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Abstract: Evapotranspiration (ET) is a key process in the eco-hydrological cycle of a basin and a
reliable indicator of climate change. However, the spatiotemporal alterations of ET in the contiguous
United States (CONUS) over the recent two decades remain largely uncertain. In this study, we
used the recently proposed Priestley–Taylor (PT)-SinRH model to estimate the ET of CONUS during
2001–2022 based on satellite and reanalysis data. The results showed that the PT-SinRH model
yielded superior performance at eddy covariance (EC) sites, and the root-mean-square error (RMSE)
ranged from 6.0 to 33.5 W/m2, the Kling–Gupta efficiency (KGE) ranged from 0.22 to 0.66. The annual
mean value of ET in CONUS from 2001 to 2022, estimated by the PT-SinRH model, was 42.54 W/m2,
and the spatial pattern of seasonal and annual ET variations increased from west to east. From
2001 to 2022, seasonal and annual ET of CONUS showed linear trends, with an average increase of
0.76 W/m2/da (p < 0.05). The ET in the east of CONUS exhibited a rate of increase at 1.45 W/m2/da,
and the ET in the west of CONUS exhibited a rate of increase at 0.42 W/m2/da (p < 0.05). Importantly,
our analysis of ET trends highlights that the change of precipitation (P) and normalized difference
vegetation index (NDVI) exerts a significant impact on the change of ET over CONUS.

Keywords: PT-SinRH model; evapotranspiration; contiguous United States; spatial-temporal variations;
controlling factors

1. Introduction

Terrestrial evapotranspiration (ET) plays a significant role in the water balance of
terrestrial ecosystems as it encompasses the total loss of water from plant transpiration and
evaporation from land surfaces (soil, snow, and vegetation) [1–3]. An accurate understand-
ing of ET is essential for comprehending the water and energy balance in a region. As a
key surface state variable, high-precision and long-time series ET products play an impor-
tant role in many related fields, such as drought monitoring [4], forest ecosystem health
and productivity evaluation, water use efficiency evaluation, global climate change [5],
and other research areas [6]. Especially the accurate simulation of forest ET plays a sig-
nificant role in forest water resource management and effective utilization, sustainable
development of forestry, and even global climate change response. Meanwhile, as a ma-
jor agricultural producer and important forest resource location, the contiguous United
States (CONUS) faces challenges in water resource management and pressure from climate
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change. Accurate ET also holds great importance for formulating effective water resource
management and forest conservation policies. However, much uncertainty remains con-
cerning the changes in ET over recent decades and the potential factors contributing to
these changes [7]. Many researchers are also aware of the importance of long-term trend
identification of ET, which can timely and accurately understand the hydrological and
climatic trends at the regional scale [8].

At present, the existing methods for estimating ET mainly include statistical or em-
pirical models [9–11], remotely sensed methods [12–14] and land surface models [15–18].
Based on these methods, various regional ET products have been generated in the last
few decades [19], such as Gridded FLUXNET ET, GFET [9], moderate resolution imaging
spectroradiometer (MODIS) ET, MOD16 [20,21], operational simplified surface energy
balance (SSEBop) model [22], global land surface satellite (GLASS) ET [23] and global land
evaporation and Amsterdam model ET, GLEAM [24,25]. However, there are significant
differences in the performance of these products in simulating the ET because of the dif-
ferences in model structures and dominant variables [26,27]. For example, Velpuri et al.
validated MOD16 and SSEBop ET products (1 km) based on MODIS using GFET and basin
water balance ET in the CONUS. The results show that the relative error range between
the ET estimated value and the ground observation value is 14%–44%, and the relative
performance of the two models is different in space [28]. Therefore, there is still great
uncertainty in the temporal and spatial variation of ET over long-time series in the CONUS,
and the uncertainty of various ET products produced by different methods ranges from
4–15 mm/month [27], which may be affected by model parameterization, spatial variation,
heterogeneity, and other factors. Most previous studies have shown that the main factor
determining changes in ET trends is the limitation of surface water supply [29,30]. However,
some studies suggest that changes in ET trends may also be influenced by temperature and
vegetation conditions [31–33].

As the most widely used algorithm, the Priestley–Taylor algorithm in the Jet Propul-
sion Laboratory (PT-JPL) [34] integrated remote sensing information so that the ET of
diverse ecosystems and biomes can be estimated at regional scales [35], and previous
studies have demonstrated that the PT-JPL outperforms other ET models [36]. Recently, Xie
et al. [37] proposed a new PT-SinRH model based on the PT-JPL, which has been used to
estimate ET in the CONUS. As an improved version of the PT-JPL, PT-SinRH replaces the
RHVPD (vapor pressure deficit, VPD) with a sine expression of relative humidity (RH) to
represent the soil moisture (SM) restriction. This substitution enchance the accuracy of ET
estimation by eliminating the influence of VPD uncertainty on ET. According to validations
conducted at eddy covariance (EC) sites with various land cover types throughout the
CONUS, the Kling–Gupta efficiency (KGE) between measured and predicted ET increased
by 8% for the PT-SinRH compared to the PT-JPL, while the root-mean-square error (RMSE)
decreased by about 3.5 W/m2 on a daily scale. However, there is a scarcity of comparable
research using the PT-SinRH model and reanalysis data to simulate ET over CONUS. There
is an urgent need to investigate the spatiotemporal variations of the long-term reaction of
ET to climatic change in the CONUS.

In this study, we applied the PT-SinRH model to quantify ET in CONUS and generated
the daily ET products with a spatial resolution of 0.05◦ based on satellite and meteorological
reanalysis data from 2001 to 2022, providing an effective reference for addressing the lack
of high spatiotemporal ET products in CONUS. We have three main objectives. Firstly, we
evaluate the effectiveness of the PT-SinRH with data from 28 EC sites in CONUS. Secondly,
we analyze the spatiotemporal patterns of annual and seasonal ET from 2001 to 2022 in the
CONUS. Finally, we detect the controlling factors of annual and seasonal variability and
trends change of ET in the CONUS from 2001 to 2022.
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2. Study Area and Data
2.1. Study Area

The CONUS comprises a diverse spectrum of ecosystems and climates, making it an
ideal study area for evaluating the PT-SinRH model. The CONUS, which was divided
into east and west by the Mississippi River and situated between longitudes 70◦–130◦ E
and latitudes 25◦–49◦ N (Figure 1), includes various climatic zones due to its varying
topography. The climate across the CONUS varies from arid deserts in the southwest
to humid subtropical conditions in the southeast and from polar climate in Alaska to
temperate forests in the Pacific Northwest.

Figure 1. Study area.

The CONUS features a diverse range of land cover types (Figure 1), and the global
land cover dataset (GlobeLand30) (30 m) was used as the background of the study area
(http://www.globeland30.org, accessed on 16 February 2024). These ecosystems are situ-
ated across diverse geographical and climatic regions. In this study, the CONUS is divided
into east and west based on the Mississippi river, and each contributing differently to the
climate and evapotranspiration. Furthermore, the CONUS hosts the extensive Ameriflux
network (https://ameriflux.lbl.gov, accessed on 10 April 2024) that provides superior
-quality measurements of critical elements essential for estimating evapotranspiration. We
evenly chose 28 EC sites, and the sites’ locations are marked with triangles in Figure 1.

2.2. Data
2.2.1. Ground Measurements

This study utilized ET observations from ground-based eddy covariance (EC) sites
to evaluate the effectiveness of the PT-SinRH model. Observations were sourced from
28 AmeriFlux sites (https://ameriflux.lbl.gov, accessed on 10 April 2024), distributed across
diverse terrains within the CONUS, covering a range of climatic conditions. These datasets
were integrated with hourly or half-hourly meteorological measurements, including av-
erage temperature (Ta), maximum air temperature (Tmax), RH, net radiation (Rn), ground
heat flux (G), and ET. According to the method proposed in Reichstein et al. [38], daily

http://www.globeland30.org
https://ameriflux.lbl.gov
https://ameriflux.lbl.gov
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ET observations were harmonized with half-hourly data to maintain a uniform temporal
resolution for ET. Data was deemed missing if more than 25% of the daily observations were
absent. The Bowen ratio closure approach was employed to correct the energy imbalance
in the EC measurements [39], as suggested by Foken [40].

2.2.2. Satellite and Reanalysis Data

We utilized the normalized difference vegetation index (NDVI) of the GLASS products
from 2001 to 2022, which were generated using advanced very high-resolution radiometer
(AVHRR) data, referred to as GLASS-AVHRR (https://glass-product.bnu.edu.cn/, accessed
on 14 April 2024). The spatial resolution of GLASS-AVHRR NDVI is 0.05◦, and the temporal
resolution is eight days [41].

Additionally, we incorporated meteorological variables Ta, Tmax, RH, G, Rn, and pre-
cipitation (P) from the Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) from 2001 to 2022 (https://disc.gsfc.nasa.gov/datasets, accessed
on 31 May 2024). MERRA-2 is produced by NASA’s Global Modeling and Assimilation
Office (GMAO) using atmospheric reanalysis data, which integrates extensive satellite
observations, including novel data types such as aerosols, microwaves, and hyperspectral
radiation. For improved data utilization, hourly MERRA-2 data with a spatial resolution of
1/2◦ × 2/3◦ were aggregated into daily values. At the same time, the bilinear interpolation
method is used to increase the spatial resolution to 0.05◦ to align with the spatial resolution
of GLASS-AVHRR NDVI. Then, we can generate ET products at a 0.05◦.

3. Methods
3.1. PT-SinRH Model

In the PT-JPL, RHVPD is employed to characterize soil moisture constraint, but VPD
has great uncertainty. To reduce the influence of VPD on ET, Xie et al. [37] proposed
the PT-SinRH model, which characterizes the soil moisture constraint by introducing a
sinusoidal function of RH. It can be represented as follows:

ET was calculated as the sum of the soil evaporation (ETs), canopy transpiration (ETc),
and interception evaporation (ETi):

ET = ETs + ETc + ETi, (1)

To obtain a more accurate estimation of soil evaporation (ETs), the PT-SinRH model
introduces RH and sine function to characterize SM constraint ( fsm). ETs can be described
as follows:

ETs = ( f wet + fsm(1 − fwet))α
∆

∆ + γ
(Rns − G), (2)

fwet = RH4, (3)

fsm = RH − sin(2πRH)/(2π), (4)

Rns = Rnexp(− kRn LAI), (5)

LAI = −ln(1 − fc)/kPAR, (6)

where fwet is the relative land wetness based on Equation (3) of Fisher et al. [34], α is Priestly
Taylor coefficient (1.26) [42], and γ is the psychrometric constant (0.066 kPa/◦C). The ∆
is the slope of the saturated vapor pressure curve. G is the ground heat flux. Rns is net
radiation to the soil, and Rn is net radiation. kRn = 0.6, LAI is total (green + non-green) leaf
area index, fc = f IPAR and kPAR = 0.5.

The canopy transpiration (ETc) can be described as follows:

ETc = (1 − fwet) fg fM f Tα
∆

∆ + γ
Rnc, (7)

https://glass-product.bnu.edu.cn/
https://disc.gsfc.nasa.gov/datasets
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fg =
fAPAR
f IPAR

, (8)

fM =
fAPAR

fAPARmax
, (9)

fT= exp

[
−
(

Tmax − Topt

λ

)2
]

, (10)

Rnc = Rn − Rns, (11)

fAPAR = m1SAVI + b1, (12)

f IPAR = m2NDVI + b2, (13)

where fg is the green canopy fraction, fM is the plant moisture constraint, and fAPAR and
f IPAR are the fraction of PAR absorbed by green vegetation cover and a fraction of PAR
intercepted by total vegetation, respectively, which are calculated based on Equations (12)
and (13), respectively. The m1 = 1.2 × 1.136, b1 = 1.2 × (−0.04), and m2 = 1.0, b2 = −0.05
(assumes 0.05 < NDVI < 1.0 and 0 < f IPAR < 0.95). The fT is the plant temperature constraint,
Tmax is the maximum air temperature, Topt is the optimum plant growth temperature and
λ = Topt, and Rnc is net radiation to the canopy.

The interception evaporation (ETi) can be described as follows:

ETi = fwetα
∆

∆ + γ
Rnc, (14)

3.2. Trend Analysis

We used significance testing and trend analysis to explore the spatiotemporal char-
acteristics of ET in the CONUS from 2001 to 2022, both annually and seasonally, in order
to better understand ET’s spatiotemporal characteristics in the CONUS and explore its
variation patterns.

Trend analysis is used to analyze the temporal changes of variables such as ET, NDVI,
Ta, and P in the CONUS from 2001 to 2022. In this study, a linear regression trend analysis
was performed using the least squares method, as follows:

y = s × x + i, (15)

s =
n × ∑n

i=1 i × xi − ∑n
i=1 i∑n

i=1 xi

n × ∑n
i=1 i2−(∑n

i=1 i)2 , (16)

where s is the slope, which is the interannual change rate of the variable, i represents the
year, and n equals 22, representing the number of years used to calculate the slope. xi is the
variable value for the i-th year. When s is greater than 0, the variable x shows an increasing
trend; when s is less than 0, the variable x shows a downward trend.

The significance test is used to test whether the trend of change in variables (slope s) is
significant. The student t-test was used in this study. When the significance p-value is less
than 0.05, the trend is significant at the 95% confidence level.

4. Results
4.1. Evaluation of PT-SinRH for Estimating ET at Site Scale

To evaluate the accuracy of the PT-SinRH simulations driven by satellite and reanalysis
data, a statistical comparison of the ET estimates and observations from 28 AmeriFlux sites
(Table 1) reveals that the daily ET estimated by the PT-SinRH model exhibits KGE values
ranging from 0.22 to 0.66 and an R2 varies between 0.28 and 0.77, while the RMSE varies
between 6.0 and 33.5 W/m2, and the values of bias varies between −28.3 and 14.3 W/m2.
For all sites, the PT-SinRH model demonstrated its best performance in reproducing ET
at US-MWA, achieving satisfactory accuracy with an R2 of 0.6, a KGE of 0.65, a bias of
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1.0 W/m2, and an RMSE of 12.1 W/m2. In contrast, the accuracy of the PT-SinRH model at
US-Rws was significantly poorer, with a minimum KGE of 0.22.

Table 1. Comparison of the predicted ET based on the PT-SinRH model driven by satellite and
reanalysis data inputs and daily observed ET for all 28 sites.

IGBP Site Name R2 RMSE Bias
KGE

(W/m2) (W/m2)

CRO

US-Bi1 0.69 32.8 −26.7 0.35
US-IB1 0.33 23.2 −13.8 0.34
US-KL1 0.54 15.6 −7.3 0.58
US-KM1 0.47 15.6 −5.7 0.59
US-MWA 0.60 12.1 1.0 0.65
US-Ro6 0.49 12.8 −4.7 0.56
US-Tw3 0.72 33.5 −28.0 0.37

GRA

US-AR1 0.65 19.4 9.7 0.53
US-Snf 0.71 31.9 −28.3 0.41
US-Var 0.77 26.1 −22.3 0.43
US-xAE 0.61 15.0 6.6 0.54
US-xCL 0.53 22.9 14.3 0.46
US-xKA 0.44 18.2 −8.1 0.47

DBF

US-CMW 0.39 6.0 −3.5 0.29
US-Slt 0.49 17.8 2.8 0.49

US-Wpp 0.65 15.8 −10.4 0.59
US-xBL 0.59 13.2 −2.8 0.66

ENF

US-Me6 0.28 17.2 4.7 0.41
US-xAB 0.51 20.2 −13.3 0.48
US-xJE 0.46 23.5 4.7 0.66
US-xTA 0.41 25.1 7.7 0.43

WET

US-MWW 0.52 15.7 1.1 0.57
US-Myb 0.51 28.7 −19.2 0.4
US-ORv 0.58 13.2 0.8 0.47
US-WPT 0.52 20.2 −13.4 0.44

SHR
US-Rws 0.37 19.8 −15.7 0.22
US-Ton 0.70 19.0 −12.9 0.49

MF US-xDL 0.40 24.8 10.6 0.48

Furthermore, we conducted site validation for the PT-SinRH model on a daily scale
and Figure 2 illustrates the precision of daily ET estimates based on the PT-SinRH under
various land cover types. The findings reveal that the estimated ET of the PT-SinRH model is
comparable to the observed ET, and the PT-SinRH demonstrates a certain level of simulation
performance. In comparison, the PT-SinRH model has the ex-cellent performance in
evergreen needleleaf forest (ENF), with an average R2 of 0.58, KGE of 0.70, and RMSE of
15.2 W/m2, a bias of 2.4 W/m2. However, the PT-SinRH model has the worst performance
in cropland (CRO), with an average KGE of only 0.40. Specifically, for all sites, the R2

value is 0.50, the RMSE is 16.0 W/m2, the bias is −2.0 W/m2, and the KGE is 0.70. At the
same time, due to the better performance of PT-JPL compared to other ET models [36],
the PT-JPL model was chosen for comparison with the observations, as displayed in
Figure 2. Then, compared with the PT-JPL, the PT-SinRH model enhances the precision
of estimated ET values, improving the KGE and R2 values by 0.01 and reducing RMSE by
approximately 0.2 W/m2.
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4.2. Mean Spatial Pattern of ET over the CONUS
4.2.1. Annual

The spatial distribution of ET averaged across the CONUS from 2001 to 2022 (Figure 3)
exhibits significant spatial heterogeneity, and the distribution manifests a high-low-high
pattern extending from the western to the eastern regions, attributing to the influence
of subsurface characteristics and climatic factors. The estimations of ET based on the
PT-SinRH model had an annual mean of 42.54 W/m2 from 2001 to 2022 in CONUS. Using
the Mississippi River as a boundary, the CONUS is divided into east and west regions. ET
in the mountainous regions of the west is relatively low, ranging from 0 to 50 W/m2. This
area receives minimal precipitation and is characterized by a relatively arid climate. In
this region, ET is higher in the lower-elevation woodlands located in the northern areas
compared to the higher-elevation grasslands found in the southern areas. It is worth
noting that ET is higher along the west coast near the Pacific Ocean. The southern and
southeastern regions have subtropical monsoon humid climates, heavily influenced by the
Gulf of Mexico Warm Current. These areas receive ample precipitation and exhibit high ET.
The highest value occurs in the southeastern United States, exceeding 100 W/m2.
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Figure 3. Annual spatial patterns of ET over the CONUS during 2001–2022.

4.2.2. Seasonal

The spatial distribution of ET in different seasons showed a significant difference
(Figure 4). The spatial distribution patterns of ET during MAM (March, April, and May) and
SON (September, October, and November) closely resemble the annual average distribution
pattern and generally exhibit variations corresponding to the altitude of the study area.
The western coastal area has higher ET, while the western inland area has lower ET, less
than 60 W/m2. ET in the eastern region is substantial, exhibiting a gradient that decreases
from south to north.

During the JJA (June, July, and August), there are significant differences between
the western and eastern regions. The west coast region, along with the eastern region, is
characterized by lower altitudes and proximity to the sea. These regions experience ample
rainfall and a humid climate, resulting in ET rates exceeding 100 W/m2. However, the
western mountains are landlocked at higher altitudes, with a dry climate and less ET. The
spatial heterogeneity of land surface ET is the highest during this season. In DJF (December,
January, and February), ET is low throughout the region, and the effect of temperature is
significant. The ET shows a decreasing distribution pattern from south to north. In general,
the spatial distribution of ET in the CONUS during different seasons is related to elevation
and climate type.
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4.3. Temporal Characteristics of ET Trends over the CONUS
4.3.1. Annual

Figure 5 shows that the ET estimations of CONUS based on the PT-SinRH model
increased from 2001 to 2022 with a linear fit having a slope of 0.76 W/m2/da (p < 0.05).
Considering the different climatic and hydrological conditions in the east and west of the
CONUS, the trend of ET in the west and east of the CONUS was further calculated. The
growing tendency of ET in the east of CONUS became more obvious, which appears to
drive ET increase across the CONUS. During the years between 2001 and 2022, the annual
ET of the west of CONUS exhibited a rate of increase at 0.42 W/m2/da (p < 0.05), while the
annual ET of the east of CONUS exhibited a rate of increase at 1.45 W/m2/da (p < 0.05).
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Figure 5. Interannual variability of ET from 2001 to 2022 over the (a) CONUS, (b) west of CONUS,
and (c) east of CONUS.

4.3.2. Seasonal

We plotted the interannual seasonal variability of ET over the CONUS estimated by
PT-SinRH for the four seasons, including MAM, JJA, SON, and DJF. Figure 6 shows that
ET increases at a rate of 2.67, 0.32, and 0.15 W/m2/da (p < 0.05) for JJA, SON, and DJF,
respectively, but there was a rate of decrease at 0.11 W/m2/da (p < 0.05) for MAM over
the CONUS from 2001 to 2022. The unexpected decrease was influenced by the decline of
ET for MAM in the west of CONUS, which exhibited a rate of decrease at 0.21 W/m2/da
(p < 0.05) from 2001 to 2022. The seasonal comparison of ET trends during the study period
indicates that the magnitude of the ET increase during JJA is significantly higher than that
of SON and DJF, which has reached 3.5 times the annual increase of ET over the CONUS.
Moreover, the regional comparison of ET trends indicates that the obvious increase of ET
trend diagnosed during JJA occurred primarily in the east of CONUS, and it exhibited a
rate of increase at 4.24 W/m2/da (p < 0.05). The ET trend of interannual seasonal changes
in the east of CONUS has always maintained and increased even during MAM, whereas
those in the west of CONUS are more stable, with a slight negative growth during MAM
and DJF and a growth rate of only 1.89 W/m2/da (p < 0.05) during JJA. The difference in
the seasonal contribution of eastern and western ET patterns to the CONUS agrees with the
annual contribution. These interannual variability indicate that the growing tendency of
ET over CONUS from 2001 to 2022 was mainly driven by changes in the summer seasons
in the eastern.
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Figure 6. Interannual seasonal variability of ET from 2001 to 2022 over the CONUS [(a) MAM, (b) JJA,
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CONUS [(a2) MAM, (b2) JJA, (c2) SON, and (d2) DJF].

4.4. Spatial Patterns of ET Trends Changes over the CONUS
4.4.1. Annual

Figure 7 illustrates the annual spatiotemporal variations of ET trends estimated by the
PT-SinRH model over the CONUS from 2001 to 2022. The ET of the CONUS showed an
increasing trend in most regions, and more than 80% of the regions passed the significance
test of p < 0.05. The increase of ET in space mainly occurred in the eastern region of the
CONUS, with an increase rate of about 6–8 W/m2/da. The ET of forests and grasslands
in the western region of the CONUS also showed a large increase rate. The ET in the
western region of the CONUS has significantly decreased from 2001 to 2022, especially in
the coastal areas where the reduction rate exceeded 10 W/m2/da. The ET of shrublands in
the southwestern of CONUS also showed a significant decrease.
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4.4.2. Seasonal

Figure 8 presents the multiyear (2001–2022) seasonal spatiotemporal variations of
ET trends across the CONUS. As depicted in Figure 8, the distribution of interannual ET
variation trend exhibits distinct seasonal patterns. During the MAM and SON, the CONUS
has shown mild changes from 2001 to 2022. The seasonal variations of ET for MAM and
SON are usually between −5 and 5 W/m2/da, and more than 70% of the CONUS have
passed the significance test with p < 0.05. The interannual variability of ET in JJA is more
pronounced than that of MAM and SON. More than 80% of CONUS show an increase in
ET, with a seasonal variation of up to 15 W/m2/da. In the western coastal areas of the
CONUS, ET is decreasing with a seasonal variation of 15 W/m2/da. Most regions exhibit
a seasonal variation of around 5 W/m2/da, and over 95% of the CONUS have passed a
significance test with p < 0.05. In the DJF, ET changes are minimal, with a slight increase
observed in the southeastern coastal areas, while most regions exhibit changes close to
0 W/m2/da. Therefore, the variation in the ET trend in JJA could constitute the majority of
the changes in the aggregate annual ET trend.

Furthermore, we observed distinct regional distribution patterns in the Northeast.
For instance, during MAM, the peak ET is concentrated in the eastern part of this region.
However, in the JJA, the ET peak expands and shifts westward. Previous research [31]
has indicated that in JJA, due to abundant solar radiation, increasing temperatures, and
vigorous vegetation transpiration, forest ecosystems exhibit higher ET intensity compared
to other ecosystems. Figure 8 depicts regions with high ET values predominantly located
in the eastern and central parts, where forests are densely populated. This suggests that
the distribution of forests significantly influences the ET distribution characteristics during
the JJA. As the rainy season concludes and temperatures decline, ET gradually diminishes
from SON to DJF.
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5. Discussion
5.1. Variation in ET Trends Change over the CONUS

In this study, the spatial distribution of annual and seasonal ET variations increase
from west to east (Figures 3 and 4), and the interannual variations of ET estimates increase
significantly over most regions of the CONUS, including the eastern and western CONUS
(Figures 7 and 8), which are accord with the previous studies [43,44], and further, prove that
the PT-SinRH model can simulate the spatiotemporal variations of ET over the CONUS.
ET trends vary among the seasons and regions, and the increasing ET over the eastern
CONUS in summer contributed the most increment (Figure 6). They are closely regulated
by the available local water and energy [45]. For example, atmospheric situations lead to
increased ET with limited energy in humid climates [46]. The water-limited and warm
climates with positive ET anomalies may cause drought [47].

Most previous studies found that the water constraint (i.e., P) was significant reason
for ET variations [29,30]. The ET spatial patterns rise from west to east over the CONUS at
the annual scale (Figure 3) due to the increase of precipitation from west to east (Figure 9).
The spatial variations of precipitation are consistent with that of ET at an annual scale.
The significantly increasing trend of annual precipitation may result in the ET increasing
variations. The increasing rate of annual precipitation over the east of CONUS is greater than
that over the west of CONUS (Figures 10 and 11), which is consistent with the differences
in ET increasing rates between the western and eastern CONUS (Figures 5 and 7). Over
the eastern CONUS, the ET increased significantly from 2001 to 2022 (Figure 5) because of
the precipitation increasing over this region at an annual scale (Figure 10). These results
can prove that precipitation is a dominant factor in ET variations. In addition, NDVI is also
another forcing factor of ET dynamics. NDVI increases from west to east, consistent with
ET spatial variations (Figures 3 and 9). From 2001 to 2022, NDVI increased significantly
with a rate of 0.01 (p < 0.05). The increasing trend of NDVI over the eastern CONUS is
obviously higher than the western, which is consistent with the trend differences in the
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precipitation and ET (Figures 5, 7, 10 and 11). Vegetation greening with increasing NDVI
and precipitation variations leads to ET increasing over the CONUS [48].
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ET annual variations and anomalies can reflect climate extremes such as extreme
drought and precipitation [49,50]. Prior studies found that the southwestern CONUS
had been influenced by El Niño-Southern Oscillation (ENSO) based on GLEAM and
FLUXNET data [51,52]. Because La Nina occurred in 2012, compared to the multiyear
means of climate variables, the temperature increased, but precipitation decreased over the
central and western CONUS. These lead to droughts with decreasing ET over those regions
(Figure 12). Previous studies found that serious flash droughts were often connected with La
Niña, the positive-phase American Multidecadal Oscillation, or the negative-phase Pacific
Decadal Oscillation over most CONUS regions [53]. ENSO may cause global variations of
atmosphere-land water flux, water cycle, and extreme climate events [34].

The ET spatiotemporal variations also have several uncertainties. The input data in
this study include GLASS and MERRA-2 data with different spatial resolutions, which
causes large uncertainties. Compared with the ET observations, the estimates of PT-SinRH
have uncertainties with a bias of −8.6 W/m2 and an RMSE of 20.3 W/m2 (Figure 2). The
uncertainties of PT-SinRH estimates may also be sent to the ET spatiotemporal variations.



Forests 2024, 15, 1472 16 of 19Forests 2024, 15, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 12. Evapotranspiration (ET), precipitation (P), and temperature (Ta) anomalies over the CO-
NUS on 2012. 

5.2. Implications for Large-Scale Hydrometeorological Change 
Due to the lack of high spatiotemporal ET products in CONUS, we generated the 

daily ET products with a 0.05° spatial resolution based on the PT-SinRH model from 2001 
to 2022. Accurate estimation of ET datasets is essential for indirect assessment of the 
coarse-resolution ET products and monitoring of field water resources [54]. Additionally, 
ET datasets can provide an invaluable resource for measuring ecological and hydrological 
reactions to climatic changes and agricultural water management [27,52,55]. Furthermore, 
ET datasets present a chance to investigate the mechanisms governing ET in these areas 
in the future [56]. Therefore, the accurate ET dataset is significant for decision-making 
support for global climate change, forest ecosystems, and regional agricultural drought. 
An accurate estimation of forest ET can not only protect and maintain the healthy and 
sustainable development of forest ecosystems but also enrich the species diversity within 
forest ecosystems and promote the development of global ecosystems and human society. 

We found that the ET dataset based on PT-SinRH in CONUS showed an increasing 
trend from 2001 to 2022, which could be considerably impacted by the increasing precip-
itation, Ta, and NDVI. Our results are consistent with recent research by Yang et al. [57], 
who reported an increasing trend in global ET from 1982 to 2011, and the authors attribute 
this phenomenon to vegetation greening and increased precipitation [57]. Moreover, ET 
has received increasing attention as a critical indicator for better understanding the water 
cycles, ecosystem carbon and coupling mechanisms, which is important in response to 
drought [58,59]. 

  

Figure 12. Evapotranspiration (ET), precipitation (P), and temperature (Ta) anomalies over the
CONUS on 2012.

5.2. Implications for Large-Scale Hydrometeorological Change

Due to the lack of high spatiotemporal ET products in CONUS, we generated the
daily ET products with a 0.05◦ spatial resolution based on the PT-SinRH model from
2001 to 2022. Accurate estimation of ET datasets is essential for indirect assessment of the
coarse-resolution ET products and monitoring of field water resources [54]. Additionally,
ET datasets can provide an invaluable resource for measuring ecological and hydrological
reactions to climatic changes and agricultural water management [27,52,55]. Furthermore,
ET datasets present a chance to investigate the mechanisms governing ET in these areas
in the future [56]. Therefore, the accurate ET dataset is significant for decision-making
support for global climate change, forest ecosystems, and regional agricultural drought.
An accurate estimation of forest ET can not only protect and maintain the healthy and
sustainable development of forest ecosystems but also enrich the species diversity within
forest ecosystems and promote the development of global ecosystems and human society.

We found that the ET dataset based on PT-SinRH in CONUS showed an increasing
trend from 2001 to 2022, which could be considerably impacted by the increasing precip-
itation, Ta, and NDVI. Our results are consistent with recent research by Yang et al. [57],
who reported an increasing trend in global ET from 1982 to 2011, and the authors attribute
this phenomenon to vegetation greening and increased precipitation [57]. Moreover, ET
has received increasing attention as a critical indicator for better understanding the water
cycles, ecosystem carbon and coupling mechanisms, which is important in response to
drought [58,59].

6. Conclusions

The main objective of this study is to estimate ET in CONUS from 2001 to 2022 based
on the PT-SinRH model. After verifying the reliability of the PT-SinRH model at the
site scale by using the observed ET data of 28 EC sites, we analyzed the spatiotemporal
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characteristics of ET from 2001 to 2022 by using satellite and meteorological reanalysis
data. The results demonstrate that the PT-SinRH model was effective in calculating ET over
CONUS. The main conclusions of the study are as follows:

(1) The PT-SinRH model yielded superior performance at 28 EC sites, and the RMSE
varies from 6.0 to 33.5 W/m2, the KGE varies from 0.22 to 0.66.

(2) The ET calculated based on the PT-SinRH model has an annual mean of 42.54 W/m2

from 2001 to 2022 in CONUS, and the spatial patterns of annual and seasonal ET
variations increase from west to east.

(3) The ET in the CONUS from 2001 to 2022 exhibits both seasonal and annual linear
trends, with an average increase of 0.76 W/m²/da (p < 0.05).

(4) The change of P and NDVI plays a major controlling influence on the change of ET
over CONUS.

Therefore, accurate ET estimates have great importance for forest ecosystems and
regional agricultural drought research and can also provide a scientific foundation for
managing water resource, conserving forest, responding to climate change, and other
aspects. By strengthening monitoring network construction and science popularization
education strategies, important references are provided for achieving more scientific and
rational forest management and water resource utilization.
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