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ABSTRACT  
Reconstructing high-quality Normalized Difference Vegetation Index time 
series data is essential for ecological and agricultural applications but 
remains challenging in heavily cloudy areas. Fusing Sentinel SAR and 
optical data with deep learning could be helpful but is also challenging for 
stable models due to unstable SAR-NDVI relationships caused by imaging 
mechanism differences and environmental complexities. In this study, we 
developed a new Bidirectional Recurrent Imputation for Optical-SAR fusion 
(BRIOS) model to reconstruct high-quality Sentinel-2 NDVI time series data. 
BRIOS designs a two-layer recurrent architecture that integrates the 
autocorrelation of discrete, cloud-free NDVI observations into the model 
for a more stable SAR-NDVI relationship. Evaluating BRIOS against three 
baseline methods (GF-SG spatiotemporal fusion, Harmonic regression 
interpolation, and MCNN-Seq deep learning) across three full Sentinel-2 
tiles in reconstructing 8-day NDVI time series, BRIOS consistently 
outperformed in scenarios of either random or continuously missing data, 
as evidenced by lower RMSE values (e.g. 0.075 for BRIOS vs. 0.108 for GF- 
SG vs. 0.143 for Harmonic regression vs. 0.303 for MCNN-Seq), better Edge 
index, and high linear correlation coefficients (R values up to 0.97). Further 
ablation experiments revealed that deep integration of NDVI 
autocorrelation features and SAR temporal change patterns has improved 
the stability and generalization of BRIOS. Discussions on the model’s 
scalability across various cloud sizes and training dataset sizes affirm its 
practicality for broad-scale application in vegetation monitoring under 
challenging cloudy conditions.
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1. Introduction

The Normalized Difference Vegetation Index (NDVI) is the most common proxy for canopy green
ness and vigor in the field of remote sensing (Delbart et al. 2006; Huete et al. 2002; Rouse et al. 
1974). Accordingly, NDVI time-series data have been commonly used in monitoring ecosystem 
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dynamics and modeling biosphere processes to help understand ecosystem responses to climate 
change (Pettorelli et al. 2005; Zeng et al. 2022). Unfortunately, current satellite sensors still lack 
the ability to provide high-spatiotemporal-resolution NDVI data because of the trade-off between 
spatial and temporal resolution (Gao et al. 2006). Accordingly, the available global NDVI time- 
series products (e.g. GIMMS, MODIS, SPOT VGT) usually suffer from two problems that prevent 
them from fully satisfying the requirements of these applications. One is their coarse spatial resol
ution, which ranges from 250 m to 8 km and greatly hinders their application in heterogeneous 
landscapes (Gao et al. 2006; Rao et al. 2015). The second is that they are quite discontinuous in 
time because of frequent cloud contamination, particularly in heavily cloudy areas (Chen et al. 
2004; Pettorelli et al. 2005). The first problem has been greatly mitigated by the recent emergence 
of CubeSat constellations and new satellite systems (e.g. Sentinel 2 data with five-day or shorter 
revisit cycles and 10-m spatial resolution), and high-spatial-resolution NDVI time-series data are 
beginning to be available based on Sentinel-2 data or Harmonized Landsat and Sentinel-2 (HLS) 
data (Claverie et al. 2018). Regarding the second problem of discontinuous data in NDVI time 
series, although various methods have been developed to address this problem (e.g. Carrao, Gon
çalves, and Caetano 2009; Fisher, Mustard, and Vadeboncoeur 2006; Gao et al. 2006; Yan and Roy 
2018; Zhu et al. 2018), this problem is still imperfectly solved, especially in heavily cloudy areas 
where cloudy skies can persist for long periods and affect all optical satellite sensors simultaneously. 
This reduces the effectiveness of all existing methods (Chen et al. 2021; Jia et al. 2011; Yan and Roy 
2020). Combining cloud-free Synthetic Aperture Radar (SAR) data with optical data is considered a 
promising option to overcome this problem and reconstruct high-quality NDVI time series data 
with high spatiotemporal resolution.

Previous studies have proposed three types of methods for reconstructing high spatiotemporal 
resolution NDVI time-series data. The first method is based on temporal interpolation, which fits 
the Landsat or Sentinel-2 NDVI time-series data with various mathematic functions, such as a logis
tic model (Melaas, Friedl, and Zhu 2013), a Fourier analysis model (such as HANTS) (Roerink, 
Menenti, and Verhoef 2000; Zhou, Jia, and Menenti 2015), a Savitzky–Golay filter (Cao et al. 
2018; Chen et al. 2021; Chen et al. 2004), linear harmonic models (Wilson, Knight, and McRoberts 
2018; Yan and Roy 2018; Zhu et al. 2015), and nonlinear harmonic models (Carrao, Gonçalves, and 
Caetano 2009; Roy and Yan 2020). The performance of temporal interpolation methods depends 
not only on whether the actual NDVI dynamics are consistent with the assumptions of different 
fitting functions but also strongly on the number of cloud-free Landsat/Sentinel-2 observations 
and their temporal distribution. The second type of method is the well-known spatiotemporal 
fusion method that blends data from different satellite sensors. An example would be blending 
Landsat/Sentinel-2 observations with MODIS data to generate Landsat (Sentinel-2)-like NDVI 
time-series data (Chen et al. 2021; Claverie et al. 2018; Liu et al. 2019; Qiu et al. 2021; Rao et al. 
2015; Wang et al. 2022). However, the performance of spatiotemporal fusion is substantially 
affected by differences in the spatial resolution of different sensors (Chen et al. 2021; Zhou et al. 
2021), the number of cloud-free Landsat/Sentinel-2 observations, and their temporal distribution. 
In heavily cloudy areas, the long-term absence of valid Landsat/Sentinel-2 and MODIS observations 
significantly reduces the effectiveness of all fusion methods (Chen et al. 2020).

Synthetic Aperture Radar (SAR) has the advantage of penetrating cloud layers. More impor
tantly, SAR records backscatter information from the land surface that has also been shown to 
reflect the dynamics of vegetation growth (Fauvel et al. 2020; Minh et al. 2018; Villarroya-Carpio, 
Lopez-Sanchez, and Engdahl 2022; Vreugdenhil et al. 2018). A promising third method for recon
structing optical images in cloudy areas is therefore to blend optical data with SAR data. With the 
release of free Sentinel-1 C-band SAR data, an increasing number of studies have focused on the 
fusion of Sentinel-2 optical data and Sentinel-1 SAR data. For example, some studies have used 
the framework of spatiotemporal fusion technology and simulated a Sentinel-2 optical image for 
a discrete prediction date by using Sentinel-1 SAR images for the prediction date and optical 
and SAR image pairs for other dates (Ebel et al. 2020; Gao et al. 2020; Scarpa et al. 2018). Zhao 
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et al. (2020) have further proposed a new method to reconstruct cloud-free NDVI time-series data 
through the fusion of Sentinel-1 and Sentinel-2 time-series data, instead of simulating a single Sen
tinel-2 optical image. Their method, referred to as Multi-CNN-Sequence to Sequence (MCNN- 
Seq), approximates the relationship between optical and SAR sequences with a deep learning 
model. Li et al. (2022) followed this idea to learn the complex SAR-NDVI relationship with the 
Transformer model (TTSM). To reduce the influence of SAR noise on optical-SAR fusion, Garioud 
et al. (2021) further jointly integrated multivariate SAR and NDVI time series at the parcel scale. 
However, this method (SenRVM) is difficult to apply in fragmented croplands and areas without 
reliable ancillary parcel data.

Optical NDVI and SAR signals have different imaging mechanisms. NDVI reflects mainly leaf 
chlorophyll and vegetation coverage/LAI, whereas SAR backscattering information is more related 
to vegetation canopy structure and water content in the vegetation canopy and soil background. 
The fact that the relationship between the two signals is therefore often indirect and spatiotem
porally unstable makes it difficult to precisely capture the relationship with a fixed regression 
model. Recent studies, such as MCNN-Seq, SenRVM, and TTSM, have adopted data-driven, 
deep learning models to simulate such complex relationships (Garioud et al. 2021; Li et al. 2022; 
Scarpa et al. 2018; Zhao et al. 2020). As shown in Figure 1, these methods attempted to directly 
transfer SAR time series data to predicted NDVI time series data. They focus more on fully exploit
ing SAR data to obtain deep temporal features and then establishing a direct mapping relationship 
between SAR and NDVI data. Continuous and complete NDVI time series data are necessary to 
supervise these models to obtain reliable reference information on the SAR-NDVI mapping 
relationship. In other words, NDVI observations are used only to calculate the loss function rather 
than as direct input variables in the models. The autocorrelation features implied by the NDVI time 
series data itself, i.e. current NDVI values are correlated with cloud-free NDVI observations in time 
series, have not been fully used. As a result, the temporal dynamics of NDVI observations have been 
underestimated by previous SAR-optical fusion models, and this underestimation may have led to 
two limitations. First, previous methods may not be effective when temporal changes of SAR data 
are inconsistent with those of the local discrete optical data due to the differences in the imaging 
mechanisms between them and complex environmental interferences. Secondly, due to the unstable 

Figure 1. Overview of previous deep learning-based SAR-fusion methods and BRIOS. (a) input variables; (b) feature processing; 
(c) model training and predicting.
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relationships between SAR sequences and NDVI time-series data, previous methods require nearly 
complete NDVI time-series data as training labels to supervise the model’s ability to correctly pre
dict values for each date. However, the use of incomplete NDVI time series to train SAR-optical 
fusion models is sometimes problematic in the presence of frequent cloud cover. The influence 
of varying degrees of incomplete NDVI data on the model’s performance has not been thoroughly 
examined. Considering the benefits of using the autocorrelation of NDVI time series as an input to 
predict missing NDVI data, even when the NDVI time series are discontinuous in time (Cao et al. 
2020; Chen et al. 2021), these two limitations are likely to be mitigated by making better use of the 
autocorrelation of NDVI time series from discrete NDVI observations and coordinating SAR and 
optical temporal information. In addition to the model structure, another concern about establish
ing a stable SAR-NDVI relationship is the quality of SAR data. SAR time-series data usually show 
abnormal fluctuations because of the influence of various environmental factors, such as sudden 
changes in surface humidity (Veloso et al. 2017; Vreugdenhil et al. 2018), topographic effects, 
and speckle noise caused by different targets interfering with each other within a pixel. Although 
some techniques, such as terrain correction and enhanced speckle filtering, have been used to 
remove SAR noise in the spatial domain, residual noise (e.g. anomalous fluctuations) still exists 
in SAR time-series data. It is still unclear whether and to what extent the SAR time series should 
be smoothed to establish a more robust relationship between NDVI and SAR signals.

Because of the above unresolved issues, we proposed a new deep learning-based model – Bidirec
tional Recurrent Imputation for Optical-SAR fusion (BRIOS) – to reconstruct high-quality Sentinel-2 
NDVI time-series data. The main contributions of BRIOS are (1) using cloud-free NDVI data from par
tially cloud-contaminated images as direct input to fully utilize the inherent autocorrelation feature of 
NDVI time series to establish a more accurate SAR-NDVI relationship (Figure 1); (2) using Savitzky– 
Golay filter to extract the temporal variation pattern of SAR time series data and reduce the residual 
noise in the SAR time series data, thus improving the performance of SAR- NDVI fusion. It is expected 
that the inclusion of NDVI observations and the improvement of SAR data quality in BRIOS will 
enhance the stability and generalization of the SAR-NDVI relationship over large regions with complex 
landscapes. To verify this, we tested BRIOS’s applicability across large regions like the three Sentinel-2 
tiles and compared the results with those of existing baseline methods. Furthermore, we delved deeper 
into the BRIOS model’s sensitivity to several factors such as input variables, cloud size, and the size of 
the training dataset, by conducting a variety of simulated experiments.

2. BRIOS method

Generally, the BRIOS method employs a two-layer bidirectional RNN architecture to fuse optical 
cloud-free NDVI observations and the temporal change patterns of SAR time-series data. Figure 
2 shows the flowchart of BRIOS, which includes two main steps. First, the patterns of temporal 
change of SAR time-series data extracted by a wide-window Savitzky–Golay (SG) filter are used 
as the SAR input variables. The NDVI time series with missing data are used as both the inputs 
of the RNN architecture and for calibration of the loss function. Secondly, BRIOS designs a bidir
ectional RNN network with a two-layer recurrent architecture to get the temporal hidden-state fea
tures based on the SAR dynamics and the temporal dynamics from cloud-free NDVI observations. 
The regression layer thus converts the hidden-state features to the predicted NDVI values. In the 
following sections, we illustrate details regarding the input variables of BRIOS (section 2.1), the for
ward unidirectional recurrent imputation architecture (section 2.2), and the bidirectional recurrent 
imputation model (section 2.3).

2.1. The input variables of BRIOS

We used the NDVIseries = {ndvi1, . . . , ndvit , . . . , ndviN} to denote the input NDVI time-series 
data of N observations in a given year. All NDVI observations in the NDVIseries have the 
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Figure 2. Flowchart of the BRIOS method.
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corresponding data quality flags mt , in which missing values (no valid observations due to cloud 
contamination) and valid observations are labeled as 0 and 1, respectively. We defined dt as the 
time interval between the date t and the date of the last cloud-free NDVI observation before t, 
expressed as:

dt = doyt − doyt− i (1) 

where doyt is the DOY (day of the year) of date t, and the doyt− i is the DOY of the cloud-free obser
vation at the ith time step before the date t.

For SAR data, we selected VH and Radar Vegetation Index (RVI) (See Equation 10) because they 
are consistent with vegetation growth or correlated well with vegetation biophysical parameters 
(Kim et al. 2011; Mandal et al. 2020; Nasirzadehdizaji et al. 2019). We did not include the VV back
scatter data in our study because the VV signal is more susceptible to variations in topographic 
relief and multiple scattering interferences, and thus is less correlated with NDVI than the VH sig
nal (Veloso et al. 2017; Periasamy, 2018). Since SAR signals are subject to multiple interferences, the 
relationship between a SAR signal and NDVI data is not stable throughout the growing season. To 
address this issue, we did not use the SAR time-series data directly. Instead, the temporal change 
patterns of the SAR data were used as the input variables in BRIOS. The annual change patterns 
of the VH and RVI time-series data were extracted by using the SG filter with a wide moving win
dow and a low-degree polynomial. Following Chen et al. (2004), we determined the half-width of 
the moving window of the SG filter to be 6 (i.e. approximately one month) and the degree of the 
polynomial to be 2. The superiority of using the temporal change patterns is discussed in section 
5.1.2. The extracted temporal change patterns of the VH and RVI time series were connected 
along the temporal axis as the input sequence vector SARseries = {sar1, sar2, . . . , sarN− 1, sarN}.

2.2. Unidirectional two-layer recurrent imputation architecture

We assumed that for the t-th step, the predicted NDVI (􏽤ndvit) was not only correlated with the cur
rent SAR observations (referred to as the feature correlation between SAR and NDVI data) but also 
correlated with discrete cloud-free NDVI observations in the time series itself (referred to as the 
autocorrelation of the NDVI time-series data). We proposed an imputation algorithm by uni
directional recurrent dynamics, which integrated the feature correlation of the SAR-NDVI and 
autocorrelation of the NDVI with the help of two recurrent architectures. Figure 3 shows the uni
directional recurrent imputation architecture, which consisted of the following components: (1) an 

Figure 3. Unidirectional recurrent imputation architecture (forward direction). Suppose a NDVI time-series dataset 
NDVIseries = {ndvi1, . . . , ndvit , . . . , ndviN}, where ndvi5 and ndvi6 are missing. According to the recurrent dynamics, at each 
date t, we can obtain a predicted 􏽤ndvit based on the hidden-state features and NDVI observations at the previous t-1 steps.
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input layer composed of SAR and NDVI time-series data; (2) a two-layer recurrent architecture (i.e. 
the yellow module in Figure 3) that obtained the output hidden-state features h̃t ; (3) the regression 
layer (i.e. the blue module in Figure 3) that transferred the hidden-state features h̃t to the prediction 
value 􏽤ndvit through a fully connected network as follows:

􏽤ndvit =Wxh̃t− 1 + bx (2) 

The solid lines in Figure 3 represent the paths through the network variables, and the dashed lines 
represent the paths that do not pass through the network variables. Next, we specifically introduced 
the working principle of the two-layer recurrent architecture.

In the two-layer recurrent architecture, the first recurrent architecture (ht) extracts reliable tem
poral dynamics from the SAR temporal change patterns, and the second recurrent architecture (h̃t)

combines the SAR temporal dynamic features and cloud-free NDVI observations at the current t 
steps to get the output hidden-state features. These two recurrent architectures are achieved separ
ately by the recurrent neural network. A standard recurrent network can be represented as follows 
(Goodfellow, Bengio, and Courville 2016):

Ht = s(WhHt− 1 + Uhxt + bh) (3) 

where s is the sigmoid function; Wh, Uh, and bh are parameters; and Ht− 1 is the hidden-state fea
tures of previous time steps. At each time step, current hidden-state features depend on input data 
xt and the previous hidden state Ht− 1. The new two-layer architecture differs from prior works that 
used only recurrent dynamical architecture to learn features from SAR data or NDVI data alone. 
The new two-layer architecture therefore improves the representation of xt and Ht− 1 by integrating 
both SAR and NDVI input data.

In the first recurrent architecture, we obtained ht based on SAR temporal change patterns as the 
new representation of previous time steps:

ht = s(Whht− 1 + Uhsart + bh) (4) 

The variable ht preserves the specific temporal dynamics features for the date t transmitted from the 
previous time steps. In previous self-imputation models (Li et al. 2021; Xiong et al. 2023), ht was 
usually extracted from the NDVI time series itself. However, if there are long data gaps in the 
NDVI time-series data, the NDVI temporal profile is more difficult to reliably describe by ht . There
fore, in the first recurrent architecture, consecutive SARseries are used as indispensable auxiliary data 
to get a new ht via Equation 4. By iterating Equation 4 during time steps, we integrated the SAR 
time-series data into the updating of recurrent dynamics, and we then substituted ht into the second 
recurrent network to predict NDVI.

In the second recurrent architecture, because NDVI observations ndvit may be missing values 
(i.e. mt = 0), we could not use ndvit as the input xt of the standard recurrent network directly. 
Instead, we used the corresponding predicted values (i.e. 􏽤ndvit) for the ‘complement’ input ndvic

t 
when ndvit was missing:

ndvic
t = mt × ndvit + (1 − mt) ×􏽤ndvit (5) 

Formally, we used ht as the previous hidden state and ndvic
t as the input data of the second recurrent 

architecture. We then updated the model with Equation 6:

h̃t = s(Wh̃[ht × gt] + Uh̃[ndvic
t ◦mt] + bh̃) (6) 

where ◦ indicates the concatenate operation, and Wh\Wh̃, Uh\Uh̃ and bh\bh̃ are parameters. Because 
the NDVI time series may be irregularly sampled because of random cloud contamination, we used 
the temporal decay factor gt (Che et al. 2018) to represent the missing patterns in the time series as 
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follows:

gt = exp{− max(0, Wgdt + bg)} (7) 

where dt is the time gap defined in Section 2.1.1, and Wg and bg are parameters. A larger value of gt 
indicates that the previous time step is closer to the current date t, and the more it contributes to the 
calculation of the hidden-state features. During the iteration of Equation 6 over time, missing NDVI 
values are regarded as variables in the network, which are directly learned from SAR and NDVI 
synthetic temporal information (i.e. substituting Equation 4 into Equation 6) and effectively 
updated when the error is passed during backpropagation. For date t, if ndvit is a cloud-free obser
vation, it is used as a reference value in the loss function (Equation 8) to evaluate the imputed value, 
and this cloud-free ndvit is passed to the next recurrent steps. Otherwise, we replaced ndvit with a 
missing value with the predicted 􏽤ndvit and passed 􏽤ndvit to the next time-step. Because subsequent 
observations are correlated with the current value, we used the subsequent cloud-free observations 
to estimate the prediction error of the current 􏽤ndvit as loss. For example, in Figure 3, the prediction 
errors of missing data ndvi5 to ndvi6 depend on the prediction error of cloud-free observations at 
the next (7-th)date. However, if 􏽤ndvi5 and 􏽤ndvi6 are treated as constants, the prediction errors 
of 􏽤ndvi5 and 􏽤ndvi6 cannot be fully back-propagated. To address this issue, we treated 􏽤ndvit as a 
variable of the RNN (i.e. by substituting Equation 5 into Equation 6). The prediction errors 
could then be backpropagated along the opposite direction of solid lines to optimize the imputation 
accuracy.

2.3. Bidirectional recurrent imputation model

Typically, the prediction errors and convergence rates of unidirectional recurrent imputation archi
tecture are inconsistent in different directions. To achieve robust predictions and avoid a bias- 
exploding problem, a bidirectional recurrent imputation model is needed to handle time-series 
data in both directions (Bengio et al. 2015). Two separate recurrent imputation architectures 
(details seen in Section 2.2) were used for the forward direction and the backward direction. The 
recurrent component in each architecture consisted of the long short-term memory (LSTM) 
with 96 hidden units. For each direction, we used the Mean Squared Error (MSE) as the loss func
tion calculated by the following equation:

L =
1
N

􏽘N

t=1
ℓt , where ℓt = mt(􏽤ndvit − ndvit)

2 at t-th date (8) 

where N is the length of the time-series data. Only cloud-free NDVI observations were used to cal
culate the MSE. In the forward direction, we obtained the predicted sequence 
{􏽤ndvi1, 􏽤ndvi2, . . . , 􏽤ndviN} and the loss sequence L forward = {ℓ1, ℓ2, . . . , ℓN}. Similarly, in the back
ward direction, we obtained another predicted sequence {􏽤ndvi′1, 􏽤ndvi′2, . . . , 􏽤ndvi′N} and another loss 
sequence Lbackward = {ℓ

′
1, ℓ′2, . . . , ℓ′N}. To ensure predictions in each step were consistent in both 

directions, we further used a consistency loss Lcons, which was calculated as the MSE value between 
the predictions of both directions (i.e. |􏽤ndvit − 􏽤ndvi′t|). The final loss function was obtained by add
ing the forward loss, ℓt , the backward loss, ℓ′t , and the consistency loss, ℓcons

t

ℓ
final
t = ℓt + ℓ

′
t + ℓ

cons
t (9) 

The final prediction at the t-th date was the mean of 􏽤ndvit and 􏽤ndvi′t . BRIOS network weights were 
optimized during training by minimizing the loss function of Equation 9, using the iterative back
propagation with Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba 2014). After 
each iteration, Adam algorithm updates the weights towards the global minimum of the loss 
function.
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3. Data and experiments

3.1. Testing sites

We tested the BRIOS method on three full Sentinel-2 tiles (approximately 100 km × 100 km for each 
tile) (Figure 4). The first area, covered by the Sentinel-2 T14SNG MGRS tile, is located on the bor
der of Kansas and Oklahoma in the United States (KO site). The land cover of the site is character
ized by grasses and crops. A variety of crops, including winter wheat, herbs, soybeans, and alfalfa, 
primarily grow from October to the following October. The second area, covered by the Sentinel-2 
T55HDB MGRS tile, is located in the Coleambally Irrigation Area (CIA site) in southern New South 
Wales, Australia. This site has been widely used to test spatiotemporal data reconstruction algor
ithms (Liu et al. 2019; Zhu et al. 2016), as it is known to have a high degree of landscape hetero
geneity, consisting mainly of fragmented crop, grassland, and forest. The third area covered by 
the Sentinel-2 T50SKE MGRS tile is located in the Henan Province, China (Henan site). The region 
consists of mountainous areas in the northwest and large plains. The mountains are mainly covered 
with forests and grasslands. Winter wheat and summer maize are the main crops grown in the 
plains. On July 20, 2021, a severe flood occurred with obvious land cover changes (Cui et al. 
2023; Zhang et al. 2021), making reconstruction of the NDVI time series challenging.

3.2. Sentinel data

We collected optical Sentinel-2A&B surface reflectance (SR) images and Sentinel-1 Level-1 SAR 
images that were recorded in interferometric wide (IW) swath mode (Ground Range Detected 
(GRD) products) from the Google Earth Engine (GEE) platform. Table 1 shows the number of 

Figure 4. The three Sentinel-2 tiles used as study areas. (a) KO site covered by the T14SNG tile; (b) CIA site covered by the T55HDB 
tile; and (c) Henan tile covered by the T50SKE. The land cover types for each site shown in the figure were obtained from the ESA 
WorldCover dataset (Zanaga et al. 2022).
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Sentinel 2A&B and Sentinel-1 images at the KO, CIA, and Henan sites that were available during 
given periods. Only Sentinel-2 images with less than 85% cloud-contaminated pixels are con
sidered. Additionally, only data from one orbit of Sentinel-1 (see Table 1 for each site is either 
the ascending or descending orbit) can be collected from the ESA website or Google Earth Engine 
Platform for each study site.

For Sentinel-2A&B images, NDVI data were calculated from the red and near-infrared bands 
with a spatial resolution of 10 m. Cloud-covered observations were identified by the data quality 
flags, which are observations with values of 3, 9, or 10 in the Scene CLassification flags, or values 
greater than 65 in the S2_CLOUD_PROBABILITY product (Skakun et al. 2022). For Sentinel-1 
SAR images, we followed Mullissa et al. (2021) to generate the backscatter Analysis Ready Data 
(ARD) using border noise correction, speckle filtering, and radiometric terrain normalization. 
All processed SAR images were co-registered to match corresponding optical images. We calculated 
a modified dual-pol Radar Vegetation Index (RVI), given by:

RVI =
4s0

VH
s0

VH + s0
VV

(10) 

where s0
VH and s0

VV are the backscattering intensity of the VH and VV bands (Kim and Van Zyl 
2009; Nasirzadehdizaji et al. 2019).

Sentinel-1 and Sentinel-2 data have different imaging dates. To enable identical regular time 
intervals for the time series of both datasets, we generated an 8-day composited time series for 
SAR and NDVI data by averaging all available data within each 8-day time interval centered at 
the composition date (i.e. 8 days before and after the composite date). We used only cloud-free 
NDVI data for the composition. Gaps may have existed in the composited NDVI time series at 
some dates when all NDVI observations in the 8-day time period were contaminated by clouds. 
For the composited SAR data, we first applied spatial mean-filtering with a window size of 7× 7 
to reduce pepper noise in the SAR image at each composition date, and we then smoothed the com
posited SAR sequence with a 3-point mean filter. The SG filter was included separately in BRIOS as 
the feature extractor (described in Section 2.1).

3.3. Training setup

All experiments were carried out on an Intel(R) Core(R) i9-10900 CPU with 10 cores @2.80 GHz with 
64GB of RAM and an NVIDIA GeForce RTX 2060 GPU with 6GB GDDR6 memory. To comply with 
most cases of selecting training data directly from the incomplete NDVI time series data in practical 
applications, we split one Sentinel-2 tile into training and test datasets as follows (Figure 5). Several 
cloud-free NDVI observations in Sentinel-2 time-series images were first selected as the validation 
data, which were removed from the whole NDVI datasets and were not visible to the model. The 
different scenarios of simulated NDVI gaps are described in Section 3.4. Secondly, the gap-simulated 
NDVI datasets were then divided into training and test datasets. BRIOS was trained on the training 

Table 1. Image information at three study areas.

Study areas Date Range Sensor/Tile code Number

(A) Sentinel-2 image information

KO 2019/10/01–2020/10/01 Sentinel-2A&B/T14SNG 112
CIA 2020/10/01–2021/10/01 Sentinel-2A&B/T55HDB 115
Henan 2021/01/01–2022/01/01 Sentinel-2A&B/T50SKE 53
(B) Sentinel-1 image information
KO 2019/10/01–2020/10/01 Sentinel-1 GRD Ascend 115
CIA 2020/10/01–2021/10/01 Sentinel-1 GRD Descend 120
Henan 2021/01/01–2022/01/01 Sentinel-1 GRD Ascend 56
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dataset (800,000 spatially randomly selected pixels, about 0.8% of the total 100 km × 100 km (10000 ×  
10000 pixels) image). For model training, we employed an early stopping strategy to avoid overfitting 
(Prechelt 2002). This strategy halted training when further improvements on the validation error of 
simulated NDVI gaps in the training dataset were not observed. Quantitative assessments were per
formed on the test dataset by comparing the predicted values with the true values simulated as clouds, 
but actually without clouds, on the entire study areas. Using this method, the training dataset and the 
simulated data in the test dataset have similar gap settings.

3.4. Comparison of BRIOS and other baseline methods

BRIOS is here evaluated against three popular baseline methods. The first method employs a deep 
learning model for SAR-optical fusion known as MCNN-Seq, which was proposed by Zhao et al. 
(2020). The second method is a mono-sensor standard temporal interpolation method represented 
by Harmonic regression (Belda et al. 2020; Roy and Yan, 2020). The third method, a type of spatio
temporal fusion known as GF-SG, was proposed by Chen et al. (2021). These baseline methods are 
representative of the prevalent strategies for NDVI time series reconstruction and use varied model 
inputs. MCNN-Seq processes inputs from both SAR and NDVI datasets for training. GF-SG inte
grates NDVI data from both Sentinel-2 and MODIS for its data fusion process. In contrast, Har
monic regression only uses Sentinel-2 NDVI.

MCNN-Seq is among the first attempts to enable prediction of NDVI from SAR data based on 
deep learning model, incorporating a combination of CNN, RNN, and attention modules. 1D-CNN 
is used to extract robust information from noisy SAR time-series data, and RNN is used to establish 
the relationship between NDVI and SAR time-series data (Zhao et al. 2020). MCNN-Seq directly 
estimates NDVI values from SAR time-series data using established functions to convert one to 
the other. MCNN-Seq is currently the only open-source deep learning model for SAR-NDVI 
time series fusion and can be obtained from the https://github.com/kdxiaozhi/MCNN-Seq site.

Harmonic regression is one of the most widely used reconstruction methods to model NDVI 
time-series observations using a series of harmonic components of different frequencies. After 
obtaining the coefficients of the frequencies by Ordinary Least Squares (OLS) approach, the 

Figure 5. Process of splitting training and test datasets within a Sentinel-2 tile scene. Different scenarios for removing cloud-free 
NDVI observations are described in Section 3.4.
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Harmonic model predicts missing NDVI values based on the modeled periodic patterns of veg
etation dynamics. In this study, the Harmonic regression method was implemented in the 
DATimeS software (Beldat et al., 2020). We followed Roy et al. (2020) to use the Fourier1 algorithm 
in DATimeS and set the number of frequencies parameter to 3.

GF-SG is a filling and filtering method that first fills missing values in the original Landsat (or 
Sentinel-2) NDVI time series with MODIS NDVI time series and then reconstructs by filtering the 
synthesized NDVI time series with the weighted SG filter to remove the residual noise (Chen et al. 
2021). In this study, the MOD09Q1 NDVI product was used. The source code of GF-SG is available 
at https://github.com/ChenY04/GEE.git. The robustness and efficiency of these methods are eval
uated through their ability to reconstruct random and long continuous missing NDVI gaps. 

(1) Experiment Ⅰ: reconstructing random NDVI gaps

We randomly simulated elliptical-shaped clouds on each date of the Sentinel-2 time series to create 
gap-simulated NDVI datasets. The cloud-free NDVI observations in these simulated clouds were 
used as ground truth data. Since the spatial distribution and number of cloud pixels in the Senti
nel-2 data varies between regions and years, the total number of simulated cloud pixels as a percen
tage of the total time series images was set to different percentages (i.e. 5%, 10%, 20%, 40%, 60%, 
and 80%) to simulate the random occurrence of clouds. Figure 6 shows the percentage of missing 
pixels affected by actual and simulated clouds at each date. The gap-simulated NDVI datasets were 
then separated into training and test datasets for model training and quantitative evaluations as 
described in Section 3.3. 

(2) Experiment Ⅱ: reconstructing continuous NDVI gaps

Continuous missing values in NDVI time series are very common in cloudy regions. Therefore, we 
investigated the performance of different methods under these challenging conditions. In this 
experiment, it was assumed that all Sentinel-2 images (in both the training and test datasets) are 
missing for a certain period, and that reconstruction is necessary. At the KO site, the two selected 
periods were March-April and July-August in 2020 (16 images in total). At the CIA site, the two 
long gaps were March-April and July-August in 2021 (16 images in total), and at the Henan site, 
they were February–March and July-August in 2021 (16 images in total). These long gaps were cho
sen because they corresponded to both the growing season of crops and the cloudy season at the 
three sites.

3.5. Ablation experiments on BRIOS

To evaluate the effects of NDVI and SAR recurrent architectures on the BRIOS predictions, we 
trained three recurrent imputation models with our simulated datasets to compare different 
input data scenarios. The first scenario was our proposed model (BRIOS), relying on two recurrent 
architectures to integrate both SAR and NDVI input data. The second scenario relied on only opti
cal NDVI input data by removing SAR input data and the corresponding first recurrent architecture 
from BRIOS (denoted as BRIOS-NDVI) to evaluate whether the SAR-NDVI relationships is ben
eficial or can be omitted. In the third scenario, NDVI input data were removed from BRIOS. A 
model with only SAR recurrent architecture (denoted as BRIOS-SAR) was implemented to evaluate 
the effect of adding the autocorrelation of NDVI to the SAR data. The different scenarios considered 
the same RNN parameter configurations and were implemented on the NDVI datasets with simu
lated random gaps (Experiment I) and simulated continuous gaps (Experiment II).

On these two simulated datasets, we conducted another ablation experiment to evaluate the 
effectiveness of the bidirectional structure and loss. The comparative scenario with BRIOS was 
the unidirectional recurrent imputation architecture (section 2.2) without a bidirectional loss 
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(denoted as RIOS). The different scenarios also considered the same RNN parameter 
configurations.

3.6. Evaluation indices

Three accuracy evaluation indices were used to evaluate the performance of different methods. The 
first index was the root mean error (RMSE) defined as:

RMSE =

����������������������������������
􏽐n

i=1 (value predicti − valuetruei)
2

n

􏽳

(11) 

where n represents the total number of cloud-free pixels in the test dataset. The second index was 
the linear correlation coefficient (R) between the predicted NDVI time series data and the reference 
NDVI time series data for each pixel in the test dataset. The value of R mainly indicates the con
sistency of the shapes of different NDVI time series, ranging from -1 to 1. R̅ represents the mean 
R values of all test pixels where NDVI time series without reconstruction are excluded. The 

Figure 6. Percentage of pixels affected by actual and simulated clouds for each composite imaging date.
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third index was Robert’s edge (Edge index), which is defined as follows:

Edgeimage = |Di,j − Di+1,j+1| + |Di,j+1 − Di+1,j|,

Edge =
Edge predict − Edgetrue

Edge predict + Edgetrue

(12) 

where Di,j is the value of the pixel at the ith row and jth column, and Edge predict and Edgetrue are the 
values of the Robert’s edge for the predicted image and the reference image, respectively. The Edge 
index was included in experiment Ⅰ and Ⅱ to evaluate the similarity of the spatial contiguity 
between the predicted and reference cloud-free NDVI pixels. The closer the edge index is to 0, 
the better is the reconstruction performance.

4. Results

4.1. Assessments for reconstructing random Sentinel-2 NDVI gaps

Figure 7 shows the quantitative assessments of the four methods in Experiment I. BRIOS surpassed 
the other three methods in terms of RMSE, Edge index and R̅ for all scenarios at all sites, followed by 
GF-SG and Harmonic Regression methods. MCNN-Seq had the lowest accuracy of the four 
methods. Additionally, all methods showed a decrease in accuracy metrics as the missing percen
tage increased, but BRIOS stayed relatively stable even for the challenging scenario corresponding 
to a heavily cloudy situation where 80% of the NDVI was absent. The primary reason for BRIOS’s 
higher accuracy than the interpolation and optical fusion methods (Harmonic and GF-SG) lies in 
BRIOS using both SAR and NDVI time series as model inputs. This allows the two-layer recurrent 
architecture in BRIOS to extract long-term vegetation trajectories more effectively than the GF-SG 
and Harmonic methods, which utilize only NDVI time series as inputs. Despite MCNN-Seq also 
being a SAR-optical fusion method, its unsatisfactory performance can be attributed to its NDVI 
prediction relying solely on the long-term trajectory of the SAR time series extracted by a single- 
layer recursive structure, which might be sensitive to unpredictable fluctuations. This experiment 
shows that BRIOS is more stable and accurate in large cloudy regions.

4.2. Assessments for reconstructing temporally continuous NDVI gaps

A scenario with temporally continuous NDVI missing values is very common in heavily clouded 
areas such as subtropical and tropical regions. For this challenging scenario, BRIOS also achieved 
the lowest RMSE for almost all dates at three sites (Figure 8). The accuracy improvement was more 
remarkable at periods of significant NDVI increase or decrease, such as the dates in July and August 
of the crop growing season at the KO site, dates in March marking the beginning of vegetation 
growth at the CIA site, and dates in July when flooding occurred at the Henan site. Figure 9
shows the average Edge index and spatial distribution of the R-values obtained by different 
methods. The better Edge index values of BRIOS and the continuity of the spatial distribution of 
R-values both indicate that BRIOS can effectively reconstruct the spatial details of the landscapes 
under cloud cover. Moreover, the R-values of BRIOS were higher than the other three methods 
at all three sites. The improvements were more pronounced at the KO site (average R-value com
parison between BRIOS, GF-SG, Harmonic regression, and MCNN-Seq: 0.96 vs. 0.89, 0.84 and 
0.41) and the Henan site (average R-value comparison between BRIOS, GF-SG, Harmonic 
regression and MCNN-Seq: 0.95 vs. 0.88, 0.81 and 0.54). More importantly, BRIOS performed 
well for almost all land cover types, while the other three methods showed variable performance 
for different land cover types. Among the three methods, the performance of the MCNN-Seq 
method was the worst, indicating that it is the least stable and accurate in complex landscapes.
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For more detailed comparisons, we showed the reconstructed NDVI images on two dates for a 
small region at the KO site (Figure 10), the CIA site (Figure 11), and the Henan site respectively 
(Figure 12). In general, the NDVI images predicted by BRIOS captured the spatial details well. 
The images predicted by GF-SG included overestimated parcels (see Figure 12d) or incorrect spatial 
details (see Figure 11c,d and Figure 12d), which can be explained by the large difference in spatial 
resolution between the MODIS and Sentinel-2 NDVI data. The NDVI images reconstructed by 
Harmonic regression diverged from the actual NDVI images due to the presence of consecutive 
missing values in the time series, which does not allow for an effective parameterization of the 
model. We also observed that the NDVI images predicted by MCNN-Seq lost the most spatial 
detail.

Examples of the reconstructed Sentinel-2 NDVI time-series data for different vegetation classes 
are shown in Figure 10a,b, Figure 11a,b, and Figure 12a,b. The BRIOS method generally predicted 

Figure 7. Reconstruction accuracy for different methods in the scenarios where 5%, 10%, 20%, 40%, 60%, and 80% of the valid 
Sentinel-2 NDVI observations were randomly removed. Here, RMSE, Edge index and R̅-values are the mean values over all test 
pixels.
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Figure 8. The RMSE values for the simulated continuous dates were derived by comparing the cloud-free NDVI observations with 
the corresponding predictions from the different methods at the three sites. The dates when no cloud-free NDVI observations 
were available were excluded.
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vegetation growth well, including the curve for grass, which has a short growing season (Figure 
10a), as well as the curve for crop, which has a long growing season (Figure 11b), and multi-cropped 
cropland (Figure 10b and Figure 12a). In contrast, the GF-SG underestimated the NDVI values in 
Figure 10a and 10b and overestimated the NDVI values in Figure 12a,b. The Harmonic regression 
method also underestimated the NDVI values in Figure 10a,b and in Figure 12a,b, and overesti
mated the NDVI values in Figure 11a,b. All these results indicated that continuous missing values 
occurring during the key growth periods challenged the performance of both the Harmonic 
regression method and GF-SG. The MCNN-Seq method again performed the worst, with its recon
structed NDVI time series deviating much more from the NDVI reference values. It should be 
noted that the BRIOS method more accurately reconstructed the decreased NDVI values affected 
by the sudden flood in Figure 12b.

4.3. Assessments of ablation experiments

Based on the data from Experiment I (simulated 80% random gaps) and Experiment II (simulated 
continuous gaps), we conducted ablation experiments with different input variables and corre
sponding recurrent architectures. As shown in Table 2, BRIOS performed best, followed by 
BRIOS-NDVI and BRIOS-SAR at three sites. The degradation in the accuracy of BRIOS-NDVI 
suggests that when many NDVI observations are missing, it is difficult for a single recurrent 

Figure 9. Spatial visualization of the R-values obtained by different methods for the three sites. A five-color map is used to evalu
ate the defined R-value scale ranges. The R-value of each pixel is calculated based on the similarity between the predicted and 
actual NDVI time series. Average Edge index is also shown.
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architecture to accurately capture the full-time trajectory of NDVI during the period of missing data 
using only discrete cloud-free NDVI observations. Interestingly, the RMSE and R-values decreased 
more for BRIOS-SAR than for BRIOS-NDVI. This poor performance may be because the relation
ship between the SAR signal and NDVI is more complex and confounded by many environmental 

Figure 10. Visual comparisons among different methods at the KO site. (a), (b) are reconstructed Sentinel-2 NDVI time-series data 
of two vegetation classes (red points in the land cover map from the ESA WorldCover). The red areas in (a) and (b) indicate 
periods with continuously missing NDVI values. (c), (d) are actual Sentinel-2 NDVI images (acquired on 25 Mar. 2020 and 23 
Jul. 2020) and NDVI images reconstructed using different methods.

Table 2. RMSE and R̅-value for the ablation experiments using different input variables at the three sites.

Experiment Ⅰ (80% random 
NDVI gaps)

Experiment Ⅱ (continuous 
NDVI gaps)

RMSE R̅ RMSE R̅

KO BRIOS 0.0715 0.9170 0.0757 0.9552
BRIOS-NDVI 0.0908 0.8406 0.1029 0.8992
BRIOS-SAR 0.1515 0.8144 0.1480 0.8805

CIA BRIOS 0.0762 0.9259 0.0701 0.9652
BRIOS-NDVI 0.1096 0.8688 0.0997 0.9273
BRIOS-SAR 0.1452 0.8388 0.1547 0.8739

Henan BRIOS 0.0947 0.8644 0.0812 0.9583
BRIOS-NDVI 0.1264 0.7945 0.1097 0.8945
BRIOS-SAR 0.1795 0.7714 0.1676 0.8444
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factors (e.g. surface humidity, topographic effects, and speckle noise) (Veloso et al. 2017; Vreugden
hil et al. 2018). This may also explain the poor performance of MCNN-Seq in Experiments I and II. 
These ablation results indicate that NDVI and SAR signals are indispensable and complementary 
variables as input to BRIOS and that the two-layer recurrent network is better able to integrate 
the information provided by these two types of data.

The results of ablation experiments with unidirectional structure and bidirectional structure are 
shown in Table 3. The accuracy of BRIOS was significantly better than RIOS, which indicated that 
bidirectional structure and loss are helpful in enhancing the model performance. The bidirectional 
structure can effectively avoid the rapid amplification of early prediction errors as input to the 
model and the problem of converging slowly.

5. Discussion

5.1. Superiority of BRIOS

The first major advantage is the fusion of SAR and NDVI data as direct inputs within BRIOS. 
Depending on the data used, previous studies have proposed two types of methods for 

Figure 11. Visual comparisons among different methods at the CIA site. (a), (b) are reconstructed Sentinel-2 NDVI time-series 
data of two vegetation classes (red points in the land cover map from the ESA WorldCover). The red areas in (a) and (b) indicate 
periods with continuously missing NDVI values. (c), (d) are actual Sentinel-2 NDVI images (acquired on 18 Mar. 2021 and 1 Aug. 
2021) and NDVI images reconstructed using different methods.
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reconstructing high spatial and temporal resolution NDVI time series data, each primarily using 
either SAR or optical NDVI data. The first group of methods includes temporal interpolation 
(e.g. harmonic regression) and spatial–temporal fusion (e.g. GF-SG), which mainly exploit the 
NDVI information by assuming that the missing NDVI values are correlated with discrete, 
cloud-free NDVI observations. These methods perform well in areas where cloud-free NDVI obser
vations are abundant and relatively uniformly distributed (Yan and Roy, 2020; Chen et al. 2021), but 

Figure 12. Visual comparisons among different methods at the Henan site. (a), (b) are reconstructed Sentinel-2 NDVI time series 
of crops without flooding (point A) and those with flooding (point B). The red areas in (a) and (b) indicate periods with continu
ously missing NDVI values. (c), (d) are actual Sentinel-2 NDVI images (acquired on February 18, 2021, and July 28, 2021, after the 
July 20 flooding) and NDVI images reconstructed using different methods.

Table 3. RMSE and R̅-value for the ablation experiments using BRIOS or RIOS at the three sites.

Experiment Ⅰ (80% random 
NDVI gaps)

Experiment Ⅱ (continuous 
NDVI gaps)

RMSE R̅ RMSE R̅

KO BRIOS 0.0715 0.9170 0.0757 0.9552
RIOS 0.0892 0.8931 0.0945 0.9203

CIA BRIOS 0.0762 0.9259 0.0701 0.9652
RIOS 0.0961 0.9002 0.0894 0.9513

Henan BRIOS 0.0947 0.8644 0.0812 0.9583
RIOS 0.1101 0.8294 0.0952 0.9102
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may lose their ability to function in heavily cloudy areas or during certain cloudy seasons, as pro
longed cloudy weather can affect all optical satellite sensors simultaneously (Chen et al. 2021). The 
second group of methods is well suited to the problem because they primarily use SAR data with the 
advantage of penetrating cloud layers. The methods belonging to this group (e.g. MCNN-Seq and 
SenRVM) focused more on improving the use of temporal SAR information with advanced deep 
learning networks or on including related environmental ancillary data in the models (e.g. climatic 
and topographic data). In this case, discrete NDVI observations are used only to compute the loss 
function, rather than as direct input variables in the models. As a result, previous methods may not 
be effective when temporal changes of SAR data are inconsistent with those of discrete optical 
NDVI data due to differences in imaging mechanisms between them and complex environmental 
interferences. The results of the method comparison and ablation experiments (see the section of 
results) confirmed that, as with the above analyses, the use of SAR and NDVI data alone has its 
limitations.

In contrast, the BRIOS model not only attempts to incorporate SAR temporal information but 
also introduces the use of autocorrelation of NDVI time series. The important role of NDVI time 
series data has been overlooked in previous deep learning models (Garioud et al. 2021; Zhao et al. 
2020). This is the main reason why these models performed the worst in our experiments. In 
addition to SAR temporal information, there are two advantages to including the autocorrelation 
features in the discrete NDVI observations. First, the NDVI autocorrelation features can describe 
the individual temporal shape of vegetation (Cao et al. 2020) for each local area with potentially 
different environmental status. Second, BRIOS adopts a two-layer recurrent architecture, where 
one layer focuses on learning the autocorrelation of NDVI time series data, another layer focuses 
on learning the relationship between NDVI and SAR signals and combines the deep features 
from the two layers to predict missing NDVI values. This combination helps BRIOS to overcome 
the fluctuation of SAR signals due to various interferences, which is key to ensuring the establish
ment of a stable SAR-NDVI relationship and obtaining a good generalization capability over differ
ent vegetation types. BRIOS thus learns vegetation change trajectories from both SAR and NDVI 
data using advanced deep learning networks. Moreover, a bidirectional recurrent imputation 
model is used in BRIOS to handle time series data in both directions, which enables consistent pre
dictions and avoids a bias-exploding problem (Bengio et al. 2015). These improvements in BRIOS 
better exploit the separate roles and joint benefits of the Sentinel-2 NDVI and Sentinel-1 SAR sig
nals, resulting in the best performance of the BRIOS model in all of our experiments.

Secondly, the contribution of smoothing the SAR time series in BRIOS should be emphasized. 
BRIOS extracts the temporal patterns of SAR time series data as input variables to reduce local 
fluctuations of the SAR time series. The extraction process includes spatiotemporal smoothing 
and wide-window SG filtering (Section 2.1). To verify the usefulness of this extraction procedure 
in BRIOS, we further compared the performance of BRIOS with the use of original, composite 
SAR time series data (referred to as ‘BRIOS-Original’) and the use of SAR time series data smoothed 
only by a spatial mean filter and a temporal 3-point mean filter (referred to as ‘BRIOS-Smooth’). 
Figure 13 shows quantitative assessments for the BRIOS-Original, BRIOS-Smooth, and BRIOS 
scenarios using different SAR input data in Experiment II. As expected, BRIOS-Original performed 
the worst due to the irregular fluctuations in the original SAR time series. The significant perform
ance improvement was achieved by applying a spatial mean filter and a temporal 3-point mean filter 
(i.e. BRIOS-Smooth vs. BRIOS-Original), and the performance can be further improved by apply
ing the wide-window SG filter after spatiotemporal smoothing (i.e. BRIOS), suggesting the necessity 
of extracting temporal change patterns of SAR time series by applying wide-window SG filtering.

5.2. Uncertainty of BRIOS training

As a supervised method, the performance of BRIOS can be influenced by cloud-contaminated 
NDVI gaps in the training dataset as well as the size of the training dataset. The challenge of 
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incomplete NDVI series in the training dataset arises due to the randomness of the spatial distri
bution and the temporal heterogeneity of the cloud contamination on the Sentinel-2 images. As 
a result, obtaining training data that exactly matches the cloud contamination of the reconstructed 
region becomes difficult, and this might impede the optimal execution of supervised learning. We 
employed a new training strategy that simulates cloud contamination on the whole image and then 
randomly selects training pixels (see section 3.3). This strategy enables us to acquire training data 
that exactly matches the distribution of cloud contamination in the reconstructed region. We 
assessed the performance of BRIOS in the different scenarios of randomly simulated NDVI gaps 
(Experiment I), where incomplete NDVI time series data with different simulated cloud sizes 
were used as training data. Figure 14 shows the reconstruction accuracy in scenarios with different 
sizes of simulated NDVI gaps in the training dataset. We also compared the reconstruction accuracy 
of BRIOS with BRIOS-NDVI, which uses only the autocorrelation of NDVI (details of BRIOS- 

Figure 13. RMSE values of BRIOS when processing the SAR time series in different ways at the (a) KO, (b) CIA, and (c) Henan sites. 
The Original, Smooth, and BRIOS labels represent the BRIOS-Original, BRIOS-Smooth, and BRIOS scenarios, respectively.

Figure 14. The RMSE of BRIOS (red line) and BRIOS-NDVI (blue line) in the scenarios of different sizes of simulated NDVI gaps in 
the training dataset. The bar represents the missing ratio of NDVI observations in the training dataset for different scenarios of 
Experiment Ⅰ.
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NDVI were in section 3.5 of the ablation study). The RMSE values of BRIOS increased less than 
those of BRIOS-NDVI. The performance of BRIOS-NDVI was more affected by a large number 
of missing NDVI values in the training dataset than BRIOS. This can be explained by the fact 
that the use of temporally and spatially consistent quality SAR data reduces the sensitivity of 
BRIOS to missing NDVI values in the training data, which is difficult to achieve with NDVI 
data alone. This is also the advantage of BRIOS, whose weights are jointly adjusted according to 
SAR and NDVI features.

In addition, the effect of training dataset size on BRIOS performance remains unclear. Since 
BRIOS can handle incomplete NDVI time series, more pixels in one study area, or even all 
image pixels, can be selected as training data. To explore how the performance of BRIOS is 
influenced by the training dataset size, we selected a 10 km×10 km subregion at the KO site and 
carried out a simulation experiment mirroring the methodology of Experiment II. This experiment 
aimed to reconstruct continuous NDVI gaps using varying sizes of training data. The pixels used for 
training are 1%, 10%, 25%, 50%, 75%, and 100% of the subregion, respectively. The result in Figure 
15 indicates that increasing the size of the training dataset improves the model’s accuracy while also 
prolonging the training duration. Notably, once the training dataset size surpasses 25%, the gains in 
accuracy begin to plateau, suggesting a diminishing return on further expanding the dataset. Hence, 
to balance training costs and risks of overfitting, we proposed selectively using a subset of pixels as 
samples during the training process (e.g. 25% of pixels in a 10km×10 km subregion of a tile). 
Inspired by this, we also experimented with a training dataset of 800k pixels from the entire Senti
nel-2 tile, given that it can describe the higher diversity of landscapes in the whole tile region. We 
found that the performance of the BRIOS model trained on the 800k pixels of the full Sentinel-2 tile 
(i.e. BRIOS-800 K) achieved outperformed results for reconstruction in the subregion, with RMSE 
close to about 0.07 and R-values exceeding 0.95. Considering the trade-off between accuracy 
improvement and training time, we recommended training and implementing the BRIOS model 
on an entire Sentinel-2 tile with the training data set comprising 800k random pixels. This is suit
able for execution on large-scale areas, tile by tile, and also secures satisfactory results for subregions 
within a tile scene. With such a training data size, the BRIOS training time for a tile is approximately 
5 minutes per epoch, and the reconstruction task of an 8-day interval time series for an entire year 
on a tile takes roughly 8 hours.

Figure 15. The changes of RMSE and R̅ when training BRIOS on different sizes of training dataset. 1%-100% means that 1%-100% 
random pixels of the subregion are selected as the training dataset. 800k means the BRIOS model trained on the 800k pixels from 
the entire Sentinel-2 tile.
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5.3. The performance of BRIOS in different land cover types

Higher accuracy of BRIOS in Experiment I results confirmed the advantages of BRIOS for recon
structing missing NDVI data with different sizes on three Sentinel-2 tiles with different land cover 
types. For the reconstruction of continuous NDVI gaps, BRIOS still has advantages in capturing the 
correct vegetation dynamics. BRIOS can effectively reconstruct various vegetation dynamics, 
including those with long growing seasons (such as Figure 11a,b), short growing seasons (such 
as Figure 10a), and multiple growing seasons (such as Figure 10b and Figure 12a). One particular 
note is the stable performance of BRIOS when sudden land cover changes caused by flooding occur 
during the missing data period (see Figure 12). In this case, single input methods, constrained by 
limited information in one input variable, showed reduced accuracy and failed to capture vegetation 
dynamics. This case also shows that the smoothing operation in BRIOS did not affect the detection 
of this abrupt change. However, caution should be exercised when using BRIOS to reconstruct sud
den and minor vegetation dynamics, as some subtle vegetation changes may be ignored after 
smoothing operations. For example, the immediate influence of short-term rainfall on vegetation 
spanning two to three days should be noted. Spatial evaluations were also performed to investigate 
reconstruction accuracy across different land cover types (see Figure 9). BRIOS exhibited promising 
results, with R-values consistently above 0.9 for almost all land cover types, except for partial areas 
with R-values below 0.85 in sparse vegetation cover and wetlands. There is still room to improve 
BRIOS performance in these areas by including more sparse vegetation and wetland training data.

Additionally, the generalization capabilities of the BRIOS model in real heavily cloudy areas, 
besides the simulated NDVI gaps, should also be demonstrated. We applied BRIOS to a sub-area 
of Deyang city located in Sichuan Province, which has an area of about 1094 km2 and is covered 
by multiple vegetation types, such as the rotation between winter wheat and rice in the west and 
deciduous forests in the central part. We collected all available Sentinel-2 and Sentinel-1 images 
from 1 January 2021 to 1 October 2021. The percentage of good NDVI observations during 
2021 was less than 60% in almost half the regions (see more details in Figure S1 of supplementary 
materials). Figure 16 shows the reconstructed NDVI images on four dates with heavy cloud cov
erages (cloud coverages > 50%). The reconstructed results clearly captured the NDVI annual change 
patterns for different crop types. For example, in the western areas (highlighted by a red rectangle), 
there are two crop-rotations within a year, either winter wheat-paddy rice or oilseed rape-paddy 
rice. Correspondingly, the reconstructed NDVI images showed high greenness at two stages (5 
March and 14 August) and low greenness after harvesting of the first crops (10 June). In the eastern 
areas, only one crop (paddy rice) was planted; greenness was thus low in early spring (5 March) for 
most pixels. Figure 16c further shows the reconstructed continuous NDVI time-series data for a 
pixel where oilseed rape and paddy rice were rotated. The annual trajectory of the general NDVI 
was simulated well by BRIOS. A small valley in the NDVI time series during March, which corre
sponds to the bloom period of oilseed rape (Mercier et al. 2020; d’Andrimont et al. 2020), was also 
captured by BRIOS.

5.4. Limitations of BRIOS

First, BRIOS was developed here for the reconstruction of the NDVI time series only. As mentioned 
before, this choice was made based on consideration of the higher correlation between NDVI and 
SAR data than that between SAR data and reflectance data (Veloso et al. 2017; Villarroya-Carpio, 
Lopez-Sanchez, and Engdahl 2022). Although theoretically BRIOS can also be applied to other veg
etation indices (e.g. EVI2 (Jiang et al. 2008), NDPI (Wang et al. 2017)), biophysical variables (e.g. 
LAI (Carlson and Ripley 1997), and FAPAR (Gower, Kucharik, and Norman 1999)), the recon
struction uncertainties due to the different mechanisms of these indices should be further evaluated. 
Secondly, uncertainty in the cloud mask of optical images can reduce the performance of BRIOS. 
We expect that in the future, as sensor capabilities and cloud detection algorithms improve, more 
accurate cloud mask data will be produced, which will benefit BRIOS. Thirdly, BRIOS mainly 

24 Y. CHEN ET AL.



considers the fusion of Sentinel-1 and 2 data with the same 10 m spatial resolution. Landsat time 
series data contain many historical observations and have been widely used for long-term veg
etation monitoring. These observations are more likely to be discontinuous due to their 16-day 
revisit and cloud contamination. How to reconstruct high-quality Landsat time series by fusing 
with SAR data is also of interest. The challenge of Landsat-SAR fusion may be the different spatial 
resolutions of the sensors (e.g. 30 m vs. 10 m).

Currently, some new deep learning architectures, such as the Transformers (Vaswani et al. 
2017), have emerged and achieved great success in processing sequential data, such as natural 
language processing (NLP) and image processing (Han et al. 2022). These newly developed models 
have substantial potential to replace the role of the RNN in BRIOS, although they require more 
training samples and computational resources. We call for greater efforts to explore this potential, 
taking into account the two contributions described in Section 5.1.

6. Conclusions

We developed a novel method (called BRIOS) to reconstruct high-quality Sentinel-2 NDVI time- 
series data. BRIOS employs a two-layer recurrent architecture, where one layer focuses on learning 
the autocorrelation of NDVI time series data, and another layer focuses on learning the relationship 
between NDVI and SAR signals, and combines the deep features from the two layers to predict 
missing NDVI values. By fully exploiting the autocorrelation of NDVI time series data and the 

Figure 16. The NDVI images reconstructed by BRIOS for a sub-area in Deyang. (a) Cloud-contaminated Sentinel-2 NDVI images on 
different dates; (b) NDVI images reconstructed by BRIOS; (c) The reconstructed Sentinel-2 NDVI time-series data for point P1.
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coordination of SAR and NDVI data to establish stable SAR-NDVI relationships, this new BRIOS 
model outperformed three baseline methods (GF-SG spatiotemporal fusion, Harmonic regression 
interpolation, and MCNN-Seq deep learning) in our experiments to reconstruct 8-day Sentinel-2 
composite NDVI time series data on three full 100km×100 km Sentinel-2 tiles. There are four sig
nificant improvements. First, BRIOS is more reliable for reconstructing Sentinel-2 NDVI time- 
series data with random or long-term, continuous missing values in heavily cloudy areas. Secondly, 
BRIOS shows impressive generalization capabilities to simulate the NDVI temporal dynamics of 
varied vegetation types, such as grasses, forests, and crops. It accurately captures short and long 
growing periods, multi-cropping systems, and abrupt land cover changes. Thirdly, the BRIOS 
model can flexibly adjust its learning based on the varying sizes of cloud and training datasets, 
and recommended training settings are available for a Sentinel-2 tile. Fourth, the extraction of tem
poral change patterns of SAR data by spatiotemporal smoothing and SG filtering is extremely useful 
for improving the performance of SAR-optical fusion. We expect that BRIOS will popularize the 
synthesized use of Sentinel SAR and NDVI time series data in ecological, geographic, and environ
mental studies.
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