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Abstract: Surface downward longwave radiation (SDLR) is crucial for maintaining the global ra-
diative budget balance. Due to their ease of practicality, SDLR parameterization models are widely
used, making their objective evaluation essential. In this study, against comprehensive ground
measurements collected from more than 300 globally distributed sites, four SDLR parameterization
models, including three popular existing ones and a newly proposed model, were evaluated under
clear- and cloudy-sky conditions at hourly (daytime and nighttime) and daily scales, respectively.
The validation results indicated that the new model, namely the Peng model, originally proposed for
SDLR estimation at the sea surface and applied for the first time to the land surface, outperformed
all three existing models in nearly all cases, especially under cloudy-sky conditions. Moreover, the
Peng model demonstrated robustness across various land cover types, elevation zones, and seasons.
All four SDLR models outperformed the Global Land Surface Satellite product from Advanced Very
High-Resolution Radiometer Data (GLASS-AVHRR), ERA5, and CERES_SYN1de-g_Ed4A prod-
ucts. The Peng model achieved the highest accuracy, with validated RMSE values of 13.552 and
14.055 W/m2 and biases of −0.25 and −0.025 W/m2 under clear- and cloudy-sky conditions at
daily scale, respectively. Its superior performance can be attributed to the inclusion of two cloud
parameters, total column cloud liquid water and ice water, besides the cloud fraction. However, the
optimal combination of these three parameters may vary depending on specific cases. In addition, all
SDLR models require improvements for wetlands, bare soil, ice-covered surfaces, and high-elevation
regions. Overall, the Peng model demonstrates significant potential for widespread use in SDLR
estimation for both land and sea surfaces.

Keywords: surface downward longwave radiation; parameterization model; evaluation; model
comparison; clear-sky; cloudy-sky; hourly; daily; GLASS-AVHRR; ERA5; CERES; thermal infrared
remote sensing

1. Introduction

Surface downward longwave radiation (SDLR) refers to the thermal radiation, with
wavelength ranging from 4 to 100 µm, emitted by atmospheric constituents such as H2O,
CO2, O3 molecules, and cloud water droplets near the Earth’s surface. As a fundamental
component of the surface radiation budget [1], studying SDLR is crucial for understanding
the energy exchange between the Earth’s surface and the atmosphere. SDLR also plays a
pivotal role in climate dynamics, weather forecasts, agricultural practices, and other studies
and applications [2,3].

Although SDLR measurements are generally considered accurate, there remains a
significant need for precise SDLR estimation methods due to limitations, such as poor
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spatial representativeness, uneven spatial distribution, and short duration of ground-based
measurements [4,5]. Therefore, numerous SDLR estimation models have been successfully
proposed. These widely used SDLR estimation models can be roughly categorized into
four types: physical models, hybrid models, machine learning models, and parameter-
ization models. Physical models, such as radiative transfer models, calculate SDLR by
accounting for interactions between the Earth’s surface and the atmosphere, along with
extensive meteorological and surface information. Most of the classic remotely sensed
SDLR products were generated from these models, such as the International Satellite Cloud
Climatology Project (ISCCP) [6]. However, physical models are often complex, and ob-
taining the necessary inputs is challenging. Hybrid models combine physical models with
statistical methods, resulting in higher computational efficiency and a well-defined physical
foundation. The newly released SDLR product from the Moderate-resolution Imaging
Spectroradiometer (MODIS) data collected in the Global Land Surface Satellite (GLASS)
suite product (namely GLASS-MODIS) [7] under clear-sky conditions was generated us-
ing this type of model. However, hybrid models struggle with cloudy-sky conditions,
as satellite observations alone cannot fully capture the thermal contributions from cloud
layers and the underlying atmosphere [8,9]. Recent advances in machine learning have
led to the successful application of various machine learning and deep learning methods
for SDLR estimation [10,11] and even have been applied to generate a new SDLR product
from the Advanced Very High-Resolution Radiometer (AVHRR) data collected in GLASS,
known as GLASS-AVHRR [12]. Nonetheless, these approaches often involve substantial
computational costs and complex model architectures.

Relatively, parameterization models, which are based on statistical relationships be-
tween SDLR and certain meteorological parameters, such as the near-surface air tem-
perature (Ta, Unit: K), relative humidity (RH), cloud-related factors, and other ancillary
information, are widely used due to their easy implementation, high computational effi-
ciency, and satisfactory performance. Therefore, plenty of SDLR parameterization models
have been proposed. Specifically, for clear-sky conditions, the SDLR parameterization
models are typically extensions of the Stefan–Boltzmann law, assuming that the effects of
atmospheric scattering can be neglected. This makes the determination of the atmospheric
effective emissivity (ε0) essential. Previous studies have suggested that ε0 is related to
near-surface water vapor pressure (ea, Unit: hPa) [13,14], Ta [1,15], or both [16–19]. Mean-
while, for cloudy-sky conditions, the corresponding SDLR parameterization models usually
combine clear-sky SDLR parameterization models with terms for cloud parameters, such
as cloud cover [20] and cloud-base temperature (CBT) [21]. However, these cloud-related
parameters are difficult to obtain, particularly CBT, which almost dominates the cloudy
sky SDLR. Hence, some studies have proposed indirect methods to obtain CBT from other
easily obtained parameters. For instance, CBT estimated from cloud thickness was used in
a parameterization model to produce the GLASS-MODIS cloudy-sky SDLR product [8].
Recently, the total amount of liquid water per unit area in the air column from the base to
the top of the cloud, called total column cloud liquid water (clw), and its chilled counter-
part (ice), called total column cloud ice water (ciw), which are physically correlated with
CBT through the cloud base height, were first introduced for estimating cloud-sky SDLR
at sea surface to achieve better results [22]. Thus, the performance of parameterization
models highly depends on the choice of parameters and the quality of the data used for
model training.

Meanwhile, the evaluation of existing SDLR parameterization methods has attracted
extensive attention. Early evaluations were often limited to specific geographic regions,
leading to diverse and sometimes conflicting results. For instance, Kjaersgaard et al. [23] as-
sessed twenty SDLR models at both daily and hourly scales against the measurements from
two locations in Denmark. Their results indicated that models developed by Swinbank [15],
Prata [17], and Brutsaert [16] performed well under clear-sky conditions but struggled to
accurately estimate SDLR at lower values. However, studies conducted in northeastern
and southern Brazil [4,24] questioned these findings. They suggested that SDLR param-
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eterization models incorporating physical mechanisms, such as Brutsaert [16], generally
performed better. Conversely, the models relying solely on Ta, such as Swinbank [15],
tended to overestimate and exhibit lower accuracy. Afterward, more and more comprehen-
sive in situ measurements were utilized to assess SDLR models with the establishment of
globally distributed sites. For example, Guo et al. [25] and Cheng et al. [26] evaluated seven
clear-sky and seven cloudy-sky SDLR parameterization models at instantaneous scale by
using ground measurements from 71 and 44 globally distributed stations, respectively, and
they recommended the model proposed by Carmona et al. [27]. Most of their findings
were consistent with previous studies, and they further pointed out that the uncertainty
of the SDLR parameterization models was mostly from terms relating to moisture (e.g.,
RH and water vapor) and cloud properties. Overall, it was suggested that incorporating
more precise information about cloud and moisture, as well as physical mechanisms, could
enhance the accuracy of SDLR parameterization models. Although these studies provided
valuable insights for model developers and users, certain limitations remained. Firstly,
due to the limitations of available in situ measurements, most evaluations only focused on
the instantaneous scale, whereas the performance of SDLR models at a daily scale under
all-sky conditions needs more attention [22]. Secondly, the robustness of these models
globally, especially over the polar regions, has not been explored thoroughly. Additionally,
new SDLR parameterization models for sea surface proposed by Peng et al. [22] in recent
years, which is different from most of the previous models by taken into more cloud-related
parameters account, has not been comprehensively assessed at land surface though it
worked very well at sea surface.

Therefore, the primary objective of this study is to evaluate the performance of four
SDLR parameterization models, including three widely used existing models and a new
model developed by Peng et al. [22] (referred to as the Peng model), which was originally
designed for ocean surface at both hourly and daily scales under clear- or/and cloudy-
sky conditions globally. After that, further analysis of the Peng model was conducted
under various conditions, including land cover type, elevation, and season. The paper
is organized as follows: Section 2 introduces the four evaluated SDLR parameterization
models; Section 3 details the data and methods used; and the model evaluation results and
further analysis of the Peng model are provided in Section 4.

2. Materials

Table 1 lists all the variables used in this study and their sources. Two time scales,
hourly and daily, were considered. Therefore, all variables were pre-processed to match
these time scales. More details about these data are given below.

Table 1. All variables used in this study and their sources.

Abbr. Full Name Time Scales Unit Data Source

DSR Downward shortwave radiation Daily/hourly W/m2

In situ
USR Upward shortwave radiation Daily/hourly W/m2

SDLR Surface downward longwave radiation Daily/hourly W/m2

Ta Air temperature at 2 m above the surface Daily/hourly K
RH Relative humidity Daily/hourly %

Sn Shortwave net radiation Daily/hourly W/m2
Calculatedea Water vapor pressure Daily/hourly hPa

CI Clearness Index Daily/hourly \
C Cloud fraction (total cloud volume) Daily/hourly 0–1

ERA5clw Total column cloud liquid water Daily/hourly g/m3

ciw Total column cloud ice water Daily/hourly g/m3

2.1. Ground Measurements

Ground measurements were collected from 318 sites across nine observational net-
works spanning from 1992 to 2021. Note that only the sites providing the five radiative
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and meteorological measurements, including DSR, USR, SDLR, Ta, and RH simultaneously,
were selected in this study. Figure 1 illustrates the spatial distribution of these sites, which
cover latitudes ranging from 89.98◦S to 82.49◦N and elevations ranging from 0 to 4318 m.
The sites encompass eight main land cover types, including cropland (CRO, 39 sites), bare
land (BSV, 6 sites), forest (FRO, 108 sites), grassland (GRA, 103 sites), ice (ICE, 23 sites),
wetland (WET, 18 sites), shrubland (SHR, sites), and tundra (TUN, 2 sites). This diverse
representation of land cover types, climatic zones, spatial distribution, and elevation ranges
ensured a thorough evaluation of the four SDLR models.
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Table 2. Details of the nine observation networks.

Network Full Name No. of
Sites

Time
Period

Sampling
Frequency

/min
URL Reference

ARM
The Atmospheric

Radiation
Measurement

33 1994–2019 1 https://www.archive.arm.gov,
accessed on 11 September 2024. [28]

AsiaFlux Asia Flux dataset 14 2001–2014 30
https://db.cger.nies.go.jp/

asiafluxdb/?page_id=16, accessed
on 11 September 2024.

[29]

BSRN the Baseline Surface
Radiation Network 44 1992–2021 1/3 https://bsrn.awi.de, accessed on 11

September 2024. [30]

Lathuile Global Fluxnet 65 1996–2014 30 https://fluxnet.fluxdata.org,
accessed on 11 September 2024. [31]

AmeriFlux AmeriFlux 178 1996–2021 30 https://ameriflux.lbl.gov, accessed
on 11 September 2024. [32]

EFDC
The European Eddy

Fluxes Database
Cluster

60 1997–2021 30 http://www.europe-fluxdata.eu/,
accessed on 11 September 2024.

HiWATER
Heihe Watershed
Allied Telemetry

Experimental Research
18 2012–2020 10 http://data.tpdc.ac.cn/zh-hans/,

accessed on 11 September 2024. [33]

SURFRAD
the Surface Radiation

Budget Observing
Network

7 1995–2021 3
ftp://aftp.cmdl.noaa.gov/data/

radiation/surfrad/, accessed on 11
September 2024.

[34]

PROMICE PROMICE 22 2007–2021 60 https://www.promice.org, accessed
on 11 September 2024. [35]

https://www.archive.arm.gov
https://db.cger.nies.go.jp/asiafluxdb/?page_id=16
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To ensure data quality, all measurements with high quality defined by their providers
were further examined manually to remove any unreasonable samples with abnormal
values (i.e., extremely high or low). After converting into local time format, all measure-
ments with a sampling frequency (see Table 2) of less than one hour were aggregated into
hourly means, provided that 80% of the measurements within one hour were available.
Subsequently, all hourly data were aggregated into daily means without any missing val-
ues. Afterward, two variables, Sn and ea, were calculated using these hourly/daily ground
measurements. Specifically, Sn was computed by subtracting USR from DSR, and it was
used to categorize all hourly samples into daytime or nighttime, with the hourly samples
in the daytime if Sn > 20 W/m2 and vice versa, as suggested by Wang K et al. [36]. Whereas
ea was calculated from RH using the following equation [25]:

ea= es

(
RH
100

)
=

(
6.108 exp

[
17.27Ta

Ta+237.3

])(
RH
100

)
(1)

where es is the saturation vapor pressure at a specific Ta. Note that the unit of Ta is °C in
Equation (1).

Furthermore, all hourly/daily samples under clear skies were identified according
to the corresponding hourly/daily clearness index (CI). CI is defined as the ratio of the
DSR and the extraterrestrial radiation (DSRtoa) and is usually employed to measure the
atmospheric transmittance and ascertain the sky conditions [37,38].

CI =
DSR

DSRtoa
(2)

In this study, the hourly and daily CI were both used. As per previous studies [22,39],
if the hourly or daily CI > 0.7, then it indicates the hourly or daily under clear sky conditions,
and CI ≤ 0.7 indicates under a cloudy sky. The hourly CI was calculated by Equation (2)
with hourly DSR measurements and hourly DSRtoa_hourly computed by [40]:

DSRtoa_hourly =
12
π

GSCdr

(
sin φ cos δ(sin ω2 − sin ω1) +

π(ω2 − ω1)

180
sin φ sin δ

)
(3)

δ = 0.409 sin
(

2πdoy
365

− 1.39
)

(4)

dr = 1 + 0.033 cos
(

2πdoy
365

)
(5)

where GSC is the solar constant (1367 W/m2); φ and δ are the latitude (unit: rad) and solar
declination angle (unit: rad), respectively; doy is the day of the year; and dr is the inverse
relative distance from the Earth to the Sun; ω1 and ω2 are the hour angles (unit: degrees) at
the beginning and the end of the hour interval. Note that the nighttime CI was computed
using the method suggested by Flerchinger et al. [41], which involves a 24 h solar radiation
window centered around each hourly observation.

The daily CI was calculated by Equation (2) with daily DSR measurements and daily
DSRtoa_daily computed by [42]:

DSRtoa_daily =
1440

π
Gscdr(ωs sin φ cos δ + cos δ sin ωs) (6)

ωs = cos−1(− tan φ tan δ) (7)

where Gsc is the solar constant (0.0820 MJm−2 min−1); ωs is the sunset hour angle (unit: rad).
Therefore, there were 10,312,034 samples (2,459,204 under clear-sky conditions and

7,852,830 under cloudy-sky conditions) at hourly scale, and 601,331 samples (131,745 under
clear-sky conditions and 469,586 under cloudy-sky conditions) at daily scale used for
evaluation, respectively.
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To ensure a thorough evaluation, six cases (cases1–6) were considered, correspond-
ing to hourly daytime/nighttime and daily under clear-sky conditions and hourly day-
time/nighttime and daily under cloudy-sky conditions, respectively. In each case, all
models were first trained with these samples. Finally, in each case, 70% of the samples at
each site were randomly selected for model training, and the remaining 30% were used for
independent validation. The size of each sample dataset is listed in Table 3.

Table 3. Details of the samples used for model training and validation for each case.

Case Explanation Training Samples Validation Samples

Case1
Clear-sky Hourly Daytime 1,067,240 457,400

Case2 Nighttime 654,175 280,389
Case3 Daily \ 92,204 39,541

Case4
Cloudy-sky Hourly Daytime 2,853,072 1,222,767

Case5 Nighttime 2,643,885 1,133,106
Case6 Daily \ 328,701 140,885

2.2. ERA5 Reanalysis Meteorological Data

ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/home, accessed on 11 September
2024), produced by the European Centre for Medium-Range Weather Forecasts (ECMWF),
is the fifth-generation atmospheric reanalysis dataset [43]. Covering the period from 1970
to the present, ERA5 provides a comprehensive record of global climate and weather. It
integrates model simulations with global observations through 4D-Var data assimilation
within the Integrated Forecasting System (IFS), achieving an enhanced spatial resolution
of 0.25◦ and a temporal resolution of hourly intervals compared to ERA-interim [44].
Although existing studies have demonstrated the satisfactory accuracy of ERA5 at the
monthly average scale [45], specialized validation studies for cloud-related parameters
(C, clw, and ciw) at the hourly or daily scale are still lacking. Despite this, ERA5 remains
a valuable data source, particularly given the absence of other similarly high-resolution
alternatives for hourly-scale cloud parameters. We believe that ERA5 remains a valuable
data source, especially in the absence of other similarly high-resolution alternatives. For
this study, the three hourly cloud-related parameters (C, clw, and ciw) were extracted from
ERA5 for 318 stations spanning from 1992 to 2021 and aggregated into daily averages.
Additionally, ERA5 SDLR data at both hourly and daily scales, derived from the RRTM fast
radiative transfer model, were also obtained for inter-comparison because of its slightly
superior performance compared to CERES [46].

2.3. Remotely Sensed SDLR Products

Two remotely sensed SDLR products, CERES SYN1-deg_Ed4A (CERES4 for short)
and GLASS-AVHRR, were used for comparison in this study.

1. CERES4: The CERES SYN1deg_Ed4A product (https://ceres.larc.nasa.gov/, accessed
on 11 September 2024) provides global surface radiative flux data with a 1-degree
spatial resolution at hourly and daily scales since 2000 [47]. SDLR values are de-
rived from the Langley Fu-Liou radiative transfer model by incorporating the inputs
from MODIS, geostationary satellites (GEO), and meteorological profile data from
GEOS-4 and GEOS-5 [48–50]. Xu et al. [51] conducted a validation using ground
measurements from 288 sites to evaluate three satellite products (GLASS-MODIS V40,
GLASS-AVHRR, and CERES-SYN) and three reanalysis datasets (ERA5, MERRA-2,
and GLDAS). The results indicated that SDLR values from GLASS-AVHRR, CERES-
SYN, and ERA5 exhibited higher accuracy compared to the other three products, with
CERES4 demonstrating a bias of −1.54 W/m2 and an RMSE of 22.49 W/m2 at the
daily scale. For this study, CERES4 hourly and daily SDLR data were extracted for the
319 sites.

https://cds.climate.copernicus.eu/cdsapp#!/home
https://ceres.larc.nasa.gov/
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2. GLASS-AVHRR: GLASS-AVHRR (https://glass-product.bnu.edu.cn/, accessed on
11 September 2024) provides global daily all-sky SDLR data from 1981 to 2021 with
a spatial resolution of 5 km. It utilizes a densely connected convolutional neural
network (DesCNN) and a transfer learning strategy to derive SDLR from AVHRR
TOA bands and ERA5 near-surface meteorological parameters (i.e., Ta, ea, and RH).
The product has been rigorously validated across 231 globally distributed sites, with
an all-sky RMSE of 18.66 W/m2 and a mean bias error of −2.69 W/m2. Moreover, Xu
et al. [51] also demonstrated that estimates from GLASS-AVHRR and the ERA5 SDLR
product were more accurate and stable compared to other products (e.g., GLASS-
MODIS). Like CERES4, the GLASS-AVHRR SDLR was also extracted, but only at the
daily scale.

Ultimately, the common samples were screened for inter-comparison between all four
models and the three SDLR products. After matching, there were 708,880 and 2,251,078 com-
mon hourly samples under clear-sky and cloudy-sky conditions and 33,985 and 121,165 com-
mon daily samples under clear-sky and cloudy-sky, respectively.

3. Methods
3.1. Brief Review of the Four Evaluated SDLR Parameterization Models

The four evaluated SDLR parameterization models include three existing models,
namely the Prata model [17], which only works under clear-sky conditions; the K-C
model [27,52], designed for cloudy-sky conditions; and the Carmona2 model [27], appli-
cable to all-sky conditions; as well as the newly developed Peng model [22], which also
works for all-sky conditions. The three existing models were thought to have superior
performance, and this study marks the first time the Peng model has been applied to land
surface. Detailed descriptions of the four models are provided below.

A. Prata Model

The Prata model was proposed based on a new emissivity model, which was also
proposed by Prata [17] under the assumption that the overall longwave spectrum under
clear-sky conditions could be represented by a modified exponential band model that
combines Ta and ea. Consequently, the Prata model can only be used for clear-sky SDLR
estimation. It is expressed as follows:

SDLR =

(
1 −

[(
1 + 46.5

(
ea
Ta

))
exp

(
−
(

a1+b146.5
(

ea
Ta

))0.5
)])

σT4
a (8)

where σ is the Stefan–Boltzmann constant (5.67 × 10−8 Wm−2K−4), and a1 and b1 are
empirical coefficients defined as 1.2 and 3 in the original study, and they were obtained
through the modeled clear-sky emissivity at various water vapor path lengths provided
by Robinson [53,54]. Based on clear-sky SDLR measurements (No. of samples = 14) from
a site near Hay in New South Wales, Australia, and data from various published sources
(No. of samples = 254), the authors validated the Prata model and compared it with
five other commonly used models. The results showed that the performance of the Prata
model was equal to or even better than the other five models in all cases, especially in the
polar, mid-latitude, or tropical regions. Afterward, Flerchinger et al. [41] also highlighted
the Prata model’s high estimation accuracy after evaluating 13 clear-sky SDLR models
at 14 sites in North America and China. Similar conclusions were also drawn by Guo
et al. [25] on a global scale. Moreover, Guo et al. [25] found that the performance of the
Prata model changed little, even with its original coefficients, when used globally because
of its physical mechanism. However, several studies have also indicated that the Prata
model with original coefficients tends to overestimate SDLR [4,24,27]. Additionally, like
the Carmona2 model and others, its accuracy diminishes when applied to forest, wetland,
and ice surfaces [25].

B. Carmona2 Model

https://glass-product.bnu.edu.cn/
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The Carmona2 model is an update of the SDLR estimation models developed by
Carmona et al. [27]. This model was built based on 8393 daytime measurements from
eight measuring campaigns in Argentina [55], and it can work under all-sky conditions
at an hourly scale. The Carmona2 model uses a multivariate linear regression format,
mathematically expressed as:

SDLR =(a2+b2Ta+d2RH + e2C)σT4
a (9)

where C is the cloud fraction (0~1, dimensionless), and a2, b2, d2, and e2 are the empirical
coefficients defined as −0.34, 3.36 × 10−3, 1.94 × 10−3, and 0.213 in the original study,
respectively.

According to previous studies [25,26], under clear-sky conditions (C = 0 in Equation (9)),
the Carmona2 model and its earlier version (referred to as the Carmona model) performed
the best at instantaneous scale compared to other models due to their similar formats.
Under cloudy skies, the Carmona2 model showed superior performance. Hence, the
Carmona2 model was selected for evaluation in this study. However, it has limitations,
such as reduced accuracy in high-altitude regions and coefficients that are constrained by
specific geographical locations and atmospheric conditions.

C. K-C Model

Distinct from the other three evaluated models, the K-C model combines two SDLR
parameterization models, one developed by Thomas Konzelmann et al. [52] for cloudy-sky
conditions (referred to as the K model) and a simplified version of the Carmona model
only for clear-sky conditions [27]. The K model (see Equation (10)) was built based on
measurements from seven sites in three meteorological experimental areas with different
elevations in western Greenland, applicable to both instantaneous and daily scales. In
the K model, the emissivity is considered to be the weighted average of clear-sky and
overcast-sky emissivity values.

SDLR = SDLRclr(1 + Ce3)+ f 3Ce3σT4
a (10)

where the empirical coefficients e3 and f 3 were defined as 0.963 and 3 for daily scales and
0.952 and 4 for instantaneous scales, respectively. SDLRclr is the corresponding SDLR
under clear-sky conditions, which can be estimated from the simplified Carmona model
Equation (9) as suggested by Cheng et al. [26] for its satisfactory performance both region-
ally and globally.

SDLR =(a3+b3Ta+d3RH)σT4
a (11)

where the empirical coefficients a3, b3, and d3 were defined as −0.34, 3.36 × 10−3, and
1.94 × 10−3 in the original study. According to Cheng et al. [26], the performance of the
K-C model ranked second to the Carmona2 model under cloudy-sky conditions. Like
other models, it underestimated the SDLR over bare land and forest while tending to
overestimate the SDLR over grassland.

D. Peng Model

As mentioned above, the Peng model [22] was proposed for the all-sky SDLR estima-
tion at the ocean surface for both hourly and daily scales. This model was built based on
comprehensive measurements collected from 65 moored buoys distributed across global
seas from 1988 to 2019. The Peng model is formulated as a nonlinear function of Ta, RH, C,
clw (Unit: g/m2), and ciw (Unit: g/m2), as follows:

SDLR = a4T4
a +b4C + d4 ln(1 + clw)+e4 ln(1 + ciw)+ f 4RH + g4 (12)

where a4, b4, d4, e4, f 4, and g4 are the empirical coefficients. And their empirical values
are 1.06, 42.18, 4.90, −1.97, 0.89, and −178.28, respectively. After validation against the
moored buoy measurements and inter-comparison with other existing models, the authors
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claimed that the Peng model outperformed the other models at both hourly (daytime and
nighttime) and daily scales under either clear-sky or all-sky conditions at the ocean surface.
Similarly, most SDLR models developed for land surfaces have also been applied to ocean
surfaces [56–58]. Hence, the Peng model was selected for evaluation in this study.

3.2. Model Performance Evaluation

As described above, model evaluations were conducted across six cases (see Table 3)
under clear- and cloudy-sky conditions at both hourly (daytime/nighttime) and daily scales,
respectively. However, due to their specific applicability, the K-C model and Prata model
were not evaluated under clear- and cloudy-sky conditions, respectively. Before comparison,
all four SDLR models were calibrated using the corresponding training samples by the
least squares method in each case, as shown in Table 3.

Four commonly used indices were employed to present the model accuracy: mean bias
error (Bias), RMSE, relative root-mean-square error (RRMSE), and determination coefficient
(R2). RRMSE is used to eliminate the influence of the difference in sample size on RMSE.
They are computed as below:

Bias =
1
n

n

∑
i = 1

(SDLRe,i − SDLRo,i) (13)

RMSE =

√
1

n−1

n
∑

i = 1
(SDLRe,i − SDLRo,i)

2 (14)

RRMSE =
RMSE

SDLRo,i
(15)

R2 = 1 − ∑n
i = 1(SDLRe,i − SDLRo,i)

2

∑n
i = 1

(
SDLRe,i − SDLRo,i

)2 (16)

where SDLRe,i is the SDLR estimates from the four parameterization models, SDLRo,i is
the observed SDLR, SDLRo,i is the mean SDLRo,i, and n is the number of samples.

4. Results
4.1. Model Accuracy at Site Scale

The model validation results under the six cases were roughly divided into clear- and
cloudy-sky conditions for separate illustrations.

4.1.1. Clear-Sky

Against the measurements, three models, the Prata, Carmona2, and Peng models,
were evaluated under clear-sky conditions in cases1–3, respectively. Before evaluation,
these three models were calibrated with training samples at both hourly and daily scales.
At hourly scale, the calibrated coefficients for each model during daytime and nighttime
are given in Table 4, respectively.

Table 4. The calibrated coefficients of the Prata, Carmona2, and Peng models under clear-sky
conditions at an hourly scale.

Model a b d e f g

Prata
Daytime 0.972 2.780

Nighttime 1.130 2.989

Carmona2
Daytime −0.648 4.4 × 10−3 2.1 × 10−3

Nighttime −0.378 3.6 × 10−3 1.8 × 10−3

Peng Daytime 1.026 8.552 2.562 0.738 0.806 −156.605
Nighttime 0.980 8.551 1.660 5.096 0.661 −124.783
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For better illustration, the validation accuracies of the three models, both before and
after calibration, were calculated against the same validation samples. The comparison
results are presented in Table 5. Overall, from the RMSE or RRMSE perspective, all three
models performed better during the daytime compared to the nighttime, regardless of cali-
bration. Calibration with comprehensive training samples for either daytime or nighttime
significantly improved their estimation accuracy, with RMSE values ranging from 16.679
to 17.316 W/m2 at daytime and from 17.793 to 18.664 W/m2 at nighttime, respectively.
Relatively, the Prata model showed the most significant improvement during the daytime,
with its RMSE decreasing from 20.601 to 16.679 W/m2, while the Peng model showed
the greatest improvement at nighttime, with RMSE reducing from 21.218 to 17.793 W/m2;
Additionally, the severe overestimation of the Prata model at daytime (Bias = 11.972 W/m2)
and the underestimation of the Peng models at nighttime (Bias = −8.764 W/m2) with their
original coefficients were effectively corrected after calibration. This aligns with findings
from other studies, which have shown that calibrated coefficients can significantly reduce
model bias [4,24,25]. Among the three models, the Peng model generally performed well
and the most robustly at both daytime and nighttime with similar RMSE values; the cali-
brated Prata model performed the best at daytime but the worst at nighttime, followed by
the Carmona2 model with similar RMSE values but larger biases (−4.749 W/m2 at daytime
and −1.263 W/m2 at nighttime).

Table 5. Validation accuracy of the Prata, Carmona2, and Peng models with their original and
calibrated coefficients at hourly scale under clear-sky conditions.

Situation
Daytime Nighttime

Prata Carmona2 Peng Prata Carmona2 Peng

Original Bias (W/m2) 11.972 −5.486 −0.938 1.488 −9.068 −8.764

RMSE
(W/m2) 20.601 18.287 17.734 18.761 20.201 21.218

RRMSE (%) 6.821 6.055 5.872 6.895 7.424 7.797
R2 0.935 0.934 0.929 0.896 0.904 0.897

Calibration Bias (W/m2) 0.008 −4.749 0.026 −0.368 −1.263 0.005
RMSE

(W/m2) 16.679 17.316 16.917 18.664 17.859 17.793

RRMSE (%) 5.523 5.733 5.601 6.859 6.563 6.539
R2 0.935 0.935 0.933 0.897 0.905 0.905

At a daily scale, with the calibrated coefficients of the three models for clear days
(Table 6), their validation accuracies were very similar, but all improved by approximately
2 W/m2 in RMSE after calibration (Figure 2). The models performed much better on
the daily scale than on the hourly scale, a result consistent with the findings of Kjaers-
gaard et al. [23]. Particularly, the Peng model performed the best, yielding an RMSE of
13.47 W/m2, a bias of −0.029 W/m2, and an R2 of 0.944. Moreover, the Carmona2 model
showed a tendency for overestimation (bias = 3.828 W/m2).

Table 6. The calibration coefficients of the Prata, Carmona2, and Peng models under clear-sky
conditions at a daily scale.

Model a b d e f g
Prata 1.058 2.852

Carmona2 −0.521 4 × 10−3 2 × 10−3

Peng 1.011 5.556 1.046 1.321 0.773 −145.236



Remote Sens. 2024, 16, 3422 11 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 23 
 

 

Table 6. The calibration coefficients of the Prata, Carmona2, and Peng models under clear-sky 
conditions at a daily scale. 

Model a b d e f g 
Prata 1.058 2.852  

Carmona2 −0.521 4 × 10ି3 2 × 10ି3  
Peng 1.011 5.556 1.046 1.321 0.773 −145.236 

 
Figure 2. Validation accuracy of the Prata, Carmona2, and Peng models with the original and 
calibrated coefficients at daily scales under clear-sky conditions. The color bar indicates the number 
of samples. 

Therefore, the Prata, Carmono2, and Peng models worked well with minor 
differences under clear-sky conditions at both hourly and daily scales, with the Peng 
model performing more robustly. 

4.1.2. Cloudy-Sky 
Under cloudy-sky conditions, the Carmona2, K-C, and Peng models were evaluated 

for cases4–6, respectively. Similarly, the calibrated coefficients for each model at an hourly 
scale are presented in Table 7. Additionally, Table 8 provides the validation accuracy of 
each model before and after calibration using the same validation samples. 

Table 7. The same as Table 4 but for the K-C, Carmona2, and Peng models under cloudy-sky 
conditions. 

Model Time a b d e f g 

K-C 
Daytime 0.275 1.5 × 10ି3 2.5 × 10ି3 453.294 0.915 

 
Nighttime 0.302 1.3 × 10-3 2.3 × 10ି3 78.188 0.929 

Carmona2 
Daytime 0.316 1.2 × 10ି3 2.4 × 10ି3 0.068 

 
Nighttime 0.379 0.8 × 10ି3 2.3 × 10ି3 0.113 

Peng 
Daytime 0.888 14.314 4.905 2.558 0.761 −94.553 

Nighttime 0.871 115.577 5.164 3.925 0.611 −84.064 

Table 8. The same as Table 5, but for the K-C, Carmona2, and Peng models under cloudy-sky 
conditions. 

Situation 
Daytime Nighttime 

Carmona2 K-C Peng Carmona2 K-C Peng 

Figure 2. Validation accuracy of the Prata, Carmona2, and Peng models with the original and
calibrated coefficients at daily scales under clear-sky conditions. The color bar indicates the number
of samples.

Therefore, the Prata, Carmono2, and Peng models worked well with minor differences
under clear-sky conditions at both hourly and daily scales, with the Peng model performing
more robustly.

4.1.2. Cloudy-Sky

Under cloudy-sky conditions, the Carmona2, K-C, and Peng models were evaluated
for cases4–6, respectively. Similarly, the calibrated coefficients for each model at an hourly
scale are presented in Table 7. Additionally, Table 8 provides the validation accuracy of
each model before and after calibration using the same validation samples.

Table 7. The same as Table 4 but for the K-C, Carmona2, and Peng models under cloudy-sky conditions.

Model Time a b d e f g

K-C
Daytime 0.275 1.5 × 10−3 2.5 × 10−3 453.294 0.915
Nighttime 0.302 1.3 × 10−3 2.3 × 10−3 78.188 0.929

Carmona2
Daytime 0.316 1.2 × 10−3 2.4 × 10−3 0.068
Nighttime 0.379 0.8 × 10−3 2.3 × 10−3 0.113

Peng
Daytime 0.888 14.314 4.905 2.558 0.761 −94.553
Nighttime 0.871 115.577 5.164 3.925 0.611 −84.064

In general, the accuracy of each model improved significantly after calibration, partic-
ularly for the Carmona2 model, which saw reductions in RMSEs of 14.039 W/m2 (daytime)
and 8.644 W/m2 (nighttime) and biases of 23.392 W/m2 (daytime) and 13.123 W/m2 (night-
time). The daytime accuracies of all three models slightly surpassed those at nighttime,
with each model experiencing a decline in RMSE values ranging from 1.127 to 2.303 W/m2,
consistent with findings under clear-sky conditions. However, the SDLR models under
cloudy-sky conditions at hourly scale performed worse than under clear-sky conditions
(Table 5), indicating that clouds are one of the primary factors contributing to increased
uncertainty in SDLR estimation [59,60]. Among the models, the Peng model demonstrated
the most robust performer, consistently demonstrating superior accuracy under both day-
time and nighttime conditions, both before and after calibration. After calibration, the Peng
model exhibited RMSEs of 20.142 W/m2 (daytime) and 21.308 W/m2 (nighttime), biases
of −0.027 W/m2 (daytime) and 0.015 W/m2 (nighttime), and R2 values of 0.867 (daytime)
and 0.864 (nighttime). The calibrated Carmona2 model followed.
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Table 8. The same as Table 5, but for the K-C, Carmona2, and Peng models under cloudy-sky conditions.

Situation
Daytime Nighttime

Carmona2 K-C Peng Carmona2 K-C Peng

Original Bias (W/m2) 23.595 2.203 2.198 18.258 0.72 0.014
RMSE

(W/m2) 36.242 32.02 23.123 33.15 29.431 25.102

RRMSE (%) 10.803 9.544 6.892 10.803 9.591 8.181
R2 0.809 0.696 0.855 0.819 0.752 0.846

Calibration Bias (W/m2) 0.521 −1.289 −0.027 5.135 1.926 0.015
RMSE

(W/m2) 22.203 23.774 20.142 24.506 24.902 21.308

RRMSE (%) 6.618 7.086 6.004 7.986 8.115 6.944
R2 0.839 0.816 0.867 0.828 0.815 0.864

At the daily scale, as illustrated in Figure 3, the validation results were similar to
those at the hourly scale. Using the calibration coefficients (Table 9), all three models
demonstrated a remarkable improvement in estimation accuracy, with the Carmona2
model showing the most significant decrease in validated RMSE of 9.587 W/m2 of the.
Overall, the validation accuracies of all three models on a daily scale outperformed those
on an hourly scale, with RMSE values ranging from 14.016 to 16.209 W/m2 after calibration.
Among the three models, the calibrated Peng model exhibited the highest accuracy, with its
RMSE value lower than those of the other models by 2~3 W/m2 and an R2 of up to 0.934.
Conversely, the K-C model performed the worst and tended to overestimate, while the
Carmona2 model showed a tendency to underestimate.
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Table 9. The same as Table 6 but for the K-C, Carmona2, and Peng models under cloudy-sky conditions.

Model a b d e f g
K-C 0.070 2 × 10−3 2.6 × 10−3 7.662 0.938

Carmona2 0.218 1.4 × 10−3 2.3 × 10−3 0.118
Peng 0.905 29.924 4.459 1.871 0.686 −109.290

In summary, it is suggested to calibrate all SDLR parameterization models with global
training data before application. Although these four models performed worse under
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cloudy-sky conditions and at nighttime hours, the Peng model still demonstrated the most
robust and best performance in all cases.

4.2. Model Performance under Various Conditions

For further exploration, the validation accuracies of the four calibrated SDLR models
at a daily scale were further examined under various conditions, including land cover,
elevation, and season. As previously discussed, the Carmona2 and Peng models were
evaluated under both clear- and cloudy-sky conditions, whereas the Prata and K-C models
were only evaluated under clear-sky and cloudy-sky conditions, respectively.

The evaluation results for the four models across eight land cover types are presented
in Figure 4. Generally, these models performed better under clear-sky conditions than
under cloudy-sky conditions (results in dashed boxes), except TUN, ICE with high albedo,
and WET with seasonal variations. All models performed worse for these three land cover
types, indicating that essential information on SDLR for these three land cover types has not
been thoroughly explored, which aligns with the conclusions of Guo et al. [25]. Among the
other five land cover types, all models performed the best for GRA and SHR. The Carmona2
model, in particular, exhibited the strongest tendency for overestimation or underestimation
in SDLR, with the largest bias magnitude for most land cover types. However, for ICE
and WET, the Carmono2 model worked the best under clear-sky conditions. Surprisingly,
the Prata model worked the best for TUN. The Peng model showed significant superiority
with the smallest RRMSE and bias for nearly all land cover types under all-sky conditions,
suggesting it is suitable for daily SDLR estimation, especially on cloudy days.
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Figure 5 illustrates the estimation accuracies of the four SDLR models across different
elevation zones. Six elevation zones (<300 m, 300–1000 m, 1000–1500 m, 1500–2500 m,
2500–3500 m, 3500–4500 m) were considered. Overall, the daily SDLR estimation accuracy
of these models was better for clear days than for cloudy days, with generally smaller
RRMSE and bias magnitude only, except for the elevation zone above 3500 m. All the model
estimation accuracies increased with elevation, yielding RRMSE ranging from 10.03% to
11.45% under clear-sky conditions and from 5.98% to 6.68% under cloudy-sky conditions,
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respectively. Consistent with the results for different land cover types, the Peng model
still performed robustly and better under all-sky conditions across all elevation zones,
especially under cloudy-sky conditions.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 4. Validation accuracies of the four evaluated SDLR models at a daily scale for eight land 
cover types under clear- and cloudy-sky conditions. The dashed boxes indicate the results under a 
cloudy sky. 

Figure 5 illustrates the estimation accuracies of the four SDLR models across different 
elevation zones. Six elevation zones (<300 m, 300–1000 m, 1000–1500 m, 1500–2500 m, 
2500–3500 m, 3500–4500 m) were considered. Overall, the daily SDLR estimation accuracy 
of these models was better for clear days than for cloudy days, with generally smaller 
RRMSE and bias magnitude only, except for the elevation zone above 3500 m. All the 
model estimation accuracies increased with elevation, yielding RRMSE ranging from 
10.03% to 11.45% under clear-sky conditions and from 5.98% to 6.68% under cloudy-sky 
conditions, respectively. Consistent with the results for different land cover types, the 
Peng model still performed robustly and better under all-sky conditions across all 
elevation zones, especially under cloudy-sky conditions. 

 
Figure 5. The same as Figure 4, but for six elevation zones (<300 m, 300–1000 m, 1000–1500 m, 1500–
2500 m, 2500–3500 m, 3500–4500 m). The results under cloudy-sky conditions are added to the gray 
background. 

Moreover, the performance of the four models across four seasons is displayed in 
Figure 6. The four seasons were divided into Spring (Mar.–May), Summer (Jun.–Aug.), 
Autumn (Sep.–Nov.), and Winter (Dec.–Feb.). It is evident that all models performed 
worst in winter (RRMSE ranging from 5.45% to 6.48%) and best in summer (RRMSE 

Figure 5. The same as Figure 4, but for six elevation zones (<300 m, 300–1000 m, 1000–1500 m,
1500–2500 m, 2500–3500 m, 3500–4500 m). The results under cloudy-sky conditions are added to the
gray background.

Moreover, the performance of the four models across four seasons is displayed in
Figure 6. The four seasons were divided into Spring (Mar.–May), Summer (Jun.–Aug.),
Autumn (Sep.–Nov.), and Winter (Dec.–Feb.). It is evident that all models performed worst
in winter (RRMSE ranging from 5.45% to 6.48%) and best in summer (RRMSE ranging
from 3.65% to 4.32%), with moderate performance in spring and autumn. The Prata
and Peng models showed slight superiority over the Carmona2 model under clear-sky
conditions (except in winter). Additionally, the Peng model exhibited a notable advantage
under cloudy-sky conditions, reducing RRMSE by 0.63% to 1.06% compared to that of the
Carmona2 and K-C models. Consistent with previous conclusions, the Carmona2 model
tended to overestimate under clear-sky conditions and underestimate under cloudy-sky
conditions across all seasons, whereas the K-C model consistently exhibited a tendency
to overestimate.
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Figure 6. The same as Figure 5, but for four seasons: Spring (Mar.–May), Summer (Jun.–Aug.),
Autumn (Sep.–Nov.), and Winter (Dec.–Feb.).

In a word, the Peng model is one of the most optimal models for daily SDLR estimation
compared to the other three models. However, all SDLR models require improvements for
specific land cover types (i.e., ICE, WET, and TUN) and high-elevation zones.
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4.3. Inter-Comparison with Three Existing SDLR Products
4.3.1. Comparison Results

Subsequently, the accuracy of the four SDLR parameterization models was compared
with three existing SDLR products, ERA5, CERES4, and GLASS-AVHRR, by validating
against common independent validation samples at both hourly and daily scales under
clear- and cloudy-sky conditions, respectively. Note that GLASS-AVHRR only provides
daily SDLR products. Table 10 and Figure 7 present the overall validation results of all
SDLR models and products at hourly and daily scales, respectively.

Table 10. Validation accuracy of the SDLR estimates from four models and two products (ERA5,
CERES4) at an hourly scale.

Indices Model Clear-Sky Cloudy-Sky Product Clear-Sky Cloudy-Sky
Bias (W/m2)

Prata model

−0.224

ERA5

−7.420 −9.701

RMSE (W/m2) 17.530 21.035 25.851

R2 0.926 0.907 0.845
Bias (W/m2)

K-C model

0.228

CERES4

1.620 −3.571

RMSE (W/m2) 24.349 25.622 27.770

R2 0.825 0.849 0.802
Bias (W/m2)

Carmona2
model

−3.509 2.706

RMSE (W/m2) 17.610 23.355

R2 0.928 0.841

Bias (W/m2)

Peng model

−0.074 −0.046

RMSE (W/m2) 17.327 20.748

R2 0.927 0.873

Consistent with previous findings, Table 10 shows that the Peng model worked the
best under all-sky at hourly, with the smallest RMSE of 17.327 and 20.748 W/m2 and
Bias magnitude of −0.074 and −0.046 W/m2 for clear- and cloudy-sky, respectively. In
comparison, the accuracy of all model estimates was better than that of the two products.
Relatively, ERA5 hourly SDLR tended to be severely underestimated under all sky condi-
tions (Bias of −7.420 under a clear sky and −9.701 W/m2 under the cloudy sky), though its
RMSE was smaller than that of CERES4. Overall, all estimates performed relatively better
without clouds.

At daily scale, for clear days (Figure 7a–f), the accuracy of the estimates from three
models (Prata, Carmona2, and Peng model) were similar, with their RMSE ranging from
13.552~13.817 W/m2, only with the overestimation observed for the Carmona2 model
(Bias = 3.596 W/m2). The three model results were all much better than those of the three
products, and the accuracy of ERA5 and GLASS-AVHRR was close, but the underestimation
was also the largest for ERA5 (Bias = −6.208 W/m2). Similarly, for cloudy days (Figure 7g–l),
the Peng model also showed superior performance with the smallest RMSE (14.055 W/m2)
and Bias (−0.025 W/m2), and all products performed worse than all models and tended
to be underestimated, especially ERA5 with the largest Bias magnitude (−9.057 W/m2).
Notably, the bias magnitude increased for nearly all estimates except for the Peng model,
further highlighting the Peng model’s robust performance under cloudy-sky conditions.

In summary, the Peng model demonstrated significant advantages over the other three
models and three SDLR products. Among the three products, GLASS-AVHRR and ERA5
ranked second with similar performance. However, their uncertainties were larger for
ice-covered high latitudes and during winter days. Subsequently, further analysis of the
Peng model is given below.
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4.3.2. Further Analysis of the Peng Model

In order to examine the performance of the Peng model globally, the spatial distribu-
tion of the site validation accuracy daily is shown in Figure 8, and the same results of the
three products are also given for comparison. It is seen that the Peng model demonstrated
the most robustness globally, though all estimates performed poorly in the Polar Regions.
Moreover, the accuracy of daily SDLR estimates was generally worse in western North
America compared to eastern North America.

Meanwhile, the time series of the four daily SDLR estimates at two randomly selected
stations (SF_GCM: 34.25◦N, 89.87◦W, Grassland; PM-QAS_L: 61.100◦N, −46.833◦W, ICE)
were examined to assess their long-term variations, as shown in Figure 9. The in situ
measurements (black dots) were added to each plot as a reference. Generally, the estimates
from the Peng model and the three products were able to roughly capture the variations in
SDLR at the two sites, but they all tended to underestimate SDLR, particularly in winter and
for ICE. Comparatively, the estimates from the Peng model and GLASS-AVHRR were close
to each other, but the ones from the Peng model were closer to the in situ measurements.
The underestimation was most severe for CERES4 at the ICE site.
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Figure 9. The time series of the daily SDLR from the Peng model and other three products at two
sites (a) SF_GCM (34.25◦N, 89.87◦W, Grassland) and (b) PM-QAS_M (61.100◦N, −46.833◦W, ICE).

From all the above results, the significant advantages of the Peng model over the other
three models and three SDLR products, particularly under a cloudy sky, are most possibly
because of the two cloud-related parameters clw and ciw included besides the three com-
monly used parameters, Ta, RH, and C. However, the Peng model was initially proposed
for sea surface; hence, the effectiveness of these variables for land surface application in the
Peng model is analyzed. Against the same validation samples, the validated RMSE values
of the Peng model with different combinations of the five input variables were calculated
separately for various cases. Then, the differences in ∆RMSE, obtained by subtracting
the RMSE of the original Peng model (Equation (12)) in the corresponding scenarios, are
presented in Figure 10.
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5. Conclusions 

Figure 10. Differences in the validated RMSE (∆RMSE) between the Peng models with different
combinations of the five input variables and the original one (all five variables).

It is evident that introducing C, clw, and ciw into the Peng model yielded insignificant
improvements (small ∆RMSE) under a clear sky. However, under cloudy-sky conditions,
the ciw was less important than clw in the Peng model. For daily SDLR estimation, C + clw is
suggested, whereas clw + ciw worked better for hourly scale, particularly during nighttime.

Combined with the results in Figure 11, for cloudy daily SDLR estimations across
most land cover types across four seasons, the combination of C and clw yielded a similar
performance to that of the original Peng model. The inclusion of ciw was only necessary
for specific cases, such as for TUN across four seasons and BSV in autumn, which may be
attributed to the typically lower temperatures and unique climatic conditions, facilitating
the formation of high-altitude clouds where the impact of ciw on radiation becomes more
pronounced. Besides TUN, the parameters clw and ciw were enough to provide cloud
information for BSV, ICE, and SHR in some seasons, especially in summer. These results
suggest that the insufficient information provided by C for cloudy skies can be effectively
supplemented by ciw and clw, with the two cloud-related parameters playing different
roles in various cases, thus requiring flexible selection, especially ciw, which is only extra
needed when the high-altitude clouds appear (i.e., TUN).
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Figure 11. The same as Figure 10, but on a daily scale under cloudy-sky conditions for the four
seasons. The red box indicates the smallest ∆RMSE. Note that a negative ∆RMSE indicates that the
corresponding combination of variables in the Peng model performed better than the original one.

5. Conclusions

The parameterization of SDLR models is widely utilized in practical applications
due to their simplicity, efficiency, and acceptable accuracy. Given the abundance of SDLR
parameterization models, especially newly developed ones, objective evaluation is crucial.
Based on extensive ground measurements collected from 318 globally distributed stations,
this study comprehensively evaluated three existing popular SDLR parameterization mod-
els, the Prata model, Carmona2 model, and the K-C model, alongside a newly proposed
model, the Peng model. The evaluations considered clear-/cloudy-sky conditions at both
hourly (daytime and nighttime) and daily scales.
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The results demonstrated that the calibrated Peng model, which was applied for
the first time to the land surface, outperformed the other models in terms of estimation
accuracy and robustness across nearly all cases. Specifically, the discrepancies among the
four models were minimal under clear-sky conditions. However, the advantage of the Peng
model was significant under cloudy-sky conditions for both hourly (daytime and nighttime)
and daily scales. Subsequently, comparing the estimates from the four models with three
existing SDLR products (GLASS-AVHRR, CERES4, and ERA5), all models showed better
accuracy than the products. ERA5 and GLASS-AVHRR had similar accuracy, but ERA5
was significantly underestimated. Further analysis illustrated the robustness of the Peng
model under various conditions, including different land cover types, elevation zones, and
seasons. The success of this model can be attributed to the inclusion of two cloud-related
parameters, clw and ciw, which have a close physical correlation with CBT. The results also
indicated that cloud information represented only by C, as used in most existing models, is
insufficient for estimating SDLR under cloudy-sky conditions. We can flexibly select ciw
and clw to supplement cloud information based on different situations. Specifically, ciw is
only needed additionally when high-altitude clouds are present (e.g., TUN). Furthermore,
the estimation accuracy of all SDLR models should be improved for wetlands, bare soil,
ice-covered surfaces, and high-elevation regions.

In conclusion, the Peng model has strong potential to be widely used for SDLR
estimation for both land and sea surfaces because of its high accuracy, robust performance,
and simple implementation. However, this study primarily relies on data from mid-
latitude regions, with relatively few data points from high-latitude areas, which may affect
representativeness. Future research should incorporate more high-quality data from high-
latitude regions, diverse climate types, and various surface covers to ensure thorough model
validation and accuracy. Additionally, enhancing the accuracy of longwave downward
radiation models for wetlands, bare soils, ice-covered surfaces, and high-elevation regions
will be a crucial focus for future studies.
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