IlR, where precipitation is declining (Figure 4f).
Local water scarcity may become more frequent and persistent, further exacerbating vegetation
loss [74]. Meanwhile, the future risk to vegetation NPP in Xinjiang is relatively low under
the SSP5-8.5 scenario compared to the other two scenarios. This may be related to the high
carbon emissions and continued reliance on fossil fuels under the SSP5-8.5 scenario, leading to
a significant increase in global temperatures and atmospheric CO2 concentrations. Although
rising temperatures may have negative impacts in some regions, in arid areas like Xinjiang,
moderate temperature increases and higher CO2 concentrations could promote photosynthesis,
thereby enhancing vegetation growth [75]. This may partially offset or mitigate the trend
of NPP degradation. Under the SSP5-8.5 scenario, the high-risk areas are predominantly
located near mountainous regions, which is attributed to the complexity of the terrain and the
vulnerability of the ecosystems in these areas. Due to the complex topography, large elevation
differences, and more variable climate conditions, vegetation in mountainous regions has a
lower adaptive capacity [76]. In the scenario of high carbon emissions and rising temperatures,
these regions are likely to experience more extreme climate events, and local ecosystems
may struggle to adapt quickly to the rapidly changing environmental conditions, leading
to an increased risk of NPP degradation. It is also worth noting that in the western Tarim
Basin, numerous pixels are at high-risk levels, exhibiting significant disparities from current
trends (Figure 3). This suggests that while past ecological conservation policies may have
been appropriate under the prevailing climatic conditions at the time, these strategies may
not be beneficial under future climate regimes [77].

4.3. Limitations and Future Work

While this study has analyzed the influencing factors, restoration potential, and
future risks of NPP in Xinjiang, there are still certain limitations. Firstly, in terms of
data, factors such as topography [78], slope [79], and soil moisture [80], among others,
which can also affect vegetation NPP, were not considered in this study. Furthermore, the
ERA5 meteorological data were resampled to 500 m, smoothing out climatic extremes,
which could mask the real impacts of climate change on vegetation NPP. In addition,
direct interpolation of livestock density might not accurately reflect grazing pressure.
Therefore, future analyses could enhance precision by delineating the spatial extents of
grazing prohibition areas or implementing diverse ecological engineering measures. As
for baseline NPP values, the study used a 20-year average for each LULC type but more
refined methodologies could improve accuracy. Moreover, while changes in LULC may
instigate vegetation degradation, subsequently impacting NPP dynamics, it is also plausible
that LULC alterations may precipitate minor climatic shifts, thereby exerting an indirect
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influence on NPP values [81]. Finally, while many studies have used the VRPRI index to
analyze vegetation restoration potential [15,82], this might miss trends in long-term data
improvement. Future studies should consider more detailed modeling approaches.

5. Conclusions

This study conducted a spatiotemporal trend analysis of vegetation NPP in Xinjiang
from 2001 to 2020, innovatively incorporating LULC factors as intermediate variables in
the model to assess the contributions of climate change and human activities to changes in
vegetation NPP. Additionally, innovative methods were introduced to assess the potential
space for vegetation restoration and predict future risks.

Over the 20-year period, three-quarters of the Xinjiang area showed an upward trend
in vegetation NPP, with an average annual growth rate of 0.39 gC/m2. Among the factors
affecting changes in vegetation NPP in Xinjiang, precipitation, and radiation were the
dominant factors, contributing 35.13% and 30.17%, respectively. Climate factors played
a crucial role in moderating the impact of land use types on NPP. The regions along the
northern Tianshan and the Ili River in Xinjiang exhibited significant vegetation restoration
potential, with average VRPRI values exceeding 80%. However, the Ili River region had
relatively lower restoration potential and the highest future risk, with nearly half of the
area facing medium-to-high risks. This study can serve as a reference for policymakers to
prioritize conservation efforts in Xinjiang and adjust management strategies to mitigate the
impacts of climate variability.
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