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A B S T R A C T

The slow temperature acclimation of photosynthesis has been confirmed through early field experiments and
studies. However, this effect is difficult to characterize and quantify with some simple and easily accessible
indicators. As a result, the impact of slow temperature acclimation of photosynthesis on gross primary pro-
duction (GPP) estimation has often been overlooked or not integrated into most GPP models. In this study, we
used a theorical variable-state of acclimation (S), to characterize the slow temperature acclimation. This variable
represents the temperature to which the photosynthetic machinery adapts and is defined as a function of air
temperature (Ta) and time constant (τ) required for vegetation to respond to temperature, to discuss its impact on
GPP simulation. We used FLUXNET2015 dataset to calculate S and established a GPP model using S and
shortwave radiation (SW) based on random forest algorithm (S model). As a comparison, we directly used Ta and
SW to build the other GPP model (Ta model). Moreover, the divergent temperature acclimation capacities of
plants are crucial to predict and make preparations for likely temperature stress in the future. Therefore, the
spatial distribution of τ values was also mapped using satellite sun induced chlorophyll fluorescence (SIF) and Ta
datasets. The results indicated that: (1) taking into account the slow temperature acclimation of photosynthesis
led to a more precise estimation of GPP which mainly reflected in reduction of excessive fluctuations in GPP
predictions; (2) considering the slow temperature acclimation of photosynthesis can reduce the sensitivity of
vegetation to temperature; (3) the improvement of S model in GPP estimations was different in different
vegetation growth stages which was more significant in the springtime recovery stage; (4) τ values had signif-
icant spatial distribution which was strongly affected by the determinants of vegetation growth and seasonal
variations in temperature.

1. Introduction

As a crucial element of terrestrial ecosystems, vegetation assimilates
carbon dioxide into carbohydrate and releases oxygen through photo-
synthesis which drives the global carbon cycle (Anav et al., 2015; Battin
et al. 2009; Janssens et al. 2003; Porcar-Castell et al. 2014; Zhang et al.
2022). A key indicator of vegetation photosynthesis, gross primary
production (GPP), refers to the total carbon absorbed by vegetation
through photosynthesis and holds significant importance in evaluating
vegetation functions and quantifying the carbon cycle at various scales
(Ma et al. 2015; Zhang et al. 2021). Therefore, quantitative information
about GPP is crucial for predictions of photosynthesis and regional or

global carbon flux (Beer et al. 2010; Chen et al. 2021a; Chen et al.
2021b; Luo and Keenan 2020; Piao et al. 2020).

Developed GPP models are the principal tools to quantify GPP at
different spatio-temporal scales (Badgley et al. 2019; Chen et al. 1999;
Cheng et al. 2014; Jiang and Ryu 2016; Jung et al. 2011; Potter et al.
1993; Running et al. 2004; Zhang et al. 2023b). A lot of models inte-
grated the dependence of GPP on various environmental drivers in
which temperature is one of the key drivers in the seasonality of GPP
(Dusenge et al. 2019; Hikosaka et al. 2006; Kolari et al. 2007; Kumar-
athunge et al. 2019; Mäkelä et al. 2004). For example, the light use ef-
ficiency (LUE) models calculated the temperature stress factor based on
air temperature, vegetation optimal temperature, minimum
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temperature, etc., to characterize the impact of temperature on photo-
synthesis (Zhang et al. 2023b). In such models, the temperature de-
pendences of vegetation have frequently been directly described by
ambient temperature in the form of mathematical models, and vegeta-
tion would change its rates of photosynthetic carbon assimilation
immediately with temperature changes under these temperature based
mathematical models (Lin et al. 2012; Zhang et al. 2023a; Zhang et al.
2023b). However, plants have “memories” for environment, lasting
from several minutes to days or even longer, which means that the
physiologically response of vegetation to changes in growth temperature
is time dependent (Crous et al. 2022; Karban 2008; Trewavas 2009).
Indeed, early field experiments and studies have shown that the
response of photosynthesis to temperature is time delayed rather than
instantaneous response (Gea-Izquierdo et al. 2010; Mäkelä et al. 2004;
MÄKelÄ et al. 2008; Wu et al. 2015; Zuther et al. 2015). This strategy
was called the slow temperature acclimation of photosynthesis, which
indicates that the state of vegetation does not immediately synchronize
with the ambient temperature, but takes a certain amount of time to
adapt to temperature changes slowly (Mäkelä et al. 2004; MÄKelÄ et al.
2008). Therefore, ignoring the time delay in vegetation temperature
acclimation may amplify the sensitivity of vegetation to temperature
and lead to the bias in GPP estimation (Aspinwall et al. 2016; Lombar-
dozzi et al. 2015). As such, taking the slow temperature acclimation into
account in GPP estimation may have a meaningful impact on more ac-
curate quantifications of regional or global GPP (Crous et al. 2022;
Dusenge et al. 2020; Lombardozzi et al. 2015; Smith and Dukes 2017).

Although early studies have investigated the slow photosynthetic
temperature acclimation and provided the evidence of its existence
(Fang et al. 2023; Gea-Izquierdo et al. 2010; MÄKelÄ et al. 2008; Smith
and Dukes 2013; Smith et al. 2016; Wu et al. 2015), as of yet, few studies
incorporated this temperature response strategy into GPP models and
explored the differences in GPP estimates with and without coupling
slow temperature acclimation especially for some empirical,
semi-empirical and data driven models (Atkin et al. 2008; Guan et al.
2021; He et al. 2013; Kumarathunge et al. 2019; Wang et al. 2015;
Zhang et al. 2023b; Zhang et al. 2011; Zheng et al. 2020). One of the
difficulties in incorporating slow temperature acclimation of photo-
synthesis into GPP models is that it is difficult to accurately characterize
and quantify this temperature acclimation strategy through some simple
and easily accessible indicators. Mäkelä et al. (2004) developed a the-
orical variable, state of acclimation (S), to describe the slow temperature
acclimation of photosynthesis, which can be considered the temperature
to which the photosynthetic machinery adapts and expressed as the
following equation (Mäkelä et al. 2004):

dS
dt

=
Ta − S

τ (1)

where Ta is air temperature, S is the state of acclimation, τ is the time
constant which represents the time required for vegetation to adapt to
air temperature (Mäkelä et al. 2004). S describes the slow temperature
acclimation of vegetation in a simple method and also can be easily
obtained (Gea-Izquierdo et al. 2010; Kolari et al. 2009; MÄKelÄ et al.
2008).

It is worth noting that Eq. (1) could not only characterize the slow
temperature acclimation of photosynthesis, but can be used to evaluate
the capacity of vegetation in temperature acclimation to some extent,
which is essential in predicting and making preparations for likely
temperature stress in the future. For example, the lower τ values in Eq.
(1) reflect the faster temperature response of vegetation and stronger
temperature acclimation ability, in contrast, the higher τ values indicate
slower temperature response of vegetation and less temperature accli-
mation capacity. The capacities of vegetation to adjust to temperature
are always related to the environments which the foliage is exposed.
Therefore, vegetation from different environment holds divergent ca-
pacities to adjust to temperature which would lead to the spatial

differences in the τ values (Cunningham and Read 2003a; Gea-Izquierdo
et al. 2010; Kumarathunge et al. 2019; Valladares et al. 2014; Zhang
et al. 2023a). However, the uneven and limited distribution of flux sites
makes it impossible to get the continuous spatial patterns of τ values at
regional or global scales with a flux network, alone (Badgley et al. 2019;
Baldocchi 2014; Baldocchi 2003). By comparison, the satellite obser-
vations offer an effective mean to continuously assess τ values at larger
scales (Frankenberg et al. 2011; Xiao et al. 2019; Zhou et al. 2001). Over
the last decades, sun-induced chlorophyll fluorescence (SIF) emitted by
terrestrial vegetation has been captured through optical remote sensing
(Frankenberg and Berry 2018; Frankenberg et al. 2011; Guanter et al.
2007; Guanter et al. 2012; Mohammed et al. 2019; Zhang et al. 2016).
The physiological information included in SIF has great potential and
advantages in assessment of vegetation functions (Frankenberg and
Berry 2018; Köhler et al. 2018; Krämer et al. 2021; Mohammed et al.
2019; Porcar-Castell et al. 2021; Zhang et al. 2021), which can be used
as a fantastic index to analyze the spatial patterns of τ values.

Given the importance of the slow temperature acclimation of
photosynthesis in GPP estimation and climate response predictions, this
study first simulated GPP with and without considering the slow tem-
perature acclimation using data from flux sites. We then mapped the
global spatial distribution of τ values based on satellite SIF datasets. We
aimed to investigate the impact of slow temperature acclimation of
photosynthesis on GPP prediction and analyze the global spatial patterns
of τ values. Our results will meaningfully influence the simulations of
GPP, and will be also beneficial for predicting the responses and be-
haviors of vegetation under global warming.

2. Methodology

2.1. Data

2.1.1. FLUXNET2015
The FLUXNET2015 dataset consists of net ecosystem exchange (NEE)

of CO2 and other meteorological variables from more than 200 sites
globally (Pastorello et al. 2020) (https://fluxnet.fluxdata.org/data/).
Through flux partitioning, NEE is partitioned into GPP and ecosystem
respiration (Reco) (Pastorello et al. 2020). In this study, we collected a
total of 212 flux sites from FLUXNET2015 and selected variables
including daily GPP based on nighttime flux partitioning method, air
temperature and incident shortwave radiance (SW) to investigate the
influence of slow temperature acclimation of photosynthesis on GPP
estimations. To ensure the quality of the flux data, we checked the
seasonal variations of each variable year by year for each flux site and
see if there are − 9999 values (missing data values are indicated with
− 9999). Once we found a − 9999, we eliminated the data for the whole
year where the − 9999is located. Then we used the data points without
− 9999 to calculate S. Finally, we chose high-quality data as determined
by the quality flags (quality flag > 0.8) for each variable which is a
fraction between 0 and 1 in the daily datasets, indicating percentage of
measured and good quality gap filled data, and eliminated the negative
GPP values to build and validate the models. After checking the quality,
a total of 402,770 flux data points were eventually obtained.

2.1.2. Satellite SIF dataset
We employed satellite SIF as the proxy for photosynthesis to explore

the global spatial distribution of τ values. So far, numerous satellite SIF
datasets have been generated, which provide an opportunity for large-
scale monitoring of terrestrial photosynthesis (Frankenberg et al.
2011; Frankenberg et al. 2014; Porcar-Castell et al. 2014; Sun et al.
2018; Zhang et al. 2016; Zhang et al. 2019). However, the coarse spatial
resolution, discontinuous spatial sampling and short-term record of the
existing satellite SIF datasets render them inadequate for continuous and
long-term analyses (Guo et al. 2020; Hu et al. 2021; Köehler et al. 2018;
Yu et al. 2019; Zarco-Tejada et al. 2003). Given that, Zhang et al. (2018)
regenerated a global continuous SIF (CSIF) dataset using
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satellite-retrieved SIF from the Orbiting Carbon Observatory-2 (OCO-2)
and moderate-resolution imaging spectroradiometer (MODIS) surface
reflectance based on neural networks, which has higher spatio-temporal
resolution (0.05◦, 4-day). Therefore, in this study, we selected the all-sky
daily average CSIF dataset with 0.05◦ and 4-day spatio-temporal reso-
lution from 2001 to 2018 to map the global spatial patterns of τ values.
We upscaled the spatial resolution from 0.05◦ to 0.25◦ based on pixel
aggregate method to make its spatial resolution consistent with the
ERA-5 dataset.

2.1.3. ERA-5 dataset
In this study, the spatial patterns of τ values were mapped by

combining the CSIF dataset with ERA-5, the fifth-generation global land
surface reanalysis dataset of the European centre for Medium Range
Weather Forecasts (ECMWF), available at a resolution of 0.25◦ (http://
data.ecmwf.int/data). The hourly ERA-5 meteorological variables were
downloaded including 2 m air temperature (Ta, ∘C), 2 m dewpoint
temperature (Td, ∘C), and downward shortwave radiation (SW, W/m2)
from 2001 to 2018. Then we calculated the daily average 2 m air tem-
perature, average 2 m dewpoint temperature, and total downward
shortwave radiation (SW, W/m2). Lastly, we used Ta and Td to calculate
vapor pressure deficit (VPD, h Pa).

SVP = 6.112 × e
17.67Ta
Ta+243.5 (2)

RH = e
17.625Td
Td+243.04

− 17.625Ta
Ta+243.04 (3)

VPD = SVP× (1 − RH) (4)

where SVP is the saturated vapor pressure (h Pa) and RH is the relative
humidity (Zheng et al. 2020).

2.2. Methods

2.2.1. The calculation of state of acclimation (S)
The state of acclimation, S, developed by Mäkelä et al. (2004) was

used to characterize the slow temperature acclimation of photosynthesis
which can be expressed in temperature units. Based on Eq. (1), dS can be
defined as the function of Ta and time constant τ (days). S time series can
be calculated as the following expression based on Eq. (1) (Mäkelä et al.
2004; MÄKelÄ et al. 2008):

Sn = Sn− 1 + dS = Sn− 1 +
Tn − Sn− 1

τ , S0 = T0 (5)

where Sn ( ◦C) is the mean daily S on nth day, τ (days) is the time con-
stant, Tn is the mean daily air temperature on nth day, S0 is the initial
value of S. Here, we set S0 of each site equal to Ta at the beginning of the
year.

In this study, we used S ( ◦C) and Ta to simulate GPP, respectively, to
compare the differences of GPP estimates with and without coupling the
slow temperature acclimation. Based on Eqs. (1) and (5), calculating S
involves two parameters: S0 and time constant, τ. For the S0, we set S0
equal to Ta at the beginning of the year in each site. Similarly, we also set
S0 as the average of Ta during the first 10 and 20 days at the beginning of
the year, respectively, to test the influence of different initial values of S0
on the GPP estimation. For the τ values, we first calculated several
groups of S time series for different τ values using the daily Ta time series
data based on Eq. (5) for each site. Here, we set τ to vary from 1 to 80.
Then, for each site, we used each group of S data calculated for different
values of τ along with corresponding SW data to predict GPP based on
random forest (RF) algorithm, respectively, and evaluated the accuracy
of S based GPP estimation for each group of S. Finally, the τ value cor-
responding to the highest accuracy of the GPP simulation was consid-
ered as the optimal time it takes for vegetation to acclimate to
temperature. Given the presence of some noise in the changes of R2

values with increasing values, we initially employed the LOESS (Locally
Weighted Scatterplot Smoothing) method to fit the R2 curve, which is a
non-parametric regression technique utilized for data smoothing. Sub-
sequently, we identified the τ values corresponding to the maximal R2
values through the fitted curves obtained from the LOESS smoothing
process. And S calculated using the determined optimal τ value and S0
was used as an indicator of slow temperature acclimation of photosyn-
thesis to explore its influence on GPP estimations.

Here, we selected several sites to show the accuracy (R2 values) of
GPP estimations based on S calculated for different τ values (from 1 to
80), to display the determination of τ value. Like Fig. 1 displayed, the R2

values of GPP estimation increased first until meet the peak value then
decreased with increasing τ values, and the τ valuemaximizing R2 values
was chosen as the optimal τ value to calculate the S time series (red
circle point in Fig. 1).

2.2.2. The establishment and evaluation of GPP models
To evaluate the influence of slow temperature acclimation of

photosynthesis on GPP estimation, we separately built and validated
two different kinds of GPP models: Ta model and S model, based on RF
algorithm. In Ta model, we didn’t consider the impact of slow temper-
ature acclimation of photosynthesis on GPP estimation. GPPwas directly
estimated using Ta and SW from the flux data using RF algorithm based
on Eq. (6):

GPP = f(Ta, SW) (6)

In S model, the slow temperature acclimation of photosynthesis was
considered. We used the S calculated in Section 2.2.1 and SW to estimate
GPP based on RF algorithm, like the following equation:

GPP = f(S, SW) (7)

We established and validated Ta and S models for each site, respec-
tively. All data points in each site were randomly split into 70% for
training and 30% for validation. The coefficient of determination (R2),
root-mean-square error (RMSE) and slope value of regression line
(slope) were utilized to assess the accuracy of GPP estimation in com-
parison to site-observed GPP obtained through the eddy covariance
technique (GPP_EC). Meanwhile, in order to compare the contribution
differences between Ta and S in GPP estimates, we calculated the
importance of Ta and S to GPP estimation based on RF for each site. We
also applied Shapley Additive exPlanations (SHAP) value to explain how
RF models (S and Ta models) we built to predict GPP time series data,
which can reflect the impact of each explanatory variable on GPP pre-
dictions, so as to explore the difference between the impact of Ta and S
on GPP prediction.

In addition, to investigate the impact of slow temperature acclima-
tion on GPP estimation under different vegetation growth stages, we
split the vegetation growth periods into three stages including spring-
time recovery of photosynthesis, autumn decline of photosynthesis and
rapid growing stage based on in-situ GPP observations (Piao et al. 2019).
Since there is no photosynthesis in the dormant season for most plants,
we didn’t analyze the impact of slow temperature acclimation on GPP
estimation during the dormant season. For each site, we first smoothed
the original in-situ GPP_EC time series data to reduce the interference of
noisy data based on Savitzky–Golay (SG) filter (Guo et al. 2017). Then
we used a double logistic functions of time (day of year, DOY) to fit the
smoothed GPP_EC data and detected these three key transition dates
through finding the local minimal or maximal rate of change in the
curvature of the fitted logistic models (Zhang et al. 2003). There are
three local maximum and minimum points, respectively, in the curva-
ture of the fitted logistic model. The key transition dates of the spring-
time recovery of photosynthesis correspond to the first 2 local maximal
points of the curvature, the key transition dates of the autumn decline of
photosynthesis corresponds to the last 2 local minimal points of the
curvature and the growing stage corresponds to the second local
maximal and second local minimal points of the curvature of the fitted
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logistic models. Finally, the detected three key transition dates were
used to split the validation data.

2.2.3. The global spatial distribution of τ
The determination of global τ values was similar to Section 2.2.1. The

difference is that the τ values corresponding to the highest correlation
between CSIF and S calculated for different τ values was considered as
the optimal time it takes for vegetation to acclimate to temperature for
each pixel. We used ERA-5 Ta data from 2001 to 2018 to calculate the
global long-term S time series data for several τ values based on Eq. (5).
S0 was set as the initial Ta value in 2001 for each pixel and τ was set to
vary from 1 to 20. Since the temporal resolution of CSIF is 4-day, the
values of τ we set actually corresponded from 4 to 80 days. For each

pixel, we separately calculated the correlation between each group of S
calculated for different τ values and CSIF from 2001 to 2018, and chose
the corresponding τ value with the highest correlation between S and
CSIF as the optimal temperature response time. In order to analyze the
spatial patterns of τ values, we also calculated the importance of Ta, SW
and VPD to CSIF from 2001 to 2018 based on RF. Moreover, we calcu-
lated the global importance of S and Ta to CSIF and compared the spatial
difference between their importance.

Fig. 1. The R2 values of GPP estimation based on several groups of S calculated for different τ values (from 1 to 80). The red solid line is the fitted line, the red circle
and dashed gray line are the maximal R2 and corresponding τ value, respectively, and the gray circle is the R2 values of GPP estimation based on several groups of S
calculated for different τ values. (a) is site US-Ha1, (b) is site US-Oho, (c) is site CA-Oas, (d) is site CA-TP4, (e) is site IT-Lav, (f) is site IT-Mbo.
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3. Results

3.1. The influence of slow temperature acclimation on GPP estimation

The influence of various S0 on the GPP estimation was depicted in
Figs. S1 and S2. Importantly, regardless of the specific value chosen for
S0, small differences were observed among S based GPP estimations.
Consequently, our focus in the subsequent sections is primarily on the
results obtained when S0 was set to T0. Fig. 2 showed the performance of
GPP estimations based on Ta (Fig. 2a) and S models (Fig. 2b), respec-
tively. For Ta model, the R2, RMSE and slope values were 0.62, 2.59 g C/
m2/d and 0.69, respectively. For S model, the R2, RMSE and slope values
were 0.74, 2.17 g C/m2/d and 0.78, respectively. Compared to Ta model,
the R2 and slope values of S model were increased 19.35% and 13.04%,
respectively, and the RMSE value was reduced 16.21%. In terms of R2,
RMSE and slope values, S model performed better than Ta model which
indicated that considering the slow temperature acclimation of photo-
synthesis could improve the accuracy of GPP estimation. The perfor-
mance of Ta and S models in different vegetation types was summarized
in Fig. 3. For each vegetation type, the R2 and slope values of S model
were both higher than those of Ta model, the RMSE value of S model was
lower than that of Ta model. Among different vegetation types, the
improvement of GPP estimation based on S model in EBF was not as
significant as in other vegetation types (R2S model=0.67, R2Ta model=0.64;
RMSE S model=2.4 g C/m2/d, RMSE Ta model=2.5 g C/m2/d; slope S mod-
el=0.71, slope Ta model=0.69).

Fig. 4 exhibited the comparison of GPP estimates based on S model
and Ta model in springtime recovery stage of photosynthesis (Fig. 4a,
4b), decline of autumn (Fig. 4c, 4d) and rapid growing season (Fig. 4e,
4f), respectively. Compared to Ta model, the R2 value of S model in the
spring recovery of photosynthesis improved from 0.48 to 0.63, the RMSE
value of S model reduced from 2.53 to 2.07 g C/m2/d, and the slope
value of S model increased from 0.69 to 0.78 (Fig. 4a-b). The validation
of S model (Fig. 4c) and Ta model (Fig. 4d) in autumn decline stage of
photosynthesis showed that the R2, RMSE and slope values of Ta model
were 0.63, 2.07 g C/m2/d and 0.78, respectively. The R2, RMSE and
slope values of S model were 0.70, 1.86 g C/m2/d and 0.82, respectively.
Although S model performed better than Ta model in both springtime
recovery and autumn decline stage of photosynthesis, the improvement
of GPP estimation based on S model in autumn decline stage was lower
than that in springtime recovery stage. In springtime recovery stage, the
R2 value of S model improved 31.25%, the RMSE value of S model
reduced 18.18% and slope value of S model increased 13.04%. While in
autumn decline stage, R2 value of S model improved 11.11%, the RMSE

value of S model reduced 10.14% and the slope value of S model
increased 5.13%. Additionally, both Ta and S models in autumn decline
stage performed better than in springtime recovery stage, possibly due
to the unaccounted complexity of photosynthesis recovery in spring
within our model. As shown in Fig. 4e, 4f, during the rapid growing
season, the accuracy of S based GPP estimation (Fig. 4e) was higher than
that of Ta based GPP estimation (Fig. 4f). The R2 value of S model
improved 15.09%, the RMSE value of S model reduced 13.10% and the
slope value of S model increased 12.90%.

In each vegetation growth stage, the scatter plot of GPP estimations
based on Ta model was more discrete than that of GPP estimations based
on S model. The growth stage with significant differences in scatter plot
dispersion between S and Ta models was in the springtime recovery
stage of photosynthesis.

3.2. Difference between the impact of Ta and state of acclimation (S) on
GPP estimation

In order to analyze what exact influence of slow temperature accli-
mation of photosynthesis on GPP estimation, we chose several typical
flux sites and plotted the seasonal variations of GPP_EC and GPP esti-
mations based on Ta (GPP_Ta) and S (GPP_S) models, respectively
(Fig. 5). In general, Ta and S models characterized the overall seasonal
patterns of GPP_EC similarly in each selected site which increased first
until reach the peak value then declined. Fig. 6 was the scatter plot of the
importance of Ta and S to GPP estimations for each site. There was no
much difference between the importance of Ta and S which indicated
that Ta and S were both important in GPP estimations, and the
improvement of the S based GPP estimates was not due to the significant
improvement in the importance of state of acclimation (S). GPP_Ta had
many fluctuations which deviated excessively from GPP_ EC especially
during the springtime recovery stage and the dormant season. There
were also fluctuations in GPP_Ta during the autumn decline stage and
the rapid growing season, but the performance of GPP_Ta in these two
growth stages were better than that in springtime recovery stage and
dormant seasons (Fig. 5a). GPP_S effectively avoided the excessive
fluctuations which was more consistent with GPP_EC (Fig. 5b). Actually,
the fluctuation trend of GPP_Ta and GPP_S were both basically consistent
with those of GPP_EC induced by temperature changes. But the fluctu-
ations captured by GPP_Ta seemed a little out of control which was the
main difference between GPP_Ta and GPP_S and also the reason for the
improvement of GPP estimations based on S model. The slow tempera-
ture acclimation of photosynthesis leads to relatively slow and gentle
changes in the state of vegetation with ambient temperature changes.

Fig. 2. Comparison of GPP estimates based on (a) Ta model and (b) S model against GPP_EC. GPP_Estimated_Ta is the GPP estimation based on Ta model,
GPP_Estimated_S is the GPP estimation based on S model, GPP_EC is site-observed GPP obtained through the eddy covariance technique.
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Considering this effect in GPP predictions was more in line with the
temperature acclimation strategy of vegetation. On the contrary,
without considering the slow temperature acclimation of vegetation, Ta
model may amplify the impact of temperature on GPP which may lead to
the overreactions of GPP to temperature, and further lead to the un-
controlled fluctuations in GPP_Ta (Fig. 5a).

Fig. 7 was the SHAP values of Ta and S in GPP predictions at the
corresponding selected sites in Fig. 5 which could reveal the impact of Ta
and S on GPP outputs in Ta and S models. For both Ta and S models, the
SHAP values of Ta and S had similar and clear seasonality with bell-
shaped curves which indicated that the ability of S and Ta to charac-
terize the seasonality of GPP was similar. In the dormant season, the
SHAP values of Ta and S were less than zero, implying that Ta and S were
both negatively impact the GPP estimation. Except for the dormant
season, the SHAP values of Ta and S were larger than 0 and increased
first then decreased, meaning that Ta and S had active impact on GPP
estimation and their influence increased first then decreased. The dif-
ference between SHAP values of Ta and S was that the fluctuations of Ta
SHAP values were more significant and larger than that of S SHAP values
especially during the seasonal transitions which was consistent with the
difference between S based and Ta based GPP estimations (Fig. 5). To a
certain extent, in GPP predictions, considering the slow temperature
acclimation of photosynthesis could reduce the sensitivity of GPP to
temperature, thereby reducing the errors caused by the excessive fluc-
tuations of GPP estimations induced by changes in temperature when
directly using Ta to predict GPP.

In a word, S and Ta both were important in GPP estimation and could
capture the overall seasonal patterns of GPP_EC well. However,
considering the slow temperature acclimation of photosynthesis could
effectively avoid the excessive fluctuations in GPP estimation especially
during the seasonal transitions.

3.3. The global spatial distribution of τ values

Fig. 8 showed the global spatial distribution of τ values along with
the latitude-based statistical results of τ. The τ values had significant
spatial pattern. In high latitude regions (above 30◦N) of the Northern
Hemisphere, Southeast China, Southern South America, Central and
Eastern South America and Central Africa, τ values were lower. In
Mexico, India, Southeast Asia, Southern Africa, Australia, and central
South America, the τ values were higher. In the high latitude regions
(above 30◦N) of the Northern Hemisphere, τ values showed a tiny
decreasing trend as latitude decreased. In the low latitude regions of the
North Hemisphere (0~30◦N), τ values increased with decreasing lati-
tude. In the Southern Hemisphere, τ values increased first then
decreased with increasing latitude.

Fig. 9 was the spatial distribution of the importance of SW, VPD and
Ta to CSIF. In the high latitude of North Hemisphere (above 30◦N), Ta
and SW had the highest importance which indicated air temperature and
radiation were the main determinants for vegetation growth. The re-
gions above 30◦N were consistent with regions with lower τ values. In
most regions of Mexico, North and Central South America, India,
Southeast Asia, most regions of Africa excluding central regions near the
equator, and Northern and Eastern Australia, the importance of VPDwas
much higher than that of Ta and SW which was consistent with regions
with higher τ values (except for the Northern and Central Africa).

We calculated the global state of acclimation (S) from 2001 to 2018
based on ERA-5 Ta data and the τ values obtained in Fig. 8, and calcu-
lated the importance of S and Ta to CSIF based on RF, respectively.
Fig. 10 showed the importance of S (a) and Ta (b) to CSIF, respectively.
The spatial distribution of the importance of S and Ta were similar which
both exhibited higher importance in the high latitude regions of the
Northern Hemisphere (above 60◦N), China, Central and Eastern Amer-
ica; in Eastern South America, Central Africa and Central Australia, the
importance of S and Ta were both lower; in northern and southern re-
gions of South America, Southern Africa, Southeast Asia, India, and most

Fig. 3. The performance of GPP estimation based on Ta and S models in each vegetation type. The vegetation types include cropland (CRO), closed
shrubland (CSH), deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen needleleaf forest (ENF), evergreen broadleaf forest
(EBF), mixed forest (MF), grassland (GRA), open shrubland (OSH), savanna (SAV), woody savanna (WSV) and permanent wetland (WET).
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Fig. 4. Comparison of GPP estimation based on S model and Ta model against GPP_EC in springtime recovery stage of photosynthesis (a, b), autumn
decline stage of photosynthesis (c, d) and rapid growing season (e, f), respectively. GPP_Estimated_S is the GPP estimation based on S model, GPP_Es-
timated_Ta is the GPP estimation based on Ta model, GPP_EC is site-observed GPP obtained through the eddy covariance technique.
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Fig. 5. The seasonal variations of GPP_EC (black dashed line) and GPP estimations based on Ta model (GPP_Ta) (red dashed line in panel a) and S model
(GPP_S) (red dashed line in panel b) at several sites (unit: g C/m2/d).
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areas of Australia, the importance of S and Ta were in middle. Fig. 11
displayed the difference between the importance of S and Ta to CSIF. In
the most regions of the United States and Canada, Western Europe,
Northwest India and Southeast China, southern and northern South
America, the difference between importance of S and Ta was less than
0 which indicated that the importance of S was lower than that of Ta. In
regions where the difference was less than 0, we may overestimate the
importance of temperature to photosynthesis. That is to say, although
temperature is the determinant for vegetation growth in these regions, if
we do not consider the impact of slow temperature acclimation of
photosynthesis, the importance of temperature to vegetation growth
may be overestimated and the actual importance of temperature may
not be as higher as we previously understood. In Mexico, central South
America, Africa, Australia except the central region, Southeast Asia and
Southern and Eastern India, the difference between importance of S and
Ta was larger than 0 which indicated that the importance of S was higher
than that of Ta. The climate in the regions where difference was larger
than 0 is warmer and temperature is less important for vegetation
growth anymore. However, in these regions, the importance of tem-
perature to vegetation growth may not be as lower as we understood
before which may be underestimated if we don’t consider the slow
temperature acclimation of photosynthesis.Fig. 6. The importance of S and Ta to GPP estimation for each flux site. The red

dashed line is 1:1 line and the black solid line is the regression line.

Fig. 7. The SHAP value of Ta and S for several sites. The red solid line is the SHAP value of S, the black solid line is the SHAP value of Ta.

J. Bai et al.



Agricultural and Forest Meteorology 357 (2024) 110197

10

4. Discussion

4.1. The influence of slow temperature acclimation of photosynthesis on
GPP estimation

Our results showed that considering the slow temperature acclima-
tion of photosynthesis could improve the accuracy of GPP estimation
(Fig. 2). This improvement was mainly due to the excessive fluctuations
in Ta based GPP estimation, while S based GPP estimation effectively
avoided the excessive fluctuations as shown in Fig. 5. When directly
using Ta to estimate GPP without considering the slow temperature
acclimation of photosynthesis, the sensitivity of vegetation to temper-
ature was amplified, leading to the excessive fluctuations in GPP pre-
diction. The SHAP values of Ta and S can also indicate that the impact of
Ta on GPP prediction fluctuated greater than that of S (Fig. 7).

Actually, the time delayed response strategy of vegetation to tem-
perature causes the state of vegetation cannot be synchronized with the
ambient temperature changes immediately. Therefore, the temperature

state of vegetation directly characterized by Ta cannot represent the true
physiologically response of vegetation to changes in growth tempera-
ture, which will bring bias in GPP quantification. Like our results shown
in Sections 3.1 and 3.2, the Ta model didn’t consider the slow temper-
ature acclimation of photosynthesis, and the GPP estimation derived
from Ta indeed exhibited some uncontrolled or excessive fluctuations.
By comparison, the GPP derived from Smodel reduced this phenomenon
a lot. Moreover, the SHAP values of S and Ta had clear and similar
seasonality and their importance in GPP estimation had no much dif-
ference which to some extent indicated that there was no much differ-
ence in the ability of Ta and S to characterize the overall seasonality of
GPP although the S based GPP estimation had better performance than
Ta based.

In addition, there were differences in the degree of improvement in S
based GPP estimation for different vegetation types and phenology. The
improvement of S model in EBF was not as significant as in other
vegetation types (S model: R2=0.67, RMSE=2.4 g C/m2/d, slope=0.71;
Ta model: R2 =0.64, RMSE =2.5 g C/m2/d, slope =0.69). The lower

Fig. 8. The spatial distribution of τ values.

Fig. 9. The spatial distribution of importance of SW, VPD and Ta to CSIF.
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importance of temperature to vegetation growth could be contributed to
the less significant improvement of S model in EBF a lot. Mostly EBF
distributed in subtropical and tropical latitudes where temperature is no
longer a limiting factor for vegetation growth (Crous et al. 2022).
Therefore, for most EBF distributed in warmer regions, considering the
slow temperature acclimation of photosynthesis or not had less impact
on the GPP estimation. In the springtime recovery stage, growing season
and autumn decline stage, the R2 values of S model were improved
31.25%, 15.09% and 11.11%, respectively; the RMSE values of S model
were reduced 18.18%, 13.10% and 10.14%, respectively. The larger
improvement in GPP estimation based on Smodel appeared in the spring
recovery stage of photosynthesis, meaning that the influence of slow
temperature acclimation of photosynthesis on GPP estimation was
relatively higher in this stage (Fig. 4). In the springtime recovery stage of
photosynthesis, the plant metabolism has not completely recovered to
the non-stress state (Leuendorf et al. 2020; Zuther et al. 2015).
Regardless of how the ambient temperature fluctuates, the lower
metabolism of plants will make plants insensitive to changes in tem-
perature (Preston and Sandve 2013). Therefore, directly using ambient
temperature to predict GPP in the springtime recovery stage will amplify
the sensitivity of vegetation to temperature and lead to many excessive

fluctuations like the details showed in Fig. 5a. In the rapid growing
season and the autumn decline stage, vegetation metabolism is fully
restored and the sensitivity of vegetation to temperature is relatively
higher, thereby, the synchronization of photosynthesis and temperature
is also higher. Hence, the difference between GPP estimation based on S
model and Ta model in the rapid growing and autumn decline stages was
not as higher as in the springtime recovery stages. That’s the reason why
the improvement of S model was larger in the springtime recovery stages
than that in rapid growing and autumn decline stages. The divergent
improvements of S model in different phenology can also reveal that
there are seasonal differences in the response ability of vegetation to
temperature changes. Therefore, the influence of considering the slow
temperature acclimation of photosynthesis on GPP estimation is indeed
different in each vegetation phenology like our results showed in Fig. 4.

4.2. The causes and driving factors of global spatial distribution of τ

Previous studies demonstrated that plants in warmer areas have less
capacity to adjust to temperature than in cooler regions, leading to the
shorter time it takes for vegetation in cooler areas to respond to tem-
perature changes, which was basically consistent with our results

Fig. 10. The global patterns of importance of S (a) and Ta (b) on SIF.

Fig. 11. The spatial distribution of difference between the importance of S and Ta to CSIF.
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(Carter et al. 2020; Crous et al. 2022; Cunningham and Read 2003a;
Cunningham and Read 2003b). As displayed in Fig. 8, the lower τ values
were mainly distributed in cooler regions and the higher τ values were
distributed in the warmer regions. In order to reduce the negative effects
of unfavorable environmental conditions, plants would flexibly adopt
different response strategies in the face of different determinants of
vegetation growth to adjust the sensitivities of vegetation to environ-
mental conditions synchronously (Kumarathunge et al. 2019; Mkel et al.
2002; Preston and Sandve 2013; Sabot et al. 2022; Trewavas 2009). In
regions with lower τ values (except for Central Africa), the determinant
of vegetation growth is ambient temperature (Fig. 9). To make sure the
plants in temperature limited environmental conditions survive, plants
will improve their sensitivities to temperature to capture a sufficient
part of the available temperature which was beneficial for vegetation
growth especially for the plants distributed in the cooler areas (e.g., the
high latitude regions of northern hemisphere). Once temperature rises
which is beneficial for vegetation growth, plants would capture the
limited suitable temperature to grow as soon as possible, ensuring their
survival, which could lead to the shorter time (lower τ value) required
for vegetation to respond to temperature changes. Similarly, in order to
avoid the negative impact of temperature drop on photosynthesis,
vegetation may adjust its state quickly which would lead to shorter
response time for vegetation to temperature changes. The regions with
higher τ values includedMexico, India, Vietnam, Central South America,
southern Africa, Northern and Eastern Australia. The result of impor-
tance analysis showed that VPD is the determinant for vegetation
growth in these regions rather than temperature which implied that the
sensitivity of vegetation to VPD was higher than that of temperature
(Fig. 9). Therefore, plants will try their best to respond to changes in
VPD as quickly as possible rather than temperature changes since the
fluctuations in temperature has less impact on vegetation growth which
would lead to longer response time to temperature changes (higher τ
values) in these regions. Conversely, the time it takes for vegetation to
respond to VPD in these regions may be shorter than in other regions.
Because different limiting factors for vegetation growth will lead to
different response strategies.

Here, we need to emphasize the complexity of τ values in Africa. In
central Africa, the τ values were lower while in Southern Africa, the τ
values were higher. However, the result of importance analysis showed
that VPD was the determinant for the vegetation growth in both Central
and Southern Africa (Fig. 9). The main difference between these two
regions is soil moisture, which was higher in Central Africa than that in
Southern Africa. The relationship between environmental moisture and
temperature acclimation of vegetation is complex and has debates
(Dusenge et al. 2020; Hember et al. 2017; Reich et al. 2018). Studies
demonstrated that the only warming in wet regions can enhance tree
growth (Hember et al. 2017). Did these studies imply that trees might
less sensitive to changes in temperature under water limitations? If it
does, the vegetation in Southern Africa with lower humidity may be less
sensitive to temperature changes, leading to higher τ values. In contrast,
the sensitivity of vegetation to temperature in Central Africa is higher
and the τ values are relatively lower. Moreover, the quality of OCO-2 SIF
data and MODIS reflectance data in the tropical regions is influence by
the cloud which may lead to the uncertainties of τ values in Africa.
Therefore, in the future study, the exact reason why the spatial distri-
bution of τ values were divergent in Central and Southern Africa need to
be explored further.

Additionally, the primary climate shifts from boreal to temperate and
tropical regions involve not only rising temperatures but also dimin-
ished temperature seasonality, which may be another factor contrib-
uting to the observed spatial patterns in τ values (Carter et al. 2020;
Cunningham and Read 2003b). It is more likely to respond to temper-
ature changes more quickly for the vegetation exposed to larger seasonal
variations in temperature (Berry and Bjorkman 1980). Therefore,
vegetation from environments in which the seasonal variations of tem-
perature are larger, shows a greater ability to respond to temperature

changes and further leads to lower τ values. In our results, the lower τ
values mainly distributed in the boreal or temperate regions in which
the temperature seasonal variations are larger. By comparison, the
larger τ values mainly distributed in the regions with small seasonal
temperature variations like the tropical regions. Overall, the spatial
pattern of τ values is likely to be an adaptation to the determinants of
photosynthesis and amplitude of seasonal variations in temperature.

4.3. Limitations

In this study, we considered the impact of slow temperature accli-
mation of photosynthesis on GPP estimation and established Ta and S
models to simulate GPP, respectively. The results showed that consid-
ering the slow temperature acclimation could improve the accuracy of
GPP estimation. We also used CSIF and Ta derived from ERA-5 to map
the global spatial distribution of the time constant- τ which exhibited
significant spatial patterns. Nevertheless, there are still some limitations
in this study. Firstly, we didn’t consider the seasonal and interannual
variations of τ values when we established models. In theory, the tem-
perature acclimation capacity of vegetation differs in different growth
stages, that is, the τ values exist seasonal or interannual variations (Chen
and Zhuang 2013; Crous et al. 2022; Kolari et al. 2014; Kumarathunge
et al. 2019; Trewavas 2009; Zhang et al. 2023a; Zhang et al. 2023b). In
this study, we set the τ values as a constant through all seasons and
ignored its variations. In the future, we should incorporate the seasonal
variations of τ values into S calculation which may get the higher
improvement in GPP quantification. Secondly, at the site scale, in order
to ensure high temporal resolution (1 day), SW was used to characterize
radiation, so variables representing the growth state of vegetation are
not considered (e.g., Absorbed Photosynthetically Active Radiation
(APAR)). The reason why we didn’t use APAR in each site is that APAR is
usually calculated through FPAR (Fraction of Photosynthetically Active
Radiation) derived from satellite remote sensing which always has a
temporal resolution greater than 4 days and is not consistent with the
daily flux site datasets. The only difference between the explanatory
variables of Ta and S models was S and Ta. Therefore, the difference
between the GPP estimation based on these two models was mostly
induced by the considering the slow temperature acclimation or not. To
confirm this point, we chose a flux site (US-NR1) and replaced the
explanatory variable-SW in both models with APAR and tested the
performance of Ta and S models with APAR as the explanatory variable.
Since the temporal resolution of FPAR is 8 days, to ensure the amount of
data used for model establishment and validation, we assigned FPAR
data every 8 days to daily site data and assumed that there is no change
in FPAR within 8 days. Fig. S3 and Fig. S4 showed the validation results
of SW and APAR as explanatory variables in both Ta and S models,
respectively, with 1-day temporal resolution at US-NR1. In addition, the
APAR with 8-day temporal resolution and the corresponding SW as
explanatory variables of both Ta and S models, respectively, were also
built and validated at US-NR1 (Fig. S5, Fig. S6). The results showed that
S model still performed better than Ta model when SW was replaced
with APAR at both daily and 8-day temporal resolution (see
Fig. S3-Fig. S6). Thirdly, we used the machine learning method (random
forest algorithm) to simulate GPP. We cannot understand the internal
structure of the machine learning models although they always have
good simulation performance. The reason why we used RF to simulate
GPP was that the initial goal of this study was to explore whether
considering the slow temperature acclimation of photosynthesis could
improve the accuracy of GPP estimates. And the results indeed
confirmed that the accuracy of GPP simulation was improved when we
considered the slow temperature acclimation. In the future, we should
try to embed S into some process-based or semi-empirical models, e.g.,
LUE models, which will provide more accurate GPP quantification.
Moreover, the temporal resolution of CSIF dataset (4-day) is insufficient
to map more detailed global spatial distribution of τ values especially in
the regions with lower τ values. For example, in the high latitude regions
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of the northern hemisphere where vegetation is highly sensitive to
temperature, the 4-day temporal resolution may still be too coarse to
capture more accurate τ values. If a new SIF dataset with higher tem-
poral resolution appears in the future, this issue will be improved to
some extent. Last, we did not account for the impact of other environ-
mental factors affecting the temperature response of photosynthesis,
such as, VPD, precipitation, radiation, soil moisture and so on (Lin et al.
2012), which need further investigation in the future.

5. Conclusion

In this study, we established Ta and S models based on RF, respec-
tively, to analyze the influence of slow temperature acclimation of
photosynthesis on GPP estimation. We also mapped the global spatial
distribution of the time it takes for vegetation to acclimate temperature.
We obtained the following conclusions:

(1) Considering the slow temperature acclimation could improve the
accuracy of GPP estimation. Compared to Ta model, the R2 value
of S model increased from 0.62 to 0.74 which was increased
19.35%; the RMSE value of S model reduced from 2.59 to 2.17 g
C/m2/d which was reduced 16.21%; and the slope value of S
model increased from 0.69 to 0.78 which was increased 13.04%.

(2) The improvement of S model in GPP estimations was different in
different vegetation growth stages which was larger in the
springtime recovery of photosynthesis than that in the rapid
growing and autumn decline stages.

(3) Both Ta and S could characterize the overall seasonal trends of
GPP well. However, considering the slow temperature acclima-
tion can reduce the sensitivity of vegetation to temperature and
avoid the excessive fluctuations in GPP estimation induced by
temperature changes.

(4) The τ values showed significant spatial distribution. The lower τ
values mainly appeared in boreal and temperate areas, and the
higher τ values mainly existed in some both warmer and arid
areas, which was strongly affected by the growth strategies
determined by the limiting factors of vegetation growth and
seasonal variations in temperature.
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Gea-Izquierdo, G., Mäkelä, A., Margolis, H., et al., 2010. Modeling acclimation of
photosynthesis to temperature in evergreen conifer forests. New Phytol. 188,
175–186.

J. Bai et al.

https://fluxnet.fluxdata.org/data/
https://fluxnet.fluxdata.org/data/
https://doi.org/10.1016/j.agrformet.2024.110197
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0001
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0001
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0002
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0002
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0002
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0004
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0004
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0004
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0005
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0005
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0005
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0006
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0006
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0006
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0007
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0007
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0008
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0008
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0008
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0009
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0009
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0010
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0010
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0010
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0011
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0011
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0012
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0012
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0012
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0012
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0013
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0013
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0013
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0014
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0014
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0014
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0015
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0015
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0015
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0016
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0016
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0016
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0017
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0017
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0018
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0018
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0018
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0019
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0019
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0019
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0020
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0020
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0020
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0021
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0021
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0021
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0022
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0022
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0022
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0023
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0023
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0023
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0024
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0024
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0024
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0025
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0025
http://refhub.elsevier.com/S0168-1923(24)00310-1/sbref0025


Agricultural and Forest Meteorology 357 (2024) 110197

14

Guan, X., Chen, J.M., Shen, H., et al., 2021. A modified two-leaf light use efficiency
model for improving the simulation of GPP using a radiation scalar. Agric. For.
Meteorol. 307, 108546.

Guanter, L., Alonso, L., Gómez-Chova, L., et al., 2007. Estimation of solar-induced
vegetation fluorescence from space measurements. Geophys. Res. Lett. 34.

Guanter, L., Frankenberg, C., Dudhia, A., et al., 2012. Retrieval and global assessment of
terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens.
Environ. 121, 236–251.

Guo, M., Li, J., Huang, S., et al., 2020. Feasibility of using MODIS products to simulate
sun-induced chlorophyll fluorescence (SIF) in boreal forests. Remote Sens. 12
(Basel).

Guo, Y., Li, G., Chen, H., et al., 2017. An enhanced PCA method with savitzky-golay
method for VRF system sensor fault detection and diagnosis. Energy Build. 142,
167–178.

He, M., Ju, W., Zhou, Y., et al., 2013. Development of a two-leaf light use efficiency
model for improving the calculation of terrestrial gross primary productivity. Agric.
For. Meteorol. 173, 28–39.

Hember, R.A., Kurz, W.A., Coops, N.C., 2017. Increasing net ecosystem biomass
production of Canada’s boreal and temperate forests despite decline in dry climates.
Global. Biogeochem. Cycles 31, 134–158.

Hikosaka, K., Ishikawa, K., Borjigidai, A., et al., 2006. Temperature acclimation of
photosynthesis: mechanisms involved in the changes in temperature dependence of
photosynthetic rate. J. Exp. Bot. 57, 291–302.

Hu, J., Liu, L., Yu, H., et al., 2021. Upscaling GOME-2 SIF from clear-sky instantaneous
observations to all-sky sums leading to an improved SIF–GPP correlation. Agric. For.
Meteorol. 306, 108439.

Janssens, I.A., Freibauer, A., Ciais, P., et al., 2003. Europe’s terrestrial biosphere absorbs
7 to 12% of European anthropogenic CO2 emissions. Science 300, 1538–1542
(1979).

Jiang, C., Ryu, Y., 2016. Multi-scale evaluation of global gross primary productivity and
evapotranspiration products derived from Breathing Earth System Simulator (BESS).
Remote Sens. Environ. 186, 528–547.

Jung, M., Reichstein, M., Margolis, H.A., et al., 2011. Global patterns of land-atmosphere
fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy
covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci.
116.

Karban, R., 2008. Plant behaviour and communication. Ecol. Lett. 11, 727–739.
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