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War city profiles drawn from satellite images

Zhengyang Hou    1,7, Ying Qu    1,7, Liqiang Zhang    1  , Jun Liu    2, 
Faqiang Wang    2, Qiwei Yu1, An Zeng3, Ziyue Chen    1, Yuanyuan Zhao    4, 
Hong Tang    1, Yuebin Wang    1, Xingang Li1, Yang Li1, Shuwen Peng1, 
Jing Ran    5, Xin Yao    1, Xichen Meng1, Suhong Liu1 & Chenghu Zhou    6 

The extent of war-induced destruction in urban areas is critical information 
for international relief efforts, impact assessments and restoration 
decisions. However, precise geotargeting of zones with severe destruction is 
still a great challenge. Here we present a novel temporal-knowledge-guided 
detection scheme (TKDS) with a pixel-based transformer network (PtNet) 
for monitoring urban destruction using satellite imagery, applied to conflict 
zones in the Syrian civil war and the Russia–Ukraine conflict. Compared 
with state-of-the-art methods, the TKDS-PtNet model enhances war damage 
identification by 44.0 (72.5 versus 28.5) in the F1 score for six Syrian cities 
and 34.2 (83.5 versus 49.3) for four Ukrainian cities. The identified damaged 
buildings are further utilized to estimate the affected population and 
damage to critical infrastructures such as hospitals and schools in these 
areas. Our results demonstrate the high potential of a repeatable and 
relatively low-cost scheme for the near real-time monitoring of damage in 
urban areas resulting from wars, earthquakes or extreme weather events. 
Our findings underscore the crucial importance of taking action to stop  
the conflict and developing mechanisms to prevent present and future 
urban-related damage from military actions.

War in urban areas is one of the main threats to development and well-
being, yet over 70 ongoing conflicts, including the Russian–Ukraine 
conflict, have resulted in devastating destruction, pain and disbelief in 
cities1,2. The widespread devastation of urban buildings resulting from 
heavy weapon attacks manifests in injuries, fatalities and the collapse of 
essential services such as water and power supplies as well as hospitals. 
This not only results in severe destruction and fragmentation within 
the cities where it occurs but also hinders the sustained maintenance 
of international peace and governance. In this context, prompt and 
accurate information regarding the destruction within urban land-
scapes is vital to understanding the conflict’s scale and adherence to 
international humanitarian law, and becomes instrumental in formulat-
ing more effective strategies for urban conflict resolution and recon-
struction. Such knowledge also serves as crucial evidence supporting 

decision-making in humanitarian aid and guides mitigation responses 
to alleviate the impact on affected populations.

Monitoring building destruction from conflict cities with timeli-
ness and accuracy remains a formidable challenge1,3–6. The violence 
and unsafe conditions in conflict regions inhibit traditional damage 
assessment methods, such as manual detection and on-site survey 
during wartime5,7–9. Nowadays, satellite imagery analysis emerges as a 
promising tool for remote assessment of infrastructure destruction. 
Deep learning-based methods have demonstrated unique strengths in 
destruction identification automatically9–13. However, it is still difficult 
to precisely geotarget zones with severe destruction due to intricate 
urban environments. Moreover, previous methods primarily focus on 
evaluating damage caused by natural disasters8,14–19, where destruction 
usually shows strong geographical patterns and correlation features. 
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into deep learning model has the potential to greatly reduce the false 
positive rate caused by low resolution and class imbalance (Methods). 
Compared with the commonly used change detection schemes5,12,14–16, 
our TKDS is a flexible scheme (Fig. 1), which can regularize the detector 
with the spatial and temporal patterns of the building change. A pre-war  
image and each of the images available during the war are stacked 
to form a group of bitemporal image patches. Then, the bitemporal-
image patches at a given location are sorted by date to construct a 
multi-temporal patch sequence as input to TKDS (Methods). To extract 
the semantic vector representation of each bitemporal-image patch, 
a pixel-based transformer network (PtNet) is developed (Methods 
and Fig. 2). A temporal total variation (TTV) regularization function 
incorporating building-damaged temporal patterns is utilized as a 
temporal global constraint to guide PtNet to learn the damage patterns 
(Methods). TKDS further uses a temporal convolution decoder (TCD) 
to obtain the contextual relationship of the bitemporal-image patches 
in the temporal dimension based on the semantic vectors extracted by 
PtNet, and generates the detection results.

We compare our model TKDS-PtNet with a previous method 
CNN-STS5(convolutional neural network integrated spatial–temporal  
smoothing; Supplementary Note and and Supplementary Fig. 2), 
revealing that TKDS-PtNet far exceeds the monitoring performance 
of CNN-STS. To the best of our knowledge, this is the first approach with 
high generalization abilities to precisely monitor urban destruction 
using different-resolution satellite imagery. As illustrated in Fig. 3, the 
TKDS-PtNet model is then employed to monitor damage in six Syrian 
cities and four Ukrainian cities. It demonstrates outstanding damage 
assessment capability in these cities from high-resolution or medium-
resolution remote sensing images. It allows us to map the spatial dis-
tribution of destroyed buildings, identify where buildings are most 
severely damaged, and further reveal the affected populations and their 
potential impacts. The contributions of this study are threefold. (1) We 
propose a new temporal knowledge-guided detection scheme, TKDS, 

In contrast, buildings destroyed in wars are often sparsely distributed 
in urban environments, occupying only a small proportion of urban 
buildings, with the majority of the landscape remaining undamaged. 
This leads to an extreme class imbalance, where undestroyed buildings 
far outnumber the destroyed ones5. Such a class imbalance combined 
with the heterogeneity of urban environments poses a major obstacle, 
explaining why the assessment of destruction across entire cities has 
not been thoroughly explored5,20.

Another challenge lies in the resolution of satellite imagery. So 
far, very few methods demonstrate the potential to precisely detect 
war damage automatically5,7,21. In addition, their deployment relies 
on high-resolution satellite imagery (less than 1 m). Due to real-time 
capability limitations and confidentiality agreements, such high-reso-
lution satellite data during wartime are not publicly available. Notably, 
medium-resolution satellite images (such as 10 m) available to the 
public have the advantages of worldwide coverage and timely revisit 
frequencies. However, it remains a challenge to assess war damage 
with medium-resolution images, since each building may only occupy 
less than 5 pixels (10 m × 10 m), meaning that the detailed information 
about building shape and textures is missing (Supplementary Fig. 1). 
Furthermore, influenced by illumination variations, a building cap-
tured at different times may have distinct colors on the images. Such a 
temporal domain shift tends to substantially increase the false positive 
rate (Supplementary Technical Terms).

This, naturally, raises a question: is it possible to accurately moni-
tor war destruction from medium-resolution (such as 10 m) satellite 
images, especially when there exists an extreme level of class imbal-
ance? Here, we propose a new temporal-knowledge-guided detection 
scheme (TKDS), which can monitor urban destructions with either 
high- or medium-resolution satellite imagery. TKDS applies the knowl-
edge that a war in urban may last several weeks or even months5,22–24, 
indicating that if an urban block is destroyed at a certain time, it is 
unlikely to be reconstructed during a war. Integrating such knowledge 
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that can be flexibly integrated with any traditional detectors to improve 
their detection performance. (2) We develop a semi-supervised 
domain adaptation (SSDA) strategy that combines maximum mean 
discrepancy (MMD)25 loss and supervised contrastive learning (SCL)26  
(Supplementary Technical Terms) to improve the generalization ability 
of the proposed TKDS-PtNet model. (3) The TKDS-PtNet model offers 
a rapid and practical way to detect urban destruction in data-sparse 
and inaccessible environments. It allows us to track the destruction of 
urban critical infrastructure with a high degree of accuracy and has the 
potential to be applied to urban contexts to investigate war damage, 
earthquakes or some major weather events, and estimate the scope 
and distribution of damage to guide relief efforts.

Results
As shown in Fig. 3, we comprehensively validated the proposed 
approach and analyzed the impacts of war building damage.

Urban damage monitoring
Damage detection in the Syrian civil war. From 2011 to 2018, the Syrian 
civil war resulted in substantial casualties, refugees and severe urban 
damage. The TKDS-PtNet model was employed to detect damaged 
buildings in six Syrian cities (Aleppo, Hama, Homs, Raqqa, Deir-Ez-Zor 
and Idlib) using remote sensing images with 0.5 m and 10 m resolutions.

Using the completely damaged building samples labeled by the 
United Nations Operational Satellite Applications Program (UNOSAT) 
of the United Nations Institute for Training and Research (UNITAR)27, 
we constructed two groups of datasets covering the six Syrian cities. 
The first group of samples includes 0.5-m-resolution bitemporal-image 
patches collected from the Worldview satellite imagery. To evaluate the 
performance of the TKDS-PtNet model on medium-resolution satellite 
images, we downsampled each bitemporal-image patch with a factor 
of 20 to generate the second dataset with 10-m-resolution remote 
sensing imagery (Methods). Based on the two datasets, we built two 
multi-temporal patch sequences with spatial resolutions of 0.5 m and 
10 m. Then, the training and validation samples were generated to tune 
the TKDS-PtNet model (Methods).

The number of damaged buildings (positive samples) in each city 
was very small, and their spatiotemporal distribution was uneven. As 
listed in Supplementary Table 1, the proportion of the positive sam-
ples in the bitemporal image patch dataset was 3.9%. Accordingly, the 

temporal positive samples accounted for 7.3% in the multi-temporal 
patch sequence dataset. Five matrices, that is, precision, recall, F1 score, 
the area under the curve (AUC) and average precision (AP) (Supple-
mentary Technical Terms), were used to evaluate the performance of 
damage detection. We observe that the commonly used deep learning 
model ResNet-18 can predict 35.2% of the damaged buildings, and 51.8% 
of the buildings were misidentified as damaged buildings. Thus, the F1 
score for ResNet-18 was only 40.7 (Table 1 and Supplementary Fig. 3).

To evaluate the advantage of TKDS, we incorporated PtNet as well 
as ResNet-18 and ResNet-50 into the scheme, respectively. As listed in 
Table 1, with the 0.5-m-resolution images, TKDS not only improved the 
accuracy of PtNet by 31.5 (TKDS-PtNet) in terms of F1 score, but also 
substantially enhanced the performance of ResNet-50 and ResNet-18 
by 43.2 (TKDS-ResNet-50) and 44.5 (TKDS-ResNet-18), respectively. 
The TKDS-PtNet model further improved the F1 score of PtNet from 
54.7 to 86.1. The precision–recall curve and receiver operating char-
acteristic curve (Supplementary Fig. 3 and Supplementary Technical 
Terms) confirmed the high performance of TKDS-PtNet. As displayed 
in Table 1 and Supplementary Fig. 3, all the models incorporating with 
TKDS showed notable performance improvements.

We also compared TKDS-PtNet with CNN-STS5. As listed in Table 1, 
on the 0.5 m satellite image dataset, although CNN-STS achieved higher 
precision than CNN by 29.7, it had the lowest recall (19.7). This reveals 
that a large number of destroyed buildings were identified as nonde-
stroyed buildings by CNN-STS. Notably, TKDS-PtNet far exceeded the 
monitoring performance of CNN-STS (86.14 versus 28.26 in terms of 
F1 score). This is because CNN-STS is a two-stage machine learning 
model. In the first stage, a CNN classifier predicted damaged buildings 
without incorporating any prior knowledge, leading to low precision. 
In the second stage, the real damage patterns are difficult to learn 
from the low-precision results of the first stage, which made it easy to 
overlook some isolated damaged areas. As a comparison, TKDS-PtNet 
is an end-to-end model that employed TCD and TTV constraints to 
incorporate the temporal knowledge at both local and global levels, 
which outperformed CNN-STS substantially in building damage detec-
tion performance. Please see Supplementary Note and Supplementary 
Fig. 2 for more details.

The six cities are different in scale, building type and landscape, 
and their building sample and image availability differ dramatically 
(Supplementary Table 1). In such cases, TKDS-PtNet achieved F1 scores 
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of 72.5 and 86.1 with 10-m-resolution and 0.5-m-resolution satellite 
images, and had the greatest accuracy improvement compared with 
PtNet in Idlib and Homs cities (Supplementary Table 2). The accuracy 
was six times better than ResNet-50 (5.69). In other cities like Homs, 
Hama and Raqqa with relatively high positive sample proportions 
(10.2%, 10.0% and 7.4%, respectively, as listed in Supplementary Table 1),  
TKDS-PtNet achieved reliable accuracies (F1 >70) even with the 
10-m-resolution images, which were comparable to the results detected 
with the 0.5-m-resolution images.

Urban damage monitoring in the Russia–Ukraine conflict. Compared 
with the over-10-year-long Syrian civil war, the intensity and density of 
building damage triggered by the Russia–Ukraine conflict in Ukrainian 
cities were relatively low. Using publicly available 10-m-resolution Sen-
tinel-2 satellite images, we monitored the building damage in four cities 

in Ukraine, that is, Rubizhne, Sievierodonetsk, Volnovakha and Mari-
upol (Supplementary Fig. 4). The damage assessment in the cities has 
three difficulties. First, the damage monitoring faced an extreme level 
of sample class imbalance. Second, high-resolution satellite imagery of 
the post-war Ukrainian cities was not available. Third, urban building 
styles were more diverse and complex.

To improve the detection accuracy from Sentinel-2 satellite 
images, a multi-scale feature fusion head was incorporated into PtNet 
to better utilize the four 10-m-resolution bands and six 20-m-resolution 
bands of the images (Methods). As listed in Table 1, compared with 
the detection results from the three 10-m-resolution image bands, 
the F1 score of PtNet using the fused images was enhanced by 24.0  
(64.1 versus 40.1), much higher than ResNet (F1 of 49.3 in ResNet-18, 
and F1 of 48.5 in ResNet-50), revealing that PtNet could automatically 
extract the spectral information of satellite images.
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The TKDS-PtNet model further increased the F1 score (83.5) by 
19.4 compared with PtNet (64.1). As shown in Supplementary Fig. 5, 
TKDS-PtNet had much higher detection accuracy in terms of AP and 
AUC (AP of 91.5 and AUC of 98.1) than ResNet-18 (AP of 50.2 and AUC 
of 90.9) and ResNet-50 (AP of 49.9 and AUC of 92.1). To demonstrate 
the robustness of TKDS-PtNet, we conducted a tenfold cross-valida-
tion on the Sentinel-2 satellite imagery. As shown in Supplementary  
Fig. 6, it achieved high performance as average F1 of 86.2, AUC of 98.6 
and AP of 92.2.

Domain transfer capability, interpretability and validation
Model domain transfer capability. Under the SSDA strategy, we used 
zero or 5% of the samples in the target city to validate the domain 
transfer of TKDS-PtNet trained with the SSDA strategy (Methods). As 
listed in Table 2, in the four Ukrainian cities, the F1 score of TKDS-PtNet 
decreased by 27.7 on average compared with the training test using 70% 
of the samples in all cities (Table 2, column 3) but it was still higher than 
ResNet-50 in Rubizhne, Sievierodonetsk and Volnovakha cities. Then 
we randomly added 5% of the samples from the target city. The test 
results across the four cities exhibited only an average accuracy loss 
of 5.9 (ranging from 1.2 to 12.2) compared with 70% of the samples in all 
cities used to train the model (Table 2, column 3) For Sievierodonetsk 
with an extreme level of class imbalance (positive sample ratios of 
0.4% in the bitemporal-image patches; Supplementary Table 2), the F1 
score decreased by 5.3. In Volnovakha where the positive sample ratio 
was relatively high (3.3%), the accuracy loss was as low as 1.2. Thus, 
our model had a good capability that was robust against severe class 
imbalance. Using zero or a few labels in the target city, it achieved high 
performance in building damage detection.

External validation. To ensure the certainty of our detection results, we 
performed manual verification. Specifically, we validated our detection 

results through high-spatial-resolution images and media reporting. In 
the six Syrian cities, we first performed the manual verification through 
high spatial resolution images, and then searched the media reporting 
including the war photos and texts about the four cities to validate our 
detected damage. In the four Ukrainian cities, we conducted a similar 
verification except without using high-spatial-resolution images due 
to these data shortage. Next, we used a two-way fixed effects model to 
validate the reliability of temporal sequence detections for building 
damage leveraging external bombing events from the Live Universal 
Awareness Map project (LiveUAmap)28. Over 1.3 million predictions 
from Syria and over 2 million from Ukraine were used in the regression 
model. To test whether TKDS-PtNet could obtain more positive pre-war 
predictions after bombing events, the times of 940 bombing events in 
the six Syrian cities and 102 bombing events in the four Ukrainian cities 
were geographically marked in the patch image temporal sequences 
(Methods). As listed in Supplementary Table 3, the results showed a 
strong positive association between our detections and bomb events. 
As shown in Supplementary Fig. 7, the predicted values of TKDS-PtNet 
for Syria and Ukraine after the bomb events increased by 112% and 
440%, compared with the baseline (the average of the detection values), 
indicating that our detections are reliable.

Model interpretability. We used the gradient-weighted class activa-
tion mapping (Grad-CAM; Supplementary Technical Terms)29 as a 
visualization technique to understand which parts of an image were 
important for each detection prediction. The Grad-CAM functions 
identify the areas of an image that had the most impact on the output 
of the model by creating a heatmap.

Supplementary Fig. 8 shows the activation values of damaged 
and undamaged buildings using ResNet-50, PtNet and TKDS-PtNet, 
respectively, on 0.5-m-resolution images in Aleppo. Both ResNet-50 
and PtNet exhibited misclassifications. The attention of TKDS-PtNet 

Table 1 | The performance of the models in Syrian cities using 0.5-m-resolution and 1-0m-resolution satellite images, and 
using multi-spectral Sentinel-2 satellite images in Ukrainian cities

Country Image Model Precision Recall F1 AUC AP

ResNet-50 48.62 34.70 40.50 84.22 39.73

ResNet-18 48.23 35.16 40.67 86.21 39.83

CNN 20.60 33.75 25.58 81.27 23.29

CNN-STS 50.29 19.65 28.26 86.77 33.17

0.5 m PtNet 55.55 53.83 54.68 88.15 56.36

PtNet-STS 88.45 41.06 56.09 92.54 68.33

TKDS-ResNet-50 90.49 77.84 83.69 97.84 88.39

Syria TKDS-ResNet-18 89.84 80.91 85.14 98.40 90.24

TKDS-PtNet 92.05 80.95 86.14 98.52 90.77

10 m ResNet-50 24.78 33.38 28.52 80.74 24.31

ResNet-18 24.95 31.92 28.00 80.14 23.69

PtNet 33.90 44.70 38.56 85.57 38.64

TKDS-ResNet-50 59.64 75.08 66.48 96.23 77.92

TKDS-ResNet-18 62.66 73.70 67.73 95.72 77.31

TKDS-PtNet 72.19 72.17 72.48 96.25 79.29

PtNet (band 2-4) 34.87 47.24 40.13 90.13 37.99

ResNet-50 (all bands) 47.55 49.39 48.45 92.12 49.85

Ukraine Sentinel-2 ResNet-18 (all bands) 63.15 40.37 49.25 90.85 50.23

PtNet (all bands) 60.68 67.98 64.12 90.48 69.06

TKDS-PtNet (all bands) 78.81 88.77 83.50 98.08 91.46

Bold format indicates the best accuracy.
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on damaged areas was consistent and correct, meaning that TKDS 
empowered PtNet to incorporate multi-temporal spatial features. 
Consequently, the activation maps accurately highlighted the range 
of the damaged areas, leading to marked performance improvement 
in urban damage monitoring tasks.

Spatial distribution of the destructions and their impacts
We constructed war urban destruction maps from the detection results 
for facilitating evaluation of the war’s impact on population and city 
life. Before this, we manually performed the verification of the TKDS-
PtNet model output to ensure that the information about the spatial 
distribution and scale of the most severely damaged areas in the Syrian 
civil war and the Russian–Ukrainian conflict was accurate. On the maps, 
we overlapped detection maps with population and critical infrastruc-
ture data from international data sources, including WorldPop30, the 
OpenStreetMap31 and Microsoft’s GlobalMLBuildingFootprints32 data-
sets. The population in the damaged zones was estimated separately 
using the maximum and minimum values of 2018–2020 and 2011–2018 
WorldPop population grids in Ukraine and Syria. The assessment of 
the war’s impact on city life, including healthcare and education, was 
gauged by considering the population and school-aged children (aged 
6–12 in Syria and 6–18 in Ukraine) within the 1 km radius around the 
damaged hospitals and schools.

Impacts from the Syrian civil war. The Syrian civil war since 2011 has 
triggered substantial urban damage. The TKDS-PtNet model identified 
a large number of completely damaged buildings and the presence 
of bomb craters. As shown in Fig. 4, approximately 53,700 buildings 
in the six Syrian cities were located in the identified damaged areas, 
where about 116,800–158,600 people lived. Aleppo, Hama, Homs and 
Deir-Ez-Zor cities had continuous damage areas in a strip-like pattern, 
indicating that these cities have experienced intense bombing. Aleppo, 
as the largest city in Syria and one of the oldest human settlements in 
the world, had a considerable number of landmark cultural and herit-
age buildings. Unfortunately, it experienced severe destruction, with 
38,514 buildings, including 23 schools and 6 hospitals as well as very 
large portions of the historic buildings, and about 78,300–103,400 
people in damaged areas. In Homs and Hama cities, destruction was 
clustered heavily in some neighborhoods. These areas were densely 
populated, which might result in massive casualties. There were 6,740 
buildings, including 1 school and 1 hospital, and 26,100 people in the 
damaged areas in Homs City, ranking as Syria’s third-largest city. Such 
damage to infrastructure might have additional repercussions on 
healthcare and education. In the six Syrian cities, we identified 9 hos-
pitals and 39 schools in damaged areas, potentially leading to a short-
age of healthcare services for about 151,700–203,500 people and a 
disruption in education of about 19,400–26,400 school-aged children.

Impacts from the Russia–Ukraine conflict. Compared with the dam-
age inflicted by the Syrian civil war, urban destruction resulting from 
the Russia–Ukraine conflict shows more clustered spatial pattern and 
more severe damage to industrial buildings. In the four Ukrainian 
cities, as is shown in Fig. 4, about 3,850 buildings were located in the 
damaged zones, and about 3,971–4,192 people may be directly affected 
during the war. There were three schools (no hospitals) in identified 
damaged zones, potentially leading to a disruption in education of 
about 912–960 school-aged children. Among the four Ukrainian cities,  
Mariupol City experienced the most severe building damage, as shown 
in the building damage map of Mariupol City on 28 May 2022 (Sup-
plementary Fig. 9). The majority (73.41%) of the damaged areas were 
concentrated in the central and southern areas of Mariupol, which 
include Livoberezhnyi, Zhovtnevyi and Azovstal areas. Notably, in addi-
tion to substantial damage to urban houses and apartments, Mariupol 
experienced severe damage to 66 industrial buildings and 11 garages. 
Specifically, the Azovstal zone, a major industrial area in Mariupol, 
witnessed damage to 31 industrial buildings, while Livoberezhnyi also 
identified damage to 18 industrial buildings. As an important industrial 
city in Ukraine, Rubizhne had more than 1,200 buildings located in the 
damaged zones, including 1 school and 22 industrial buildings, while 
Sievierodonetsk had about 200 buildings in the damaged zones, 19 of 
which were industrial buildings.

Discussion
To uncover war city profiles and further avoid catastrophe, remote 
sensing imagery is an alternative cost-effective and noninvasive option 
to gather a complete view of urban destruction7. TKDS offers a reliable 
and rapid way to monitor urban destruction using high- or medium-
resolution satellite imagery and limited samples. The scheme is highly 
flexible and independent, such that its backbone model can be replaced 
by other deep learning models according to different visual recogni-
tion tasks or application scenarios. Even using 10-m-resolution satel-
lite imagery, TKDS-PtNet was able to obtain superior precision when 
monitoring building damage, consistently achieving overall F1-score 
values above 72.5 in the six Syrian cities and 83.5 in the four Ukrain-
ian cities. Performance on this monitoring task is far higher than the  
CNN-STS5 and ResNet models. Our study provides reliable evidence of 
urban destruction during the Syrian civil war and the Russia–Ukraine 
conflict. Substantial completely damaged buildings have been con-
firmed in the entire Mariupol City by the Russia–Ukraine conflict, in par-
ticular, Livoberezhnyi, Zhovtnevyi and Azovstal areas. Also, our results 
show that Aleppo was the most seriously damaged city where a large 
number of landmark cultural and heritage buildings were completely 
destroyed. The populations living in these damaged areas amounted 
to approximately 120,800–162,800 (116,800–158,600 in Syria and 
4,000–4,200 in Ukraine).

Table 2 | Performance and generalization of the models in Ukrainian cities

City (1) (2) (3) (4) (5)

ResNet-50 PtNet TKDS-PtNet Generalization (0%) Few-shot (5%)

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Mariupol 65.53 93.62 74.86 92.87 75.31 97.13 42.63 85.25 70.27 90.62

Rubizhne 43.60 93.12 61.04 91.75 90.40 99.71 56.11 96.49 78.24 98.92

Sievierodonetsk 17.09 76.42 15.51 69.33 42.46 88.30 22.74 91.32 37.12 93.71

Volnovakha 58.26 94.35 81.56 90.26 94.38 99.05 70.21 96.90 93.10 99.59

All 48.45 92.12 64.12 90.48 83.50 98.08

The samples in each city were split into training and testing sets with a proportion of 70% and 30%, respectively. To test the performance of the models, the TKDS-PtNet model was trained on 
the training sets of the four cities (columns 1–3). To test the generalization ability in each city, TKDS-PtNet was trained on all the samples from the other three cities. In the few-shot building 
damage detection, TKDS-PtNet was trained using the SSDA strategy. All samples from the three cities were fed into the network, but only 5% of the annotated samples from the target city were 
retained. The remaining 95% of the annotated samples were not used in the training procedure. TKDS-PtNet was used to detect building damage for the given cities after 20 training epochs 
(columns 4 and 5). The performance and generalization ability in each city were tested on their respective testing sets.
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This work illustrates that our model allows policymakers to gain 
a good overview of the level of destruction in a city, both temporally 
and spatially. It also provides estimates of the affected infrastructure 

and population. However, to get precise numbers on critical infra-
structure that is damaged, policymakers need to manually verify the 
model output since a high level of certainty is of significance33. In these 
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Fig. 4 | Building damage and population distribution in Syrian Aleppo, 
Homs, Raqqa, Hama, Deir-Ez-Zor and Idlib cities and Ukrainian Mariupol, 
Rubizhne, Sievierodonetsk and Volnovakha cities. The red rectangles 
represent the completely damaged building footprints (the sizes of the 
squares have been adjusted for visual comfort). The locations of hospitals 
(yellow circles) and schools (green triangles) are obtained from OSM data. 

The orange and pink polygons represent all the building footprints of the city. 
In Homs, Raqqa, Hama and Idlib cities where the OSM data are large missing, 
GlobalMLBuildingFootprints data are used as alternative data for building 
footprints. The background map color indicates the average population density 
in each 100 m × 100 m grid cell during the war.
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cases, one major contribution of the model is that verification of criti-
cal infrastructure damage may be done more efficiently through the 
use of TKDS. The generated urban infrastructure destruction data 
also opens up possibilities for a set of new research agendas in urban 
sciences5,34–36. For instance, our findings may help understand the 
microlevel forcing drivers of urban conflict. What measures need to 
be taken to reduce civilian fatalities during urban conflict? What are 
the effects of building destruction on displacement, health burden 
and educational attainment?

This study has several limitations. We focus on monitoring com-
pletely damaged buildings and exclude moderate and severe damage. 
This is because the destruction appearance of the latter might not be 
visible in satellite images5. Identification of completely damaged build-
ings can be solved by using multi-angle satellite imagery. Although 
the TKDS-PtNet model has achieved high detection accuracy with 
imbalanced samples, the precision performance of the model is still 
affected by heavily imbalanced samples. The model may suffer from 
model biases caused by biased training data33. Thus, it is essential to 
acknowledge that the precise war impact assessments still require 
manual verifications of the model output. None of the limitations 
undermine the validity of our analysis, but they do highlight important 
avenues for future work. The model accuracy can be improved with 
extra ground-truth surveys and/or higher-resolution satellite imagery. 
As higher-resolution satellite imagery becomes more available and 
artificial-intelligence-powered tools for object detection advance, the 
captured building destruction samples might be more diverse and prev-
alent. These will further enhance the applicability of this work. In future 
work, we will collect the damaged critical infrastructure samples such 
as roads and railways, and identify the destruction using our method. 
Based on these data, we will develop a fit-for-purpose resilience frame-
work for post-conflict peace building of critical infrastructure.

Methods
Datasets
Satellite imagery. To monitor completely damaged buildings caused 
by the Syrian civil war, the training and validation data sets in the six 
cities are generated using 81 satellite images (approximately 0.5 m 
resolution) with red–green–blue and three-band channels obtained 
from Google Earth37 during 2009–2018. The image collection in each 
city contains at least one pre-war image patch.

Sentinel-2 Multi-Spectral Instrument Bottom of Atmosphere 
reflectance images (Level-2A) are selected for monitoring Mariupol, 
Sievierodonetsk, Volnovakha and Rubizhne cities of Ukraine. We obtain 
all Sentinel-2 images with cloud coverage less than 90% in Mariupol 
and Volnovakha cities between 24 February 2022 and 1 July 2022, in 
Rubizhne and Sievierodonetsk cities between 24 February 2022 and 1 
October 2022, and those in the corresponding areas from 10 September 
2021 are taken as pre-war images. Since Sentinel-2 has a high revisit fre-
quency of 5 days, all the collected Sentinel-2 images with cloud removal 
after the war still can completely cover the studied areas.

Labeled samples. The UNITAR/UNOSAT27use 0.5-m-resolution satel-
lite images from Google Earth and other data sources such as  
OpenStreetMap (OSM) data to visually identify and label multiple 
instances of building damage in the six Syrian cities and four Ukrainian 
cities. The completely damaged building samples in Syria mainly con-
sist of residential areas in conflict zones. For Mariupol City, building 
damage samples are only available in three areas, that is, Livoberezhnyi, 
Zhovtnevyi and Azovstal. We focus on detecting the completely dam-
aged buildings, since the damaged patterns of other levels are not 
always clearly visible in remote sensing images5. The positive or nega-
tive samples are defined according to the UNITAR/UNOSAT annotation. 
We divide the study area into a series of nonoverlapping grids 
g1, g2, ⋯ gi ⋯, gk with a size of 60 m × 60 m, where k denotes the number 
of the grids. For any grid gi, it includes a pre-war image patch p git0  and  

n ongoing war image patches p git1 ,p
gi
t2 ,⋯ ,p gitn  (n > 1, and n may vary across 

grids). Each of the ongoing war images pgitj  in gi is stacked with p git0  to 
construct n bitemporal-image patches x git0t1 , x

gi
t0t2 ,⋯ , x git0tj ,⋯ , x git0tn.

In the building damage monitoring of the Syrian civil war, each 
0.5-m-resolution satellite image is cropped into nonoverlapping 
patches with a size of 120 × 120 pixels. Then each image patch is down-
sampled to 6 × 6 pixels as the image patch of 10-m- resolution images. 
The 10-m-resolution and 20-m-resolution bands of Sentinel-2 satellite 
images are used to monitor the Russia–Ukraine conflict urban destruc-
tion. They are cropped into image patches with different sizes (6 × 6 
pixels for bands with a resolution of 10 m and 3 × 3 pixels for bands with 
a resolution of 20 m) as the sample data.

The bitemporal-image patch xgit0tj is classified as a damaged building 
sample (positive sample) if gi contains at least one complete destruction 
building in time tj; otherwise, it is an undamaged building sample (nega-
tive sample). The dataset is expanded following the strategy similar to 
the study5 (Supplementary Fig. 10). The bitemporal-image patches 
without labels in a grid are assigned to the classes according to the three 
principles. (1) For a grid without damaged buildings in time tl, the bitem-
poral-image patches on the grid are also assigned to the undamaged 
category before tl. (2) There are almost no urban reconstructions during 
or in a short period after the war. If the image patches are positive in tl, 
all the patches in the same grid are also labeled as positive after tl.  
(3) For the grids labeled as damaged or undamaged at both tl1 and  
tl2 (tl1 < tl2), their bitemporal-image patches are correspondingly labeled 
damaged or undamaged at the two timestamps.

Multi-temporal patch sequence samples. The multi-temporal patch 
sequence samples are generated by labeling the completely damaged 
buildings with the same grid in multiple periods. Specifically, we sort 
annotated bitemporal-image patches by time within each grid 
gi(i = 1, 2, ⋯, k) to form the multi-temporal patch sequence samples  
PSgi. Each multi-temporal patch sequence sample is a four-dimensional 
patch matrix with a temporal dimension to store all annotated bitem-
poral-image patches x git0t1 , x

gi
t0t2 , ⋅, x

gi
t0tn in a specific grid gi and a list that 

stores the corresponding labels l git1 , l
gi
t2 ,⋯ , l gitn . The length of the list is 

equal to the temporal dimension of the matrix.

TKDS-PtNet
As shown in Fig. 2, PtNet sequentially extracts the building damage fea-
tures of each bitemporal-image patch from the image patch sequences, 
and a TCD uses the temporal context information of the image feature 
sequences to output a list of the predicted results. The workflow of the 
TKDS-PtNet model is similar to that of a natural language translation 
task, in which each bitemporal-image patch corresponds to a semantic 
vector in a sentence. Each of the bitemporal-image patches in the multi-
temporal patch sequence is encoded into a semantic vector containing 
multi-temporal features through PtNet. The size and labeling time of 
class samples vary with regions, resulting in the multi-temporal patch 
sequences often having different lengths. Zero matrices are padded 
to make multi-temporal patch sequence samples have the same size 
as they are input into TKDS-PtNet. The predicted values in the cor-
responding positions of the zero matrices are excluded from the final 
results. The TCD outputs the detection results in chronological order 
by correlating the contextual relationships of these semantic vectors 
in the temporal dimension.

PtNet. PtNet is a classification/regression deep learning model  
(Fig. 2), consisting of a pixel embedding and a transformer-based clas-
sifier. The pixel embedding is composed of two ResNet blocks, an 
average pooling layer and a channel attention layer. It encodes the input 
bitemporal-image patch x git0tj  into 36 semantic tokens T1. The trans-
former-based classifier, consisting of two transformer blocks and a 
fully connected layer, uses a multi-head self-attention mechanism to 
extract the changing features of the damaged buildings before and 
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during/after the war from the semantic tokens. The length of 36 seman-
tic tokens is compressed to 4 (T2) by the fully connected layer. These 
semantic tokens are concatenated into a semantic vector V gi

t0tj  with a 
size of 144 and a multi-layer perceptron compressed V gi

t0tj into a single 

classification result Cgitj . Each bitemporal-image patch x git0tj in a certain 

multi-temporal patch sequence PSgi = {x git0t1 , x
gi
t0t2 ,⋯ , x git0tn }  is encoded 

into a vector V gi
t0tj , and TCD compresses the vector sequence 

VSgi = {V gi
t0t1 ,V

gi
t0t2 ,⋯ ,V gi

t0tn }  into a classification probability vector 

CS′gi = {C′git1 ,C
′gi
t2 ,⋯ ,C′gitn }.

We do not adopt pooling layers in PtNet, and set the kernel size of 
all convolution layers in the ResNet block to 1, to prevent mixing infor-
mation from adjacent pixels during the encoding process. In this way, 
the detection results are only determined by the input image patches, 
and each semantic vector is encoded from a single pixel.

When Sentinel-2 satellite images are used as the input of the model, 
the multi-scale feature fusion head is constructed (Supplementary  
Fig. 11a) before pixel embedding, to fuse bands with 10 m and 20 m 
resolutions. The upscaling block (Supplementary Fig. 11b) in the multi-
scale feature fusion head upscales 20-m-resolution bands to match 
the size of the 10-m-resolution ones. We stack them as the input of the 
pixel embedding. The upscaling block consists of a 2 × 2 deconvolution 
layer and a 1 × 1 convolution layer, and the number of feature channels 
remains unchanged during the upscaling process.

Temporal feature learning. In TKDS-PtNet, n(n > 0) temporal bitem-
poral-image patches x git0t1 , x

gi
t0t2 ,⋯ , x git0tn  in a multi-temporal patch 

sequence PSgi represent n semantic vector features V gi
t0t1 ,V

gi
t0t2 ,⋯ ,V gi

t0tn  
via PtNet. These n vectors are sequentially ordered in the temporal 
dimension and mapped to a sequence of the prediction results 
CS′gi = {C′git1 ,C

′gi
t2 ,⋯ ,C′gitn } through the TCD structure. The TCD structure 

consists of two one-dimensional convolutional layers with kernel sizes 
of 3, a padding of 1 and a rectified linear unit (ReLu) activation layer. 
One-dimensional convolution is a common method for correlating 
neighboring semantic vectors in natural language processing, which 
endows TCD with the ability to capture contextual features in the 
temporal dimension. This indicates that TKDS-PtNet can learn the 
features of the neighboring temporal images before and after the 
buildings are destroyed.

The state of building damage exhibits irreversible patterns in the 
temporal dimension, which is manifested in temporal monitoring 
as a constraint in which the number of transitions NT in the building 
damage state changes is no more than 1. As NT is equal to 1, the tem-
poral sequence begins with an undamaged state. These patterns are 
encapsulated within the label vector of the temporal samples. The 
TCD in TKDS combines the temporal context of the features to capture 
local patterns in the temporal dimension. TKDS also incorporates TTV 
regularization, which enforces the temporal global constraints on the 
detection results. In this way, our temporal prediction is aligned more 
closely with the patterns of building damage in real-world scenarios.

We combine the cross-entropy function with the TTV regulariza-
tion term (equation (1)) to form the loss function (equation (2)).

TTV (CS′) = φ∑bs
i=1 K

giNTgi

∑bs
i=1 n

gi

NTgi =
ngi
∑
j=1
||C

′gi
tj+1

− C′gitj
||

Kgi = {
0, NTgi = 1 andC′git1 = 0

1, else

(1)

TotalLoss = CELoss(C′, l ) + TTV (CS′) (2)

where CELoss(C′, l )  is a cross-entropy loss to compute the mapping 
error loss between the damage predicted labels C′ and ground truth l 

for each image patch. TTV(CS′) is a TTV regularization term to measure 
the deviation between a predicted binary sequence CS′ and its damage 
pattern. NTgi is the sum of the absolute values of the first-order differ-
ence of the predicted sequence CS′gi, and represents the number of the 
transitions between the undamaged and damaged states in a predicted 
sequence. Kgi is a piecewise constant. TTV(CS′) is the sum of NTgi divided 
by the length of multi-temporal patch sequence. φ is the weight coef-
ficient, bs is the batch size and ngi is the length of CS′gi.

Elimination of pseudo-temporal regularity. In some intense con-
flict zones, the number of damaged buildings suddenly increases 
at a given time. Such patterns are usually unique in certain cities or 
regions. While knowing these patterns helps identify the building 
damage in specific areas, it may adversely affect the accuracy of the 
detection in other conflict zones. To prevent the model from learning 
the patterns inherent in the temporal sequence samples, the random 
copy and delete (RCD) strategy has been developed as a unique data 
augmentation method for expanding temporal sequence samples. 
RCD can randomly select, copy, insert and delete the patches within 
the temporal sequence samples.

Specifically, for the multi-temporal patch sequence samples, their 
regularity in the temporal dimension (for example, adjacent relation-
ships among images, and positions of the images in the sequence) is 
usually determined by the acquisition and annotation time. As shown 
in Supplementary Fig. 8, to eliminate the pseudo-regularity, the RCD is 
introduced during the training procedure. Without changing the tem-
poral sequence, some samples in the multi-temporal patch sequence 
are copied or removed to increase the diversity of the samples in the 
temporal dimension. The number and positions of the copied and 
deleted samples are randomly determined. We restrict the number 
of the copied samples Ncopy and delete the samples Ndel to prevent the 
length L of the samples in the multi-temporal patch sequence from 
being too long (L > Lmax, where Lmax is the maximum length of the origi-
nal multi-temporal patch sequence) or too short (L > 5). Lcopy ≤ L and 
Lcopy ≤ Lmax − L and L + Lcopy − Ldel ≥ 5. The goal is to preserve the intrin-
sic temporal patterns of the sample sequences while increasing the 
diversity of the distribution of the damaged samples within them. This 
strategy enhances the detection performance and the generalizability 
of the proposed model.

SSDA for building damage detection
Incorporating SCL26 and MMD25, we develop an SSDA strategy based 
on the TKDS-PtNet model in the context of few-shot building damage 
detection (Supplementary Fig. 12). The aim is to improve the detec-
tion performance in the target city with few image samples. Labeled 
source domain samples (PSS), unlabeled target domain samples (PSTU) 
and labeled target domain samples (PSTL) are fed into TKDS-PtNet, 
where PSTL is much smaller than PSS or PSTU. TKDS-PtNet only predicts 
the results of PSS and PSTL, and computes the TotalLoss (equation (2)) 
together with the corresponding label sequences (LSS and LSTL).

The input features of the last layer in TCD are extracted and 
divided into patch features f, which match with each bitemporal-image 
patch x in the input PS. The MMD25 loss is calculated according to the 
source domain features fS and the target domain features {fTL, fTU} (fTL 
and fTU respectively represent the features of labeled samples and 
unlabeled samples). In the feature space, a consistency constraint 
is introduced to bring the feature distributions of the two domain  
features closer.

We also separate fTL and fS to features of damaged samples { fTL1 , fS1 } 
and features of damaged samples { fTL0 , fS0 }, and compute feature pro-
totypes for the four categories (PfTL1 ,PfTL0 ,PfS1 ,PfS0 ). The feature proto-
types are normalized to the unit hypersphere, and the distances 
between each prototype and the other three are computed as a measure 
of similarity according to the distance between vectors on the hyper-
sphere. Based on whether they come from the images with the same 
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class, an SCL loss26 is calculated. This enables the model to map patches 
from two domains with the same class into a feature space and extract 
discriminative features.

Validations
We use the georeferenced bombing events obtained from LiveUAmap 
(http://liveuamap.com) to externally validate the predicted results. 
We captured a total of 1,042 bombing events recorded by LiveUAmap  
in the six Syrian cities from 2011 to 2018 and the four Ukrainian  
cities from 24 February to 1 October 2022. The prediction results are 
obtained by TKDS-PtNet using the LiveUAmap records which include 
over 3.3 million predictions and all missing values are replaced with 
zero. A two-way fixed effects model is used to estimate the association 
of the bombing events with the building damage prediction results 
(equation (3)).

Dgt = Bombgt + θg + μtνc + ϵgt (3)

where Dgt is the binary prediction value of the building damage, and g 
and t represent the grid and capture time of the input image patches, 
respectively. Bombgt is a binary indicator that denotes whether there 
has been a bombing event before time t at grid g. θg and μtνc are the grid 
fixed effects and time–city fixed effects. ϵgt is the error term.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The original labels of the completely destroyed buildings are pub-
licly available via UNITAR at https://www.unitar.org/maps (ref. 27). 
The 0.5-resolution satellite images in 2009 and 2018 are available via 
Google Earth at https://www.google.com/earth (ref. 37). The sentinel-2  
satellite images are available from https://dataspace.copernicus.eu/. 
The bombing events are available from http://liveuamap.com. The 
WorldPop population dataset is available from https://hub.worldpop.
org/. Building footprints in Syria and Ukraine are available from https://
www.openstreetmap.org/ and via GitHub at https://github.com/ 
microsoft/GlobalMLBuildingFootprints (ref. 32).

Code availability
The source codes are available on GitHub at https://github.com/
Houzy116/TKDS-PtNet (ref. 38).
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