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Abstract: The remote sensing of sun-induced chlorophyll fluorescence (SIF) is an emerging technique
with immense potential for terrestrial vegetation sciences. However, the interpretation of fluorescence
data is often hindered by the complexity of observed land surfaces. Therefore, advanced remote
sensing models, particularly physically based simulations, are critical to accurately interpret SIF data.
In this work, we propose a three-dimensional (3D) radiative transfer model that employs the Monte
Carlo ray-tracing technique to simulate the excitation and transport of SIF within plant canopies.
This physically based approach can quantify the various radiative processes contributing to the
observed SIF signal with high fidelity. The model’s performance is rigorously evaluated by comparing
the simulated SIF spectra and angular distributions to field measurements, as well as conducting
systematic comparisons with an established radiative transfer model. The results demonstrate the
proposed model’s ability to reliably reproduce the key spectral and angular characteristics of SIF,
with the coefficient of determination (R2) exceeding 0.98 and root mean square error (RMSE) being
less than 0.08 mW m−2 sr−1 nm−1 for both the red and far-red fluorescence peaks. Furthermore, the
model’s versatile representation of canopy structures, enabled by the decoupling of radiation and
geometry, is applied to study the impact of 3D structure on SIF patterns. This capability makes the
proposed model a highly attractive tool for investigating SIF distributions in realistic, heterogeneous
canopy environments.

Keywords: sun-induced chlorophyll fluorescence (SIF); radiative transfer

1. Introduction

Fluorescence refers to the process where an object absorbs light of a short wavelength
and emits light of a longer wavelength, typically within approximately 10−8 seconds [1].
Chlorophyll fluorescence is an inherent signal given off by plants, which can be utilized to
assess their physiological condition [2]. Fluorescence imaging is thus becoming one of the
non-invasive and non-destructive methods with great potential that allow the long-term
monitoring of plant activities [3]. Spectroscopy, particularly imaging spectroscopy, is com-
monly utilized to evaluate plant traits related to biochemistry, structure, and function, along
with their dynamics [4,5]. The growing accessibility of high-resolution spectroradiometers
now makes it feasible to measure SIF [6].

In remote sensing, passive measurements of sun-induced chlorophyll fluorescence
(SIF) open up new opportunities for global vegetation monitoring such as improving
the estimation of vegetation photosynthetic capacity and inferring the surface carbon
fluxes [7–9].

The reported measurements from spaceborne sensors, such as GOME-2 [10], GOSAT [11],
OCO-2 [12], TROPOMI [13], and TanSat [14], provide quantitative mapping of SIF satellite
data, revealing the potential to enhance the understanding of terrestrial vegetation gross
primary production and further the global carbon cycle [15]. And the FLEX mission by
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the European Space Agency (ESA) has been specifically designed and optimized to map
SIF [16]. Moreover, SIF measurements from airborne [17], and ground [18–20] sensors
have demonstrated the capability to successfully retrieve this signal at the top of the
canopy. The combination of spaceborne, airborne, and ground measurements reveals
novel understandings of the spatial distribution of vegetation fluorescence, ranging from
individual leaves to the ecosystem scale.

SIF is also viewed as a new technique in the field of phenotyping. Recent advance-
ments in SIF retrieval enable sophisticated high-throughput phenotyping systems to ef-
ficiently detect subtle early stress at the canopy level [21]. It has the advantage of being
applied to large fields, aircraft surveys, and satellites [22].

However, scaling fluorescence from leaf to canopy remains a great challenge [23].
The heterogeneity of the vegetation canopy usually complicates the interpretation of canopy
SIF observations. Multiple scattering of SIF in the canopy by leaves and stems causes the
reabsorption of the red SIF [15]. Furthermore, sunlit leaves generally generate higher SIF
because they receive more intense light compared to shaded leaves that are illuminated
by weaker, diffuse light [18]. Additionally, it is important to consider that photosynthetic
active radiation (PAR) levels influence fluorescence correction factors. This dependency
contributes to the spatial heterogeneity of SIF emittance across different parts of the canopy
(Appendix A). Therefore, remote sensing models, particularly physically based models,
that simulate the observations are critical to correctly interpret the fluorescence data.

While direct field measurements are expensive and challenging, model simulation can
help quantify the effects of methodological uncertainties (e.g., different viewing directions)
on SIF retrieval by generating simulated remote sensing data and images. Simulation
can control the noises and uncertain factors; in contrast, even slight measurement errors
may cause significant biases in the retrieved SIF due to the weak signals. Modeling tests
are also necessary prior to field campaigns to assess the potential of retrieval algorithms.
More importantly and with great potential, models can form the foundation for additional
research to evaluate the distribution of photosynthetic activity within plant canopies and
help create methods to enhance crop photosynthesis.

Over the past years, various radiative transfer (RT) models, either the simple tur-
bid medium approaches (one-dimensional (1D) models) or realistic vegetation models
(three-dimensional (3D) models), have been developed to assess how leaf and canopy
structures and geometries influence radiative fluxes across different wavelengths [24–27].
One-dimensional models are usually efficient due to their simplicity. The 1D model sim-
ulation could be accurate for the horizontally homogeneous scenarios as well, whereas
the more complex 3D models are needed to simulate SIF over a heterogeneous canopy.
Some vegetation RT models are developed particularly to characterize the passive optical
signals like SIF and the interaction between light and vegetation, for example, SCOPE [24],
FluorWPS [25], DART [26], FluorFLIGHT [27], and FLiES-SIF [28].

SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is a 1D RT
model that integrates calculations for photosynthesis, energy balance, and chlorophyll fluo-
rescence, with its simulations validated through on-site data from agricultural fields [24]. It
now serves as a virtual laboratory for numerous research endeavors [29]. SCOPE assumes
homogeneity in the horizontal direction [24]. Different from SCOPE, the other models
mentioned above are 3D RT models with the advantage of having fewer assumptions
and simplifications.

Most of the 3D models use the ray tracing algorithm to simulate canopy SIF but differ
in the choices of ray tracing models and the representations of 3D canopy scenes.

Ray tracing is a graphics rendering technique that simulates the natural behavior of
light, and it can be implemented in either the forward or backward mode. Forward ray
tracing follows photons from the source to the object and then to sensors, which is beneficial
for calculating multi-angle signals and solving energy-balance problems. Backward ray
tracing, on the other hand, traces only the rays that enter the sensor, making it more efficient
for rendering images. Some models, like the large-scale remote sensing data and image



Remote Sens. 2024, 16, 3783 3 of 28

simulation framework (LESS) [30] and DART-Lux [31], combine the advantages of both
forward and backward ray tracing to improve the calculation efficiency and performance.

Furthermore, the representations of 3D scenes, specifically the foliage, differ among
those 3D RT models. Some use the explicit structural scenes, while some use the turbid
medium, and some can support both. It should be noted that the model applicability
depends on the target (forest/cropland).

For example, FLiES-SIF version 1.0 [28] employs explicit tree crown landscapes. How-
ever, the crown volumes are expressed as turbid media. FLiES-SIF makes several simplifica-
tions and approximations about algorithms and vegetation structures in order to improve
the calculating efficiency. It is argued that the simplifications and approximations within
the model limit its ability to generate highly detailed images in close-range observations.
By contrast, DART [26] can simulate fluorescence images using triangular facets. This
approach is more computationally intensive compared to utilizing turbid voxels that repre-
sent a substantial collection of foliar elements [9]. Some other models such as FluorWPS
use explicit 3D scenes and calculate incident radiation for each leaf polygon to simulate
fluorescence. In this case, the radiation distribution has to be assumed to be uniform
over one leaf polygon. However, the uniform-radiation assumption cannot hold for those
polygons that contain both sunlit and shaded parts. Therefore, it may require tessellating
the geometry model, which can cause a larger amount of 3D structural data and calculating
difficulty. In fact, the amount of 3D structural data is a significant limitation for most
3D RT models, which is often related to the scale of the 3D scene. LESS can simulate the
radiative transfer procedure within a large scene, accurately involving realistic 3D scenes
with structural details by using the “instance” technique, which significantly reduces the
demands on storage and computational resources [30]. The instance technique maintains a
single copy of each object while storing the geometric transformations for all individual
objects, rather than replicating each object at every position.

Overall, simulating fluorescence has to balance accuracy and efficiency. We can run
the photon tracing algorithm to create the point representation of radiation. This data
structure thus stores sufficient radiation information for computing fluorescence efficiently.
In the meantime, we use scene objects with less simplification, and illumination-computing
approaches with less approximation to maintain accuracy.

The point radiation information in the scene is independent of polygons. This method
makes it possible to simulate SIF with the point representation of the radiation information
regardless of the scenes. This can be viewed as decoupling from the geometry [32]. This
becomes an advantage as well since it allows us to handle varying illumination and arbitrary
geometry without tessellating the geometry model to reduce the demand for computational
resources. Moreover, if the radiation representation were tightly coupled to the polygonal
structure, the SIF values within a single polygon would be identical, and the fine-scale
variation caused by shadows might not be pronounced in the simulated high-resolution
SIF images.

In this study, we propose a model that (1) integrates both forward and backward ray
tracing to simulate SIF signals, including directional SIF and SIF images, and (2) inherits
the advantage of LESS that elaborates the structural characteristics of vegetation to finely
calculate the impact of illumination on each leaf. The forward ray tracing mode computes a
representation of the radiation at nearly arbitrary points and then computes the excitation
for the fluorescence. The backward mode makes ray tracing more efficient for rendering
images, especially high-resolution images. The point representation of the radiation in the
proposed model is also flexible for the simulation of high-resolution fluorescence images
under the scenes with less structural simplification. We demonstrate simulated high-
resolution SIF images, in which the subtle variation of SIF on the leaves can be detected
as well. In other words, if we would like to identify leaves clearly in the output high-
resolution images, it is a prerequisite to input canopy scenes with explicit leaf structures.
The proposed fluorescence model provides an alternative method for modeling canopy SIF.
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2. Method

Light energy entering vegetation drives photochemical processes. Alternatively,
the light energy can be dissipated as fluorescence or heat. The processes of photochemistry,
fluorescence, and heat dissipation compete for excitation energy [33]. The proposed model
aims to simulate the radiative transfer of SIF in 3D canopies. We first briefly summarize the
theory and the light transport equations used by most remote sensing radiative transfer
models (e.g., DART-Lux [31], and LESS [30]), and then show how it can be extended to
include SIF, and take the dependence of SIF on the light level into account. Next, we
describe the implementation of the SIF simulator (Section 2.2).

In Section 2.1, we demonstrate that several changes have to be made in the traditional
light transport equations for modeling fluorescence. First, it is necessary to extend the
common light transport equation and the common bidirectional scattering distribution
function (BSDF) by spectral dimension and to change the assumption made by most render-
ing systems that simulations across different wavelengths operate independently. Second,
the radiation used to compute the excitation for the fluorescence at arbitrary points in
the scene is required, where the fluorescence radiative transfer equation is expressed in a
formulaic manner. In Section 2.2, we show that the proposed model balances the efficiency
and the accuracy in a practical way by combining backward and forward tracing, and de-
coupling the radiation representation from the geometry. The implementation includes
forward photon tracing (Section 2.2.2), and backward tracing using the stored information
of the incident radiation decoupled from the geometry (Section 2.2.3). The forward photon
tracing and the collection of energy are expressed in a formulaic manner.

2.1. Formulation of the Light Transport for Fluorescence
2.1.1. A General Formulation of the Light Transport for Fluorescence

Radiance along the direction ωo can be calculated from a classical light transport
equation as shown in Equation (1) [34]:

L(q, ωo, λo) = Le(q, ωo, λo) +
∫

Ω
f (q, ωi → ωo)L(q,−ωi, λo)| cos θi|dωi, (1)

where L(q, ω, λ) [W m−2 sr−1 nm−1] is the radiance at point q in the direction ω at wave-
length λ; f (q, ωi → ωo) is the bidirectional scattering distribution function (BSDF) of the
surface at point q, which specifies the outgoing radiance in the direction ωo resulting from
the incoming radiance in the direction ωi; θi is the angle between ωi and the surface normal;
and Le(q, ωo, λo) is an emission term, which represents all the light sources in the scene
and is provided as part of the scene description. The light sources can be the sun, laser
beams, or emitted energy, such as thermal radiation or fluorescence emitted from objects.

To model fluorescence, we change the BSDF to account for the energy transfer from
one wavelength λi to another λo and also integrate over all wavelengths within the spectral
domain Λ [35]. Symbolically, the equation [36] becomes

L(q, ωo, λo) = Le(q, ωo, λo)

+
∫

Λ

∫
Ω

fλ(q, ωi → ωo, λi, λo)L(q,−ωi, λi)| cos θi|dωidλi,
(2)

where
fλ(q, ωi → ωo, λi, λo) = f (q, ωi → ωo)δ(λi − λo) + fF(q, λi, λo)/π (3)

means the BSDF f is extended by spectrum dimension, where δ is the Dirac delta function,
and fF(q, λi, λo) models the transfer of the excitation at λi to the fluorescence at λo [35],
which will be shown in much greater detail in the next section. If a substance does not
exhibit fluorescence, then fF is represented by a constant zero, and Equation (3) plays the
role of f in Equation (1).
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Plugging Equation (3) into Equation (2), we have

L(q, ωo, λo) = Le(q, ωo, λo)

+
1
π

∫
Λ

fF(q, λi, λo)
∫

Ω
L(q,−ωi, λi)| cos θi|dωidλi

+
∫

Ω
f (q, ωi → ωo)L(q,−ωi, λo)| cos θi|dωi.

(4)

Then, two kinds of energy are separated: fluorescence (F) and non-fluorescence (J),
that is, L = J + F. This yields

J(q, ωo, λo) + F(q, ωo, λo) = Le(q, ωo, λo)

+
1
π

∫
Λ

fF(q, λi, λo)
∫

Ω
(J(q,−ωi, λi) + F(q,−ωi, λi))| cos θi|dωidλi

+
∫

Ω
f (q, ωi → ωo)(J(q,−ωi, λo) + F(q,−ωi, λo))| cos θi|dωi.

(5)

Define the symbols Je := Le, and

Fe(q, ωo, λo) :=
1
π

∫
Λ

fF(q, λi, λo)
∫

Ω
(J(q,−ωi, λi)

+ F(q,−ωi, λi))| cos θi|dωidλi,
(6)

yielding

J(q, ωo, λo) + F(q, ωo, λo) = Je(q, ωo, λo) + Fe(q, ωo, λo)

+
∫

Ω
f (q, ωi → ωo)(J(q,−ωi, λo) + F(q,−ωi, λo))| cos θi|dωi.

(7)

Recall that Le is an emission term mentioned in Equation (1), and that fF is the extended
term of BSDF accounting for the fluorescence effect mentioned in Equation (3).

For numerical purposes and for a better understanding of transport physics, it is
useful to distinguish between the fluorescence (F) and non-fluorescence (J) fields. Accord-
ingly, the transport equation (Equation (7)) is split into equations for the non-fluorescence
(J) field,

J(q, ωo, λo) = Je(q, ωo, λo) +
∫

Ω
f (q, ωi → ωo)J(q,−ωi, λo)| cos θi|dωi, (8)

and the fluorescence (F) field,

F(q, ωo, λo) = Fe(q, ωo, λo) +
∫

Ω
f (q, ωi → ωo)F(q,−ωi, λo)| cos θi|dωi. (9)

According to Equations (8) and (9), the canopy SIF can be calculated in two steps.
First, if sources are given, J can be obtained by solving Equation (8), which is identical
to the light transport equation (Equation (1)). Second, substituting J into Equation (9)
(through Equation (6)), F can be derived by solving Equation (9). We then apply this
general formulation of the light transport for fluorescence to the canopy SIF as follows.

2.1.2. Formulation of the Light Transport for the Canopy SIF

Notice that Equation (8) exhibits an identical form to the light transport equation
shown as Equation (1). However, Equation (9) presents an unconventional light source
term Fe, which incorporates fF (refer to Equation (6)). This particular inclusion challenges
the common assumption that simulations are independent at different wavelengths. Conse-
quently, additional computational efforts become necessary to simulate Fe.

To evaluate the integration that represents the fluorescence effect in Equation (6),
a summation is performed. This involves considering each leaf’s excitation fluorescence
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matrices (EF-matrices) [35]. These matrices consist of both backward (Mb) and forward (M f )
matrices. Fluorescence is excited on both the backward (subscript b) and forward (subscript
f ) sides of the leaf relative to the direction of the incident light. These EF-matrices are used
to transform the excitation spectrum (spanning from 400 to 750 nm) into a fluorescence
spectrum (spanning from 640 to 850 nm) [2]. EF-matrices are derived from the leaf-level
fluorescence model Fluspect [37]. Moreover, given that the leaf fluorescence varies with the
light level [38], a correction factor φ is added into the equation to account for the covariation.
Hence, we convert Equation (6) to

Fe(q, ωo, λo)

=
φ(q)

π ∑
λi

Mb(q, λi, λo)
∫

Ωb

(J(q,−ωi, λi) + F(q,−ωi, λi))| cos θi|dωi

+
φ(q)

π ∑
λi

M f (q, λi, λo)
∫

Ω f

(J(q,−ωi, λi) + F(q,−ωi, λi))| cos θi|dωi,

(10)

where the correction factor φ(q) is multiplied to the element of the EF-matrices Mb/ f
(q, λi, λo). In addition, Mb/ f (q, λi, λo) combined with φ(q) plays the role of fF in
Equation (6).

Among the total fluorescence, the total re-excited contribution (i.e., fluorescence that is
excited from already excited fluorescence) is very small, <0.1%, of the total fluorescence in
most cases. It is thus acceptable to omit the re-excited contribution in all spectral bands [25].
Therefore, the F term in Equation (10) is removed, yielding

Fe(q, ωo, λo)

=
φ(q)

π ∑
λi

Mb(q, λi, λo)
∫

Ωb

J(q,−ωi, λi)| cos θi|dωi

+
φ(q)

π ∑
λi

M f (q, λi, λo)
∫

Ω f

J(q,−ωi, λi)| cos θi|dωi.

(11)

According to the relationship between radiance and irradiance [39,40], we have the
backward and forward irradiance:

Eb/ f (q, λi) =
∫

Ωb/ f

J(q,−ωi, λi)| cos θi|dωi, (12)

yielding

Fe(q, ωo, λo) =
φ(q)

π

(
∑
λi

Mb(q, λi, λo)Eb(q, λi) + ∑
λi

M f (q, λi, λo)E f (q, λi)

)
. (13)

Recall that the correction factor φ(q) is dependent on the incident light level [38], which
is exactly accounted for by the irradiance E = Eb + E f , about which detailed formulas can
be found in Appendix A.

By combining Equations (8), (9) and (13), we are able to simulate the SIF over the
3D canopy.

2.2. Implementation of the SIF Simulator

In this section, we start with a high-level overview of the algorithm based on Monte
Carlo ray-tracing of the proposed simulator for solving Equations (8) and (9) in (Section 2.2.1),
and then we describe its two components in detail: photon tracing (Section 2.2.2), and collec-
tion of energy (Section 2.2.3).

2.2.1. Overview of the SIF Simulation Algorithm

Notice that nearly arbitrary points q in the scene are queried for calculating Eb/ f . The light
transport algorithms that aim to compute the portion of interest may not be suitable for
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calculating Eb/ f , which is the spatial integral of scattered radiance J (Equation (13)). If only
one view at a time can be obtained based on the commonly used backward tracing algorithm,
it can be time-consuming to retrieve sufficient information about the spatial radiation field.

Considering the characteristics of backward and forward tracing algorithms, the for-
ward photon tracing algorithm is used to solve Equation (8) to retrieve Eb/ f , and then
backward tracing is used to solve Equation (9) to calculate F.

Combining backward and forward tracing algorithms would be feasible to simulate SIF.
Therefore, taking advantage of the computing measurement at nearly arbitrary points in the
scene, we use the photon tracing algorithm proposed by Jensen [32] to generate the point
representation of the radiation. This algorithm is suitable for computing a representation of
the solution of Equation (9), and enabling a method for collecting radiation as the excitation
of the fluorescence emission for the next step to solve Equation (9).

In other words, the formulation of the light transport for the canopy SIF in this paper leads
us to the choice of the photon tracing method against many other ray-tracing algorithms.

Hence, the following sections start by describing photon tracing as the first step of the
proposed method (Section 2.2.2), and then show how to collect radiation as the excitation
of the fluorescence emission as the second step of the proposed method (Section 2.2.3).
Figure 1 shows the schematic diagrams of the two steps of the proposed model.

α

Light
Sensor

......

(a)

q

r α

Eb

E f

Fe

Light

Sensor

Fe

(b)
Figure 1. Schematic diagrams of the two steps of the proposed model. (a) In the first step, the point
representation of the radiation is built through photon tracing, where photons with weight α are
emitted from light sources and recorded upon interacting with surfaces within the scene. (b) In
the second step, the routine solutions for the radiation transfer problem are adopted to solve the
light transport equation, given the emitted fluorescence Fe. The total SIF detected by a sensor can be
divided into the direct emission from leaves and the portion that is scattered. The flux contributed by
α measures the amount of light that hits a surface over a finite area (represented by the area of a circle
at q with radius r here) from all directions. The irradiance Eb/ f integrates the light arriving at a single
point q over the whole hemisphere on the backward or the forward side.

2.2.2. Photon Tracing

Photon tracing algorithms are frequently described as involving energy packets,
known as photons in computer graphics. These photons are emitted from light sources
within the scene, depositing energy upon intersecting surfaces and then scattering in new
directions [41]. Developed with the framework introduced by Veach [40], and implemented
in renderers such as Mitsuba [42], a photon tracing algorithm is a method that generates a
set of weighted sample rays

((xj, ωj), αj), (14)

where (xj, ωj) represents a ray starting from xj and transferring toward the direction ωj,
and αj is the weight that counts the energy carried by the photon. The set of x, together
with α, makes up the point representation of the radiation, which can be used to compute
nearly any measurement based on the light distribution in the scene.
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The simplest way to generate a set of weighted ray samples and the points with
weights stored is to follow a random walk algorithm, which includes three steps as follows:

1. To determine the initial photon state
Choose a light source Le,k (the sunlight or the skylight here, defined by the input solar

radiation) with probability p′′k (k = 1, . . . , nl). There are nl light sources in total. The sum
of p′′k is one (∑nl

k=1 p′′k = 1), and none of the components are zero. In this study, we assume
p′′k = 1/nl , so the values for p′′k are easily set [43]. This method is also used in the DART-Lux
model [44]. Then, start a random ray (x0, ω0) from the light source, and define its weight
[W nm−1] to be

α0 =
1
p′′k

Le,k(x0, ω0, λ)

p0(x0, ω0)
(15)

where p0(x0, ω0) is the probability density function (PDF) by which (x0, ω0) is sampled.
The PDF p0(x0, ω0) for this particular ray emitted from the light is derived by multiplying
the area density with the directional probability density. The initial state of the photon is
defined to be ((x0, ω0), α0).

For a natural light simulation, the sources are composed of directional light and
isotropic skylight. To sample an outgoing ray from a directional light source, the proposed
method identifies a disk with an area of As that aligns itself with the direction of the light
beam. The disk is sufficiently large, allowing rays emitted from it in the direction of the
light to intersect the entire scene. The rays originate from points that are sampled evenly
over the disk, meaning that the PDF is 1/As. The directions of the rays follow the light’s
direction. The skylight is modeled with an area light [25,30]. Area lights are created by
assigning an emission profile to a shape with area Ad (a virtual upper hemisphere covering
all the geometry objects in the scene here). Ray origins are sampled evenly over the shape
area, i.e., the PDF is 1/Ad. Directions of the rays are taken based on a cosine-weighted
distribution about the surface normal at the sampled point, which means the PDF returns
a value of (1/π) cos θd, where θd is the angle between the sample direction and the local
surface normal.

2. To determine the sequence of photon states
Given the current state ((xj, ωj), αj), the point xj+1 is then the first intersection point

of the ray (xj, ωj) with a surface. Choose a random scattering direction ωj+1 according
to some PDF pj+1 that approximates the BSDF f there. According to the Lambertian
assumption for leaves and soil, pj+1 can be a cosine-weighted distribution. Since the
scattering direction is chosen regardless of wavelength, this method has the advantage that
one-time running can obtain data at every wavelength. It simulates SIF quickly if there
are available hyperspectral data that cover the range of photosynthetic active radiation.
The photon weight αj+1 is then computed from αj using the formula [40]

αj+1 = αj
1

p′j+1

f (xj+1,−ωj → ωj+1)| cos θj+1|
pj+1(ωj+1)

= α0

j

∏
m=0

1
p′m+1

f (xm+1,−ωm → ωm+1)| cos θm+1|
pm+1(ωm+1)

,

(16)

where p′j+1 is the probability with which the random walk is continued (where p′j+1 depends
on the current path in some way), θj+1 is the angle between ωj+1 and the normal at point x,
the probability density function pj+1(ω) is measured concerning the solid angle, and f is
the BSDF. The BSDF describes the appearance characteristics of the objects within the scene.
It details the amount of energy that is scattered at the point x on the object surface from an
incoming direction ωin to an outgoing direction ωout [41]. For example, a basic example of
a BSDF is the bi-Lambertian model:

f (x, ωin → ωout) =

{
ρ/π, (ωin · n)(ωout · n) > 0,
τ/π, (ωin · n)(ωout · n) < 0,

(17)
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where ρ is the reflectance, τ is the transmittance, and n is the surface normal at point x. It
represents an ideal diffuse surface that scatters incoming light uniformly in every direction.
For each intersection, the intersection point x and the incoming weight α are stored.

3. To stop
If the walk is terminated (which happens with probability 1 − p′j+1), one photon

tracing is completed. If the preset maximum number of the points with weights is reached,
the photon tracing step is terminated. The set of x, as well as the corresponding α, is stored,
which makes up the point representation of the radiation used to compute the excitation
for the fluorescence at nearly arbitrary points in the scene.

2.2.3. Collection of Energy

The point representation, consisting of the weight α, as well as the intersection point x,
is used to compute the irradiance Eb/ f based on the light distribution in the scene [45]:

Eb(q, λ) =
1

neπr2

nb

∑
k=1

αb(xk, λ), E f (q, λ) =
1

neπr2

n f

∑
k=1

α f (xk, λ) (18)

where ne is the number of photons emitted from the light sources. The incoming irradiance
is computed using the weights by locating the nb/ f weighted point stored that have the
shortest distance to q. Each incident weight αb/ f intersects with the surface along the ray
in the scene at xk on the backward/forward side of the leaf at wavelength λ, denoted
αb/ f (xk, λ), k = 1, . . . , nb/ f . The point xk is within the neighborhood of q, marked by a
circle centered at q with a radius of r.

Since Eb/ f is computed, and Fe is explicitly represented by Eb/ f (Equation (13)), we can
solve Equation (9) to compute the fluorescence (F) that we are interested in. The backward
tracing method presented in Qi et al. [30] is used to simulate the tracing of rays from the
view direction and assess radiation contributions from illumination sources. This method
is notably efficient in simulating specific sensor images because it only traces rays that
enter the sensor. The directions of these rays are dictated by the sensor’s configurations.
Subsequently, radiance for each pixel in the output image is calculated using Equation (9)
as mentioned by Qi et al. [30].

In the process of fluorescence energy collection, we categorize different contributions
based on their generating mechanisms. The overall SIF detected by a sensor positioned at
the top of the canopy can be categorized into two components: firstly, the portion emitted
directly by the leaves and detected by the sensor without any obstruction (referred to as
Fem), and secondly, the part of Fem that is scattered by both the leaves and soil (referred
to as Fsc). Therefore, when combined, Fem and Fsc represent the total fluorescence (F)
detected by the sensor.

3. Data

The two sets of the most important parameters for the SIF simulator are the 3D
structural scenes and the spectra of the components in the scenes. In this study, there are
two categories of canopy scenes, including abstract canopies (the homogeneous canopy
and the heterogeneous canopy with a row structure), and the geometrically explicit canopy,
which is constructed based on the experimental data. These data are used to validate the
new model, and the simulated data are analyzed.

3.1. Abstract Scenes and Simulated Data
3.1.1. Abstract Scenes

Abstract canopy scenes are one of the most common ways to simplify canopies, which
are often used in many radiative transfer models. In this study, only leaves and soil
background are kept in abstract scenes, but other components (such as stems and flowers)
are ignored.
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Two abstract canopy scenes with leaf area index (LAI) of 0.9 (denoted by S1) and 2.1
(S2) are generated based on the hypothesis of uniformly distributed leaves, representing
a slightly sparse and a denser homogeneous canopy, respectively. The average leaf angle
is about 54.3 degrees, and its standard deviation is 23.0 degrees. The canopy heights are
40 cm (S1) and 140 cm (S2) (Table 1).

Table 1. Structural statistical parameters of the generated abstract scenes.

Scene Index Leaf Area Index
Average Leaf

Angle/Standard
Deviation/Degrees

Canopy Height/cm

S1 0.9 54/23 40
S2 2.1 54/23 140
S3 2.1 54/23 140

Agricultural crops, often arranged in rows, are significant yet intricate subjects for
remote sensing studies. Experiments and simulations demonstrate that the reflectance pat-
terns of a row canopy differed markedly from those of a uniformly distributed canopy [46].
Therefore, a row-structured canopy scene (S3) is generated, where leaves are evenly spread
within virtual parallelepipeds. In this model, the distance between rows, the average width
of plants within each row, and the average height of the canopy are set at 70 cm, 70 cm,
and 140 cm, respectively. The Leaf Area Index (LAI), leaf orientation, leaf size, and canopy
height of this row-structured scene closely match those of a homogeneous scene with an
LAI of 2.1 (Table 1). The generated row scene alongside its homogeneous counterpart with
an LAI of 2.1 is shown in Figure 2.

(a) (b)
Figure 2. Generated abstract scenes representing (a) homogeneous canopy (S2) and (b) row canopy
(S3), respectively.

3.1.2. Spectral Data

The simulation is driven by spectral and illumination conditions. These include leaf
spectral properties like reflectance, transmittance, and EF-matrices simulated by Fluspect
version 1.2 with the leaf parameters (Table 2), as well as the soil reflectance and solar spectral
irradiance from both direct sunlight and diffused skylight. Figure 3 shows the components’
spectra of the abstract scenes, including the leaf reflectance, the leaf transmittance, and the
soil reflectance.
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Figure 3. The components’ spectra of the abstract scenes.

Table 2. The leaf parameters for Fluspect.

Parameter Unit Description Value

N - Leaf thickness parameter 1.5
Cab µg cm−2 Chlorophyll AB content 40
Cca µg cm−2 Carotenoid content 10
Cw cm Leaf water equivalent layer 0.009

Cdm g cm−2 Dry matter content 0.012
fqe - Fluorescence quantum yield efficiency at photosystem level 0.01

3.2. Field Data about Soybean

The experiment took place at the Huailai Remote Sensing Test Site of the Chinese
Academy of Sciences, situated in Huailai County, Hebei Province, China (40.349◦N, 115.785◦E).
Simultaneous measurements of soybean leaves and canopy were carried out during the exper-
iment. The data measured in the field or retrieved from the field-measured data for driving or
evaluating the model include leaf spectral measurements, canopy structural measurements,
and canopy spectral measurements. This experimental dataset was employed by [25] to test
the effectiveness of the FluorWPS model, and we also use it to validate our model here.

3.2.1. Leaf Spectral Measurements

Leaf spectral data were obtained using a LI-COR 1800-12 system integrating sphere
apparatus (LI-COR Inc., Lincoln, NE., USA) in conjunction with an ASD FieldSpec Pro
spectroradiometer (by ASD Inc., Boulder, CO, USA) as depicted in Figure 4.

Then, the leaf biochemical parameters and EF-matrices were derived through a two-
stage inversion process utilizing Fluspect as demonstrated by Zhao et al. [25].

Figure 4. Soybean leaf reflectance and transmittance spectra measured in the field.
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3.2.2. Canopy Structural Measurements and Abstract Scene Construction

Canopy structures were measured destructively in a 1.5 × 1.5 m2 plot. The average
canopy height is about 90 cm. The LAI is about 3.0. The average leaf angle is about 30.4◦

and its standard deviation is 20.0◦.
According to the characteristics of the soybean canopy, it is assumed that leaves are

evenly spread throughout. The scene created does not include stems and flowers. Leaves
are approximated as triangle patches. A homogeneous canopy scene is generated with the
same structural parameters as the soybean canopy.

3.2.3. Canopy Spectral Measurements

Spectral irradiance and radiance data under clear sky conditions were collected hourly
between 09:30 and 14:30 (GMT + 8) on 15 September 2014 for soybeans. These spectral
measurements were conducted at a height of 1.8 m above the ground in the nadir direction
with a field of view of 25◦ using an AvaField-3 spectrometer (Avants Inc., located in
Apeldoorn, the Netherlands) [25]. Then, the SIF spectrum spanning from 640 to 850 nm
was retrieved using the fluorescence spectrum reconstruction (FSR) method [47].

3.3. Field Data about Corn

The ability of the proposed model to represent a range of canopy structures makes it
an attractive tool for studying SIF distributions in realistic canopy settings. In this study,
a corn canopy, including the structural models and their spectral characteristics, are used to
construct an example scene. As a proof of concept, the application of fluorescence imaging
and the diurnal variation of the SIF are considered.

Summer maize serves as a primary food crop and a major vegetation type in summer
in Northern China. Modeling studies assist in uncovering the mechanisms that drive the
distributions of SIF. The SIF simulations of the corn canopy lay a foundation for research
on other crops.

The experiment was conducted at Luancheng Ecologic Experiment Station (37◦53′N,
114◦41′E, altitude 50.1 m), which is located in Hebei Province, China. Concurrent leaf and
canopy measurements for corn were performed in July 2000.

3.3.1. Leaf and Stem Spectral Measurements

The components’ spectral data were measured using SE590 (Spectron Engineering
Inc., Denver, CO, USA) equipped with an integrating sphere, including leaves and stems.
The reflectance values of leaves on both sides and the transmittance were measured. It
was found that the reflectance spectra from both sides are very close. Therefore, in the
simulation, the reflectance values on both sides of each leaf were set to be the same. On the
whole, due to the changes in the leaf structure and chemical composition between young
leaves (the tender leaf and the first green leaf (from the top)) and other mature leaves, their
transmittance and reflectance spectra are quite different, while the differences among other
mature leaves are relatively small. Therefore, the measured reflectance and transmittance
of young leaves, as well as the average reflectance and transmittance of other leaves, were
chosen as the optical properties of corn leaves in the simulation (Figure 5). The reflectance
of the soil is also presented in Figure 5 such that the optical properties of the corn scene are
kept as much as possible, and the complexity of the input parameters is reduced.
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Figure 5. The components’ measured spectra of the corn scene.

3.3.2. Structural Measurements and Geometrically Explicit Canopy Generation

While conducting the measurements for spectral data, the structural data were mea-
sured, such as plant height, leaf width, leaf length, and leaf angle distribution. An efficient
method with a digital imaging approach was developed by Wu et al. [48] to construct a
geometrically explicit structure of the corn canopy. The true–virtual distance ratio is defined
as the ratio between the true distance and the pixel distance on the image. This facilitates
the conversion of image information into actual data. Using the data, the geometrically
explicit structure of the corn canopy was constructed. The generated corn scene is shown
in Figure 6. The corn is planted in rows with a distance between the rows of 60 cm, a mean
width of the plants within the row of 25 cm, a mean plant height of 109.0 cm, and an LAI of
2.24, close to the measurements in the field.

Figure 6. The simulated corn canopy based on the in situ measured data.
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4. Results
4.1. Comparison with the SCOPE Model

The proposed model is compared with the SCOPE (version 1.73) model based on the
data in Section 3.1. For model comparisons, the structural and spectral input conditions for
both models are kept as identical as possible. Homogeneous canopy scenes, as assumed
in SCOPE, are generated using multiple polygons for the proposed model. The statistical
parameters of the canopy scene are calculated for SCOPE. The spectral data are extracted
from the SCOPE simulations. To evaluate the fluorescence distributions systematically,
comparisons of both spectral and multi-angular SIF distributions are carried out. The spec-
tral range spans from 640 nm to 850 nm in increments of 1 nm. The viewing zenith angle
(VZA) ranges from 0◦ to 70◦ in steps of 10◦, and the viewing azimuthal angle (VAA) varies
from 0◦ to 350◦ in steps of 10◦. The sun zenith angle (SZA) is set at 30◦ and the sun azimuth
angle (SAA) at 140◦.

The overall SIF detected by a sensor positioned at the top of the canopy can be
categorized into two components: firstly, the portion emitted directly by the leaves and
detected by the sensor without any obstruction (referred to as Fem), and secondly, the part
of Fem that is scattered by both leaves and soil (referred to as Fsc). When combined,
Fem and Fsc represent the total fluorescence (F) detected by the sensor. These three parts
simulated by SCOPE and the proposed model are compared, respectively.

4.1.1. SIF Spectrum

Figure 7 displays the spectra of the total SIF and its components—emission part (Fem)
and scattering part (Fsc)—in the nadir direction or hotspot, simulated by both the proposed
model and the SCOPE model for two homogeneous canopies. The F spectra from both
models exhibit the typical red and far-red peaks, approximately at 685 nm and 740 nm,
respectively. As LAI increases, there is a general rise in F, particularly noticeable in the
Near-Infrared (NIR) regions. Overall, the SIF predictions from the proposed model closely
align with those from the SCOPE model across both canopies.

Figure 7. The spectra comparisons of the total SIF (F), the emission part (Fem), and the scattering
part (Fsc) in the nadir or hotspot direction for two homogeneous canopies simulated by the proposed
model (dashed line) and the SCOPE model (solid line). (a) LAI = 0.9, nadir; (b) LAI = 2.1, nadir;
(c) LAI = 0.9, hotspot; and (d) LAI = 2.1, hotspot.
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4.1.2. Angular SIF Distributions

Figure 8 displays the polar plots of F at wavelengths 685 nm and 740 nm, as well as
Fsc at 740 nm for a simulated canopy LAI of 2.1, using both the proposed model and the
SCOPE model.

In these plots, the central point represents a VZA of 0◦ (the nadir direction), with VZA
values increasing radially outward. The VAA begins at the top and progresses clockwise,
reaching 90◦ at the right. Due to the symmetric distribution with respect to the solar princi-
pal plane (PP), the values with VAA greater than SAA are copied from the corresponding
value with VAA lower than SAA in the plots.

The SIFs at 685 nm and 740 nm, as simulated by both models, exhibit a bowl shape
with a local maximum in the hotspot direction (Figure 8a,b,d,e). Bowl-shaped patterns,
almost symmetric around the nadir, are observed in polar plots for Fsc (Figure 8g,h),
indicating relatively weak anisotropy. The general forms of fluorescence distributions
from both models are essentially identical. Moreover, all of the absolute differences are
below 0.12 mW m−2 sr−1 nm−1 (Figure 8c,f,i), demonstrating good agreement between the
fluorescence distributions of the two models.

In Figure 9, a comparison is illustrated along the PP between the proposed model and
the SCOPE model at 685 nm and 740 nm. Here, negative VZAs denote the forward direction,
while positive VZAs represent the backward direction. A peak in the hotspot direction
is observed for both models’ simulations in the fluorescence, excluding the scattering
component. The results show good agreement between the two models.

Figure 8. Polar plots of fluorescence generated by the proposed model (left panels: a,d,g) and the
SCOPE model (middle panels: b,e,h), as well as their differences (right panels: c,f,i), including the
total SIF at 685 nm (a,b), the total SIF at 740 nm (d,e), and the scattering part at 740 nm (g,h) for the
homogeneous LAI = 2.1 scene. The sun zenith angle is at 30◦, and the sun azimuth angle is at 140◦.
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Figure 9. The angular distributions of the total SIF at 685 nm (F685) and 740 nm (F740), along with
its emission part at 740 nm (Fem740) and scattering part (Fsc740) along the solar principal plane are
simulated for two homogeneous canopies. These distributions are represented by a dashed line for
the proposed model and a solid line for the SCOPE model. Negative-view zenith angles denote the
forward direction, while positive-view zenith angles represent the backward direction. (a) LAI = 0.9;
(b) LAI = 2.1.

Generally, the total fluorescence F at 685 and 740 nm simulated by the proposed model
closely matches the results from the SCOPE model for low VZAs less than 20 degrees and
high VZAs in the forward direction. And Fem and Fsc at 740 nm between the two models
show good agreement for low VZAs across all canopy scenes, although there is a slight
deviation observed for high VZAs. Fem simulated by the proposed model is a little lower
than that by SCOPE for high VZAs, while Fsc is higher, enabling F(=Fem + Fsc) to agree
with that by SCOPE. The slight deviation at high VZAs compared with SCOPE is also
reported in Zhao et al. [25].

Correlation statistics for PP viewing angles (Table 3) demonstrate that the determina-
tion coefficients (R2) and root mean square errors (RMSEs) are higher than 0.98 and lower
than 0.08 mW m−2 sr−1 nm−1, respectively, for both the red peak and far-red peak.

Table 3. Correlation statistics between the proposed model and the SCOPE model for two scenes.

F 685 nm F 740 nm Fem 740 nm Fsc 740 nm

Scene R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LAI = 0.9 0.9888 0.026 0.9876 0.031 0.9899 0.070 0.9957 0.056
LAI = 2.1 0.9939 0.021 0.9805 0.034 0.9929 0.059 0.9906 0.049

4.2. Comparison with Field Measurements

Six sets of paired datasets, involving both leaf and canopy measurements of soybean,
were collected (Section 3.2). Figure 10 presents a comparison between the simulated
SIF spectra generated by the proposed model and those reconstructed using the FSR
method. Both the values and general shapes of the simulated SIF spectra match those of the
reconstructed spectra over time, albeit with some noticeable differences. For the spectral
range of 670–800 nm at 1 nm intervals, the coefficient of determination is 0.95, and the
RMSE is 0.14 mW m−2 sr−1 nm−1 for the soybean canopy. Typical diurnal variations in SIF
spectra, influenced by changes in incident irradiance, are also evident; they increase until
mid-morning before declining.
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Figure 10. The SIF spectra for the soybean, reconstructed from measured data, along with simulation
by the proposed model.

5. Discussion
5.1. Model Application on the Impact of Row Structure on SIF Distributions

As illustrated in Figure 11, the spectral and angular SIF distributions for the row
canopy are lower compared to those in the homogeneous scene. This finding is consistent
with that of Zhao et al. [25]. This is due to the fact that a significant part of the row canopy
in the nadir direction consists of soil between the rows, which does not emit fluorescence.

Figure 11. The SIF distributions of the row scene (solid line) and the homogeneous scene (dashed
line) simulated using the proposed model. The total SIF, the emission part, and the scattering part
are denoted by F, Fem, and Fsc, respectively. (a) The spectra in the nadir direction. (b) The angular
distributions along the PP at 685 nm and 740 nm. Negative-view zenith angles denote the forward
direction, while positive-view zenith angles represent the backward direction.

The influence of row structure is depicted in Figure 12. In the polar plots of fluores-
cence for the row scene (Figure 12a,c,e), a low-value stripe can be observed running roughly
parallel to the row direction. This pattern is in line with those of previous studies [25,49].
This pattern is evident in both the emission and scattering components, resulting in an
overall SIF that also displays a low-value stripe parallel to the row orientation. Conversely,
the homogeneous scene demonstrates a bowl-shaped symmetric distribution relative to
the PP. In this case, the emission component forms a bowl shape with a local maximum
towards the hotspot direction within the PP, while the scattering component shows a
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nearly symmetric bowl-shaped distribution around the nadir. Consequently, this results
in a bowl-shaped symmetric distribution with respect to the PP for homogeneous scenes
(Figure 12b,d,f).

Variations in SIF appear across various aggregation levels in a simulated image of the
row scene. Figure 13 illustrates how SIF extracted from the original high-resolution image
changes with increasing pixel-aggregation levels. In Figure 13a, which shows the original
SIF image, the canopy has high fluorescence values, and the ground has low values. In the
canopy, the texture can be seen clearly due to the scattered leaves. There are low values on
the left side, corresponding to the shaded leaves that can be seen in the natural color image
(Figure 14) (recall that the SAA is 140◦). From Figure 13b to Figure 13d, the resolution varies
from high to low, and the texture becomes smooth. The resolutions are high enough to
distinguish the vegetation from the ground. Figure 13e shows constant values because the
pixel-aggregation level is high enough to aggregate the fluorescence from the canopy and
the ground, and only average values are obtained, which are lower than the pure canopy
pixel value, and higher than the pure ground pixel value.

Figure 12. Polar plots of fluorescence simulated by the the proposed model model for the row scene
(left panels) and the homogeneous LAI = 2.1 scene (right panels): the total SIF at 685 nm (a,b) and
740 nm (c,d), and the scattering part at 740 nm (e,f).
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Figure 13. Subplots illustrating the effects of spatial resolution aggregation (shown in the captions
of the subplots) overlaid onto the simulated image of the row scene at 740 nm. (a) The original SIF
image. (b–e) Different levels of aggregation in simulated images.

Figure 14. Close-up of the natural color image of the row scene in the nadir view.

5.2. Model Application on the Realistic Corn Scene

The ability of the proposed model to represent a range of canopy structures makes it
attractive for studying SIF distributions in realistic canopy settings. As a proof of concept,
the application of fluorescence imaging and the diurnal variation of the SIF is considered.

5.2.1. Fluorescence Imaging

A fluorescence image of the realistic corn scene (Section 3.3) at noon (12:00 GMT + 8)
is shown in Figure 15. The sun zenith angle is 18◦, and the sun azimuth angle is 156◦.
Figure 15b highlights five samples taken from different leaves and positions within the
canopy. The five samples demonstrate the variability in fluorescence across the canopy.
Sample (1) is from a tender leaf, sample (2) is from the first green leaf from the top, sample
(3) is from a sunlit green leaf, sample (4) is from a shaded green leaf, and sample (5) is from
the ground. Figure 15c shows the simulated SIF spectra for these five samples. The spec-
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tra for samples (1)–(4), which are from leaves, exhibit the typical red and far-red peaks
around 685 nm and 740 nm, respectively. Comparing the sunlit leaf samples, the tender
leaf (sample (1)) has the highest SIF at 685 nm, followed by the first green leaf (sample
(2)) and then the sunlit green leaf (sample (3)). This matches the retrieved chlorophyll
AB contents of 7, 12, and 40 µg cm−2 for these three leaves, respectively. However, at
740 nm, the order is different, with the first green leaf (sample 2) having the lowest SIF
value among the three sunlit leaf samples. This highlights that the relationship between
SIF and chlorophyll content is not always straightforward as discussed further in the
literature [50]. Since the focus of this article is not on the detailed relationship between
SIF and leaf biochemistry, we will not delve deeply into that topic here. The SIF values
of sample (4) taken from the shaded green leaf are lower than those of the sunlit green
leaf (sample 3). These differences are primarily caused by the illumination conditions
(Figure 15a). To make the description sophisticated, an evaluation of leaf-level illumination
is conducted. For measurement purposes, an ideal diffuse reflectance target is attached to
the sample as shown in Figure 16 [39]. Then, the retrieved PAR values for samples (3) and
(4) are about 1066 and 241 µmol m−2 s−1, respectively. The leaf position that receives more
incident energy, like the sunlit leaves, will emit higher fluorescence. The SIF values for the
sample (5) taken from the ground are the lowest among all the samples. This is because the
ground itself does not emit SIF. The values measured for the ground sample (5) represent
the scattered fluorescence from the surrounding vegetation and soil. Compared to the leaf
samples, the red peak around 685 nm is less pronounced in the ground sample (5) spectrum.
This can be explained by the relatively low SIF values and the higher absorption of red
wavelengths by the plant elements within the scene.

Figure 15. Examples of SIF imaging. (a) A natural color image of the realistic corn scene. (b) The SIF
image of the realistic corn scene at 685 nm with the layout of the samples (markers). Several samples
are taken as examples to show the SIF imaging data. (c) The SIF spectra of the samples.

(a) (b)
Figure 16. An ideal diffuse reflectance target is attached to the sample. (a) Sample (3). (b) Sample (4).

Moreover, the variation of the SIF on leaves caused by shadows can be clearly seen in
Figure 15b, which includes the difference between samples (3) and (4). This demonstrates
that the radiation information in the scene is stored independently of the underlying
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geometry or polygons. If the radiation representation were tightly coupled to the polygonal
structure, the SIF values within a single polygon would be identical, and the fine-scale
variation caused by shadows may not be as pronounced as that shown in the figure. The
versatile nature of the model’s decoupled representation of radiation and geometry is a key
strength. It allows the model to better capture the complex and heterogeneous structure of
real-world canopy systems.

By resolving these subtle differences in fluorescence emission, even within the same
leaf or canopy element, the model provides a more realistic and detailed representation of
the radiative transfer processes. This enables more accurate quantification and analysis of
the underlying photosynthetic activity, which has important implications for remote sens-
ing, precision agriculture, and other applications that rely on understanding the canopy’s
functional dynamics.

5.2.2. SIF Images under Different Natural Light Conditions

Examples of simulated SIF images at 685 nm at 10:30 under different light conditions
of the realistic corn scene are shown in Figure 17. Figure 17a,b depict the SIF under a
clear sky and a slightly hazy day with more isotropic scattering [51], respectively. Sam-
ples from the SIF images are used to illustrate the fluorescence differences between the
two light conditions.

Samples (a1) and (b1) are from the same sunlit leaf position, while (a2) and (b2) are
from the same shaded leaf position but under different light conditions. Figure 17c shows
the SIF spectra of these samples. As expected, the SIF values of sunlit samples (a1) and
(b1) are higher than those of shaded samples (a2) and (b2), consistent with the findings in
Section 5.2.1. Interestingly, the SIF values of sunlit samples (a1) and (b1) are nearly identical,
despite the different input light conditions. However, the SIF values of shaded sample (a2)
are lower than those of shaded sample (b2). This can be attributed to the differences in
the illumination conditions—the shadow appears lighter in color in Figure 17b under the
slightly hazy conditions, allowing more scattered light energy to reach the shaded leaf and
resulting in higher fluorescence emission.

These results demonstrate the model’s capability to simulate the subtle contrasts
in fluorescence imaging caused by varying illumination conditions. This versatility is a
highly attractive feature, as it enables the study of realistic SIF distributions in complex
canopy structures.

Figure 17. Examples of simulated SIF images at 685 nm at 10:30 under different light conditions of
the realistic corn scene. (a) SIF image under a clear sky. (b) SIF image on a slightly hazy day. (c) The
SIF spectra of the samples.
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5.2.3. Diurnal Variation of the SIF

The solar spectral irradiance distributions were simulated at 30-min intervals from
06:30 to 18:30 (GMT + 8) using MODTRAN 5.2.2, representing a typical midsummer day
with a visibility of 23 km. The diurnal variation of the Photosynthetically Active Radiation
(PAR) retrieved from these simulated data is shown in Figure 18. These PAR data were then
used to drive the simulation of the diurnal variation in Sun-Induced Fluorescence (SIF) for
the realistic corn scene. The typical temporal patterns can be observed, with both the SIF at
685 nm and the PAR increasing until noon and then decreasing in a roughly symmetrical
manner on a clear day. However, the slopes of the two curves are not always identical.
Consequently, the graph of SIF as a function of PAR is not a straight line (Figure 19). This
can be explained by the non-linear relationship between the leaf fluorescence response
and light level as accounted for by the correction factor φ in the model. The φ factor is
a non-linear function of PAR according to the formulas provided in Appendix A. This
observed non-linearity between SIF and PAR highlights the importance of the model’s
ability to capture the complex, dynamic interplay between the illumination conditions
and leaf-level fluorescence response. Such nuanced relationships are crucial for accurately
simulating and interpreting the spatiotemporal patterns of SIF in realistic canopy scenarios.

Figure 18. The diurnal variations of the PAR and the SIF at 685 nm.

Figure 19. The SIF versus the PAR in a day.

The high-resolution fluorescence imaging capabilities of the model can be leveraged
to examine the diurnal variation of SIF at different positions and horizontal levels within
the canopy scene. Figure 20 shows the diurnal variations of SIF at 685 nm for five samples
within the realistic corn scene. In contrast to the smooth, symmetric diurnal patterns
observed for the overall canopy SIF in Figure 18, most of the individual sample curves
exhibit more irregular, asymmetric behavior. This can be explained by the fact that the
canopy-level SIF is an aggregation of signals from across the scene, where local variations
in illumination conditions tend to average out. The diurnal trends in canopy SIF are
predominantly driven by the diurnal PAR variation, resulting in the symmetry observed in
Figure 18.
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However, the individual sample SIF diurnal patterns are more heavily influenced
by the heterogeneous local illumination conditions within the canopy. Consistent with
the fluorescence imaging analysis in Section 5.2.1, the tender leaf sample (1) displays the
highest SIF, while the ground sample (5) having the lowest. The timing of the SIF peaks
also varies, with samples (1) and (2) peaking around 10:30, while samples (3) and (4) peak
around 13:30. This phase delay can be attributed to differences in leaf angle distributions,
as the leaves face the sun at different times of the day.

(a) (b)
Figure 20. Examples of the diurnal variations of the SIF at 685 nm. (a) The layout of the samples
(markers) in the realistic corn scene. The samples are taken as examples to show the diurnal variations
of the SIF. (b) The diurnal variations of the SIF at 685 nm.

Additionally, the sample SIF values can decrease steeply and exhibit non-smooth
behavior, particularly for lower-level samples affected by shadows cast by upper leaves
as seen for sample (3) around 14:30 and in Figure 21e,f. This highlights how leaves at
lower horizontal positions within the canopy tend to be impacted by shading from above.
Finally, the ground sample (5) shows a relatively smooth, symmetric diurnal SIF pattern,
as the ground itself does not emit fluorescence, and the observed signal is primarily due to
scattered fluorescence.

Overall, this analysis demonstrates the importance of accounting for the heterogeneous
illumination conditions and their impact on the spatiotemporal variations of SIF within a
realistic canopy scene.

The examples of SIF images from the simulation of the realistic corn scene, shown
in Figure 21, capture the typical temporal variations in the output SIF at 685 nm over the
course of the day. These images clearly demonstrate the changes in the shadows cast within
the canopy, driven by the evolving sun direction. Additionally, there are gradual changes
in SIF across the bowed leaves. The key point is that the model’s use of a decoupled
representation, rather than the radiation representation tightly coupled to the polygonal
structure, allows it to capture the subtle variations in SIF caused by complex illumination
patterns within the canopy as illustrated in Figure 21. The results presented here show that
the model has the capability to simulate the nuanced contrasts in fluorescence imaging
driven by evolving illumination conditions, highlighting the attractiveness of this tool for
studying SIF distributions in realistic canopy environments.
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Figure 21. Examples of SIF images at 685 nm (every 1 h from 10:00 to 15:00) from the simulation of
the diurnal variation of the SIF of the realistic corn scene.

5.3. Perspectives

The proposed model takes into account the spectral range, structural effects, and tem-
poral patterns, which are key aspects of fluorescence research and applications [19,52].

The findings of the impact of row structure on SIF distributions are consistent with
those of Zhao et al. [25], who demonstrated that the canopy structure significantly influ-
ences the spectral and directional distributions of SIF, resulting in greater SIF anisotropy
compared to a homogeneous canopy with a similar leaf area index and leaf angle distribu-
tion. The row effect of SIF at varying view directions identified a low-value stripe that runs
approximately parallel to the row orientation in the polar plot of SIF. This pattern is consis-
tent with the findings from other models, including FluorWPS [25] and FLiES-SIF [28,49].
Ref. Morozumi et al. [49], using FLiES-SIF, investigated the effect of row orientation on
diurnal simulated SIF variations. The proposed model also showed the ability to simulate
diurnal SIF; however, a more sophisticated investigation on this comprehensive topic,
the row effect on diurnal SIF, has not been conducted in this study.

The independent representation of radiation information in the model allows for the
capture of subtle variations in SIF due to complex illumination patterns within the canopy,
which is a key advantage over approaches relying on how the polygons are tessellated.
This capability makes the model a valuable tool for investigating the spatial and temporal
patterns of photosynthesis in realistic crop canopy scenarios.

Fluorescence imaging provides a non-destructive method for vegetation monitoring.
Investigations that assess vegetation monitoring techniques using three-dimensional radia-
tive transfer modeling are particularly insightful [53]. Simulations of fluorescence images
with the proposed model revealed that the fluorescence heterogeneity can be generated
by the leaf scene modeling with different light illumination and leaf chlorophyll content.
Additionally, pulse amplitude modulated (PAM) fluorescence is a viable technique for
imaging fluorescence [54]. However, it is important to note that PAM fluorescence requires
the active regulation of light conditions [55]. Furthermore, PAM images illustrate the
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heterogeneity of chloroplasts within leaves [33]. Therefore, when collaborating between
the PAM fluorescence technique and the three-dimensional fluorescence radiative transfer
modeling, these factors should be taken into account.

The proposed model integrates input from Fluspect and incorporates the dependence
of the fluorescence correction factor on the incident photosynthetic active radiation levels.
However, the proposed model does not currently include calculations for photosynthesis
and energy balance, unlike the SCOPE model [24]. Future considerations should include
incorporating other light sources and environmental factors, as well as coupling phys-
iological processes in the three-dimensional fluorescence model. These considerations
draw inspiration from studies such as Linn et al. [54] and Van Wittenberghe et al. [52],
along with advancements in other 3D models, including DART [26,56], FLiES-SIF [28,49],
and FluorWPS [25,57].

6. Conclusions

In this work, we have proposed a radiative transfer simulation model that uses the
Monte Carlo ray-tracing method to quantitatively compute canopy sun-induced fluores-
cence (SIF). A key innovation of the model is the decoupling of the radiation representation
from the geometric representation of the scene. By using a point-based approach for the
radiation, the proposed model eliminates the need for tessellating the geometry, enabling
a more flexible and versatile representation of the canopy structure. Through systematic
evaluations, the proposed model was shown to closely reproduce the temporal SIF spec-
tra, which were comparable to field-measured data. Comparisons with the established
SCOPE model further enhanced the confidence in the accuracy and reliability of both
modeling approaches.

Furthermore, we demonstrated the versatile nature of the proposed model’s canopy
representation by applying it to study the impact of row structure on SIF and fluorescence
imaging. This capability makes the proposed model a highly attractive tool for investigating
SIF distributions in realistic, heterogeneous canopy environments. The flexibility and
realism afforded by the proposed model offer promising opportunities for advancing our
understanding of various plant and ecosystem processes, such as crop yield estimation,
vegetation stress monitoring, and quantification of photosynthetic capabilities. As such, this
model presents an important step forward in the field of SIF modeling and its applications
in remote sensing and precision agriculture.
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Appendix A. Dependence of the Fluorescence Correction Factor on Incident
Photosynthetic Active Radiation Level

The photosynthetic active radiation (PAR) light level dependence model of leaf flu-
orescence by Rosema et al. [38] is applied to calculate the fluorescence correction factor
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φ. This section starts by showing how to calculate the fluorescence correction factor φ,
and then summarizes the PAR.

To calculate the fluorescence correction factor φ, three equations are used as summa-
rized in Miller et al. [7] and Zhao et al. [25], given by

φ′
P0 =

φP0

1 + bPPAR(1 − φP0 − φF0)
, (A1)

where φP0 is the proportion of energy dedicated to photosynthesis in the open photosystems
equal to 0.82. bP is called the heat dissipation constant, which is recommended at a value
of 0.0035, and φF0 is the corresponding fluorescence fraction equal to 0.01 [38].

The photosynthetic quantum yield φ′
P is given by

φ′
P =

φ′
P0

1 + re φ′
P0PAR

, (A2)

where re is the electron transport resistance, which is recommended at a value of 0.005 [38].
The fluorescence correction factor φ is calculated as

φ =
φ′

P0
φP0

1 − φ′
P

1 − φ′
P0

. (A3)

In order to apply this model, the flux needs to be transformed into photon flux densities
in µmol m−2 s−1 and then integrated across the PAR wavelength range of
400–700 nm. The following equation is used for this conversion:

PAR =
103

hcNA

∫
Λ′

Eλdλ, (A4)

where E is a radiant flux density (irradiance) in mW m−2 nm−1, and the wavelength λ
is also expressed in nm. The product hc = 6.626 070 × 10−34 J s × 299 792 458 m s−1 =
1.986 44 × 10−16 J nm, which is Planck’s constant times the speed of light. The constant
NA = 6.022 × 1023 mol−1 is Avogadro’s number. And Λ′ means that the range is from
400 nm to 700 nm.
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