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Abstract: Sun-induced chlorophyll fluorescence (SIF) holds enormous potential for accurately esti-
mating terrestrial gross primary productivity (GPP). However, current studies often overlook the
spatial representativeness of satellite SIF and GPP observations. This research downscaled TROPOMI
SIF (TROPOSIF) and its enhanced product (eSIF) in China’s Saihanba Forest Region to obtain high-
resolution SIF data. SIF was simulated using the SCOPE model, and the downscaled SIF’s reliability
was validated at two forest eddy covariance (EC) sites (SHB1 and SHB2) in the study area. Subse-
quently, the downscaled SIF data were matched to the EC footprint of the two forest sites, and the
relationship between SIF and GPP was compared at various observational scales. Additionally, the
ability of downscaled TROPOSIF and eSIF to track GPP was compared, along with the correlations
among several vegetation indices (VIs) and GPP. The findings reveal the following: (1) Downscaled
TROPOSIF and eSIF showed a strong linear relationship with SCOPE-modeled SIF (R2 ≥ 0.86). The
eSIF closely matched the SCOPE simulation (RMSE: 0.06 mw m−2 nm−1 sr−1) and displayed a more
consistent seasonal variation pattern with GPP. (2) Comparisons among coarse-resolution SIF, EC
footprint-averaged SIF (SIFECA), and EC footprint-weighted SIF (SIFECW) demonstrated significant
improvements in the linear relationship between downscaled SIF and GPP (the R2 increased from the
range of 0.47–0.65 to 0.78–0.85). SIFECW exhibited the strongest relationship with GPP, indicating that
matching SIF to flux footprints improves their relationship. (3) As the distance from the flux tower
increased, the relationship between SIF and GPP weakened, reaching its lowest point beyond 1 km
from the tower. Moreover, in the highly heterogeneous landscape of the SHB2 site, the relationship
between VIs and GPP was poor, with no clear pattern as distance from the flux tower increased. In
conclusion, the strong spatial dependency of SIF and tower-based GPP emphasizes the importance of
using high-resolution SIF to accurately quantify their relationship.

Keywords: sun-induced chlorophyll fluorescence; gross primary productivity; downscaling; eddy
covariance; footprint

1. Introduction

Sun-induced chlorophyll fluorescence (SIF) serves as a valuable byproduct of photo-
synthesis and has found extensive use in the investigation of processes related to photosyn-
thesis [1–4]. In recent years, emerging SIF measurement techniques implemented on remote
sensing platforms have significantly facilitated the expanded global-scale measurement
of SIF, providing a promising prospect for quantifying global gross primary productivity
(GPP) based on SIF. Researchers have conducted extensive investigations into satellite SIF
and GPP across diverse biomes, indicating a linear relationship between them at larger
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regional and seasonal scales [5,6]. Several studies have utilized satellite SIF to estimate GPP
at regional and global scales based on this relationship [7–9]. However, recent research has
shed light on the presence of nonlinear SIF-GPP relationships at finer spatial and temporal
scales, as well as in the presence of stressful conditions [10–12]. To gain further insights
into the SIF-GPP relationship, researchers have examined finer scales, such as modeling the
process from the photosystem emission of chlorophyll fluorescence to the sensor reception
signal [1,3], as well as studying hydrothermal stress [13,14], herbicide treatment [15], etc.
While extensive research has been conducted on the correlation between satellite-obtained
SIF and GPP at multiple scales, limited focus has been placed on investigating the influence
of the spatial extent of SIF derived from satellites and GPP obtained from eddy covariance
(EC) flux towers on their interrelationship.

EC flux data have been widely used to evaluate or calibrate carbon flux and its
related products from remote sensing methods, as they can provide relatively accurate GPP
information. However, challenges arise when estimating GPP using EC flux tower and
satellite data due to inconsistencies in the satellite data resolution and the footprint range
of EC flux observations [16–18]. This is mainly because the current SIF products rely on
medium- or coarse-resolution satellite datasets, whose spatial extents often have difficulty
matching the footprint coverage area of the EC flux. In addition, the footprint coverage area
and location of the EC flux vary widely over time due to changes in surface roughness and
meteorological elements like wind speed and direction, especially on seasonal scales [18,19].
To address this limitation, some studies have screened larger areas with homogeneous
subsurface landscapes to minimize the impact of spatial heterogeneity on GPP estimates
from SIF obtained from satellite data [8,20]. However, truly homogeneous sites are rare [17],
which may constrain the richness and diversity of ecosystem sample selection. Moreover, it
may not be reasonable to assume spatial homogeneity of the GPP within the footprint of
the EC flux, even when the land cover remains consistent within the footprint [18]. This
is especially true for SIF, which is more sensitive to photosynthesis and whose spatial
distribution is affected not only by plant physiology but also by canopy structure factors,
including the leaf area index (LAI), clumping, and leaf angle distribution [21,22]. Therefore,
spatial-scale mismatches are likely to distort the relationship between SIF and GPP.

Several reconstructed SIF products, such as Contiguous SIF (CSIF) [23], Global OCO-2
SIF (GOSIF) [24], SIFnet [25], reconstructed TROPOMI SIF (RTSIF) [26], and enhanced SIF
(eSIF) [27], have been developed to overcome the limitations of the current satellite-based
SIF products, such as their low spatial and temporal resolution, high noise, and spatial
discontinuity. Despite the widespread use of these SIF products globally or in large regional
areas, their accuracy in matching GPP data derived from EC flux towers remains limited.
Therefore, obtaining high-resolution SIF data is imperative for studying the relationship
between satellite SIF and tower-based GPP.

The Copernicus Sentinel-5P mission launched in October 2017 with the Tropospheric
Monitoring Instrument (TROPOMI). Possessing higher spatiotemporal resolution, it pro-
vides daily global continuous spatial sampling with a minimum pixel size of 3.5 × 7.5 km2

(reduced to 3.5 × 5.5 km2 since August 2019), nearly covering the entire globe on a daily
basis, and surpassing previous satellite-based SIF products [28,29]. However, the SIF prod-
ucts derived from these data amplify instantaneous SIF data under clear-sky conditions
to daily averages by considering variations in the solar zenith angle, thereby neglecting
the influence of weather variations on SIF. The recently introduced eSIF product addresses
this limitation by accounting for all weather variations, improving upon the TROPOMI
SIF product [27]. Nevertheless, these data do not represent raw SIF data, and the data
reconstruction process may lead to the loss of true values. Therefore, in this study, to
obtain more accurate, high-resolution SIF data, both the original TROPOMI SIF product
and the eSIF product were simultaneously considered. Machine learning algorithms were
used to downscale and generate high-resolution SIF products (0.0005◦) and investigate
the relationship between SIF products of different resolutions and GPP data derived from
EC flux towers. The objectives of this study were (1) to produce high-resolution SIF prod-
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ucts suitable for tracking seasonal changes in GPP; (2) to compare whether matching SIF
with flux footprints enhances the correlation between SIF and GPP; and (3) to assess the
relationship between SIF and GPP at different observational scales.

2. Materials and Methods
2.1. Study Area and In Situ Survey
2.1.1. Study Sites

In this study, GPP was measured at two forest observation stations located in the Sai-
hanba Forest Farm in Chengde, Hebei Province, China (Figure 1). The first station (SHB1)
is located in a larch (Larix principis-rupprechtii Mayr) forest (117◦18′52.61′′E, 42◦24′35′′N),
which is an artificial forest that is approximately 60 years old, with a tree height of approxi-
mately 22 m. The forest is composed of a single tree species with a high canopy density
and sparse shrubs and grasses. As the land cover type is larch, the monitored larch at this
observation site is highly representative. The second station (SHB2) is located in a Scots
pine (Pinus sylvestris var. mongolica) forest (117◦22′12′′E, 42◦23′28′′N), which is also an
artificial forest but approximately 10 years old. The forest is composed of a single species
with high understory herb coverage. The canopy height of Scots pine ranges from 3 to 5 m,
and the forest area is relatively small (250 m × 500 m). The area around the Scots pine forest
includes grasslands, larch, and birch (Betula platyphylla) forests, making the underlying
surface of the EC flux footprint relatively complex. Saihanba experiences a temperate
continental monsoon climate within a cold and semiarid zone, characterized by an average
temperature of −1.2 ◦C and an annual precipitation of 452 mm. The predominant soil type
in the area is sandy loam [30].
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2.1.2. Eddy Covariance and Meteorological Data Measurement

The open circuit eddy correlation system (OPEC) was installed on flux towers in both
SHB1 and SHB2, at heights of 30 m and 15 m, respectively. This system monitored long-
term, continuous half-hour averages of turbulence and energy flux, including latent heat
(LE), sensible heat (H), and CO2 flux. The system was equipped with a three-dimensional
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acoustic wave anemometer (Gill WindMaster, Gill Instruments, Lymington, Hampshire,
UK) and an infrared gas analyzer (Li-7500DS, LI-COR Inc., Lincoln, NE, USA).

Meteorological data were recorded every half hour simultaneously with the flux
data. A four-component radiometer (Kipp & Zonen CNR4, Delft, The Netherlands) and a
photosynthetically active radiation sensor (LI-190R, Campbell Scientific, Lincoln, NE, USA)
were positioned at a height of 38 m to monitor the radiation flux. At a height of 30 m, an air
temperature and humidity sensor (HMP155, Vaisala, Helsinki, Finland) and a rain barrel
were installed. Sensors were placed at soil depths of 5 cm, 10 cm, and 20 cm to monitor the
soil temperature (TM-L20, DYNAMAX Inc., Elkhart, IN, USA) and soil water content (EC-5,
METER Inc., Pullman, WA, USA). Three heat flux panels (HFP01, HukseFlux Inc., Delft,
The Netherlands) were placed at a soil depth of 5 cm to measure the soil heat flux, and
the meteorological data were recorded at a frequency of 0.5 Hz. A CR1000X data logger
(Campbell Scientific Inc., Logan, UT, USA) recorded 30 min averages of the above variables.

The raw EC data were processed using EddyPro 7 (LI-COR Bioscience, Lincoln, NE,
USA) to obtain half-hourly fluxes, which involved detecting spikes, correcting time lags
and frequency responses, rotating coordinates along three axes, correcting for acoustic
virtual temperature and density fluctuations, and calculating fluxes [31]. The EC data were
calculated every 30 min with three different quality control levels (0, 1, and 2). Poor-quality
flux data were excluded (marker 2). Unreasonable flux data were rejected by discarding
flux data collected half an hour before and up to one hour after precipitation, excluding
observations obtained during instrument failures or atmospheric instability conditions,
eliminating negative CO2 flux values observed at night, and rejecting flux values that fell
outside of the acceptable range. For gap filling and flux partitioning, the REddyProc online
tool was utilized [32]. The daytime-based separation method was used to divide the NEE
into ecosystem respiration (Re) and GPP components at 30 min intervals [33].

2.2. Remote Sensing Data
2.2.1. Sentinel-2 Data

The 2020–2021 Sentinel-2A/B Multispectral Instrument (MSI) surface reflectance (SR)
data (Level-2A) were utilized to obtain the vegetation indices (VIs) in the Saihanba region.
Sentinel-2 offers high-resolution Earth imagery (10–60 m resolution in all bands) and has
a revisiting period of 5 days. The sensor on board the Sentinel-2 satellites consists of
13 channels, encompassing the visible spectrum, the near-infrared (NIR), and shortwave
infrared (SWIR) bands. The Google Earth Engine (GEE) platform was utilized to process
the Sentinel-2 data. Cloud and shadow masks were first applied to the Sentinel-2 dataset
to extract cloud-free and shadow-free data. The cloud-masking algorithm devised by the
Sentinel Hub [34] was utilized to identify clouds within the Sentinel-2 cloud probability
dataset (s2cloudless), and shadows were determined as the intersections of cloud pro-
jections and low-reflection near-infrared (NIR) pixels. However, the algorithm did not
completely eliminate clouds and shadows in the Saihanba area, so the QA60 bitmask band
provided by the European Space Agency (ESA) in the metadata was additionally used to
effectively remove clouds and cirrus. Furthermore, cloud shadows were eliminated using
solar geometry and height estimates [35]. During the masking process, the results were
visually inspected, and all parameters were adjusted until the best results were obtained.
To generate an 8-day composite, the mean synthesis of valid Sentinel-2 VIs was used. Data
gaps were then filled using linear interpolation to achieve complete coverage over the entire
8-day period. The resulting time series was smoothed using a Savitzky–Golay (SG) filter
with a third-order polynomial and a window size of 56 days (7 observations), as described
by You et al. [36]. Finally, a consistent 8-day Sentinel-2 time series that was free of clouds
and effectively filled in data gaps was acquired (refer to Figure 2).
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Figure 2. Flowchart for generating a 0.0005◦ SIF.

This study utilized six spectral VIs obtained from Sentinel-2 SR data, namely the
enhanced vegetation index (EVI), near-infrared reflectance of terrestrial vegetation (NIRv),
red-edge normalized difference vegetation index (NDVIre), chlorophyll index—red (CIr),
chlorophyll sensitive index (CSI), and terrestrial chlorophyll index (MTCI). These indices
were computed using bands B3 to B8, with central wavelengths of 560 nm, 665 nm,
705 nm, 740 nm, 783 nm, and 842 nm, respectively. The calculation formulas for each
index can be found in Table 1. All VIs resolutions were resampled to 0.0005◦ for subsequent
SIF downscaling.

Table 1. The vegetation indices used in this study.

VI Name Formula Reference

CIr B7
B5 − 1 Gitelson et al. [37]

MTCI B6 − B5
B5 − B4 Dash and Curran [38]

CSI 2.5 ∗ B8 − B5
B8 + B5 ∗ B2

B5 Zhang et al. [39]
EVI 2.5 ∗ B8 − B4

B8 + 6 ∗ B4 − 7.5 ∗ B2 + 1 Huete et al. [40]
NDVIre B8 − B5

B8 + B5 Sims and Gamon [41]
NIRv B8 − B4

B8 + B4 × B4 Badgley et al. [42]

2.2.2. SIF Data

TROPOSIF refers to the satellite-based SIF product retrieved from the TROPOMI spec-
trometer on board the Sentinel-5 Precursor satellite [29]. It provides ungridded Level-2B
daily aggregated data, where daily aggregation is achieved by scaling the TROPOMI obser-
vations (local solar time 13:30) with daily length scale factors [29]. The SIF retrieval employs
a data-driven approach based on principal component analysis and is applied within two
fitting windows (743–758 and 735–758 nm). Due to its robustness against atmospheric
influences compared to the 735–758 nm SIF [29], the 743–758 nm daily average SIF product
was exclusively utilized, filtering out observations with cloud fractions exceeding 0.2 and
viewing zenith angles exceeding 60◦ and solar zenith angles exceeding 70◦. TROPOSIF
data were aggregated into 0.05◦ grid cells every 8 days.
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The eSIF data, created by Liu et al. [27], provide global SIF data with an 8-day temporal
resolution and a spatial resolution of 0.05◦. They combine TROPOSIF data with information
on the near-infrared radiation reflected by vegetation (NIRvP). Notably, the eSIF data
demonstrate reduced angular dependence and an improved signal-to-noise ratio compared
to the original TROPOSIF data. As a result, the eSIF data are better equipped for capturing
seasonal variations in GPP under environmental stress conditions [27].

2.2.3. LAI and Photosynthetically Active Radiation (PAR) Data

LAI and PAR were utilized for downscaling purposes, with LAI serving as an indi-
cator of vegetation structural distribution while PAR delineates the spatial distribution of
photosynthetically available radiation. The LAI data employed originate from the Global
Land Surface Satellite (GLASS) series [43], with a temporal resolution of 8 days. Among
the available spatial resolutions for LAI products, the finest resolution of 250 m was se-
lected. The PAR data were derived from the Breathing Earth System Simulator (BESS) PAR
product [44], with a temporal daily resolution and a spatial resolution of 0.05◦, aggregating
every 8 days.

2.3. Methods
2.3.1. Downscaled SIF

(1) Dataset construction

VIs and LAI have a strong correlation with SIF, and PAR plays a significant regulatory
role in SIF. In this study, six VIs obtained from the Sentinel-2 satellite, along with LAI and
PAR, were utilized as input parameters for the extreme gradient boosting (XGboost) model
to downscale the TROPOSIF and eSIF data. Due to the low SIF values in the Saihanba area
during the non-growing season, this study focused exclusively on data from the growing
season (May–September). To match the resolution of the SIF data, the VIs for the 2020–2021
growing season were aggregated every 8 days to a resolution of 0.05◦. Given the relatively
small area of the Saihanba Forest Farm, the study area was appropriately expanded beyond
Saihanba to ensure an adequate sample size for modeling, as shown in Figure 1.

(2) Downscaling method based on XGBoost

The downscaling methods used by TROPOSIF and eSIF employ XGBoost. XGBoost is
an advanced version of the gradient-boosted decision tree (GBDT) that constructs enhanced
trees capable of handling complex nonlinear relationships [26,45]. Owing to its remarkable
speed, accuracy, and efficiency, XGBoost has become widely adopted in the remote sensing
community as a preferred machine learning algorithm. It has been employed in various
downscaling applications, including in studies on crop yield [46], groundwater [47], and
surface soil moisture [48]. In this study, the XGBoost algorithm implemented in the Python
library was utilized for the analysis. The VIs, PAR, and LAI data at a resolution of 0.05◦

were used as input variables to model SIF. To evaluate the performance of the model, the
data were divided into an 80% training set and a 20% test set. Given the influence of various
parameters on the XGBoost model’s performance, the GridSearchCV method was adopted
to optimize the parameters, with a specific emphasis on minimizing the root mean square
error (RMSE). Through this process, the best-performing model was successfully identified
and selected. The assumption was made that the modeling relationship between the 0.05◦

input variables and the SIF would not significantly differ at 0.0005◦. Bilinear interpolation
was used to resample the LAI from 250 m to 0.005◦ and the PAR data from 0.05◦ to 0.0005◦.
The final model incorporated VIs, PAR, and LAI data at a resolution of 0.0005◦ to downscale
the SIF. Figure 2 illustrates the SIF downscaling process.

2.3.2. EC Flux Footprint Calculation

This study utilized the flux footprint prediction (FFP) model to estimate the footprint
of the EC flux. The FFP model parameterizes the footprint in two dimensions, enabling
a robust determination of the spatial extent and characteristics of the EC point footprint.
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For a more detailed understanding of the calculations used in footprint climatology, please
refer to Kljun et al. [19]. Considering that vegetation’s carbon sequestration process pri-
marily occurs during the daytime, footprint mapping was conducted at half-hour intervals
throughout daylight hours. Subsequently, the data were aggregated over an 8-day period to
generate spatial grids representing the contributions of the footprint. The contribution rate
grid was classified by accumulating it around the flux tower in 10% increments, resulting in
a classified map where the contribution rate was less than 90%. To facilitate the observation
of the seasonal variation characteristics of the footprint contribution rate, monthly maps
were also created for the growing season (Figure 3).
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2.3.3. Validation of Downscaled SIF

The SIF from the SCOPE 2.1 model was compared with the downscaled SIF at the two
flux sites to assess the effectiveness of the downscaled SIF. SCOPE is a one-dimensional
model capable of simulating radiation transfer, energy balance, and photosynthesis, as
well as SIF from individual leaves within the canopy and the total emitted SIF spectrum of
chlorophyll fluorescence [49]. It is widely used for seasonal SIF estimation. The simulation
range was set to 500 m around the flux towers, assuming homogeneity of the forest canopy
and uniform atmospheric conditions within this range. The input parameters for the SCOPE
model in this study are detailed in Appendix A. To match the timing of the downscaled SIF,
the simulated half-hourly SIF was aggregated to 8 days.

2.3.4. Evaluation of the Relationship between GPP and Downscaled SIF

The coefficients of determination (R2) obtained from linear regression were employed
to assess the degrees of linear association between GPP and three different SIF datasets:
raw 0.05◦ SIF, downscaled SIF EC footprint-averaged (SIFECA), and downscaled SIF EC
footprint-weighted (SIFECW). This analysis aimed to validate and assess the correlation
between the downscaled SIF and GPP. SIFECA represents the average SIF value across
90% of the cumulative EC flux footprint range. On the other hand, SIFECW was calculated
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by assigning a weight to each flux footprint contribution within the 0–10%, 10–20%, · · · ,
70–80%, and 80–90% ranges. To ensure the sum of the weighting coefficients of SIF is 1,
each part has a weight of 10/90 (as shown in Equation (1)).

SIFECW =
N1

∑
k=1

SIFk
N1

× 10
90

+
N2

∑
k=1

SIFk
N2

× 10
90

+ · · ·
N8

∑
k=1

SIFk
N8

× 10
90

+
N9

∑
k=1

SIFk
N9

× 10
90

(1)

The variables N1 to N9 refer to the total number of pixels within the image that fall
within each of the nine cumulative footprint ranges, from the range of 0–10% to 80–90%.
SIFk represents the value of SIF for the specific pixel k located within the corresponding
footprint range.

Additionally, the EC flux footprint-averaged VI (VIECA) and EC flux footprint-weighted
VI (VIECW) were computed using an identical approach to assess variations in the correla-
tion between VIECA and GPP, as well as between VIECW and GPP. It is worth noting that
EC observations in the Saihanba area began on 1 August 2020, while the SIF and VIs data
were from 2020 to 2021. Therefore, this study of the correlation between SIF, VIs, and GPP
considered only data after 1 August 2020.

3. Results
3.1. Downscaled SIF Performance

The spatial distributions of the 2020 and 2021 growing seasons’ downscaled SIF aver-
ages are shown in Figure 4. Notably, both the downscaled TROPOSIF and eSIF exhibited
similar spatial patterns, but the values of TROPOSIF are slightly higher than those of eSIF.
This is because TROPOSIF amplifies instantaneous SIF under clear-sky conditions to daily
averages, while eSIF considers radiation amplification to daily averages under all weather
changes, thus representing clear-sky TROPOSIF downscaled higher than eSIF considering
all weather conditions. Additionally, the average downscaled eSIF values for the study
area in 2020 and 2021 are both 0.32 mw m−2 nm−1 sr−1 and are also spatially similar
(Figure 4a,b). The mean downscaled TROPOSIF value in 2021 (0.40 mw m−2 nm−1 sr−1)
was greater than that in 2020 (0.37 mw m−2 nm−1 sr−1), and in most regions spatially, the
values in 2021 were greater than those in 2020. This is because TROPOSIF represents SIF
under clear-sky conditions, while eSIF represents SIF under all weather conditions, and
the seasonal patterns of SIF under different weather conditions differ (Figure A3). The
PAR in the study area during the summer of 2021 was significantly lower than that of 2020
(Figure A4), indicating that there may have been more cloudy days in 2021. Therefore, the
production of SIF data should consider all weather conditions, as they may not only cause
biases in seasonal variations in SIF but also errors in interannual variations.

In the Saihanba region, a strong linear relationship was observed between the down-
scaled SIF and the SIF simulated by the SCOPE model at the two flux sites (Figure 5,
R2 ranging from 0.86 to 0.93). The relationship between the downscaled SIF and the sim-
ulated SIF at the SHB1 site was superior to that at the SHB2 site, and the relationship
between the downscaled TROPOSIF and the simulated SIF at both sites was better than
that with the eSIF. It is worth noting that the relationship between the downscaled eSIF
and the simulated SIF tended to be closer to a 1:1 linear relationship. Additionally, the
RMSE between the downscaled eSIF and the simulated SIF was 0.06 mw m−2 nm−1 sr−1

at both sites, which is highly satisfactory. In conclusion, the strong relationship between
the downscaled SIF and the modeled SIF indicates the high accuracy of the downscaled
SIF results.
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for 2021, respectively.
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Figure 5. Comparing downscaled SIF and SCOPE model-simulated SIF at two sites: Downscaled
eSIF and simulated SIF at SHB1 (a) and SHB2 (c), downscaled TROPOSIF and simulated SIF at SHB1
(b) and at SHB2 (d). The red dashed lines represent the 1:1 line, and the black solid lines represent the
regression line.
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3.2. Comparison of Downscaled SIF and GPP

Figure 6 illustrates the correlation between three observational scales of SIF (0.05◦

SIF, SIFECA, SIFECW) and the GPP values at the two flux sites. Across both sites, the
correlation order between the three observational scales of SIF and GPP was as follows:
SIFECW > SIFECA > 0.05◦ SIF. The correlation between 0.05◦ SIF and GPP was relatively
weak (R2 ranging from 0.47 to 0.65), while the correlation between SIFECW and SIFECA with
GPP was significantly enhanced (R2 ranging from 0.78 to 0.85). Under the downscaling con-
dition of SHB1, the correlation between TROPOSIF (SIFECW, SIFECA) and GPP surpassed
that of eSIF, whereas at the SHB2 site, the relationship between eSIF’s SIFECA and GPP was
superior to that with TROPOSIF, while SIFECW remained equivalent. These results indicate
a substantial error between coarse-resolution SIF and GPP, while the relationship between
the GPP matched to the flux footprints and the SIF was significantly improved. Different
observational scales revealed significant differences in the linear fitting performance be-
tween SIF and GPP, emphasizing the crucial role of maintaining footprint consistency for
accurately estimating their linear relationship.
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Figure 6. Scatter plots of SIF and GPP across varying observation scales: (a–c) show the scatter plots
of the 0.05◦ SIF, SIFECW, SIFECA, and GPP values at the SHB1 site; (d–f) show the scatterplots of the
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and the blue dots and lines represent TROPOSIF.

Figure 7 illustrates the seasonal variations in the SIF (0.05◦ SIF, SIFECA, SIFECW)
and GPP at the SHB1 and SHB2 sites. The seasonal variations in the 0.05◦ eSIF and
TROPOSIF show considerable deviations from the GPP variation curves at both sites. Post-
downscaling, eSIF (eSIFECA, eSIFECW) and TROPOSIF (TROPOSIFECA, TROPOSIFECW)
exhibited better correspondence with the GPP variation curves. However, during periods
of localized GPP decrease, the downscaled TROPOSIF failed to decrease accordingly, while
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eSIF followed the GPP variation, indicating a more consistent seasonal pattern in down-
scaled eSIF. For the flux footprint-weighted and -averaged SIF, the weighted SIF showed
significant improvements in localized details compared to the averaged SIF.
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scales across two stations.

3.3. Comparison between VIs and GPP

At both the SHB1 and SHB2 sites, Figure 8 illustrates the linear relationships between
the VIECA and GPP, as well as between the VIECW and GPP. There were significant differ-
ences in the VI-GPP relationships between the two sites. At the SHB1 site, all VIECA and
VIECW exhibited strong linear relationships with the GPP (with the R2 ranging between 0.75
and 0.85), and the relationship between the VIECW and GPP (with the R2 ranging from 0.76
to 0.85) showed improvement compared to the VIECA and GPP (with the R2 ranging from
0.75 to 0.82). Notably, the relationship between the EVIECW and GPP was the strongest,
with an R2 of 0.85. In contrast, at the SHB2 site, the linear relationships between the VIs
(both VIECW and VIECA) and the GPP were generally weaker, with each VI performing
worse than at the SHB1 site.
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Figure 8. The linear relationships of the VIECA and VIECW with the GPP at the SHB1 and SHB2 sites:
the blue points and lines represent the relationship between the VIECW and GPP, while the red points
and lines represent the relationship between the VIECA and GPP. (a–f) are the relationships of SHB1
sites CIr, MTCI, CSI, EVI, NIRv, and NDRE1 with GPP, respectively, and (g–l) are the relationships of
SHB1 sites CIr, MTCI, CSI, EVI, NIRv, and NDRE1 with GPP, respectively.

At the SHB1 site, the R2 values between the VIECW and GPP for all VIs were superior
to those between the VIECA and GPP. However, at the SHB2 site, only the R2 values between
the VIECW and GPP for NIRv and EVI were higher than those between the VIECA and GPP.
Furthermore, at the SHB1 site, the fitted lines of the VIECW and GPP closely approximate
those of the VIECA and GPP, whereas at the SHB2 site, there is a noticeable distance between
the fitted lines of the VIECW and GPP compared to those of the VIECA and GPP. These
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results indicate that at the SHB1 site, the values of the VIECW were relatively close to those
of the VIECA, while at the SHB2 site, there was a significant disparity between the values
of the VIECW and the VIECA. This discrepancy is attributed to the more homogeneous
underlying surface at the SHB1 site compared to the greater spatial heterogeneity at the
SHB2 site. Additionally, these findings suggest that at flux sites with complex underlying
landscapes, the relationship between the VIs and GPP is generally poor and unstable.

Figure 9 illustrates the seasonal variations in the VIECW and GPP. At the SHB1 site,
throughout the entire growing season, the trends of the VIECW and GPP exhibit a relative
correspondence. However, in localized areas, such as during the decline in the GPP in the
summer, the VIECW failed to decrease correspondingly with the GPP. At the SHB2 site, the
seasonal variations in the VIECW and GPP showed a significant difference. Particularly
in the spring and autumn, the relationship between the VIECW and GPP was evidently
mismatched. Furthermore, during the summer period of GPP decline, the VIECW at the
SHB2 site also did not exhibit a corresponding decrease. In conclusion, it is difficult for VIs
to track the seasonal variations in GPP.
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3.4. Relationships between SIF and GPP and between VIs and GPP across Different
Observation Ranges

As the buffer zone diameter of flux sites varied, the relationship between the mean
SIF (eSIF, TROPOSIF) and GPP, as well as the relationship between the mean VIs and GPP,
changed, as depicted in Figure 10. At both sites, the R2 values for eSIF and TROPOSIF
with respect to GPP decreased as the buffer zone diameter increased, stabilizing at around
2000 m. At the SHB2 site, there was a process of increase followed by a decrease in the
R2 values for the SIF and TROPOSIF with respect to the GPP, with the inflection point
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occurring approximately at 500 m. The monthly-scale flux footprint diagrams (Figure 3)
illustrate that at both forest sites, the footprint diameter within the area where the footprint
contributed 80% was approximately 500 m, while within the region where the contribution
reached 90%, the footprint diameter ranged from about 1000 m to 2000 m. This range
closely aligns with the optimal range for the relationship between SIF and GPP. Therefore,
to ensure the accuracy of the relationship between SIF and GPP, the observation range of
SIF should ideally coincide with the flux footprint range as much as possible.
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Figure 10. The variations in the linear relationships among eSIF, TROPOSIF, VIs, and GPP as the
buffer zone diameter of flux sites changed: (a,c) are the SHB1 site and (b,d) are the SHB2 site.

For VIs, at the SHB1 site, the pattern of R2 values changing with the buffer zone
diameter was similar to that for SIF and GPP: the R2 decreased as the buffer zone diameter
increased, stabilizing at around 2000 m. However, the distribution pattern at the SHB2 site
was markedly different. For buffer zone diameters less than 500 m, the R2 values for the VIs
and GPP rapidly increased, stabilizing at around 500 m. This indicates that the VIs near the
flux sites (<500 m) in SHB2 do not adequately represent the vegetation growth patterns in
the flux source area, and in areas with significant landscape heterogeneity, the correlation
between the VIs and GPP is poor. Furthermore, although the relationship between SIF and
GPP weakened near the flux sites (<500 m) in SHB2, there was still a strong R2 between SIF
and GPP, indicating that SIF is more robustly associated with GPP compared to VIs.

4. Discussion
4.1. Comparison of TROPOSIF and eSIF Downscaling Data

The main advantage of eSIF over other reconstructed SIFs lies in its clearer and more
straightforward relationship with the original SIF, making it more suitable for studying the
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“true” connection between SIF and GPP [27]. Using the GOSIF product as a representative
of reconstructed SIF, the comparison of eSIF and reconstructed SIF in tracking the seasonal
variations in GPP is shown in Figure A2. GOSIF exhibits smoother seasonal variation
without corresponding changes with the decline in GPP, while eSIF demonstrates a more
consistent variation pattern. This indicates that eSIF has a significant advantage in tracking
seasonal changes in GPP. TROPOSIF is the true SIF directly retrieved from satellites. It
is converted from instantaneous SIF on clear-sky days to daily-scale SIF by multiplying
with a day-length scaling factor; hence, the daily-scale SIF can only represent SIF on
clear-sky days [27,29]. In this study, the linear relationship between the downscaled
TROPOSIF and the SCOPE-simulated SIF was slightly better than that with the eSIF
(Figure 5), while the linear relationships of the eSIF and TROPOSIF with the GPP were
comparable (Figure 6). The primary advantage of SIF lies in its ability to accurately reflect
the vegetation’s photosynthetic capacity [2,50], making the development of SIF products
capable of accurately tracking seasonal variations in GPP essential. However, compared
to the eSIF, the downscaled TROPOSIF performed poorly in terms of consistency with
seasonal variations in GPP. This is because the original TROPOSIF only represents SIF
on clear days, thus affecting the downscaled results by not accounting for all weather
conditions. As a result, the downscaled TROPOSIF failed to consider all weather conditions.
The downscaled TROPOSIF values for the growing season of 2021 in the study area were
significantly higher than those of 2020 (Figure A3), while the eSIF values remained almost
equal between the two years (Figure 4), which could result in considerable errors in
interannual variation. During the summer of 2021, the PAR data were notably lower
compared to 2020 (Figure A4), suggesting the likelihood of more overcast days in 2021.
Consequently, this could result in a considerable increase in the TROPOSIF value for 2021
compared to the SIF value across all weather conditions. Additionally, the downscaled
model shows that the importance of PAR as an independent variable is low for TROPSOSIF
(only 3.7%), while it is 10.9% for eSIF (Figure A5), indicating a weaker relationship between
TROPSOSIF and PAR.

4.2. Impact of SIF-GPP Footprint Matching on Their Relationship

Matching the two downscaled SIF products to the EC flux footprints resulted in a
noteworthy improvement in the relationship between SIF and GPP. This aspect, which
has received limited attention in previous studies, has hindered comprehensive research
on the SIF-GPP relationship. The linear correlation between the SIFECW and GPP shows
improvement compared to the SIFECA, indicating a high correlation between the spatial pat-
terns of SIF within the EC flux footprint and the contribution distribution of GPP. However,
this pattern does not hold true for the VIs (Figure 8); even though the VIs showed similar
patterns in SHB1, they disappeared in SHB2. The coupling of the SIF distribution in the
flux footprint and the EC flux footprint supports the idea that SIF is a good proxy for GPP
at a seasonal scale. The superior ability of SIF to spatially capture GPP may be attributed
to its richer signal compared to the VIs. SIF is an inherent byproduct of photosynthesis,
possessing both the physiological and structural characteristics of vegetation [21,22]. SIF
can be decomposed into (NIRvP × ΦF), where ΦF represents the fluorescence emission
efficiency of vegetation and physiological information, while NIRvP (NIRv × PAR) rep-
resents structural information [22]. Compared to NIRv, SIF incorporates two additional
pieces of information: PAR and ΦF. PAR reflects the source of photosynthetic energy, and
its significance in relation to the SIF-GPP relationship is explained in Section 4.1. The
physiological component ΦF of SIF is its unique characteristic, making it the “essence” of
SIF, as it is more directly associated with the photosynthetic process [22,27]. Due to the
poor PAR information in downscaled TROPOSIF and VIs, the main differences between
TROPOSIF and VIs are primarily reflected in ΦF. However, at the SHB2 site, the linear
relationship and seasonal patterns between downscaled TROPOSIF and GPP are notably
superior to those of vegetation indices (Figures 6–9), indicating the crucial importance of
the spatial–temporal distribution of ΦF in modulating the relationship between SIF and
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GPP. This can also be observed in Figure 10d, where the spatial coverage of VIs at the SHB2
site does not adjust its relationship with GPP, whereas the spatial coverage of TROPOSIF
is closely related to GPP, further highlighting the essential role of ΦF in regulating SIF.
Furthermore, recent studies have verified the richer spatial information of SIF compared to
that of the VIs. For example, Tagliabue et al. [51] estimated plant functional diversity using
the NDVI, hyperspectral coefficient of variation (CV), and SIF, finding that SIF was more
accurate than the NDVI and hyperspectral CV. Bandopadhyay et al. [52] discovered that
SIF was closely related to the functional diversity of peatland vegetation and was more
successful than VIs in capturing different vegetation signals from extremely heterogeneous
peatland biomes.

4.3. Relationship between SIF and GPP at Different Scales

The spatial extent of SIF observations significantly influences its relationship with
GPP at flux tower sites, such as SHB1 and SHB2. As the distance from the tower increases,
the R² between the SIF and the GPP decreases notably. While it would be ideal to match
the observed range of the SIF to the flux footprint of the GPP, the practical challenges
of mapping the footprint of the GPP flux make this task complex and often infeasible.
Figure 10 illustrates that restricting the observation range to specific areas can partially
improve the relationship between SIF and GPP. At the SHB1 and SHB2 sites, a diameter
of approximately 500 m still demonstrated a strong correlation between the SIF and GPP,
corresponding precisely to the distance where the cumulative contribution of flux footprints
from both sites reached 80%. Chu et al. [17] delineated the footprint range of 214 AmeriFlux
sites, primarily defined as the maximum distance from the tower to the 80% contour of
monthly footprint climatologies, ranging mainly between 100 m and 450 m. Hence, to
mitigate errors arising from observational scales, it is crucial to refine the observational
range using high-resolution SIF data. Furthermore, spatial heterogeneity also constrains
the relationship between SIF and GPP. At the SHB1 site, as the distance from the tower
increased, the linear relationship between the SIF and GPP consistently declined. How-
ever, at the SHB2 site, within 250 m of the observation tower, the relationship between
the SIF and GPP actually increased with distance (Figure 10b). This is primarily due to
the high spatial heterogeneity of the landscape at the SHB2 site (Figure 1). Research by
Zhang et al. [53] found that spatial heterogeneity had a lesser impact on SIF measurements
with larger measurement footprints, meaning that observations with larger footprints are
more representative than those with smaller footprints. Therefore, in this study, when the
observational footprint was appropriately expanded, the insufficient representativeness of
SIF due to spatial heterogeneity might have been mitigated. In conclusion, emphasizing the
representativeness of in situ SIF measurements is essential for elucidating the mechanisms
between SIF and GPP and providing reliable observational data for satellite-based SIF
validation [53].

5. Conclusions

In this study, coarse-resolution SIF data for the Saihanba region were downscaled
to a higher resolution (0.0005◦), and the effects of downscaling TROPOSIF data and eSIF
data were compared. The results demonstrate that both the downscaled TROPOSIF and
eSIF data exhibited a strong linear relationship with SIF simulated by the SCOPE model.
Notably, the downscaled eSIF data showed a more consistent seasonal variation pattern
with the GPP, indicating its greater suitability for studying the relationship between SIF
and GPP. Furthermore, the comparison of the linear relationships of coarse-resolution
SIF, SIFECA, and SIFECW with GPP revealed that the relationship between SIFECW and
GPP was the strongest. This indicates that matching the SIF with the flux footprint can
improve the relationship between the SIF and the GPP. Additionally, an examination of the
relationship between the SIF and GPP at varying distances from the flux tower revealed
that this relationship deteriorated as the distance increased, reaching its weakest point
beyond 1 km from the flux tower. Moreover, at the SHB2 site, which is characterized by
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significant landscape heterogeneity, the relationship between the VIs and GPP was found
to be poor, with no clear pattern in the relationship between the observation scale and
GPP. Overall, these findings emphasize the importance of using high-resolution SIF data
and ensuring consistency between the flux footprint and SIF observations for accurately
assessing the relationship between the SIF and the GPP.
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Appendix A. SCOPE Model Parameters

We used the global MODIS leaf chlorophyll content (LCC) product [54] as the Cab
parameter. It provided LCC data from 2000 to 2020 at 8-day intervals with a spatial
resolution of 500 m. We resampled the data to 0.001◦ using bilinear interpolation and
then calculated the average within a 500 m buffer around the site. To match the input
data of the SCOPE model in time, the LCC data were linearly interpolated to daily values,
with the same data used for each half hour of the day. As the data are available only
until 2020, we estimated the Cab for 2021 using the chlorophyll sensitive index (CSI) [39],
which is considered to have a good linear relationship with chlorophyll and performed
well within a 1 km range of the LCC at two sites in the study area (Figure A1). LAI data
were obtained from 250 m of GLASS LAI data [43], with the average of a 5 × 5 pixel grid
centered around the site used as the site’s LAI value. LAI interpolation followed the same
procedure as the LCC. The various parameters required by the SCOPE 2.1 model in this
study are summarized in Table A1.
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Table A1. Input parameters used in the SCOPE 2.1 model.

Variables Definition Unit Range/Value

Leaf traits

Cab chlorophyll a and b content µg cm−2 0–100
Cca carotenoid content µg cm−2 Cab/4

Cdm leaf mass per unit area g cm−2 0.012
Cw equivalent water thickness cm 0.009
Cs senescence material (brown pigments) fraction 0
N Leaf structure parameter – 1.4

Canopy structure

LAI leaf area index m2 m−2 0–10

hc vegetation height m 22 (SHB1),
5 (SHB2)

LIDFa leaf inclination – −0.35
LIDFb variation in leaf inclination – −0.15

leafwidth leaf width m 0.001

Leaf biochemical

Fqe fluorescence quantum yield efficiency – 0.01
Vcmax maximum carboxylation capacity 40

m Ball–Berry stomatal
conductance parameter 10

Meteorology
Rin broadband incoming

shortwave radiation W m−2 –

Ta air temperature ◦C –
RH relative humidity –

Appendix B. Supplementary Figures
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