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Abstract: The strong correlation between gross primary production (GPP) and sun-induced chloro-
phyll fluorescence (SIF) has been reported in many studies and is the basis of the SIF-based GPP
estimation. However, GPP and SIF are not fully synchronous under various environmental condi-
tions, which may destroy a stable GPP–SIF relationship. Therefore, exploring the difference between
responses of GPP and SIF to the environment is essential to correctly understand the GPP–SIF rela-
tionship. As the common driver of GPP and SIF, the incident radiation could cause GPP and SIF to
have similar responses to the environment, which may obscure the discrepancies in the responses
of GPP and SIF to the other environmental variables, and further result in the ambiguity of the
GPP–SIF relationship and uncertainties in the application of SIF. Therefore, we tried to exclude the
dominant role of radiation in the responses of GPP and SIF to the environment based on the binning
method, in which continuous tower-based SIF, satellite SIF, and eddy covariance GPP data from two
growing seasons were used to investigate the differences in the responses of GPP and SIF to radiation,
air temperature (Ta), and evaporation fraction (EF). We found that the following: (1) At both the
site and satellite scales, there were divergences in the light response speeds between GPP and SIF
which were affected by Ta and EF. (2) SIF and its light response curves were insensitive to EF and
Ta compared to GPP, and the consistency in GPP and SIF light responses was gradually improved
with the improvement of Ta and EF. (3) The dynamic slope values of the GPP–SIF relationship were
mostly caused by the different sensitivities of GPP and SIF to EF and Ta. Our results highlighted that
GPP and SIF were not highly consistent, having differences in environmental responses that further
confused the GPP–SIF relationship, leading to complex SIF application.

Keywords: GPP; SIF; TROPOMI SIF; binning method; environmental responses; GPP–SIF relationship

1. Introduction

Vegetation, as an important component of terrestrial ecosystem, assimilates carbon
dioxide into carbohydrate and releases oxygen through photosynthesis, which drives the
global carbon cycle [1–4]. The gross primary production (GPP) is defined as the total
carbon absorbed by vegetation through photosynthesis, which is an indicator of the carbon
fixation capacity of vegetation and constitutes the largest carbon flux between the terrestrial
biosphere and atmosphere [5–8]. Therefore, the quantification of GPP is key to the global
carbon cycle and assessment of vegetation functions. Thus far, many models have been
developed to estimate GPP based on remote sensing data [9–13]. However, due to different
model theories and methods, large uncertainties in the GPP estimation still exist [1,14].
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Sun-induced chlorophyll fluorescence (SIF) is the irradiance re-emitted from chloro-
phyll molecules in the 650–800 nm range during light reactions under excitation by solar
radiation, which is directly linked with photosynthesis [15]. Compared with traditional
vegetation indices, the physiological information included in SIF has great potential and
advantages in GPP estimation [4]. In the light use efficiency (LUE) model, GPP and SIF can
be expressed as similar expressions:

GPP = FPAR × PAR × ΦP (1)

SIF = FPAR × PAR × ΦF × fesc (2)

where FPAR is the fraction of absorbed photosynthetically active radiation (APAR), PAR is
photosynthetically active radiation, and ΦP is the efficiency of the light used for photosyn-
thesis [12,16]. ΦF is the chlorophyll fluorescence emission yield and fesc is the fraction of SIF
photons escaping the canopy [17]. Based on Equations (1) and (2), APAR (FPAR × PAR),
as the common driver of GPP and SIF, could lead to similar trends of GPP and SIF, which
are the basis of the linear GPP–SIF relationship to some degree. However, vegetation has
unique survival strategies that try to regulate the efficiency of photosynthesis under various
environmental conditions [18,19]. Chlorophyll fluorescence is one of the byproducts of
this strategy to avoid light damage of photosynthetic system, which means that SIF is the
result of photosynthesis (GPP) adapting to the environment [20]. Therefore, an incomplete
synchronization between GPP and SIF theoretically exists. Indeed, an increasing number of
studies have highlighted the fact that GPP and SIF are not fully synchronous. For example,
Yang et al. [21] found that GPP and red SIF exhibited different responses to radiation under
different environmental conditions in an evergreen forest. Paul-Limoges et al. [22] indicated
that the sensitivities of SIF and GPP to the environment are different. Pierrat et al. [23]
found a seasonal dependency on GPP–SIF relationship, which indicated that the responses
of GPP and SIF to the environment had seasonal variations. Several studies found the
spatio-temporal variations in the GPP–SIF ratio, which also indicated the asynchronous
environmental responses of GPP and SIF [24–27]. Additionally, diverse responses of GPP
and SIF to the environment were found under environmental stress [28–31]. Some studies
also extracted physiological information from SIF signals using NIRv (the product of NIR
reflectance and NDVI) to explore the relationship between photosynthesis and chlorophyll
fluorescence, leading to inconsistent conclusions about the GPP–SIF relationship [32–35].
Although many existing studies tried to investigate the responses of GPP and SIF to various
environmental conditions based on multiple methods, uncertainties and inconsistencies
still persist, causing bias in SIF application.

Photosynthesis is influenced by three primary factors: radiation, temperature, and
water availability. Meanwhile, incident radiation, as the common driver of GPP and SIF,
could cause similarities in the environmental responses of GPP and SIF, which may obscure
the tiny discrepancies in the responses of GPP and SIF to other environmental variables,
leading to ambiguity in the GPP–SIF relationship. In this study, we used continuous data
from a corn flux tower site during two growing seasons, satellite SIF data, and AmeriFlux
data to analyze the differences in the responses of GPP and SIF to the environment based
on the binning method. For this, we split all environmental variables into several bins in
order to exclude the dominant role of radiation on the environmental responses of GPP
and SIF. We aimed to investigate the difference in the sensitivities of GPP and SIF to the
environment and the impact of this difference on the GPP–SIF relationship.

2. Data and Methods
2.1. Data Collection
2.1.1. SIF Data at DM Site

The SIF data used in this study were collected through continuous half-hourly obser-
vations in an irrigated corn field at the Daman (DM) site (100.372◦ E, 38.856◦ N), which
is located in south of Zhangye, Gansu Province, China [17], as displayed in Figure 1. We
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obtained SIF data from two growing seasons: 2018 (1 June to 29 September) and 2019
(1 June to 30 September). The spectrometer was installed on a 25-m flux tower to detect SIF
signals and far-red SIF signals in the 740 to 780 nm range by fitting windows using singular
vector decomposition (SVD) method. We excluded negative SIF values and converted
all half-hourly data into a daily scale. More details about the retrievals and instrument
specifications can be found in Liu, X. et al. [17].
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2.1.2. Eddy Covariance GPP and Environmental Variables at DM Site

Data were measured at different flux tower heights with a 10 HZ sampling rate, including
net ecosystem exchange (NEE) of CO2, PAR, air temperature (Ta), sensible heat flux (H),
latent heat flux (LE), etc. The raw data were converted to 10 min averages using Eddypro
post-processing software (https://data.tpdc.ac.cn/en/, accessed on 22 May 2022) [36,37]. To
match the 30 min averaged step of SIF, we aggregated 10 min averaged flux data into 30 min
averaged flux data. Before partitioning NEE, we preprocessed the 30 min averaged data to
reduce the uncertainties of the measurements under unfavorable weather conditions, including
marking the data one hour before and after precipitation and negative NEE values at night
as data gaps. Then, we used the online Eddy covariance data processing tool Reddyproc
(https://www.bgc-jena.mpg.de/REddyProc/brew/REddyProc.rhtml), developed by Max
Planck Institute for Biogeochemistry, to identify conditions with insufficient turbulence, marked
those conditions as data gaps based on the Moving Point Test (MPT) method, and then filled
these data gaps [38–40]. Finally, the NEE was partitioned into GPP and ecosystem respiration
(Reco) based on the night-time flux partitioning method through the ReddyProc tool [40,41]. In
this study, we chose parameters including GPP, Ta, H, LE, and PAR for analysis. Meanwhile,
we removed negative GPP values and converted the half-hourly data into a daily scale.

2.1.3. AmeriFlux Data

We selected AmeriFlux data to analyze the responses of GPP and satellite SIF to the envi-
ronment since AmeriFlux provides the latest GPP and meteorological data (https://ameriflux.
lbl.gov/, accessed on 22 October 2022). We selected all sites that had GPP and meteorological
data after 2018, and chose daily variables including GPP based on the night-time partitioning
method, Ta, incoming shortwave radiation (SW), LE, and H, as well as screening out negative
GPP values. Finally, we obtained 64 flux sites that had flux data after 2018.

2.1.4. TROPOMI SIF

The payload mounted on the Sentinal-5 Precursor, TROPOMI (TROPOspheric Moni-
toring Instrument), was launched on 13 October 2017. The wide swath width (~2600 km)
makes the TROPOMI achieve a daily global coverage of almost 7 km × 3.5 km spatial
resolution at the nadir [42,43]. The TROPOMI SIF (TROPOSIF) product has two versions:

https://data.tpdc.ac.cn/en/
https://www.bgc-jena.mpg.de/REddyProc/brew/REddyProc.rhtml
https://ameriflux.lbl.gov/
https://ameriflux.lbl.gov/
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L2 and L2B. In the L2B TROPOSIF product, the far-red SIF was retrieved from two fit-
ting windows, 743–758 nm and 735–758 nm, based on a data-driven method [44]. The
743–758 nm fitting window corresponds to an overcast sky which is derived using the ob-
servations with a cloud fraction below 0.8, and the 735–758 nm fitting window corresponds
to a clear sky, which is derived using observations with a cloud fraction below 0.2. In this
study, we chose the L2B TROPOSIF in the 743–758 nm fitting windows for data from 2018
to 2021 to extract the daily TROPOSIF values corresponding to flux sites in Section 2.1.3
(https://s5p-troposif.noveltis.fr/data-access/, accessed on 10 November 2022). We took
the central longitude and latitude of TROPOSIF pixel as the center, and took the spatial
buffer 0.01◦ × 0.01◦ to extract the TROPOSIF values where flux tower sites resided in the
buffer (0.01◦ × 0.01◦). Then, we eliminated negative SIF values, and screened out data with
a cloud fraction of less than 0.2 for these extracted SIF data points.

2.2. Methods
2.2.1. EF Calculation

In this study, we used an evaporative fraction (EF) to characterize the water availability
of the environment. The EF can be calculated as the follows:

EF =
LE

LE + H
(3)

where LE (W/m2) is latent heat flux and H (W/m2) is sensible heat flux.

2.2.2. Standardize Variables

To make all variables comparable, we standardized all variables based on the following
formula:

Standardize =
X − x

Std(x)
(4)

where X is the original value of each variable, x is the mean value of each variable, and
Std(x) is the standard deviation of each variable.

2.2.3. Binning

To reduce the dominant role of radiation on the responses of GPP and SIF to the environment,
we used the binning method to exclude the interaction of multiple environmental variables to
some degree. This method aims to spilt an environmental variable into several bins and assumes
that there is no large variation in this variable in each bin. Then the responses of GPP and SIF to
other environmental variables in each bin for the above variables are analyzed [45,46]. In this
study, we investigated the responses of GPP and SIF to radiation (PAR/SW) under different EF
and Ta bins, and to EF and Ta under different radiation (PAR/SW) bins, respectively.

For the responses of GPP and SIF to radiation under different EF and Ta bins, the
process was as follows: Based on the standardized environmental variables, we first sorted
PAR(SW), Ta, and EF into 8 bins with a 0.5 interval without changing the temporal match
of all data. Next, within each EF or Ta bin (i = 1, 2, 3, . . ., 8), data were further ranked
according to PAR(SW) bins from minimum bin to maximum bin. Finally, the averages of
GPP and SIF in the corresponding PAR(SW) bins in each Ta or EF bin were used to quantify
the responses of GPP and SIF to the radiation in each Ta or EF bin. For the responses of
GPP and SIF to EF and Ta under different radiation bins, the process was similar to the
above-mentioned method, which is just needed to replace the parameter EF or Ta with
PAR(SW) and replace PAR(SW) with EF or Ta in the second step, respectively. We aimed
to explore the response of SIF to PAR under different EF bins, and so we carried out the
following based on the standardized data:

(i) Dividing EF into 8 bins (i = 1, 2, 3, . . ., 8) and ranking the bins of EF from minimum to
maximum;

(ii) In each EF bin, further dividing PAR into 8 bins (j = 1, 2, 3, . . ., 8) and ranking the bins
of PAR from minimum to maximum;

https://s5p-troposif.noveltis.fr/data-access/
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(iii) Calculating the mean values of SIF within each PAR bin under different EF bins to
characterize the responses of SIF to PAR under different EF intervals. The response of
SIF to PAR under different EF intervals can be described as follows:

SIFPARij |EFi
=

1
n
×

n

∑
1

SIFn (5)

where i is the index number of ith EF bins, j is the index number of jth PAR bins in ith EF
bins. n is the number of SIF within jth PAR bins.

2.2.4. The Calculation of Importance Based on the Random Forest Method

The random forest method (RF) can accurately predict high-dimensional data. More
importantly, the RF method can assess the importance of the predictors in the outcome
variable that needs to be predicted [47]. In this study, one of the analyses was about the
responses of GPP and SIF to radiation under different Ta and EF conditions. To explore the
influence of environmental variables and photosynthesis on the SIF light response curves, we
calculated the importance of the GPP/PAR(SW) ratio (slopes of GPP light response curves),
EF, and Ta in SIF/PAR(SW) ratio (slopes of SIF light response curves) for both TROPOSIF
and tower-based data at the DM site based on the RF. Meanwhile, the importance of Ta, EF,
and the SIF/PAR(SW) ratio in the GPP/PAR(SW) ratio was also calculated.

3. Results
3.1. The Responses of GPP and SIF to the Environment
3.1.1. The Responses of GPP and SIF to Radiation under Different EF and Ta Conditions at
the DM Site

We analyzed the responses of GPP and SIF to the environment based on half-hourly
and daily data at the DM site using a binning method (all variables were standardized).
Figure 2 shows the half-hourly light response curves of GPP and SIF under different EF
bins. In general, GPP and SIF had similar light responses which increased with increasing
PAR in each EF bin. However, SIF increased faster than GPP especially in lower EF bins,
and the difference between the increase speeds of GPP and SIF was gradually reduced with
increasing EF. As shown in Figure S1, there were divergences in the slopes of the SIF and
GPP light response curves within each EF bin. The slopes of the SIF light response curves
were higher than those of GPP at the lower EF bins (EF ∈ [−2, −1.5), EF ∈ [−1.5, −1.0))
which indicated that SIF increased faster than GPP when the water availability was not high.
With the increase in EF, the difference between the slopes of SIF and GPP light response
curves gradually weakened (EF ∈ [−1, 0.5)); until EF was higher (EF ∈ [0.5, 1.5]), the slopes
of GPP light response curves were higher than that of SIF before the light saturation point.
Figure S2 showed the daily GPP and SIF light responses at DM site under different EF
bins which was similar to the half-hourly GPP and SIF light responses. SIF increased faster
than GPP in lower EF bins and the difference between the response speeds of GPP and SIF
gradually reduced with increasing EF. In addition, EF had more influence on the GPP light
response than on SIF at both half-hourly and daily scales.

Figure 3 showed the half-hourly GPP and SIF light responses under different Ta bins
at DM site. The overall trends of GPP and SIF were similar which both increased with
increasing PAR. While the response speeds of SIF and GPP to the light energy also had
difference. As shown in Figure S3, when temperature was lower, the slopes of SIF light
response curves were higher than that of GPP which indicated that SIF increased faster
than GPP (Ta ∈ [−2, −0.5)). With increase in temperature, the difference between the
slope values of SIF and GPP light response curves gradually reduced until temperature
was higher in which GPP increased faster than SIF before light saturation point. Figure S4
showed the daily GPP and SIF light responses at DM site under different Ta bins which
were similar to the half-hourly GPP and SIF light responses. Similar to EF, the GPP light
response was more dependent on Ta than on SIF at both half-hourly and daily scales.



Appl. Sci. 2024, 14, 771 6 of 15

Appl. Sci. 2024, 11, x FOR PEER REVIEW 6 of 17 
 

saturation point. Figure S2 showed the daily GPP and SIF light responses at DM site under 
different EF bins which was similar to the half-hourly GPP and SIF light responses. SIF 
increased faster than GPP in lower EF bins and the difference between the response speeds 
of GPP and SIF gradually reduced with increasing EF. In addition, EF had more influence 
on the GPP light response than on SIF at both half-hourly and daily scales. 

 
Figure 2. The responses of half-hourly SIF (a) and GPP (b) to PAR under different EF bins. 

Figure 3 showed the half-hourly GPP and SIF light responses under different Ta bins 
at DM site. The overall trends of GPP and SIF were similar which both increased with 
increasing PAR. While the response speeds of SIF and GPP to the light energy also had 
difference. As shown in Figure S3, when temperature was lower, the slopes of SIF light 
response curves were higher than that of GPP which indicated that SIF increased faster 
than GPP (Ta∈[−2, −0.5)). With increase in temperature, the difference between the slope 
values of SIF and GPP light response curves gradually reduced until temperature was 
higher in which GPP increased faster than SIF before light saturation point. Figure S4 
showed the daily GPP and SIF light responses at DM site under different Ta bins which 
were similar to the half-hourly GPP and SIF light responses. Similar to EF, the GPP light 
response was more dependent on Ta than on SIF at both half-hourly and daily scales. 

 
Figure 3. The responses of half-hourly SIF (a) and GPP (b) to PAR in different Ta bins. 

3.1.2. The Responses of GPP and SIF to EF and Ta under Different Radiation Bins 
Section 3.1.1 found that the radiation drove the increase in GPP and SIF 

simultaneously. However, the increasing Ta and EF also could drive the increase in GPP 
and SIF. To understand the impact of Ta and EF on GPP and SIF, we investigated the half-
hourly responses of GPP and SIF to the Ta and EF under different PAR bins, respectively. 
Figures 4 and 5 showed the responses of GPP and SIF to EF and Ta in different PAR bins, 

Figure 2. The responses of half-hourly SIF (a) and GPP (b) to PAR under different EF bins.

Appl. Sci. 2024, 11, x FOR PEER REVIEW 6 of 17 
 

saturation point. Figure S2 showed the daily GPP and SIF light responses at DM site under 
different EF bins which was similar to the half-hourly GPP and SIF light responses. SIF 
increased faster than GPP in lower EF bins and the difference between the response speeds 
of GPP and SIF gradually reduced with increasing EF. In addition, EF had more influence 
on the GPP light response than on SIF at both half-hourly and daily scales. 

 
Figure 2. The responses of half-hourly SIF (a) and GPP (b) to PAR under different EF bins. 

Figure 3 showed the half-hourly GPP and SIF light responses under different Ta bins 
at DM site. The overall trends of GPP and SIF were similar which both increased with 
increasing PAR. While the response speeds of SIF and GPP to the light energy also had 
difference. As shown in Figure S3, when temperature was lower, the slopes of SIF light 
response curves were higher than that of GPP which indicated that SIF increased faster 
than GPP (Ta∈[−2, −0.5)). With increase in temperature, the difference between the slope 
values of SIF and GPP light response curves gradually reduced until temperature was 
higher in which GPP increased faster than SIF before light saturation point. Figure S4 
showed the daily GPP and SIF light responses at DM site under different Ta bins which 
were similar to the half-hourly GPP and SIF light responses. Similar to EF, the GPP light 
response was more dependent on Ta than on SIF at both half-hourly and daily scales. 

 
Figure 3. The responses of half-hourly SIF (a) and GPP (b) to PAR in different Ta bins. 

3.1.2. The Responses of GPP and SIF to EF and Ta under Different Radiation Bins 
Section 3.1.1 found that the radiation drove the increase in GPP and SIF 

simultaneously. However, the increasing Ta and EF also could drive the increase in GPP 
and SIF. To understand the impact of Ta and EF on GPP and SIF, we investigated the half-
hourly responses of GPP and SIF to the Ta and EF under different PAR bins, respectively. 
Figures 4 and 5 showed the responses of GPP and SIF to EF and Ta in different PAR bins, 

Figure 3. The responses of half-hourly SIF (a) and GPP (b) to PAR in different Ta bins.

3.1.2. The Responses of GPP and SIF to EF and Ta under Different Radiation Bins

Section 3.1.1 found that the radiation drove the increase in GPP and SIF simultaneously.
However, the increasing Ta and EF also could drive the increase in GPP and SIF. To under-
stand the impact of Ta and EF on GPP and SIF, we investigated the half-hourly responses
of GPP and SIF to the Ta and EF under different PAR bins, respectively. Figures 4 and 5
showed the responses of GPP and SIF to EF and Ta in different PAR bins, respectively.
Obviously, the impacts of EF and Ta on GPP and SIF were smaller than that of PAR though
GPP and SIF both increased with increasing EF and Ta. The responses of GPP and SIF to EF
and Ta also had difference. For the GPP and SIF EF responses, GPP increased faster than SIF
in each PAR bin which indicated that EF had more influence on GPP than on SIF. Similarly,
for the GPP and SIF Ta responses, GPP and SIF both increased first then decreased with
increasing Ta bins, while GPP increased and decreased faster than SIF which indicated that
GPP was more sensitive to Ta. In general, PAR was the main factor driving the increase in
GPP and SIF, and EF and Ta had less influence on GPP and SIF than PAR especially on SIF.
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3.1.3. The Light Responses of GPP and TROPOSIF

Figure 6 showed the responses of TROPOSIF and GPP to SW in different EF bins. GPP
and SIF exhibited similar responses to SW which both increased with increasing SW. While
in the lower EF bins, SIF increased faster than GPP, and the increase speeds of GPP were
gradually higher than that of SIF with increasing EF which indicated that SIF was more
sensitive to SW than GPP when the water status was not well. Moreover, both SIF and GPP
showed positive correlation with EF, and the GPP increased larger than SIF and EF had more
influence on GPP than on SIF. Figure 7 showed the light responses of GPP and TROPOSIF
under different Ta bins. In general, GPP and SIF had similar responses to the SW which both
increased with increasing SW bins. However, the difference between the responses of GPP
and SIF to SW in different Ta bins was not as significant as that in different EF bins.
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3.2. The Factors Influenced the Slopes of SIF and GPP Light Response Curves

Section 3.1 illustrated that the slopes of SIF light response curves were less influenced
by EF and Ta than that of GPP, and were always related to the slopes of GPP light response



Appl. Sci. 2024, 14, 771 8 of 15

curves which were more sensitive to EF and Ta. Therefore, to explore whether the dynamics
of the slopes of SIF light response curves were regulated by the environmental variables
(EF and Ta) or induced by the changes of GPP light response curves related to EF and Ta,
we calculated the importance of GPP/PAR(SW) ratio (slopes of GPP light response curves),
EF and Ta in SIF/PAR(SW) ratio (slopes of SIF light response curves) for both TROPOSIF
and site-observed data at DM site based on RF. The importance of SIF/PAR(SW) ratio, Ta
and EF in GPP/PAR(SW) ratio were also calculated. The calculation of the importance
(Figures 8 and 9) illustrated whether the dynamics in slopes of SIF light response curves
were induced by GPP/PAR(SW) ratio related to EF and Ta or directly by EF and Ta, or
which controlled it more. Figure 8 showed that at DM site, the GPP/PAR ratio had the
highest importance in SIF/PAR at both half-hourly (43.84%) and daily (72.5%) scales, and
the importance of Ta and EF were lower than that of GPP/PAR ratio (half-hourly: 30.25%,
25.91%; daily: 16.76%, 10.75%). While the environmental variables (EF and Ta) had the
higher importance in GPP/PAR ratio at half-hourly scale which demonstrated that the
slopes of GPP light response curves were more influenced by the environmental parameters.
For the daily scale at DM site, though the importance of SIF/PAR ratio was higher than
EF and Ta, the importance of Ta and EF was higher than that in SIF/PAR ratio. For the
daily TROPOSIF and GPP, the results of importance calculation were similar to that of the
DM site (Figure 9). The importance of GPP/SW ratio was higher than that of Ta and EF
in SIF/SW. For the GPP/SW ratio, the EF had the most importance, followed by Ta, the
SIF/SW ratio had the lowest importance.
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3.3. Effects of Different Responses of GPP and SIF to Environment on the GPP–SIF Relationship

We analyzed the variations in the GPP–SIF relationship under different environmental
conditions. Since the responses of the site-observed SIF and TROPOSIF to the environment
were similar, so we just showed the GPP–SIF relationship under different environmental
conditions at DM site here. Figures 10 and 11 showed the half-hourly and daily GPP–SIF
relationship at DM site in different EF, Ta and PAR bins, respectively. For both temporal
scales, the GPP–SIF relationship showed similar patterns. In different EF, Ta and PAR bins,
GPP and SIF exhibited positive correlation. The difference in the GPP–SIF relationship
under these three environmental parameters was the dynamics in the slope values of the
GPP–SIF relationship. The GPP–SIF relationship appeared non-linear in each EF bin and
the slope values of the GPP–SIF relationship improved with increasing EF bins. Under
different Ta bins, GPP and SIF also had non-linear relationship in each Ta bins and the slope
values of GPP–SIF relationship increased with increasing Ta except for the highest Ta bin
(Ta ∈ [1.5, 2.0]). For the GPP–SIF relationship in different PAR bins, there were no much
difference in the slope values of GPP–SIF relationship especially at the daily scales.
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Figure 12 showed the half-hourly GPP–SIF relationship at DM site in different EF and
Ta bins, respectively. Table 1 was the corresponding fitted equations and parameters for
Figure 12. The correlation between GPP and SIF was gradually improved with increasing
EF (R2 values increased from 0.18 to 0.76). With increasing in EF, the slope values of the
regression line (a values in Table 1) were also improved (a values increased from 0.52 to
1.55). For the GPP–SIF relationship in different Ta bins, the R2 values were from 0.23 to 0.50
and the correlation between GPP and SIF first increased then decreased with increasing Ta.
The slope values of the fitted lines (a values in Table 1) increased with increasing Ta bins
(a values increased from 0.45 to 1.49). In general, GPP and SIF showed a various relationship
influenced by the environment related to EF and Ta.
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[−2, −1.5) a = 0.52, b = 0.35, R2 = 0.18 a = 0.45, b = 0.2, R2 = 0.23
[−1.5, −1.0) a = 0.71, b = 0.51, R2 = 0.38 a = 0.54, b = 0.29, R2 = 0.26
[−1.0, −0.5) a = 1.03, b = 0.68, R2 = 0.42 a = 0.76, b = 0.40, R2 = 0.39

[−0.5, 0) a = 1.065, b = 0.56, R2 = 0.56 a = 0.93, b = 0.44, R2 = 0.40
[0, 0.5) a = 1.21, b = 0.73, R2 = 0.58 a = 1.37, b = 0.94, R2 = 0.48

[0.5, 1.0) a = 1.36, b = 0.80, R2 = 0.63 a = 1.45, b = 0.92, R2 = 0.50
[1.0,1.5) a = 1.55, b = 0.98, R2 = 0.76 a = 1.45, b = 0.97, R2 = 0.47
[1.5, 2.0] a = 1.49, b = 1.15, R2 = 0.44

4. Discussion
4.1. The Different Responses of GPP and SIF to the Environment

In this study, we investigated the responses of GPP and SIF to the different envi-
ronmental variables from a corn tower-based SIF and TROPOSIF based on the binning
method. The difference between GPP and SIF light responses had been reported in previ-
ous studies [21,23]. Our results also found that at both site and satellite scales, there were
divergencies in the light response speeds between GPP and SIF which was affected by Ta
and EF though their light response curves were similar. When Ta and EF were lower, SIF
increased faster than GPP. With the increase in Ta and EF, the difference between increase
speeds of GPP and SIF was gradually reduced. Additionally, the sensitivities of GPP and
SIF to radiation, temperature, and water availability were different. SIF was more sensitive
to radiation than to Ta and EF, and the sensitivity of GPP to radiation was more regulated
by the Ta and EF, which was consistent with studies by Yang, Magney, Albert, Richardson,
Frankenberg, Stutz, Grossmann, Burns, Seyednasrollah, Blanken, and Bowling [21]. The



Appl. Sci. 2024, 14, 771 11 of 15

above results highlighted the fact that, although light energy is the common driver for both
GPP and SIF, the sensitivities of GPP and SIF to radiation were different and relied on the
environmental conditions related to temperature and water availability.

Kolari et al. [48] found that the regulation mechanisms of light and dark reactions
were different. Light reactions are more sensitive to radiation but relatively less sensitive to
temperature and water availability. In contrast, dark reactions are totally determined by
plenty of biochemical reactions, which are more sensitive to the parameters that influence
the enzyme activity with related to temperature. In addition, carbon fixation is also
influenced by intercellular CO2 concentration, which is affected by stomatal conductance
related to water availability. GPP is the result of light and dark reactions, while chlorophyll
fluorescence is more involved in light reactions. Therefore, GPP light response curves were
more influenced by temperature and EF than SIF light response curves, as our results show
in Section 3.1, indicating that SIF was more sensitive to radiation and less sensitive to EF
and Ta than GPP. Additionally, the lower sensitivity of SIF to Ta and EF may result in the
decoupling of GPP and SIF, especially in the lower EF and Ta, which provides important
evidence that SIF is no longer a strong proxy of GPP when the temperature and water
status were not suitable for the vegetation growth.

In the aspect of light energy utilization, SIF is one of the energy excitation pathways used
to balance the absorbed and utilized energy in photosynthesis and to avoid light damage
in the photosystem (e.g., high light intensity but in cold or dry environments) [4,20,49–51].
When environmental conditions are not suitable for vegetation growth (low temperature or
drought), the vegetation adjusts its strategy of light energy utilization by adjusting light
energy partitioning to avoid light damage in the photosystem, which could lead to the
relative changes in the efficiency of converting per unit photon into GPP and SIF [4,51].
Consistent with our results, the slopes of SIF light response curves were higher than those
of GPP in lower EF and Ta bins (SIF increased faster than GPP in lower EF and Ta), which
indicated that the efficiency of converting per unit photon into SIF was higher than that of
GPP, in order to dissipate light energy quickly. With the improvement of EF and Ta, tem-
perature and water status became increasingly suitable for vegetation growth. As shown in
our results, the slopes of GPP light response curves were close to or higher than those of SIF,
which indicated that vegetation may try to seek the maximum photosynthesis efficiency
under suitable conditions. The above-mentioned points illustrate that the dynamics in the
slopes of SIF light response curves may be induced by the regulation of photosynthesis,
related to EF and Ta to some degree. Consistent with our hypothesis, we found that the
importance of GPP/PAR (SW) ratio was higher than that of Ta and EF in the SIF/PAR
(SW) ratio (Figures 8 and 9), which indicated that the response of SIF to incident radiation
was more regulated by photosynthesis, rather than directly influenced by environmental
parameters (EF and Ta). The divergent and unstable relationship between the light use
efficiency of GPP and SIF has been reported in many studies [35,52–56], largely because
SIF is not the only pathway of energy excitation regulated by photosynthesis [18–20]. Non-
photochemical quenching (NPQ) is another important energy excitation pathway regulated
by photosynthesis, which may be the reason why the importance of the predicator-SIF/PAR
(SW) ratio in the GPP/PAR(SW) ratio prediction was lower. The byproducts of photosyn-
thesis regulation include not only SIF but also NPQ, which further implies that only using
SIF to characterize the light use efficiency of photosynthesis may not be a better option.

4.2. The Influence of Different Responses of GPP and SIF to the Environment on the GPP–SIF
Relationship

We have found that the consistency of GPP and SIF light responses was influenced
by EF and Ta (Section 3.1). When temperature and water status were not suitable for the
vegetation growth (lower EF and Ta), the consistency between GPP and SIF was destroyed
and the correlation between GPP and SIF was lower, as shown in Table 1. With the
improvement in Ta and EF, the correlation between GPP and SIF was improved because
the consistency of the SIF and GPP light responses gradually improved. The dynamics
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in the GPP–SIF correlation further indicated that, when the environmental conditions are
not suitable for the vegetation growth, directly using SIF to quantify GPP causes greater
uncertainty.

The strong linear and non-linear GPP–SIF relationship has been reported in many
studies. Here, we found that the half-hourly and daily GPP–SIF relationship at the DM site
was non-linear. For the non-linear GPP–SIF relationship at the DM site, the slope values of
the fitted GPP–SIF relationship curves increased with increasing Ta and EF, mostly caused
by the different sensitivities of GPP and SIF to temperature and water status. As shown in
Section 3.1, GPP was more sensitive to EF and Ta than SIF, and in any radiation bins, GPP
varied with EF and Ta faster than SIF.

4.3. Limitations

In this study, we investigated the responses of GPP and SIF to different environmental
conditions based on the binning method and found that the responses of GPP and SIF to
different environmental parameters had fundamental differences, which further resulted
in a dynamic GPP–SIF relationship under different environmental conditions. Though
these results were consistent with some previous studies, we had to highlight some limi-
tations in this study. Firstly, the SIF derived from remote sensing was different from the
traditional measurements of the chlorophyll fluorescence at a leaf scale [4]. Therefore,
when we interpret and apply the conclusions of our study, we must recognize that these
conclusions are applicable to remote sensing SIF and not necessarily to laboratory data.
Moreover, we did not quantify NPQ to explain the dynamic GPP–SIF relationship in this
study. Though we discussed the potential impact of NPQ on the difference in the GPP and
SIF light response curves in Section 4.1, we cannot find a suitable indicator characterizing
NPQ to explore and validate the exact role of NPQ on the GPP–SIF relationship, which
is mostly caused by the difficulties in the quantification of NPQ through remote sensing.
Although many studies had shown that PRI (photochemical reflectance index) may be an
effective indicator of NPQ, there were still many controversies and uncertainties [57,58].
The photoprotective mechanisms of the photosynthetic apparatus consist of not only SIF,
but also NPQ [49,50,59,60]. Therefore, considering NPQ is very important to correctly
understand the GPP–SIF relationship. Future research should be dedicated to determining
an appropriate method to measure NPQ and apply it in the GPP–SIF relationship. Finally,
the site-observed dataset we used in this study was from a corn site: the C4 plant. There-
fore, the conclusions obtained in this study may not be applicable in the C3 plant. We
need to investigate the relationship between GPP and SIF further for other plant function
types (PFTs).

5. Conclusions

In this study, we used tower-based SIF, satellite-derived SIF and eddy covariance
GPP data from two continuous growing seasons to investigate the difference between
the responses of GPP and SIF to the environmental variables, including radiation, air
temperature, and EF, based on the binning method. The conclusions are as follows:

(1) GPP and SIF had similar light response trends, which both increased with increasing
radiation, while the rates of increases in GPP and SIF exhibited divergence related
to air temperature and water availability. When Ta and EF values were lower, SIF
increased faster than GPP. With the increase in Ta and EF, the difference between the
increase rates of GPP and SIF gradually reduced.

(2) The GPP–SIF relationship was decoupled when the environment was not suitable for
vegetation growth, and the correlation between GPP and SIF was gradually improved
with increasing Ta and EF.

(3) The slope of the GPP–SIF relationship was mainly affected by Ta and EF, which
increased with increasing EF and Ta.
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8. Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state chlorophyll
fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015, 168, 420–436. [CrossRef]

9. Ryu, Y.; Baldocchi, D.D.; Kobayashi, H.; van Ingen, C.; Li, J.; Black, T.A.; Beringer, J.; van Gorsel, E.; Knohl, A.; Law, B.E.; et al.
Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and
evapotranspiration from 1 km to global scales. Glob. Biogeochem. Cycles 2011, 25, GB4017. [CrossRef]

10. Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation
of a model tree ensemble approach using a biosphere model. Biogeosciences 2009, 6, 2001–2013. [CrossRef]

11. Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.;
et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, G00J07. [CrossRef]

12. Zhang, H.; Sun, R.; Peng, D.; Yang, X.; Wang, Y.; Hu, Y.; Zheng, S.; Zhang, J.; Bai, J.; Li, Q. Spatiotemporal Dynamics of Net
Primary Productivity in China’s Urban Lands during 1982–2015. Remote Sens. 2021, 13, 400. [CrossRef]

https://www.mdpi.com/article/10.3390/app14020771/s1
https://www.mdpi.com/article/10.3390/app14020771/s1
https://data.tpdc.ac.cn/en/
https://s5p-troposif.noveltis.fr/data-access/
https://s5p-troposif.noveltis.fr/data-access/
https://ameriflux.lbl.gov/
https://doi.org/10.1002/2015RG000483
https://doi.org/10.1126/science.1083592
https://www.ncbi.nlm.nih.gov/pubmed/12764201
https://doi.org/10.1038/ngeo618
https://doi.org/10.1093/jxb/eru191
https://doi.org/10.1126/science.1184984
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1111/gcb.14731
https://doi.org/10.1016/j.rse.2015.07.022
https://doi.org/10.1029/2011GB004053
https://doi.org/10.5194/bg-6-2001-2009
https://doi.org/10.1029/2010JG001566
https://doi.org/10.3390/rs13030400


Appl. Sci. 2024, 14, 771 14 of 15

13. Zhang, H.; Sun, R.; Xiao, Z.; Wang, J.; Wang, M. Global 500 M Spatial Resolution Gross and Net Primary Productivity Products
Based on an Improved Light Use Efficiency Model from 2000–2019. In Proceedings of the IGARSS 2022—2022 IEEE International
Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5762–5765.

14. Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ.
2019, 223, 95–114. [CrossRef]

15. Frankenberg, C.; Berry, J. 3.10—Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval. In
Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 143–162.

16. Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [CrossRef]
17. Liu, X.; Liu, Z.; Liu, L.; Lu, X.; Chen, J.; Du, S.; Zou, C. Modelling the influence of incident radiation on the SIF-based GPP

estimation for maize. Agric. For. Meteorol. 2021, 307, 108522. [CrossRef]
18. Renger, G. Chapter 1 Overview of Primary Processes of Photosynthesis. In Primary Processes of Photosynthesis, Part 1: Principles and

Apparatus; The Royal Society of Chemistry: London, UK, 2008; Volume 8, pp. 5–35.
19. Verma, M.; Schimel, D.; Evans, B.; Frankenberg, C.; Beringer, J.; Drewry, D.T.; Magney, T.; Marang, I.; Hutley, L.; Moore, C.; et al.

Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an
OzFlux grassland site. J. Geophys. Res. Biogeosci. 2017, 122, 716–733. [CrossRef]

20. Butler, W.L. Energy Distribution in the Photochemical Apparatus of Photosynthesis. Annu. Rev. Plant Physiol. 1978, 29, 345–378.
[CrossRef]

21. Yang, J.C.; Magney, T.S.; Albert, L.P.; Richardson, A.D.; Frankenberg, C.; Stutz, J.; Grossmann, K.; Burns, S.P.; Seyednasrollah, B.;
Blanken, P.D.; et al. Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and
seasonal environmental conditions in a subalpine conifer forest. Agric. For. Meteorol. 2022, 317, 108904. [CrossRef]

22. Paul-Limoges, E.; Damm, A.; Hueni, A.; Liebisch, F.; Eugster, W.; Schaepman, M.E.; Buchmann, N. Effect of environmental
conditions on sun-induced fluorescence in a mixed forest and a cropland. Remote Sens. Environ. 2018, 219, 310–323. [CrossRef]

23. Pierrat, Z.; Magney, T.; Parazoo, N.C.; Grossmann, K.; Bowling, D.R.; Seibt, U.; Johnson, B.; Helgason, W.; Barr, A.; Bortnik, J.; et al.
Diurnal and Seasonal Dynamics of Solar-Induced Chlorophyll Fluorescence, Vegetation Indices, and Gross Primary Productivity
in the Boreal Forest. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006588. [CrossRef]

24. Bai, J.; Zhang, H.; Sun, R.; Li, X.; Xiao, J.; Wang, Y. Estimation of global GPP from GOME-2 and OCO-2 SIF by considering the
dynamic variations of GPP-SIF relationship. Agric. For. Meteorol. 2022, 326, 109180. [CrossRef]

25. Chen, A.; Mao, J.; Ricciuto, D.; Lu, D.; Xiao, J.; Li, X.; Thornton, P.E.; Knapp, A.K. Seasonal changes in GPP/SIF ratios and their
climatic determinants across the Northern Hemisphere. Glob. Chang. Biol. 2021, 27, 5186–5197. [CrossRef] [PubMed]

26. Chen, A.; Mao, J.; Ricciuto, D.; Xiao, J.; Frankenberg, C.; Li, X.; Thornton, P.E.; Gu, L.; Knapp, A.K. Moisture availability
mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from
global-scale variations. Glob. Chang. Biol. 2021, 27, 1144–1156. [CrossRef] [PubMed]

27. Chen, R.; Liu, L.; Liu, X. Leaf chlorophyll contents dominates the seasonal dynamics of SIF/GPP ratio: Evidence from continuous
measurements in a maize field. Agric. For. Meteorol. 2022, 323, 109070. [CrossRef]

28. Helm, L.T.; Shi, H.; Lerdau, M.T.; Yang, X. Solar-induced chlorophyll fluorescence and short-term photosynthetic response to
drought. Ecol. Appl. 2020, 30, e02101. [CrossRef]

29. Marrs, J.K.; Reblin, J.S.; Logan, B.A.; Allen, D.W.; Reinmann, A.B.; Bombard, D.M.; Tabachnik, D.; Hutyra, L.R. Solar-Induced
Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure. Geophys. Res. Lett. 2020,
47, e2020GL087956. [CrossRef]

30. Martini, D.; Sakowska, K.; Wohlfahrt, G.; Pacheco-Labrador, J.; van der Tol, C.; Porcar-Castell, A.; Magney, T.S.; Carrara, A.;
Colombo, R.; El-Madany, T.S.; et al. Heatwave breaks down the linearity between sun-induced fluorescence and gross primary
production. New Phytol. 2022, 233, 2415–2428. [CrossRef]

31. van der Tol, C.; Verhoef, W.; Rosema, A. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol.
2009, 149, 96–105. [CrossRef]

32. Kimm, H.; Guan, K.; Jiang, C.; Miao, G.; Wu, G.; Suyker, A.E.; Ainsworth, E.A.; Bernacchi, C.J.; Montes, C.M.; Berry, J.A.; et al. A
physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental
stresses in the U.S. Corn Belt. Environ. Res. Lett. 2021, 16, 124051. [CrossRef]

33. Zeng, Y.; Badgley, G.; Dechant, B.; Ryu, Y.; Chen, M.; Berry, J.A. A practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence. Remote Sens. Environ. 2019, 232, 111209. [CrossRef]

34. Zeng, Y.; Chen, M.; Hao, D.; Damm, A.; Badgley, G.; Rascher, U.; Johnson, J.E.; Dechant, B.; Siegmann, B.; Ryu, Y.; et al. Combining
near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens.
Environ. 2022, 270, 112856. [CrossRef]

35. Dechant, B.; Ryu, Y.; Badgley, G.; Zeng, Y.; Berry, J.A.; Zhang, Y.; Goulas, Y.; Li, Z.; Zhang, Q.; Kang, M.; et al. Canopy structure
explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 2020,
241, 111733. [CrossRef]

36. Liu, S.; Che, T.; Xu, Z.; Ren, Z.; Tan, J.; Zhang, Y. Qilian Mountains Integrated Observatory Network: Dataset of Heihe Integrated
Observatory Network (An Observation System of Meteorological Elements Gradient of Daman Superstation, 2019); National Tibetan
Plateau Third Pole Environment Data Center: Beijing, China, 2020. [CrossRef]

https://doi.org/10.1016/j.rse.2019.01.016
https://doi.org/10.2307/2401901
https://doi.org/10.1016/j.agrformet.2021.108522
https://doi.org/10.1002/2016JG003580
https://doi.org/10.1146/annurev.pp.29.060178.002021
https://doi.org/10.1016/j.agrformet.2022.108904
https://doi.org/10.1016/j.rse.2018.10.018
https://doi.org/10.1029/2021JG006588
https://doi.org/10.1016/j.agrformet.2022.109180
https://doi.org/10.1111/gcb.15775
https://www.ncbi.nlm.nih.gov/pubmed/34185345
https://doi.org/10.1111/gcb.15373
https://www.ncbi.nlm.nih.gov/pubmed/33002262
https://doi.org/10.1016/j.agrformet.2022.109070
https://doi.org/10.1002/eap.2101
https://doi.org/10.1029/2020GL087956
https://doi.org/10.1111/nph.17920
https://doi.org/10.1016/j.agrformet.2008.07.007
https://doi.org/10.1088/1748-9326/ac3b16
https://doi.org/10.1016/j.rse.2019.05.028
https://doi.org/10.1016/j.rse.2021.112856
https://doi.org/10.1016/j.rse.2020.111733
https://doi.org/10.11888/Meteoro.tpdc.270699


Appl. Sci. 2024, 14, 771 15 of 15

37. Li, X.; Che, T.; Xu, Z.; Ren, Z.; Tan, J. Qilian Mountains Integrated Observatory Network: Dataset of Heihe Integrated Observatory
Network (An Observation System of Meteorological Elements Gradient of Daman Superstation, 2018); A Big Earth Data Platform for
Three Poles: Beijing, China, 2019. [CrossRef]

38. Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.;
et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and
uncertainty estimation. Biogeosciences 2006, 3, 571–583. [CrossRef]

39. Barr, A.G.; Richardson, A.D.; Hollinger, D.Y.; Papale, D.; Arain, M.A.; Black, T.A.; Bohrer, G.; Dragoni, D.; Fischer, M.L.; Gu, L.;
et al. Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. Agric. For. Meteorol.
2013, 171–172, 31–45. [CrossRef]

40. Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier,
A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved
algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [CrossRef]

41. Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible
post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [CrossRef]

42. Köhler, P.; Behrenfeld, M.J.; Landgraf, J.; Joiner, J.; Magney, T.S.; Frankenberg, C. Global Retrievals of Solar-Induced Chlorophyll
Fluorescence at Red Wavelengths with TROPOMI. Geophys. Res. Lett. 2020, 47, e2020GL087541. [CrossRef]

43. Köhler, P.; Frankenberg, C.; Magney, T.S.; Guanter, L.; Joiner, J.; Landgraf, J. Global Retrievals of Solar-Induced Chlorophyll Fluorescence
with TROPOMI: First Results and Intersensor Comparison to OCO-2. Geophys. Res. Lett. 2018, 45, 10,456–10,463. [CrossRef]

44. Guanter, L.; Bacour, C.; Schneider, A.; Aben, I.; van Kempen, T.A.; Maignan, F.; Retscher, C.; Köhler, P.; Frankenberg, C.; Joiner, J.;
et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data 2021,
13, 5423–5440. [CrossRef]

45. Dang, C.; Shao, Z.; Huang, X.; Qian, J.; Cheng, G.; Ding, Q.; Fan, Y. Assessment of the importance of increasing temperature and
decreasing soil moisture on global ecosystem productivity using solar-induced chlorophyll fluorescence. Glob. Chang. Biol. 2022,
28, 2066–2080. [CrossRef]

46. Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem
production globally. Nat. Commun. 2020, 11, 4892. [CrossRef]

47. Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [CrossRef]
48. Kolari, P.; Chan, T.; Porcar-Castell, A.; Bäck, J.; Nikinmaa, E.; Juurola, E. Field and controlled environment measurements show strong

seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine. Front. Plant Sci. 2014, 5, 717. [CrossRef]
49. Goss, R.; Lepetit, B. Biodiversity of NPQ. J. Plant Physiol. 2015, 172, 13–32. [CrossRef]
50. Niyogi, K.K.; Truong, T.B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in

oxygenic photosynthesis. Curr. Opin. Plant Biol. 2013, 16, 307–314. [CrossRef] [PubMed]
51. Barber, J.; Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 1992, 17, 61–66.

[CrossRef] [PubMed]
52. Miao, G.; Guan, K.; Suyker, A.E.; Yang, X.; Arkebauer, T.J.; Walter-Shea, E.A.; Kimm, H.; Hmimina, G.Y.; Gamon, J.A.; Franz,

T.E.; et al. Varying Contributions of Drivers to the Relationship Between Canopy Photosynthesis and Far-Red Sun-Induced
Fluorescence for Two Maize Sites at Different Temporal Scales. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005051. [CrossRef]

53. Damm, A.; Elbers, J.A.N.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al.
Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob.
Chang. Biol. 2010, 16, 171–186. [CrossRef]

54. Miao, G.; Guan, K.; Yang, X.; Bernacchi, C.J.; Berry, J.A.; DeLucia, E.H.; Wu, J.; Moore, C.E.; Meacham, K.; Cai, Y.; et al. Sun-
Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous
Measurements. J. Geophys. Res. Biogeosci. 2018, 123, 610–623. [CrossRef]

55. Wieneke, S.; Burkart, A.; Cendrero-Mateo, M.P.; Julitta, T.; Rossini, M.; Schickling, A.; Schmidt, M.; Rascher, U. Linking
photosynthesis and sun-induced fluorescence at sub-daily to seasonal scales. Remote Sens. Environ. 2018, 219, 247–258. [CrossRef]

56. Cendrero-Mateo, M.P.; Carmo-Silva, A.E.; Porcar-Castell, A.; Hamerlynck, E.P.; Papuga, S.A.; Moran, M.S. Dynamic response of
plant chlorophyll fluorescence to light, water and nutrient availability. Funct. Plant Biol. 2015, 42, 746–757. [CrossRef] [PubMed]

57. Maguire, A.J.; Eitel, J.U.H.; Griffin, K.L.; Magney, T.S.; Long, R.A.; Vierling, L.A.; Schmiege, S.C.; Jennewein, J.S.; Weygint, W.A.;
Boelman, N.T.; et al. On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen
Needleleaf Canopies. Geophys. Res. Lett. 2020, 47, e2020GL087858. [CrossRef]

58. Wang, X.; Chen, J.M.; Ju, W. Photochemical reflectance index (PRI) can be used to improve the relationship between gross primary
productivity (GPP) and sun-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 2020, 246, 111888. [CrossRef]

59. Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys.
Acta (BBA) Bioenerg. 2012, 1817, 182–193. [CrossRef]

60. Demmig-Adams, B.; Adams, W.W. Harvesting sunlight safely. Nature 2000, 403, 371–373. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.11888/Meteoro.tpdc.270776
https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1016/j.agrformet.2012.11.023
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.1029/2020GL087541
https://doi.org/10.1029/2018GL079031
https://doi.org/10.5194/essd-13-5423-2021
https://doi.org/10.1111/gcb.16043
https://doi.org/10.1038/s41467-020-18631-1
https://doi.org/10.1007/s11222-016-9646-1
https://doi.org/10.3389/fpls.2014.00717
https://doi.org/10.1016/j.jplph.2014.03.004
https://doi.org/10.1016/j.pbi.2013.03.011
https://www.ncbi.nlm.nih.gov/pubmed/23583332
https://doi.org/10.1016/0968-0004(92)90503-2
https://www.ncbi.nlm.nih.gov/pubmed/1566330
https://doi.org/10.1029/2019JG005051
https://doi.org/10.1111/j.1365-2486.2009.01908.x
https://doi.org/10.1002/2017JG004180
https://doi.org/10.1016/j.rse.2018.10.019
https://doi.org/10.1071/FP15002
https://www.ncbi.nlm.nih.gov/pubmed/32480718
https://doi.org/10.1029/2020GL087858
https://doi.org/10.1016/j.rse.2020.111888
https://doi.org/10.1016/j.bbabio.2011.04.012
https://doi.org/10.1038/35000315

	Introduction 
	Data and Methods 
	Data Collection 
	SIF Data at DM Site 
	Eddy Covariance GPP and Environmental Variables at DM Site 
	AmeriFlux Data 
	TROPOMI SIF 

	Methods 
	EF Calculation 
	Standardize Variables 
	Binning 
	The Calculation of Importance Based on the Random Forest Method 


	Results 
	The Responses of GPP and SIF to the Environment 
	The Responses of GPP and SIF to Radiation under Different EF and Ta Conditions at the DM Site 
	The Responses of GPP and SIF to EF and Ta under Different Radiation Bins 
	The Light Responses of GPP and TROPOSIF 

	The Factors Influenced the Slopes of SIF and GPP Light Response Curves 
	Effects of Different Responses of GPP and SIF to Environment on the GPP–SIF Relationship 

	Discussion 
	The Different Responses of GPP and SIF to the Environment 
	The Influence of Different Responses of GPP and SIF to the Environment on the GPP–SIF Relationship 
	Limitations 

	Conclusions 
	References

