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Abstract Accurate streamflow prediction in human‐regulated catchments remains a formidable challenge
due to the complex disturbance of hydrological processes. To consider human disturbance in hydrological
modeling, this study introduces a novel static attribute collection that combines river‐reach attributes with
catchment attributes, referred to as multiscale attributes. The attribute collection is assembled into two deep
learning (DL) methods, that is, the Long Short‐Term Memory (named as Multiscale LSTM) and the
Differentiable Parameter Learning (DPL) model, and the performance is evaluated across 95 human‐regulated
catchments in the United States (USA) and 24 catchments in the Yellow River Basin in China. In the USA, the
Multiscale LSTM and the DPL models achieve similar performance with median Kling‐Gupta Efficiency
(KGE) of 0.78 and 0.71, respectively. However, in the Yellow River Basin, the KGE values are 0.58 for
Multiscale LSTM and 0.24 for DPL. These results highlight the DL models' ability to leverage multiscale
attributes for improved performance compared to traditional catchment attributes. The performance of
Multiscale LSTM and DPL models is predominantly influenced by river‐scale attributes, encompassing factors
such as connectivity status index (CSI), degree of regulation (DOR), sediment trapping (SED), and number of
dams. Additionally, satellite‐derived attributes such as mean and maximum river width (Width), slope and mean
water surface elevation (WSE) from the Surface Water and Ocean Topography River Database (SWORD)
contribute valuable insights into anthropogenic influences. Moreover, our study highlights the significance of
selecting the appropriate training data period, which emerges as the most dominant factor affecting model
performance across human‐regulated catchments. The diversity of data during the training period enables the
model to capture a broad spectrum of hydrological signatures within these catchments. Consequently, this study
emphasizes the advantages of Multiscale LSTM and underscores the significance of considering both natural
and anthropogenic signatures to enhance hydrological predictions within human‐regulated environments.

Plain Language Summary Understanding how water flows in rivers is crucial for managing
reservoirs, preventing floods, and making smart decisions about water use in human‐regulated catchments.
Previous research using data‐driven models has predominantly focused on long short‐term memory (LSTM)
and differentiable parameter learning (DPL) models in natural catchments with minimal human influences.
Identifying the effectiveness of these models in human‐regulated catchments has posed a significant challenge.
To address this gap, we intentionally compared the performance of LSTM and DPL models, incorporating
multiscale attributes as inputs. The results underscore the significant superiority of the LSTM model over the
DPL model in human‐regulated catchments, emphasizing the crucial role of river attributes in enhancing model
performance. Additionally, we observed that the DPL model exhibited higher sensitivity to the dynamics of
human activities, and struggles to provide accurate simulations during periods of elevated human impacts.
These findings elucidate the divergent capabilities of these models in representing hydrological processes in
human‐regulated catchments.

1. Introduction
Streamflow is an essential water resource for human survival, ecosystem balance, and geophysical processes, and
its spatiotemporal pattern is generally disrupted by human activities (Marvel et al., 2019; Singh & Basu, 2022).
Over the past century, the rising demand for freshwater necessary to accommodate the evolving needs of society
has led to the construction of infrastructure such as dams, reservoirs, and canals for water storage (Déry
et al., 2021; Ficklin et al., 2018; Grill et al., 2019). Consequently, more than two‐thirds of river systems
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worldwide have undergone significant alterations of their flows (Liu et al., 2023). Thus, development of highly
accurate hydrological models is crucial to understanding future hydroclimate scenarios in the context of global
climate change across human‐regulated catchments (Tu et al., 2023; Zhang et al., 2023).

Data‐driven models based on deep learning (DL) methods have been applied to obtain satisfactory predictions in
different scientific areas (Gavahi et al., 2023; Jiang et al., 2023; Kumar & Rao, 2023; Tian et al., 2021). DL is an
effective tool for estimating various hydrological variables (Li et al., 2022; Nevo et al., 2022; Wright et al., 2022;
Yousefi & Toffolon, 2022; Zhang et al., 2022). As a typical DL model, long short‐term memory (LSTM) has
become a prominent technique in streamflow prediction (Feng et al., 2020; Kratzert et al., 2018, 2021; Nearing
et al., 2022). Even for prediction in ungauged basins (PUB), LSTM has significant advantages compared to
classical hydrological models, because it can transfer the knowledge learned from data‐rich regions to ungauged
ones (Arsenault et al., 2023; Feng et al., 2021; Zhang et al., 2022). LSTMmodels enhance hydrological modeling
by identifying input‒output relationships with satisfactory precision and efficiency (Wei et al., 2023). Despite the
increasing interest in the application of LSTM for streamflow prediction, it is important to note that very few
studies have utilized LSTM to predict streamflow within exceedingly large and human‐regulated catchments, and
conducted a concurrent evaluation of the reliability of these simulations. Consequently, a substantial research gap
is still present in the exploration of LSTM networks for streamflow simulation, particularly in the dynamic
context of evolving human impacts.

The fusion of physically based models and DL models, termed hybrid models, is increasingly gaining attention in
current research, and represents a promising approach for future investigations (Ng et al., 2023). Different types
of hybrid models have been extensively used in the estimation or prediction of streamflow (Wi & Steinsch-
neider, 2022), stream temperature (Du et al., 2022), and evaporation (Bennett & Nijssen, 2021). More recently,
Botterill and Mcmillan (2023) introduced a hybrid model featuring an encoder‐decoder framework, which is a
hydrological process‐informed differentiable model that employs the acquired signatures and current meteoro-
logical data to predict streamflow. Furthermore, Feng, Beck, et al. (2023), Feng, Tan, et al. (2023) proposed a
differentiable, parameter‐learning (DPL) model, utilizing neural network (NN) to predict static and dynamic
parameters within Hydrologiska Byråns Vattenbalansavdelning (HBV)‐like process‐based model. These hybrid
models exhibit performance closely approaching the state‐of‐the‐art results from LSTM and allow users to
simulate and interpret unobserved variables, similar to classical hydrological models (Feng, Beck, et al., 2023;
Feng, Tan, et al., 2023). However, the majority of existing studies primarily focused on natural catchments with
minimal human influence (Chen et al., 2022; Gholizadeh et al., 2023; Michel et al., 2022; Zhang et al., 2022).
Nevertheless, it is still necessary to systematically assess and compare hybrid models (e.g., the DPL) with LSTM
specifically within human‐regulated catchments.

Hydrologists often tend to choose hydrological signatures that can capture the diverse aspects of flow regimes in
natural catchments based on catchment attributes (Ma, Feng, et al., 2021; Ma, Montzka, et al., 2023; Thomas
Lees, 2021). However, classical catchment attributes resulting in uncertainty in human‐regulated catchments that
diminishes model performance (Kratzert et al., 2021; Ouyang et al., 2021). Given the diverse and direct impacts of
human activities on streamflow patterns, it is clear that a comprehensive understanding of methods for accurately
selecting hydrologic signatures is still lacking. Consequently, there is an opportunity from global river
morphological attributes from the Surface Water and Ocean Topography (SWOT) River Database (SWORD),
such as elevation, width, and slope, are available in a static format (Durand et al., 2023; Riggs et al., 2022). It is
possible to leverage the capabilities of LSTM and hybrid models to identify an optimized set of hydrologic
signatures that can provide the most relevant information for effectively addressing the complex challenges
associated with streamflow simulation in human‐regulated catchments.

This study proposes to employ river‐reach attributes that comprehensively encompass various river character-
istics. These attributes are combined with catchment attributes to create a novel attribute collection known as
multiscale attributes. The objective of this study is to investigate whether LSTM with multiscale attributes
(Multiscale LSTM) can extract valuable information for streamflow prediction in human‐regulated catchments.
We selected a state‐of‐the‐art DPL model that not only clearly describes physical processes but also adheres to
physical laws, such as mass conservation, while producing interpretable outputs. Deliberate comparisons between
the LSTM model and the DPL model were designed to determine their ability to learn from these multiscale
attributes. We examined whether these attributes can outperform traditional catchment attributes or scenarios
where no attributes are used. Furthermore, we aim to explore how the diversity, quantity, and temporal
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distribution of the training data affect the performance of the LSTM and DPL models within the context of
evolving human influence dynamics. This study is expected to offer insights into the influence of the training data
characteristics and provide a comprehensive understanding of the model performance in different human in-
fluence scenarios.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin, located in northern China (Figure 1), which is the world's sixth‐longest river system.
Covering an immense expanse of approximately 750,000 km2, the Yellow River Basin accounts for 8% of China's
land area. Notably, a significant portion of this region is characterized by elevations surpassing 3,000 m above sea
level, predominantly situated within the arid and semiarid zones of northwestern China. Additionally, we

Figure 1. Locations of the stream gauges and spatial distribution of the reservoirs across the Yellow River Basin (above) the
95 catchments across the entire United States included in the CAMELS data set (below).
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expanded our data set to include 95 catchments from Catchment Attributes and Meteorology for Large‐sample
Studies (CAMELS) data set (Addor et al., 2017) across the United States (USA). These catchments were
selected based on a criterion where the connectivity status index (CSI) of the river is less than 95% (Figure 1).

Since the implementation of the ecological restoration project in 1999, the Yellow River Basin has witnessed a
remarkable resurgence of its vegetative cover. Over this period, the vegetation coverage surged from 31.6% to an
impressive 65% by 2017 (Jiang et al., 2022; Wang et al., 2021). In addition to these ecological restoration efforts,
significant human‐made alterations have been made to the landscape, particularly in the early 2000s when several
key reservoirs and water infrastructure projects were initiated (Liu et al., 2023). The Yellow River Basin contains
more than 3,000 reservoirs that have significantly modified streamflow by altering its timing and magnitude
(Jiang et al., 2022; Ni et al., 2022; Xu, Ma, et al., 2022; Xu, Wang, et al., 2022). Thus, the variations in human
activities before and after 2000 had a discernible impact on the flow of the Yellow River Basin, leading to
noticeable changes in the water discharge (Figure A1).

2.2. Data Sets

The meteorological forcing data used in this study include precipitation, temperature, potential evaporation, and
wind speed. These forcing sets were derived from ERA5‐Land, a data set that generates primary land surface
components through the ERA5 atmospheric model (Muñoz‐Sabater et al., 2021; Xu, Ma, et al., 2022; Xu, Wang,
et al., 2022). ERA5‐Land offers a consistent portrayal of the historical evolution of land‐related variables
spanning from 1950 to the present day, providing data at a spatial resolution of 11 km with hourly temporal
frequency. Using the hourly data sets, we computed the area‐weighted spatial average for each variable in each
basin from gridded meteorological forcing data. Daily streamflow data from a total of 24 watersheds situated
within the Yellow River Basin were used for this study. The size of these watersheds ranges from 2,450 to
747,000 km2, with a median area of approximately 330,000 km2, as depicted in Figure 1. The 24 stations were
mainly distributed along the main stream of the river. The daily streamflow data covered the period from 1980 to
2014 and were sourced from the Loess Plateau Subcenter, National Earth System Science Data Center, National
Science & Technology Infrastructure of China (http://loess.geodata.cn). Please note that there are data gaps from
1998 to 2002 across the Yellow River basin. To maintain data integrity and avoid introducing uncertainties, we
did not reconstruct the missing data for this period.

For our analysis of the impacts of human regulation and multiscale attributes on discharge prediction, we utilized
the original CAMELS data set (Addor et al., 2017). This data set encompasses 671 catchments located across the
United States. Within the CAMELS data set, there are 58 static attributes involving various aspects of basin
topography, climatic indices, hydrological signatures, as well as information on land cover, soil composition, and
geology. The data set also includes daily climate inputs (such as temperature, precipitation, radiation, and hu-
midity), streamflow records spanning from 1980 to 2014.

The multiscale attributes are defined by combining river‐reach attributes with catchment attributes (Tables 1 and
2), yielding in a unique collection of attributes (Figure B1). In this study, we calculated two sets of catchment
attributes. The first was based on HydroATLAS data, and the second was derived from daily climate variables
extracted from ERA5_Land (Kratzert et al., 2023). Notably, a majority of the basins within HydroATLAS were
smaller than the actual catchment boundaries within the Yellow River basin. To address this issue, we performed
spatial joins between the HydroATLAS polygons and carried out calculations to aggregate catchment attributes.
These attributes encompassed diverse categories, namely hydrology, land cover characteristics, soils and geology,
and climatology.

The river‐reach attributes utilized in this study originated from the Global Free Flowing River (FFR) data set, as
described in detail by Grill et al. (2019). The FFR data set defines free‐flowing rivers based on an extensive
literature review and identifies five primary pressure factors that influence river connectivity. These pressure
indicators include the degree of river fragmentation (DOF), degree of regulation (DOR), sediment trapping index
(SED), consumption water use (USE), road density (RDD), and urban areas (URB). These proxy indicators were
then integrated using a weighting model to derive the river CSI for every river reach. In our analysis, river reaches
with a CSI of ≥95% were considered to have good connectivity status, while those below 95% were classified as
impacted (Figure B1). Please note that the way for calculating river‐reach attributes significantly differs from that
of catchment attributes. Rather than computing an average value based on all river‐reaches within a catchment,
our approach specifically focused on the attributes at the outlet of each catchment. This deliberate choice allowed
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us to capture and represent the anthropogenic signatures at the finer scale of individual river‐reaches. The geo-
metric data set of the global river attribute information for every river reach, the values of all pressure indicators
(DOF, DOR, SED, USE, RDD, and URB) and the values for the CSI are available at https://doi.org/10.6084/m9.
figshare.7688801 (Grill et al., 2019).

For the extraction of remote sensing‐based river‐reach scale characteristics, our primary data source was SWOT
River Database (SWORD v16), a comprehensive database regarding global river networks and morphological
attributes. SWORDprovides a cohesive data set comprising river reaches, each approximately 10 km in length, and
nodes spaced approximately 200 m apart. These data sets include crucial hydrological and morphological features

Table 1
Multiscale Attributes Used to Train the Long Short‐TermMemory and Differentiable Parameter Learning Models Across the
Yellow River Basin

Static variables Static variable description Median Range

Catchment attributes

Area Catchment area (km2) 330,000 [2,450, 747,000]

ele_mt Elevation (m) 1,675 [985, 4,800]

p_mean Mean daily precipitation (mm d− 1) 1.9 [0.3, 2.7]

ari_ix Global aridity index (%) 58.6 [37, 75]

pnv_pc Potential natural vegetation extent (%) 0.54 [0, 81]

pet_mean Mean daily potential evaporation (mm d− 1) 3.7 [2.3, 4.3]

aet_mm Monthly mean actual evapotranspiration (mm) 45 [34, 65]

high_prec_dur Average duration of high precipitation events (‐) 1.3 [1.2, 1.4]

high_prec_freq Frequency of high precipitation days (‐) 0.05 [0, 0.8]

low_prec_freq Frequency of low precipitation days (‐) 0.57 [0.50, 0.77]

low_prec_dur Average duration of low precipitation events (‐) 4.9 [3.5, 8.3]

swc_pc_ Soil water content (%) 58 [30, 73]

glc_pc Forest cover extent (%) 1.45 [0.01, 12.6]

cly_pc Clay fraction in soil (%) 18.2 [10, 22]

frac_snow Fraction of precipitation falling as snow (mm d− 1) 0.06 [0, 0.35]

moisture_index Mean annual moisture index (‐) − 0.5 [0.3, − 0.75]

pst_pc Pasture cover extent (%) 36 [9, 58]

ire_pc Irrigated area extent (%) 10 [0, 31]

River attributes

CSI River connectivity status index (%) 68 [21, 85]

DOR Degree of regulation (%) 46 [80, 100]

DOF Degree of fragmentation (%) 38 [0, 100]

URB Night light intensity in urban areas (%) 8 [0, 45]

USE Water use for irrigation, industry, municipal (%) 13 [0, 70]

Num_dams Number of dams on the river (‐) 18 [0, 133]

WSE Reach average water surface elevation (m) 102 [6, 1,903]

Width_var Width variance along the reach (m) 1.01 [0, 90.9]

Width Reach average width (m) 87 [15, 596]

Max_width Maximum width value across the channel (m) 296 [20, 1,209]

Slope Reach average slope (m/km) 0.49 [0, 30]

Dist_out Distance from the river outlet (m) 1,145,247 [1,564, 1,875,638]

Facc Maximum flow accumulation value (km2) 3,158 [234, 1,473,597]
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such as width, slope, meander length, maximum width, and width trend. SWORD integrates data from multiple
global hydrography databases into a unified product, ensuring consistency and accuracy across various attributes.

We collected dam and reservoir data from georeferenced global dam and reservoir data sets (GeoDAR) (Wang
et al., 2022). We calculated the numbers of reservoirs and river dams in every catchment and added these data into
static attributes to improve the streamflow modeling.

Table 2
Multiscale Attributes Used to Train the Long Short‐Term Memory and Differentiable Parameter Learning Models Across the 95 Catchments in USA

Static variables Static variable description Median Range

Catchment attributes

elev_mean Elevation (m) 560 [33, 3,370]

slope_mean Catchment mean slope (m/km) 31 [1, 160]

area_gages2 Catchment area (km2) 357 [8.9, 7,582]

frac_forest Forest fraction (‐) 0.79 [0.0, 1.0]

lai_max Maximum monthly mean of the leaf area index (‐) 3.26 [0.73, 5.47]

lai_diff Difference between the maximum and minimum of the leaf area index (‐) 2.27 [0.47, 4.64]

dom_land_cover_frac Fraction of the catchment area associated with the dominant land cover (‐) 0.92 [0.31, 1.0]

root_depth_50 Root depth at 50th percentiles (m) 0.18 [0.12, 0.25]

soil_depth_statsgo Soil depth (m) 1.35 [0.61, 1.50]

soil_porosity Volumetric soil porosity (‐) 0.44 [0.37, 0.52]

soil_conductivity Saturated hydraulic conductivity (cm/hr) 1.39 [0.45, 8.79]

p_mean Mean daily precipitation (mm/day) 3.0 [1.09, 8.79]

aridity PET/P 0.85 [0.22, 2.60]

high_prec_freq Frequency of high precipitation days (days/year) 22 [9, 29]

high_prec_dur Average duration of high precipitation events (days) 1.32 [1.09, 1.97]

low_prec_freq Frequency of dry days (days/year) 255 [178, 322]

low_prec_dur Average duration of dry periods (days) 5.22 [2.83, 16.46]

frac_snow Fraction of precipitation falling as snow (‐) 0.13 [0, 0.72]

p_seasonality Seasonality and timing of precipitation (‐) 0.11 [− 1.37, 0.92]

pet_mean Mean daily PET (mm/day) 2.60 [1.90, 3.88]

max_water_content Maximum water content (m) 0.53 [0.17, 0.76]

geol_porostiy Subsurface porosity (‐) 0.14 [0.01, 0.24]

geol_permeability Subsurface permeability (m2) − 14 [− 16, − 11]

River attributes

CSI River connectivity status index (%) 81 [24, 96]

DOR Degree of regulation (%) 0 [0, 100]

DOF Degree of fragmentation (%) 57 [0, 100]

URB Night light intensity in urban areas (%) 0 [0, 16]

SED Sediment trapping index (%) 0 [0, 97]

USE Water use for irrigation, industry, municipal (%) 0.20 [0, 32]

Width Reach average width (m) 84 [30, 23,128]

Slope Reach average slope (m/km) 0.29 [0, 25.37]

WSE Reach average water surface elevation (m) 197 [0, 1,347]

Width Variance Width variance along the reach (m) 1,134 [21, 1,492]

Max Width Maximum width value across the channel (m) 45 [36, 23,128]

WSE Variance WSE variance along the reach (m) 0.46 [0, 7,930]
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2.3. Methods

2.3.1. LSTM

LSTM introduces several crucial components, including memory cells and gates, as proposed by Hochreiter and
Schmidhuber. (1997). These gates include the input gate, forget gate, and output gate, each serving a distinct
function (Kratzert et al., 2019; Tiggeloven et al., 2021). The input gate governs the information that should be
incorporated, the forget gate decides what should be discarded frommemory, and the output gate determines what
information to produce as output. Importantly, these gates undergo automatic and simultaneous training based on
the input data to predict the target variable (Ha et al., 2021; Ma, Feng, et al., 2021; Ma, Montzka, et al., 2023; Shen
et al., 2021). The incorporation of a memory cell endows LSTM with a unique ability to capture and comprehend
long‐term dependencies, such as those associated with snow accumulation and subsurface water storage that are
crucial for accurate streamflow predictions. Detailed information regarding the LSTM model parameters is
provided in Table 3. Moreover, Figure 2 visually describes the intricate mechanisms operating within an LSTM
cell, showcasing its capacity to effectively model sequential data and extract valuable insights for hydrological
applications.

The LSTMmodel used in this study is designed to predict 1 day of streamflow at a single time step, using the data
for the different dynamic variables recorded over the previous 365 days. Moreover, we formulated distinctive
features that comprehensively described topographic, land‐cover, and climatic attributes for each catchment.
These features served as static inputs. In addition to static catchment attributes, we introduced another special
static attribute at the scale of river reaches. These attributes provide insights into the influence of human activities
on the respective river reaches. This attribute integration enables the model to capture the effects exerted on river
reaches due to human‐induced factors. The selection of multiscale (catchment, river) attributes was guided by the
aim to offer hydrological insights that would enable the LSTM model to effectively differentiate among the
various catchment behaviors related to rainfall‐runoff processes.

2.3.2. Differentiable, Learnable Process‐Based Model

We trained the Differentiable, Parameter learning (DPL) model as introduced by Feng, Beck, et al. (2023), Feng,
Tan, et al. (2023). The DPL model develops a process‐based model as an evolvable backbone on a differentiable
computing platform and uses intermingled NNs for parameterization. We used dynamic parameters for the HBV
model, which means that the model obtains a new parameter every day from the parameter estimation NN. The
DPL model is designed to support differentiable programming because it is implemented within a DL platform.
Detailed information regarding the DPL model parameters is provided in Table 4. Within the DPL model, certain
components can be replaced with NNs, allowing for the corresponding updates to the model structure. A
distinctive feature of the model lies in the training of the NNs in the “end‐to‐end” manner, without any super-
visory data guiding the outputs of the NN units. The principal loss function of the DPL model is computed based
on the observed data and the outputs of the process‐based model.

2.4. Experiment Setup

In this study, we propose a hypothesis that the performance of both the LSTM and DPL models will be noticeably
influenced by the diversity and quantity of the training data set. To examine this hypothesis, we conducted a series
of experiments involving variations in the amount of the source training data (Figure 2).We trained the LSTM and
DLP models with different training strategies. Specifically, we trained the models with five different random
seeds for every single experiment, and the performance was selected based on the maximum of the five model
predictions. Due to the different random seeds and irregular behavior of streamflow, the models achieve very
different performance characteristics in every experiment for single catchments, and choosing the max value of
Kling‐Gupta Efficiency (KGE) among them improves the model performance.

2.4.1. Setup With Multiscale Attributes

In this study, our hypothesis posits that the both LSTM and DPL models will exhibit a tendency to cluster similar
basins together within a high‐dimensional space. This clustering facilitates the utilization of similar memory cells
for human‐regulated catchments, contingent upon the information contained within the multiscale attributes
employed as inputs. Consequently, the models should learn to recognize anthropogenic similarities in a manner
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conducive to rainfall‐runoff prediction. To validate this hypothesis and
enhance the robustness of our analysis, experiments were conducted in both
the Yellow River basin and the United States. From the CAMELS data set, we
specifically selected 95 catchments out of the total 671, employing a criterion
where the CSI of the river is less than 95%.

In this experiment, for across the Yellow River Basin, we deliberately
selected the training period from 1 January 1986 to 30 December 2009. And
then we used 5 years' worth of data from 1 January 2010 to 30 December
2014, to evaluate the model's performance. Before the training, we used
6 years' worth of data from 1 January 1980 to 30 December 1985, as vali-
dation data to select the hyperparameters. For the 95 catchments across the
CAMELS basins, we trained the LSTM and the DPL models on 15 years'
worth of data from 1 October 1980 to 30 September 1995, and evaluated its
performance on another 15 years' worth of data from 1 October 1995 to 30
September 2010. The 5 years' worth of data from 1 October 1980 to 30

Table 3
List of Long Short‐Term Memory Model Hyperparameters

No LSTM parameters Value

1 Number of LSTM layers 2

2 Hidden states 128

3 Initial forget bias 3

4 Dropout rate 0.4

5 Learning rate 0.005,0.001

6 Batch size 256

7 Optimizer Adam

8 Number of training epochs 50

9 Sequence length 365

10 Loss function NSE

Figure 2. Sketch of the long short‐termmemory and Differentiable Parameter Learning models. The two models were trained
with different strategies to consider anthropogenic impact levels.
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September 1985, were used as validation data to select the hyperparameters.
Furthermore, for the LSTM model, we trained the models from 1 October
1980 to 30 September 1995, and from 1 October 1995 to 30 September 2010.
It is essential to emphasize that due to the data gaps from 1998 to 2002 across
the Yellow River Basin, the training and validation periods differ signifi-
cantly for the Yellow River Basin from the CAMELS basins.

We conducted multiple experiments for both DPL and LSTM, optimizing
their respective hyperparameters to achieve optimal performance. The mul-
tiscale attributes for the catchment and river reach scale attributes may have
different impacts on the performance of DLP and LSTM. Thus, we designed
four different scenarios: (a) Base, in which the LSTM model did not use any
catchment or river attributes as input; (b) Catchment attribute, in which both
the LSTM and DPL models were fed with catchment attributes; (c) River
attribute, in which both models were fed with river attributes; and (d) Mul-
tiscale attribute, in which all of the catchment and river attributes were used as
static attributes in the LSTM and DPL models. The four scenarios can
differentiate the contributions of each type of attribute to the LSTM and DPL
model performance.

2.4.2. Setup With Varying Data Length Under Shifting Anthropogenic Influence

Our study considered the temporal evolution of human impacts within the Yellow River Basin. This basin un-
derwent a shift from relatively modest anthropogenic activities before 2000 to a substantial intensification of
human influences post‐2000. In light of this temporal division, we carefully divided our data set into two distinct
periods: a low anthropogenic impact period, representing the conditions before 2000, and a high anthropogenic
impact period, characterizing the years following 2000. For each of these periods, we trained the model using
different lengths of observed data, ranging from 1 to 10 years, and validated model performance using two years
of data and evaluated the performance on another 2 years' worth of data. The KGE results from this experiment are
presented for the test period.

Our main goal was to understand the influence of the shifting human dynamics on the performance of the LSTM
and DPLmodels. To evaluate this influence, we executed a series of experiments with systematic variations in the
amount of the source training data. Subsequently, we applied both LSTM and DPL models to each of these
discrete temporal segments, allowing us to examine their performance under different anthropogenic conditions.
Furthermore, we systematically explored the impact of varying data lengths on the model proficiency by
manipulating the duration of the training data. These comprehensive experiments were designed to provide in-
sights into how the diversity, quantity, and temporal distribution of training data influence the effectiveness of
these models.

2.4.3. Evaluate Model Performance Across Changing Anthropogenic Impact Periods

In this part, we conducted experiments meticulously tailored to thoroughly assess the performance of the two
models across the two distinct temporal periods as outlined previously. Initially, we trained both LSTM and DPL
using varying lengths of the training data, specifically 3, 5, 7, and 10 years of data, during the period of low
anthropogenic impact. Subsequently, we tested the performance of the models from 2001 to 2014, representing the
high anthropogenic impact period. Additionally, we conducted an inverse experiment wherein the models were
trained using data from the high anthropogenic period, spanning 3, 5, 7, and 10 years, and then evaluated their
performance on the lowanthropogenic period using data from1990 to 1996. The outcomes of these experiments not
only facilitated a thorough evaluation of model performance but also highlighted the adaptability and versatility of
the models, demonstrating their potential utility in scenarios characterized by evolving human impacts.

2.5. Evaluation Metrics

In this study, the simulation accuracy of each model is evaluated by statistical error measurements and discharge
process error, that is, the KGE criterion (Gupta et al., 2009). The KGE is commonly used to verify the goodness of
the hydrological model prediction results. It is calculated as follows:

Table 4
List of Differentiable Process‐Based Model (δn(γt, βt)) Hyperparameters

No Model parameters Value

1 Warm‐up option 1 year

2 Parameters Dynamic parameters

3 Hidden state 128

4 Number of multi‐component model 16

5 Number of HBV parameters 13

6 Learning rate 0.005

7 Batch size 512

8 Optimizer Adam

9 Number of training epochs 100

10 Sequence length 365

11 Loss function RMSE
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KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2 + (a − 1)2 + (b − 1)2
√

(1)

where r is the correlation coefficient between the observed and model‐
simulated streamflow, a is the ratio of the standard deviation of the model‐
simulated flows to the standard deviation of the observed flows, and b is
the ratio of the mean of the simulated flows to the mean of the observed flows.

3. Results
3.1. Impacts of Multiscale Attributes on Streamflow Prediction

Figure 3 presents the overall results for the LSTM and DPL models fed with
different selections of static attributes. For the DPL model, the median KGE
values regarding the scenarios with the catchment, river, and multiscale at-
tributes are 0.19, 0.30, and 0.22, respectively across the Yellow River Basin.
The performance is substantially improved in the CAMELS basins as the
median KGE over 0.70. For the LSTM model, the median KGE values of
LSTM regarding the scenarios are larger than 0.4 across the Yellow River
Basin, and it also shows better performance in the CAMELS basins as the
KGEs over 0.78. It is important to emphasize that even without any static
attributes, the base LSTM already obtained similar results with the DPL
model across the Yellow River Basin, although it is not comparable to the
DPL model that are fed with different selection of attributes for the CAMELS
basins. Relative to the base scenarios, for the CAMELS basins, the LSTM
presents the KGE values increase nearly by 0.15 by adding different attributes
selections. Moreover, both LSTM and DPLmodels with river attributes could
nearly reaches the performance of those with classical catchment attributes
and multiscale attributes for the CAMELS basins, which means both DPL and
LSTM models learn the anthropogenic signatures by using river attributes.
Considering the impacts of river attributes, both the LSTM and DPL models

fed with river attributes perform better than those fed with catchment attributes across the Yellow River Basin. In
contrast, there is no significant improvements for both the LSTM and DPL models with multiscale attributes
relative to the catchment attributes for the CAMELS basins.

In Figure 4, we present the spatial distribution of the differences (ΔKGE) between the LSTM and DPL models
across the Yellow River Basin and the CAMELS basins. The overall improvement with the Multiscale LSTM is
more significant, and distinct spatial patterns can be observed. We calculated ΔmeanKGE which is the mean
difference between the comparison model (i.e., Multiscale LSTM) and the reference model (i.e., Multiscale DPL).
The differences in KGE for the models are as follows: ΔmeanKGE = 0.29, ΔmedianKGE = 0.30 across the Yellow
River Basin, and ΔmeanKGE = 0.27, ΔmedianKGE = 0.08 for the CAMELS basins. Both the mean and median
differences indicate that the LSTM model provides more reliable streamflow simulations than the DPL model.
Spatially, the DPL model struggled to provide acceptable predictions in the middle and lower reaches of the
Yellow River Basin. It has poor performance in most of the lower reaches, with ΔKGE ranging from 0.5 to 0.9,
indicating that their KGE values were less than zero. There are eight catchments in the lower reaches with ΔKGE
larger than 0.25. For the CAMELS basins, the LSTM model performs better in 63 out of the 95 catchments than
the DPL models. The DPL model has the advantage in the Great Plains catchments, while the LSTM model may
degrade in the arid catchments.

Figure 5 represents the explicit performance of the Multiscale LSTM and Multiscale DPL models across the 24
catchments in the Yellow River Basin. The Multiscale LSTM shows KGE values above zero at all 24 gauges,
while the Multiscale DPL presents KGE values above zero at 22 gauges. A further examination of the number of
cases of good performance (KGE > 0.5) reveals that 19 out of 24 catchments have KGE > 0.5 for the Multiscale
LSTM, while 6 catchments show KGE > 0.5 for the DPL model. Additionally, we observe that in the source
region catchment (Catchment ID 1), the DPL model nearly reaches the performance of LSTM. However, in some
catchments with drought and low annual streamflow (Catchment ID 15), the DPLmodel outperforms LSTM. This

Figure 3. Performance of Differentiable Parameter Learning (left) and long
short‐termmemory (right) with different static attributes in the testing period
(2010–2014): (a) for the Yellow River Basin and (b) for CAMELS basins
in USA.
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is expected, because catchments with relatively dry and low average flows may result in worse performance for
the LSTM model. Overall, the results clearly indicate that the LSTM model demonstrates noticeably better
performance than the DPL for most of the catchments. This provides further proof that the addition of catchments
with different anthropogenic and hydrological signatures endows the model with the ability to establish re-
lationships that the DPL cannot describe across large and data‐sparse conditions.

We present four hydrographs for the Yellow River Basin to illustrate the performance of the Multiscale LSTM
and the Multiscale DPL models (Figure 6). The LSTM model accurately simulated both low and high flows for
catchment ID 1 in the source region (Figure 6a). However, the DPLmodel underestimated peak flow, even though
it was able to represent flow duration curves in the source region, which has low anthropogenic impacts (number
of dams= 2). For the large catchment ID 7 in the middle reach, the LSTM and DPL models achieved KGE values
of 0.42 and − 0.32, respectively (Figure 6b). Notably, DPL struggled to provide good simulations with an increase
in human interventions (number of dams = 46).

Additionally, DPL could not reach the observed magnitudes of peak flow and baseflow, while the LSTM model
moderately mitigated this problem. For catchment ID 11, which experiences low annual flow and drought
conditions, both the LSTM and DPL models nearly represent high flow, but the DPL model significantly
underestimated the baseflow (Figure 6c). For Catchment ID 24, the largest in the Yellow River Basin
(area = 766,138 km2, number of dams = 152), is challenging for the DPL because it was unable to accurately
represent the streamflow process. By contrast, the LSTM model improved both peak and flow durations in this
extremely large catchment (Figure 6d).

Figure 4. Spatial distribution of the difference in Kling‐Gupta Efficiency (KGE) between the long short‐term memory and
Differentiable Parameter Learning (DPL) models across Yellow River Basin (above) and USA (below). The KGE difference
is computed as ΔKGE = KGELSTM − KGEDPL.
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3.2. Impact of Data Length Under Different Human Interventions

The results depicted in Figure 3 illustrate promising performance of both LSTM and DPLmodels in the CAMELS
basins; however, their effectiveness appears to diminish in the Yellow River Basin. This challenge can be
attributed to the substantial portion (>80%) of the Yellow River Basin being situated in dryland areas with
significant human activities. Consequently, in this subsection and subsequent sections, we shift our focus to the
Yellow River Basin rather than the CAMELS data set to examine the influence of human intervention on the
performance of the two models.

Figure 7 shows the annual flow trends during different human‐impact periods (before and after 2000). The results
of this trend analysis unveiled distinctive spatio‐temporal variations in streamflow patterns during the two
different periods. Notably, discernible decrease in streamflow was observed from 1980 to 2000. These trends
were predominantly witnessed in the middle and lower reaches of the Yellow River, except two gauges. However,
a contrasting pattern with consistent increases was observed in streamflow from 2001 to 2014. Therefore, the
following analysis describes the results for the second experiment, where we explore how the time‐series length
(1–10 years of observed data) in the training data set affects the simulation quality of LSTM and DPL during
different human impact periods (before and after 2000).

Figure 8 shows the results obtained for the effects of varying training period lengths in different human‐regulated
periods. During the low‐human‐impact period, we observed improved model performance with increasing
amount of training data. Initially, the model's performance demonstrated a stable upward trend, with KGE
reaching its optimal value of 0.63 when 9 years of data were used for training. As the training period extended to
3 years, the LSTM achieved a good level of accuracy (KGE > 0.3). Remarkably, as the training length expanded
from 4 to 10 years, all models consistently exhibited KGE values above 0.4. These simulation results exhibited a
positive correlation with the time‐series length of the input data. However, even for an extended training period,
certain catchments still exhibited poor performance (Figure 8a). Transitioning to the high‐level human‐impacts
period, the performance of the LSTM model also tended to improve with the increasing training period, albeit
with some differences from the low‐human‐impacts period (Figure 8b). For instance, when the training period
length was 4 years, the model displayed superior performance compared to the models trained for 5, 6, and
7 years. Most of the models demonstrated KGE values within the range of 0.35–0.5 and did not exhibit a smooth,
consistent improvement with longer training periods. Additionally, the model performance did not surpass a KGE

Figure 5. Performance of the Multiscale long short‐term memory and the Multiscale Differentiable Parameter Learning
models in the estimation period for the Yellow River Basin.
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value of 0.6 across various training period lengths. In summary, the model performance for the low‐human‐
impact period is not as good as for the high‐human‐impact period.

During the low‐human‐impact period, the DPL model exhibited a trend of increasing performance with longer
training period. However, this upward trend was not as pronounced, and the KGE values remained within the
range of 0.2–0.4 (Figure 8c). Furthermore, most of the cases during this period showed KGE values lower than
0.4, with the exception of the model trained for 10 years, which managed to achieve a KGE value higher than 0.4.
In the high‐human impact period, the behavior of the DPL model displayed significant variation. There was no
discernible trend of significant increase in performance, and themodel did not exhibit improvementwith increasing

Figure 6. Time series comparisons for four catchments from the Yellow River Basin with Kling‐Gupta Efficiency (KGE)
values—Multiscale long short‐term memory versus Multiscale Differentiable Parameter Learning. The numbers in the
legends show the KGE metric for the whole testing period (2010–2014), and Dams denotes the number of water dams in the
specific catchments.
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training data length (Figure 8d). Across all models trained with varying data lengths, the KGE values remained
below 0.4. These observations strongly indicate that the DPL model struggled to achieve reliable performance
during the high‐human‐impact period, in stark contrast to its behavior in the low‐human‐impact period.

We further investigated the model performance differences (∆KGE=KGE (LSTM) − KGE (DPL)) with varying
data lengths for both the LSTM and DPL models with the results depicted in Figure 9. For the low‐human‐impact
period, when the training data length was less than 5 years, there was no substantial distinction between the LSTM
and DPL models, with both achieving a ∆KGE of approximately 0.12. However, when the input data length
ranged from six to 10 years, the LSTM model displayed significant improvement attributable to the augmented
training data length. Consequently, a noticeable disparity emerged between the two models, with∆KGE hovering
at approximately 0.21 (Figure 9a). In the high‐human‐impact period, a substantial divergence was observed
between the LSTM and DPL models. As the human impact increased, it had a pronounced impact on the per-
formance of the DPL model, leading to five cases with ∆KGE values exceeding 0.2 (Figure 9b). This finding
underscores the sensitivity of DPL to human impacts, and LSTM model demonstrating greater resilience and
performance improvement in response to longer training data even during high‐human‐impact periods.

3.3. Understanding the Anthropogenic Similarities

Figure 10 shows how varying degrees of human activity impact on model performance. One scenario involved
training the LSTM and DPLmodels in a low impact period (1980–1996) and then assessing their performance in a
period with high human impacts (2001–2014). Notably, when the training data were limited to 7 years, the model
struggled to produce accurate simulations during the high‐human‐impact period. In contrast, when the LSTM
model was trained in the high‐impact period, it exhibited superior performance when tested in the low‐impact
period (Figure 10a).

The results obtained by the DPL model showed a different pattern. The DPL model trained during the low‐impact
period did not perform well when tested in the high‐impact period and its performance showed no significant

Figure 7. Annual streamflow trends between two different periods across the Yellow River Basin.
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correlation with the length of the training data. Furthermore, the DPL model trained during the high‐human‐
impact period still did not provide better simulation results when tested in the low‐human‐impact period
(Figure 10b). Generally, as the volume of the training data increased, the LSTMmodel consistently demonstrated
better simulation accuracy than the DPL model. This trend remained stable even during periods of high human
impacts. These findings suggest that when sufficient training data are available, LSTM has the potential to
outperform the DPLmodel, particularly in human‐regulated catchments, while the performance of the DPLmodel
is significantly degraded by complex human activities.

We further identify the contribution of the river and catchment attributes by evaluating their impacts on the
model's performance across the Yellow River Basin, and we calculated the Spearman's rank correlation of KGE
(from the experiments with multiscale attributes described in Section 3.1) and each static attribute. As shown in
Figure 11, for the LSTM model, static attributes such as sediment trapping (SED, − 0.60), catchment area
(area_gauge, 0.50), degree of regulation (DOR, − 0.49), degree of water use (USE, − 0.44), number of dams in
catchments (Num_dam, − 0.43), and all anthropogenic attributes exhibit negative correlations with the model's
KGE scores. Conversely, the river connectivity status index (CSI, 0.57), mean river width from the SWORD
(Width, 0.41) displays a positive correlation with the model's KGE scores (Figure 11a). In contrast, the correlation
pattern for the DPL model differs notably from that of the LSTM model. The DPL model's performance (KGE)
shows a significant correlation with classical hydrological signatures, including the base flow index (0.53),
fraction of snow cover (0.41), low flow frequency (− 0.48), slope of the flow duration curve (− 0.47), mean water
surface elevation (WSE, 0.27), and mean river width (Width, 0.22) from the SWORD data (Figure 11b). In
summary, the Multiscale LSTM model highlights the capability of DL models to flexibly incorporate meteo-
rological, hydrological, and anthropogenic features.

Figure 12 presents the KGE value of the LSTM and DPL models associated with the relationship between the
number of dams within dammed catchments. A discernible trend emerges from this analysis: in catchments with a
small number of dams, the LSTM model shows satisfactory performance with the KGE values higher than 0.7,
and the DPL models also perform relatively well. However, as the number of dams increases, the river's natural

Figure 8. Effect of time‐series length (1–10 years of observed data) on Kling‐Gupta Efficiency. (a) Low human impact period (1980–1996) for the long short‐term
memory (LSTM) model; (b) high‐human‐impact period (2001–2014) for the LSTMmodel; (c) low‐human‐impact period (1980–1996) for the Differentiable Parameter
Learning (DPL) model; and (d) high‐human‐impact period (2001–2014) for the DPL model.
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connectivity diminishes, and the pressure on the river segments intensifies.
This leads to a decrease in the KGE scores for the DPL model, reflecting the
growing impact of river damming on model performance. Interestingly, the
Multiscale LSTM model demonstrates unique robustness with respect to
increasing dam numbers. Even as the number of dams approaches approxi-
mately 120, it manages to sustain a relatively consistent level of simulation
accuracy, with KGE values exceeding 0.58. This notable performance could
be attributed to the inclusion of anthropogenic similarities at river‐reach
scales. The improvements observed in the Multiscale LSTM model's per-
formance highlight its potential in addressing this challenge. Conversely, as
the number of dams exceeds 40, the DPL model's performance tends to
decline. Beyond this threshold, there is no significant difference in model
performance with an increasing number of dams, with KGE values dropping
below 0.3. This decline underscores the limitations of the DPL model in
effectively simulating streamflow in human‐regulated catchments. Overall,
this analysis underscores the robustness of the Multiscale LSTM model with
respect to increased damming.

4. Discussion
4.1. Implications for Anthropogenic Signatures at the River‐Reach Scale

In regional hydrological modeling, catchment attributes are important in
training, and regional models can properly represent the flow dynamics in
multiple catchments (Gao et al., 2022; Ibrahim Demir et al., 2022). However,
some studies have indicated that LSTM showed poor performance in human‐
regulated catchments than in natural catchments (Jin et al., 2022; Manh‐Hung
Le, 2022; Sadler et al., 2022). This is most likely because the streamflow
dynamics in human‐regulated catchments significantly differ from those in
natural catchments. The flow in natural catchments is characterized by sig-
nificant seasonal patterns, and there exists a critical hydrological cycle in the

watershed. By contrast, hydrological processes are significantly altered in human‐regulated catchments due to
various human activities (Marvel et al., 2019; Yu et al., 2023). Many hydrological signatures are not well repre-
sented in catchment attributes, reducing their benefit in achieving favorable model performance in human‐
regulated catchments.

In this study, we first attempted to use river‐reach attributes that sufficiently include river characteristics, such as
the river CSI and degree of human regulation (DOR), along with some satellite attributes like mean river width
(Width), slope, mean WSE, and maximum width from the SWORD data (Altenau et al., 2021). We demonstrated
how to collect river‐reach attributes with catchment attributes to form a new type of attribute collection known as
Multiscale attributes. We meticulously validated the effectiveness and reliability of these multiscale attributes
across both the CAMELS data set and the Yellow River Basin, particularly within human‐regulated catchments.
The results obtained in this study suggest that anthropogenic similarities at the river‐reach scale can be learned by
LSTM and DPL models, and that the learned hydrological signatures can represent a wide variety of aspects of
irregular streamflow dynamics. This implies that in human‐regulated catchments, including catchment attributes
alone is insufficient for interpreting complicated hydrological patterns, and users should consider diverse hy-
drological signatures as an alternative.

4.2. Exploring the Potential of Multiscale LSTM and DPL in Human‐Regulated Catchments

In this study, we aim to evaluate the performance of LSTM and DPL models across human‐regulated catchments
and examine how these models can leverage specific static river attributes at the river‐reach scale. We seek to
explore the potential of these models by incorporating multiscale anthropogenic signatures. As the hydrology
community makes more extensive use of LSTM and DPL models with classical catchment attributes across
natural catchments, these models' performance in human‐regulated environments remains uncertain (Anderson &
Radić, 2022; Bian et al., 2023; Yao et al., 2023). We try to explore the opportunity to merge “data‐driven

Figure 9. Kling‐Gupta Efficiency (KGE) difference between the long short‐
term memory (LSTM) and Differentiable Parameter Learning (DPL)
models, △KGE = KGE (LSTM) − KGE (DPL). (a) For the low‐human‐
impact period and (b) for the high‐human‐impact period.
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discovery” with “knowledge‐driven regularization” offering a promising
avenue to streamflow simulation across human‐regulated catchments.

We observed that both LSTM and DPL show promising capabilities in
capturing long‐term hydrological patterns and seamlessly incorporate
anthropogenic signatures across the CAMAELS catchments with relatively
lower river connectivity status (CSI < 95%). Despite this, LSTM demon-
strates robustness in simulating complex hydrological patterns even in
catchments with extremely low river connectivity status index (CSI < 50%),
establishing a notable correlation between model performance and river at-
tributes (Figure 10a). However, the DPL model faces challenges in accurately
representing irregular streamflow patterns observed in catchments affected by
human regulation, especially those with multiple reservoirs. It's important to
note that the DPL model is a physics‐informed machine learning model with
regionalized deep‐network‐based parameterization pipelines (Feng
et al., 2022; Feng, Beck, et al., 2023; Feng, Tan, et al., 2023). However, it still
encounters difficulties in accurately tracking and adapting to these intricate
alterations across the Yellow River Basin. Interestingly, the DPL model with
river attributes outperforms both the catchment and multiscale attributes
models. This suggests the robustness of the Differentiable, Learnable
mechanism of the DPL model in learning anthropogenic signatures.

4.3. Challenges and Future Work

We meticulosly analyzed uncertainties based on the this study and literature
across human‐regulated catchments (Figure 13). The quality of input data
directly affects the model's performance (Aerts et al., 2022; Gauch
et al., 2021). Noisy, missing, or insufficient data may hinder the model's
ability to capture complex hydrological processes and dynamics (Fang
et al., 2022; Feng et al., 2021). Choosing the right model architecture and
optimization algorithm is paramount for different hydrological simulation
tasks (Li et al., 2023; Qiu et al., 2021). Human activities significantly influ-

ence the hydrological characteristics and dynamics of the watershed, thereby increasing the uncertainty of runoff
simulations (Tursun et al., 2024a, 2024b). Climate change amplify the uncertainty of hydrological simulations as
models need to predict under uncertain future climate conditions (Althoff et al., 2021; Michel et al., 2022;
Moosavi et al., 2022). One of the key findings from this study is that the training data period emerges as the most
dominant factor affecting model performance relative to other model training options. Notably, selecting training
data from both low‐ and high‐human‐impact periods led to a substantial enhancement in model performance. This
improvement can be attributed to the diverse anthropogenic signatures present across both low‐ and high‐human‐
impact periods, as opposed to a single period, thereby enriching the training data set and enabling the model to
better adapt to varying conditions.

Our exploratory tests revealed that multiscale attributes provide invaluable information for both the LSTM and
DPL models across the CAMELS and Yellow River Basin. However, in this study, our primary aim was to
discover which anthropogenic signatures the model would learn, and interpret them in terms of their relationships
to model performance. Consequently, there were several model training strategies that we did not fully explore,
such as evaluating model performance in ungauged basins or regions. Furthermore, while we focus on human‐
regulated catchments, there is ample opportunity to delve deeper into combining both natural and human‐
regulated catchments to further explore the robustness of the DPL and LSTM models. By incorporating a
broader range of catchment types, we may gain a more comprehensive understanding of how these models
perform under varying environmental conditions and anthropogenic influences.

We believe that dynamic attributes at both river and catchment scales are crucial for accurate streamflow
simulation, as static attributes alone may not adequately reflect changing hydrological conditions. Therefore, in
future studies, it will be imperative to develop methods for integrating multiscale and dynamic attributes into
regional hydrological models that are flexible enough to accommodate both human‐regulated and natural

Figure 10. Model performance of training and testing in different human
impact periods. High level: trained the models during the low‐impact period
and subsequently test them to the high‐impact period; Low level: trained the
models during the high‐impact period and subsequently tested them to the
low‐impact period.
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catchments across different hydrological patterns. Moreover, combining meteorological data with remote sensing
observations, such as, river width, WSE, and slope from the SWOT data (Altenau et al., 2021), can lead to the
creation of multimodal data sets. This integration of diverse data sources can provide valuable insights and
improve the performance of DL models.

5. Conclusion
In this study, we trained the LSTM and DPL models with multiscale attributes across human‐regulated catch-
ments and comprehensively evaluated the models' capability to adapt to varying degrees of human impacts. The
results provide new insights into streamflow prediction and other hydrological process simulations. The important
findings are summarized as follows.

Wecollected river attributes such as the river connectivity status index (CSI), degree of regulation (DOR), sediment
trapping (SED), as well as river width, slope, WSE from SWORD data to represent anthropogenic signatures.

Figure 11. Spearman's rank correlation between the multiscale attributes (rows) and the associated Kling‐Gupta Efficiency
scores (columns) from the experiments described in Section 3.1 from the Yellow River Basin. The positive correlations are in
yellow, and the negative correlations are in red.
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Combining river and catchment attributes proves to be a promising approach to providing the most valuable
anthropogenic similarities for theDPLandLSTMmodels. Even in extremely complicated hydrological conditions,
such as those found in theYellowRiver Basin,multiscale attributes still provide valuable signatures for themodels.
Moreover, the training data period emerges as the most dominant factor affecting model performance across
human‐regulated catchments relative to other hydrological conditions. Selecting training data from both low‐ and

Figure 12. Kling‐Gupta Efficiency distributions of the long short‐term memory and Differentiable Parameter Learning
models with the increase in the river dams in catchments for the Yellow River Basin.

Figure 13. Uncertainty of deep learning‐based streamflow modeling across the human‐regulated catchments.
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high‐human‐impact periods significantly improves model performance, as the model is extremely sensitive to the
selection of the training data period. Additionally, we found that the LSTM model has great potential to adapt to
varying degrees of human impacts across human‐regulated catchments. Overall, the DPL model can reach nearly
state‐of‐the‐art performance across CAMELS catchments with lower human impacts, while its performance
significantly deteriorates in extremely complicated hydrological conditions across the Yellow River Basin.

We found that multiscale attributes can provide diverse anthropogenic and hydrological signatures. However, it
should be noted that only the appropriate selection of multiscale attributes will maximize their values, and the
significance of the hydrological similarities should be highlighted in multiple catchments. We recommend using
DOR, DOF, CSI, URB, WSE, width, slope, and river dams to quickly identify anthropogenic similarity. In the
future, with a deep understanding of the hydrological process and the development of dynamic attributes at both
river and catchment scales, the prediction accuracy of Multiscale LSTM in human‐regulated catchments can be
further improved.

Appendix A: Streamflow Change
In the early 2000s, significant reservoir construction and water infrastructure projects were launched across the
Yellow River Basin, leading to pronounced anthropogenic interventions and impacting streamflow patterns
(Figure 7). Consequently, from 1980 to 2000, there was a notable decreasing trend in annual flow, whereas from
2001 to 2014, an increasing trend in annual flow was observed (Figure A1). Therefore, it becomes imperative to

Figure A1. Time series plots of annual flow trends of three different catchments for 1980–2014 for the Yellow River Basin.
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divide the time period from 1980 to 2014 into two distinct segments, with the year 2000 serving as the boundary
between these periods.

Appendix B: Multiscale Attributes
In our study, we carefully derived the attributes at both catchment and river scales to enhance the capabilities of
the LSTM model in representing complex hydrological processes. For catchment‐level attributes, our approach
involved performing a spatial join between the HydroATLAS polygons and the catchment boundaries. Subse-
quently, we derived catchment attributes by computing area‐weighted aggregates, ensuring a comprehensive
representation of catchment characteristics (Figure B1). To effectively capture the influence of human distur-
bances on the streamflow at the river‐reach scale, we compiled a series of river‐reach attributes.

It is important to note that the method employed for calculating river‐reach attributes differs significantly from
that used for catchment attributes. Rather than calculating an average value for all river‐reaches within a
catchment, we opted to consider the river‐reach attributes specifically at the outlet of each catchment, as depicted
in Figure B1. This approach allowed us to precisely capture the anthropogenic signatures at the river‐reach scale.
Notably, we focused on CSI values derived from the outlet reach of each catchment, offering a targeted repre-
sentation of the connectivity status at this critical juncture.

Data Availability Statement
The Multiscale attributes, results and codes are available at https://zenodo.org/records/11112700 (Tursun, 2024).

Figure B1. The connectivity status index of river reaches across the Yellow River Basin (above) and United states (below).
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