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Abstract: Land surface anomalies refer to various activities on the Earth’s surface that consist of 
short-term and sudden changes due to external disturbances. These anomalies are closely related to 
the safety of human life and property. Remote sensing offers irreplaceable advantages such as broad 
coverage, high temporal dynamics, and comprehensive observations, so it is the most effective tool 
for monitoring land surface anomalies and measuring their intensities. However, existing studies 
have limitations such as unclear sensitivity features, uncertain applicability, and a lack of quantita-
tive expression at different scales. Therefore, this study develops a quantitative assessment frame-
work for land surface anomaly intensity across four scales: the pixel scale, structure scale, object 
scale, and scene scale. This framework enables an adaptive and flexible weight determination of the 
intensity of land surface anomalies from a satellite perspective. Using the Chongqing fire as an ex-
ample of a land surface anomaly, this study evaluates its land surface anomaly intensity. Moreover, 
we demonstrate the method’s applicability to other land surface anomaly events, such as floods and 
earthquakes. The experiments reveal that the land surface anomaly intensity evaluation framework, 
which is constructed based on pixel-scale, structure-scale, object-scale, and scene-scale features, can 
quantitatively express the land surface anomaly intensity with an accuracy of 75.25% and more ef-
fectively represent severely affected areas. The weights of the features at the four scales sequentially 
decrease: structure scale (0.2974), pixel scale (0.3225), object scale (0.1867), and scene scale (0.1932). 
The extensive application of this method to other land surface anomaly events provides accurate 
quantitative expressions of the land surface anomaly intensity. This remote sensing-based mul-
tiscale feature assessment method is adaptable and applicable to various land surface anomalies 
and offers critical decision support for land surface anomaly intensity warning systems. 

Keywords: land surface anomaly intensity; remote sensing; multiscale features; entropy weight 
method 
 

1. Introduction 
Land surface anomalies refer to “the sudden phenomenon threatening the natural or 

social environment, which destroys the stable balanced state of the Earth’s surface con-
forming to the historical evolutionary law caused by the single or double influence of 
natural and human factors” [1]. Land surface anomalies are characterized by suddenness, 
diversity, randomness, and complexity. In recent years, the Earth has experienced a surge 
in sudden land surface anomalies caused by both natural factors and human activities. 
These events, including earthquakes, floods, landslides, other natural disasters, environ-
mental pollution, ecological degradation, safety incidents, and unauthorized develop-
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ment, have become increasingly frequent. They are characterized by widespread distribu-
tion, high occurrence rates, rapid evolution, extensive impact, and significant economic 
losses [2]. The demands for disaster relief, environmental emergency response, and envi-
ronmental regulatory oversight in recent years have created a substantial need for early 
warning systems for land surface anomalies. This demand has driven the development of 
methods for generating land surface anomaly intensities [3–5]. A timely assessment of 
land surface anomaly intensities is crucial for decision-makers to effectively implement 
macroscale control; strategically allocate human, material, and financial resources; and 
minimize damage to the natural environment, life, and property caused by these anoma-
lies. Thus, timely assessment supports prompt and effective disaster relief efforts. 

Land surface anomaly intensity can be defined as the extent of damage to the land 
surface caused by anomalies. The intensity of a disaster is determined by two fundamental 
factors: the intensity of the disaster-causing factors and the density of the population and 
economy in the affected areas. The latter represents the capacity of an area to defend 
against and withstand a disaster [6]. Traditional methods for assessing land surface anom-
aly intensity often rely on postevent ground surveys. While highly accurate, this method 
is heavily influenced by subjective human judgement. Moreover, this method requires 
significant time and labour and suffers from time delays, so it is less effective for real-time 
decision-making [7,8]. Remote sensing-based land surface anomaly intensity detection is 
assessed by analysing the spectral, radiative, and textural features of satellite images, 
which can quantitatively reflect land surface anomalies. This approach involves extracting 
comprehensive features and determining thresholds or simply extracting the attributes of 
land surface anomalies to translate satellite remote sensing features into actionable 
knowledge about land surface anomaly intensity. 

Remote sensing enables the large-scale monitoring of land surface anomalies and 
provides abundant, reliable data for detecting land surface anomaly intensities [9–12]. The 
common methods used in recent years include manual interpretation [13,14], geographic 
object-based image analysis (GEOBIA) [15–17], remote sensing indicator-based methods, 
and machine learning methods [18,19]. Among these methods, remote sensing indicator-
based methods are the most commonly used; they do not require ground truth data, are 
fast, and offer high accuracy. Remote sensing indexes are significant indicators. Com-
monly used indexes are the Forel–Ule Index (FUI) [20], normalized difference vegetation 
index (NDVI) [21], Modified Normalized Difference Water Index (MNDWI) [22], and Leaf 
Area Index (LAI) [23]. Land surface anomaly intensity can be assessed by analysing the 
index itself or calculating the index difference before and after the anomaly. In addition, 
the intensities of land surface anomalies can also be assessed via several indicators that 
are directly detected via remote sensing, such as surface deformation [24], total suspended 
solids (TSSs) [25], and the water level [26]. All of these existing methods have limitations, 
such as unclear sensitivity features, uncertain applicability, and a lack of quantitative ex-
pression at different scales. These shortcomings hinder their ability to support decision-
making for land surface anomaly warning systems. Therefore, it is imperative to develop 
a comprehensive remote sensing feature system to measure land surface anomaly inten-
sity quantitatively and refine the theoretical framework. 

Given the aforementioned challenges, this paper first proposes a universal land sur-
face anomaly intensity assessment method using multiscale remote sensing features. We 
develop an evaluation framework to measure the land surface anomaly intensity, where 
we select the Chongqing fire as a typical case to analyse the relationship between land 
surface changes and remote sensing feature changes. We establish an index system to 
quantitatively assess the land surface anomaly intensity across multiple scales, including 
the pixel scale, structure scale, object scale, and scene scale, which are defined from the 
viewpoint of satellites. Instead of using only the pixel or structure scale, we consider four 
scales to fully use the remote sensing image information. Furthermore, we explore the 
weight distributions of multiscale features to evaluate the land surface anomaly intensity 
via the entropy weight method. The feature weights are only determined based on remote 
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sensing data without the need for additional expert knowledge or manual intervention. 
Therefore, we can automatically obtain the land surface anomaly intensity. This paper 
aims to construct a quantitative evaluation model, analyse the sensitive remote sensing 
features of land surface anomaly intensity, elucidate the intrinsic relationship between 
land surface anomaly intensity and remote sensing features, and validate the applicability 
of the proposed remote sensing measurement framework across various types of land 
surface anomalies. 

2. Remote Sensing Framework for Measuring Land Surface Anomaly Intensity 
2.1. Definition of Land Surface Anomaly Intensity 

Land surface anomaly intensity is defined as the degree of deviation from the normal 
state of the Earth’s surface, where “normal” refers to the stable and persistent status and 
properties of land surface features over an extended period. The remote sensing warning 
of land surface anomaly intensity involves the detection of land surface anomalies and the 
analysis of spectral, radiative, scattering, geometric, and textural features. These features 
are used to identify diagnostic feature thresholds and composite indexes for anomalies 
and translate satellite imagery data into actionable knowledge of the land surface anomaly 
intensity [1]. Based on this definition, pre-anomaly remote sensing characteristics can be 
considered normal values, and post-anomaly characteristics can be considered anomalous 
values. The change between these values is used as an input to evaluate the land surface 
anomaly intensity. 

The remote sensing-based land surface anomaly intensity detection framework is in 
Figure 1. The pixel is the basic unit of remote sensing imagery. At the pixel scale, the de-
gree of change in physical characteristics, such as the tone of the land surface features, can 
reflect individual differences. Land surface anomaly intensity is generated from the de-
gree of radiative brightness changes. The structure scale captures the greyscale changes 
between pixels and their surroundings. Changes in physical characteristics such as land 
surface roughness and smoothness are measurements of land surface anomaly intensity. 
At the object scale, the information of relatively independent pixel sets is conveyed into 
features such as the state, fragmentation, shape, and size of anomalous pixel patches in a 
four or eight neighbourhood, which are indicators of the land surface anomaly intensity. 
The scene scale captures the magnitude of the anomaly over a defined spatial area, which 
expresses the spatial positions and relationships of objects. It can reflect geometric char-
acteristics such as the size of the anomaly areas, which can be quantified as the land sur-
face anomaly intensity at the scene scale. 

 
Figure 1. Diagram of remote sensing-based land surface anomaly intensity detection. 

2.2. Mathematical Model for Measuring Land Surface Anomaly Intensity 
The formula for calculating the land surface anomaly intensity is defined as follows: 𝐿𝑆𝐴𝐼 = 𝑃𝐼 ⊗ 𝑆𝐼 ⊗ 𝑂𝐼 ⊗ 𝐿𝐼 (1)

where LSAI is the land surface anomaly intensity, PI is the pixel intensity, SI is the struc-
ture intensity, OI is the object intensity, and LI is the landscape intensity. (To differentiate 
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from structure intensity (SI), “Landscape” is used here instead of “Scene.” However, the 
“scene scale” will continue to be used in subsequent sections). 
(1) Pixel-Scale Land Surface Anomaly Intensity 

The features used to assess the intensity at the pixel scale include spectral and scat-
tering features. Spectral features, which are crucial in remote sensing imagery, describe 
the statistical characteristics of pixels across various bands. Common spectral features in-
clude brightness values, standard deviations, and others. Differences in spectral features 
can reflect changes in the physical properties of land cover caused by land surface anom-
alies, such as colour. Greater differences correspond to greater land surface anomaly in-
tensities. Common scattering characteristics include radar backscatter coefficients, which 
can effectively capture changes in physical properties such as surface roughness. The mag-
nitude of change in these features is directly proportional to the land surface anomaly 
intensity. The calculation formula for the PI (pixel intensity) is defined as follows: 𝑃𝐼 = 𝐿 ⊗ 𝑆 (2)

where L denotes spectral features, and S denotes scattering features. 
(2) Structure-Scale Land Surface Anomaly Intensity 

The features used to assess the intensity at the structural scale are texture and vari-
ance. Texture refers to the frequency of tonal variations in land cover and is an essential 
feature that reflects structural information on the land surface. The variance, which is the 
sum of the squared differences between the pixel values and the mean, indicates the de-
gree of dispersion of the pixel values. Differences in texture and variance can effectively 
capture changes in physical properties caused by surface anomaly events, such as the 
roughness and smoothness of the land surface. The magnitude of these feature changes 
can further reflect the land surface anomaly intensity. The calculation formula for the SI 
(structure intensity) is defined as follows: 𝑆𝐼 = 𝑇 ⊗ 𝑉 (3)

where T is texture, and V is variance. 
(3) Object-Scale Land Surface Anomaly Intensity 

Object-scale features consider the differences between land surface anomaly patches 
and are a synthesis of information about the land surface anomaly intensity. The assess-
ment of intensity at the object scale relies on the geometric characteristics of the anomaly 
area. Among these, the fragmentation feature is a key geometric characteristic that effec-
tively contributes to the evaluation of the land surface anomaly intensity. The boundary 
fragmentation of the anomaly area can be expressed using the edge ratio, which is calcu-
lated as the ratio of the object perimeter to the object area. A greater edge ratio corresponds 
to a more fragmented anomaly area, which results in a lower land surface anomaly inten-
sity. Additionally, the object area can represent the land surface anomaly intensity at the 
object scale: a larger object area corresponds to a more continuous impact of the anomaly 
event and a greater land surface anomaly intensity. The calculation formula for the Object 
Intensity (OI) is defined as follows: 𝑂𝐼 = 𝐸 ⊗A (4)

where E is the edge ratio, and A is the area. 
(4) Scene-Scale Land Surface Anomaly Intensity 

The scene scale is the most macroscopic scale of the land surface anomaly intensity. 
At the scene scale, the intensity is relative to a variable range. The scene-scale features 
used to evaluate the scene-scale land surface anomaly intensity are the area ratio and 
count, which are defined on a predesigned grid. The area ratio is the proportion of the 
anomalous area in a unit grid. A larger area ratio generally indicates a longer duration 
and a broader impact of the land surface anomaly event, which correlates with a higher 
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land surface anomaly intensity. The count is the number of surface anomaly locations; a 
greater number of locations corresponds to a greater land surface anomaly intensity. The 
calculation formula for the landscape intensity (LI) is as follows: 𝐿𝐼 = 𝑃 ⊗ 𝑁 (5)

where P is the proportion of the anomaly area in a unit grid (area ratio), and N is the 
number of surface anomaly locations (count). 

The land surface anomaly intensity evaluation model is in Figure 2. With this model, 
it is possible to achieve multiscale quantitative assessments of land surface anomaly in-
tensity. 

 
Figure 2. Land surface anomaly intensity evaluation model. 

3. Experimental Design 
• Study Area 

The study area is located in the Jinyun Mountain region in Chongqing, China, within 
the geographical coordinates of 29°45’–29°48’N and 106°18’–106°22′E. A fire event oc-
curred in this area from 21 to 26 August 2022, affecting a total area of 13.98 km2. Owing to 
the dense vegetation in the mountainous region, the fire rapidly spread, persisted for an 
extended period, and caused severe damage to forest resources in the Jinyun Mountain 
region. The safety, property, and livelihoods of surrounding village residents were also 
severely impacted. The Chongqing fire fits the definition of a land surface anomaly, which 
makes it a typical example of a land surface anomaly event. The conclusions obtained 
from the Chongqing fire data are universal for various land surface anomalies. The study 
area is illustrated in Figure 3, where the remote sensing image is a true-colour image cap-
tured by Sentinel-2 on 24 August 2022. The method of integrating remote sensing and 
spatial features was used to extract the burned area [27]. Additionally, ground truth labels 
for the land surface anomaly intensity are depicted in Figure 3. 
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Figure 3. Study area. The left image shows the geographical location of the study area. The right 
image shows the Sentinel-2 image of the study area. The red polygon is the anomaly area, and the 
points are labelled with the true land surface anomaly intensity class determined by humans. 

• Research Data and Standardization Processing 
The data in this study include Sentinel-2 and Sentinel-1 remote sensing data. Senti-

nel-1 and Sentinel-2 are Earth observation satellites that are part of the global monitoring 
initiative “Copernicus Programme”, which provides high-resolution multispectral and ra-
dar imaging of the Earth’s surface. To fully reflect the land surface changes, two Sentinel-
2 multispectral images and two Sentinel-1 SAR images covering the study area were se-
lected for this study. These images were captured at two time points: before and during 
the land surface anomaly event. Detailed information on these images is provided in Table 
1. The Sentinel-2 multispectral image captured on 24 August 2022 was used to determine 
the anomaly area [27]. Based on the anomaly area, the object-scale features and the scene-
scale features can be further analysed. The two Sentinel-1 SAR images were used to extract 
scattering features, and the two Sentinel-2 multispectral images were used to extract spec-
tral and structural features. 

Table 1. List of image data for study area. 

ID Number Satellite Remote Sensing Image Acquisition Dates 
1 Sentinel-2 11 August 2022 
2 Sentinel-2 24 August 2022 
3 Sentinel-1 11 August 2022 
4 Sentinel-1 28 August 2022 

• Remote Sensing Feature System for Fire Intensity Assessment 
Taking the Chongqing fire as a representative example of a land surface anomaly, we 

developed a remote sensing feature system to assess fire intensity. Existing online fire de-
tection services such as FIRMS and SaaS can provide real-time active fire locations but do 
not provide their intensities, whereas the system we developed can provide intensities. 
This system is based on the model of the land surface anomaly intensity and incorporates 
features across four scales: pixel, structure, object, and scene. 
• Pixel Scale 

Fires cause significant damage to healthy vegetation and cause buildings to collapse, 
which substantially changes the physical properties of the land surface. A greater fire in-
tensity causes more pronounced physical changes, which are reflected in the observed 
differences in remote sensing features. Therefore, fire intensity can be defined as the extent 
to which features in the affected area deviate from their normal state. Based on this con-
cept, the absolute differences in feature values before and after the fire in the fire-affected 
area can be used as input features to reflect the fire intensity. In this study, we selected 
spectral and scattering features to assess the fire intensity. The absolute differences in 
these features were calculated using imagery from before and during the fire. 

(1) Spectral features 
Spectral features include the absolute differences in the red band (dRED), green band 

(dGREEN), blue band (dBLUE), near-infrared band (dNIR), and two shortwave infrared 
bands (dSWIR1, dSWIR2). Three remote sensing indexes were considered: the difference 
in normalized vegetation index (dNDVI), difference in burned area index (dBAR), and 
difference in normalized burn ratio (dNBR). dRED, dGREEN, and dBLUE can effectively 
reflect changes in the physical properties of the land surface, such as colour, whereas dNIR 
is susceptible to differences between burned areas and healthy vegetation, so it is an ef-
fective indicator of the extent of fire damage. dSWIR1 and dSWIR2 have a certain pene-
tration ability through smoke, which is useful in mitigating the impact of smoke on fire 
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assessments. In addition, flames have significantly higher pixel values in the shortwave 
infrared bands than other land surface features do; thus, the absolute differences in the 
shortwave infrared bands before and after a fire can be used to assess the fire intensity 
better. The destruction of vegetation after a fire results in a noticeable decrease in the 
NDVI, so the dNDVI is a useful indicator of fire intensity [23]. The BAR index, which 
enhances post-fire surface information using the red and near-infrared bands, signifi-
cantly increases in burned areas and clearly deviates from the “normal” state of the sur-
face. Similarly, the NBR value significantly decreases after a fire, and this deviation is use-
ful in fire intensity assessments. Additionally, the normalized burn ratio (NBR) can help 
reduce the impact of smoke, which may obscure observations in the early stages of a fire 
[28]. 

(2) Scattering features 
Scattering features include the VV- and VH-polarized radar backscatter coefficients 

[29]. After a fire, vegetation is destroyed, which significantly changes the image texture. 
The VV- and VH-polarized radar backscatter coefficients can effectively reflect changes in 
the roughness and smoothness of the land surface and provide further insights into the 
land surface anomaly intensity. 
• Structure Scale 

At the structure scale, similar to the pixel scale, changes in the physical properties of 
the land surface alter texture features. A greater fire intensity corresponds to more pro-
nounced texture differences. Therefore, the absolute differences in texture features before 
and after a fire can be used as input structural features to assess the structural fire inten-
sity. These differences are calculated via imagery from before and during the fire. 

The greyscale co-occurrence matrix (GLCM) is widely used in disaster intensity as-
sessments because it effectively reflects the texture characteristics of an image [30,31]. In 
this study, we selected the absolute differences of four GLCM characteristics to describe 
the texture differences between pre-fire and post-fire images: the absolute difference in 
entropy (dEntropy), the absolute difference in energy (dEnergy), the absolute difference 
in contrast (dContrast), and the absolute difference in correlation (dCorrelation). We used 
the near-infrared bands of pre- and post-fire images to calculate entropy, energy, contrast, 
and correlation before and after the fire and calculated the absolute value of the difference 
to obtain dEntropy, dEnergy, dContrast, and dCorrelation. Entropy reflects the complex-
ity of the greyscale distribution in an image, energy indicates the coarseness of the texture, 
contrast represents the depth of texture grooves, and correlation measures the similarity 
of greyscales in the row or column directions. 

In addition to the GLCM, variance can reflect surface roughness and smoothness. The 
absolute difference in variance (dVariance) can similarly be used to assess fire intensity. 
By integrating these five features, a comprehensive representation of the changes in image 
texture characteristics can be obtained. 
• Object Scale 

Fragmentation features are key characteristics of burned areas and can reflect the de-
velopment of fires. A greater fragmentation of burned areas indicates a greater disconti-
nuity of fire development and corresponds to a lower fire intensity. In this study, the fire 
intensity at the object scale was assessed using two fragmentation features, the edge ratio 
and the area, which can be calculated through the anomaly area. 

The edge ratio is defined as the ratio of the perimeter to the area of a burned area. A 
higher edge ratio suggests a greater fragmentation of the burned area and implies a lower 
fire intensity. The area refers to the size of the burned area. A larger area indicates a larger 
affected area, which corresponds to a higher fire intensity. 
• Scene Scale 

Since this study only focuses on a single land surface anomaly event, specifically a 
fire, at a single location, the count within the scene-scale features remains consistent across 
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the entire affected area. Therefore, only the area ratio is selected as a scene-scale feature 
for the fire intensity assessment. This feature is defined by constructing a grid with a res-
olution of 0.5 km × 0.5 km in the study area and calculating the ratio of the burned area in 
a grid to the grid area. A higher area ratio indicates a larger and continuous area affected 
by the fire and a higher fire intensity. 

Based on the selected features across the four scales, a remote sensing feature system 
for fire intensity assessment was constructed, as shown in Figure 4. 

 
Figure 4. Remote sensing feature system for fire intensity assessment. 

• Measurement of Fire Intensity 
Based on the remote sensing feature system for fire intensity assessment, the entropy 

weight method was used to calculate the weights of each feature at different scales and 
the weights of the anomaly intensity for each scale. A higher feature variance corresponds 
to a larger feature weight. The basic steps are as follows: 

(1) Feature Normalization 
The features are first normalized. Here, xij is the value of the jth feature in the ith 

sample, yij is the normalized value of the jth feature in the ith sample, xj is the jth feature, 
and Max and Min denote the maximum and minimum values, respectively. For positive 
features, normalization is performed via Formula (6); for negative features, Formula (7) is 
applied. 𝑦௜௝=

𝑥௜௝ − 𝑀𝑖𝑛൫𝑥௝൯𝑀𝑎𝑥(𝑥௝) − 𝑀𝑖𝑛(𝑥௝) (6)

𝑦௜௝=
𝑀𝑎𝑥൫𝑥௝൯ − 𝑥௜௝𝑀𝑎𝑥(𝑥௝) − 𝑀𝑖𝑛(𝑥௝) (7)

(2) Feature Weight Calculation 
The feature proportion is calculated, where pij is the feature proportion, and n is the 

sample size, which is equal to the number of pixels. 𝑝௜௝ = 𝑦௜௝∑ 𝑦௜௝௡௜ୀଵ  (8)

(3) Entropy Calculation 
The entropy value is calculated, where Ej is the entropy value for the jth feature, pij is 

the feature proportion, and n is the sample size. 

𝐸௝ = −𝑘 ෍ 𝑝௜௝ ∙ 𝑙𝑛 𝑝௜௝, 𝑘 = 1𝑙𝑛 𝑛௡
௜ୀଵ  (9)

(4) Feature weight calculation 
Then, the weight wj for the jth feature is determined, where m is the total number of 

features. 𝑤௝ = 1 − 𝐸௝∑ (1 − 𝐸௝)௠௝ୀଵ  (10)
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Based on the calculated feature weights at each scale, a weighted composite score is 
obtained for each scale. 

p= ∑ (𝑤௝ × 𝑦௜௝)௠௝ୀଵ  (11)

where p is the intensity for a scale, yij is the normalized feature value, and wj is the corre-
sponding weight of the jth feature at that scale. 

Finally, the weights for the pixel, structure, object, and scene scales are calculated via 
the entropy weight method, and these weights are integrated to generate the land surface 
anomaly intensity. 

P= 𝑝୮୧୶ୣ୪ × 𝑤୮୧୶ୣ୪ + 𝑝ୱ୲୰୳ୡ୲୳୰ୣ × 𝑤ୱ୲୰୳ୡ୲୳୰ୣ + 𝑝୭ୠ୨ୣୡ୲ × 𝑤୭ୠ୨ୣୡ୲ + 𝑝ୱୡୣ୬ୣ × 𝑤ୱୡୣ୬ୣ (12)

where ppixel is the intensity of the pixel scale, pstructure is the intensity of the structure scale, 
pobject is the intensity of the object scale, and pscene is the intensity of the scene scale. Similarly, 
wpixel is the weight of the pixel scale, wstructure is the weight of the structure scale, wobject is the 
weight of the object scale, and wscene is the weight of the scene scale. 
• Accuracy Assessment 

The accuracy of the fire intensity assessment is evaluated using a confusion matrix. 
Based on the pre-fire and post-fire Sentinel-2 images of the study area, 101 label points 
were randomly selected in the burned area, as shown in Figure 3. The land surface anom-
aly intensities of these label points were extracted and classified using an equal interval 
classification method. In this study, the intensity scales were categorized as follows: 0–
0.25 as level 1, 0.25–0.5 as level 2, 0.5–0.75 as level 3, and 0.75–1 as level 4. 

Since there is no truth value of the land surface anomaly intensity, we considered the 
intensities obtained by manual inspection as the truth values. We propose land surface 
characteristics and remote sensing characteristics for different fire intensity levels in Table 
2. Despite the subjectivity of manual inspection methods, for land surface anomaly inten-
sities that have no true value, these characteristics match our understanding, and we be-
lieve that they can reflect the relative severity of the land surface anomaly. According to 
Table 2, the true intensity levels of these label points were visually determined via manual 
inspection. 

Table 2. Information on different fire intensity classes. 

Class Land Surface Characteristics Remote Sensing Characteristics 

1 There are no significant changes in 
land cover. 

The areas appear grey‒green and 
green, mostly located around the pe-

rimeter of the burned area. 

2 
A small portion of the surface fea-

tures is partially unburned. 
The areas appear grey‒green with 

small patches of dark purple. 

3 
Most of the surface features have 

been completely burned. 

The areas appear black with scat-
tered patches of light grey and dark 

green. 

4 
The surface vegetation is completely 

destroyed. 
The areas appear black and deep 

purple. 

A confusion matrix was subsequently constructed to calculate the classification accu-
racy. The formula for accuracy calculation is as follows: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 (13)

where Accuracy is the classification accuracy, 𝑇 is the number of correctly classified label 
points, and 𝑁 is the total number of label points. 
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4. Results and Analysis 
• Remote Sensing Evaluation Results and Analysis of Fire Intensity 

The weights of the features across different scales, i.e., pixel-scale, structure-scale, 
object-scale, and scene-scale features, were determined using the entropy weight method, 
as shown in Table 3. Among the four scales, the weights decrease in the order of structure 
scale, pixel scale, scene scale, and object scale. This finding indicates that pixel-scale and 
structure-scale features more significantly contribute to the assessment of fire intensity, 
whereas object-scale and scene-scale features contribute relatively less. 

The larger weights of the pixel-scale and structure-scale features can be attributed to 
the following factors: For the pixel-scale features, the transition of surface colours from 
green to dark purple and black post-fire indicates significant changes in land cover, which 
can be effectively captured by spectral features. Additionally, the burning of vegetation 
causes noticeable changes in remote sensing indexes such as the normalized difference 
vegetation index (NDVI), and more intense fires lead to more pronounced changes. For 
the structure-scale features, the destruction of forests due to fire results in significant tex-
ture changes, which are also more evident in areas with higher fire intensities. 

Moreover, the lower weights of the object-scale and scene-scale features may be due 
to the following reasons. These features aggregate information at a larger scale. The 
burned area tends to be more spatially continuous with fewer fragmented patches. Con-
sequently, features such as the edge ratio, area, and area ratio exhibit smaller variations, 
so they have lower weights than pixel-scale and structure-scale features. 

Table 3. Weights of fire intensity assessment feature system. 

Pixel Scale Structure Scale Object Scale Scene Scale 
Weight: 0.2974 Weight: 0.3225 Weight: 0.1867 Weight: 0.1932 

Features Weight Features Weight Features Weight Features Weight 
dRED 0.1848 dContrast 0.2832 Edge ratio 0.0004 Area ratio 1.0 

dGREEN 0.0226 dEntropy 0.1731 Area 0.9996   
dBLUE 0.0469 dEnergy 0.1969     
dNIR 0.00002 dCorrelation 0.1752     

dSWIR1 0.0652 dVariance 0.1716      
dSWIR2 0.4707        
dNDVI 0.0243       
dBAR 0.0545       
dNBR 0.0287       
dVV 0.0536       
dVH 0.0486       

The fire intensities at the four scales are shown in Figure 5. The numbers 1–4 in the 
legend indicate the land surface anomaly intensity from low to high, as shown in Table 2. 
In the latter figures of the land surface anomaly intensity, the legends all have identical 
meanings to those used here and are not repeated. The structure-scale, object-scale, and 
scene-scale intensities consistently identify the eastern part of the study area as a region 
of high fire intensity. In contrast, the high-intensity area identified by the pixel-scale in-
tensity is concentrated in regions with active flames. This discrepancy may be because the 
pixel values in the SWIR band, particularly in dSWIR2, are typically 2–3 times greater in 
areas with flames than in those with other land cover types. Because dSWIR2 has the high-
est weighting among the pixel-scale features, dSWIR2 significantly influences the assess-
ment and results in a higher fire intensity in areas with flames. 
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Figure 5. Fire intensities at four scales: (a) pixel scale, (b) structure scale, (c) object scale, and (d) 
scene scale. 

• Pixel Scale 
The pixel-scale features selected for the fire intensity assessment are illustrated in 

Figure 6. The features dRED, dGREEN, dBLUE, and dNIR exhibit similar distribution pat-
terns, with high-value regions in the eastern part of the study area. Moreover, dSWIR1 
and dSWIR2 present notably high values predominantly in areas with flames. Since the 
calculation of dNBR incorporates the shortwave infrared (SWIR) band, which is highly 
sensitive to flames, its high-value regions are located mainly in these areas. 

As shown in Figure 7, the weight of the spectral features at the pixel scale is signifi-
cantly greater than that of the scattering features. Spectral features considerably vary 
across burned areas. This disparity can be attributed to the fact that different fire intensi-
ties significantly change the surface colour before and after the fire. In high-intensity areas, 
the surface colour entirely shifts from green to black‒purple, whereas in lower-intensity 
areas, the surface colour may change from green to a mix of green and black‒purple. This 
change leads to larger spectral differences in regions of varying intensity, so higher 
weights were calculated using the entropy weight method. 

Among the spectral features, dSWIR2 has a particularly high contribution. A possible 
reason is that during a fire, the pixel values in the shortwave infrared (SWIR) band in 
flame areas significantly increase, which creates a sharp contrast with those in other re-
gions and results in a higher weight for dSWIR2. 
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Figure 6. Pixel-scale features. 

 
Figure 7. Feature weights at the pixel scale. 

• Structure Scale 
The structure-scale features are shown in Figure 8. The features dContrast, dEntropy, 

dEnergy, dCorrelation, and dVariance exhibit similar spatial distribution patterns, where 
high values are located in the eastern and northern parts of the study area. 
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Figure 8. Structure-scale features. 

As shown in Figure 9, among the structure-scale features, dContrast has the highest 
weight, whereas dEntropy, dEnergy, dCorrelation, and dVariance have relatively similar 
weights. The reason may be that in areas of high fire intensity, severe vegetation destruc-
tion reduced the difference in image greyscale, which led to a noticeable shallowing of 
texture grooves. Conversely, in areas of lower fire intensity, where vegetation damage was 
less severe and bare ground was not fully exposed, the texture grooves were only slightly 
shallow, so there was a greater contrast difference between regions of varying intensity. 
As a result, dContrast has a higher weight. 

 
Figure 9. Feature weights at the structure scale. 
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• Object Scale 
The selected object-scale features are shown in Figure 10. At the object scale, the edge 

ratio serves as a negative feature for the fire intensity assessment, whereas the area acts as 
a positive feature. The fire intensity results derived from the edge ratio are consistent with 
those obtained from the area. Both features indicate that the eastern part of the study area 
was characterized by high fire intensity, whereas the northern part had low fire intensity. 

 
Figure 10. Object-scale features. 

As shown in Figure 11, at the object scale, the area had a greater weight in the assess-
ment, which may be attributed to the significant variations in area values. In the northern 
part of the study area, the burned areas were discontinuous, and the presence of smoke 
interference led to the extraction of numerous small, burned areas. In contrast, the eastern 
part of the study area experienced extensive fire spread, resulting in more continuous 
burned areas. This substantial difference in area across regions with varying fire intensi-
ties likely contributed to the higher weight assigned to this feature. 

 
Figure 11. Feature weights at the object scale. 

• Scene Scale 
The scene-scale features are shown in Figure 12. The high values of the area ratio are 

mostly concentrated in the eastern part of the study area. This occurrence is likely due to 
the continuous distribution of burned areas in this region, where they almost completely 
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occupied all grid cells and resulted in a greater proportion of burned area. In contrast, in 
areas such as the northern part of the study area, the burned areas were more fragmented 
and failed to form contiguous distributions, which led to a lower area ratio. 

 
Figure 12. Scene-scale feature. 

The fire intensity generated through the previous weights and features is shown in 
Figure 13. The areas with the highest fire intensity are located primarily in the eastern part 
of the study area. The inclusion of the shortwave infrared (SWIR) band highlights regions 
with flames as high-intensity fire regions. However, some smoke-covered areas in the 
northern part of the study area were evaluated as low-intensity regions, which does not 
align with the actual situation. This discrepancy may be attributed to the fact that while 
the inclusion of the SWIR band reduces smoke interference, it has limited penetration ca-
pabilities in dense smoke, so there are lower fire intensity estimates in heavily smoke-
obscured areas than under actual conditions. 

 
Figure 13. Fire intensity. 
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• Accuracy Assessment 
The accuracy assessment result is in Figure 14. The overall accuracy of the land sur-

face anomaly intensity was high (75.25%). These findings demonstrate that the proposed 
system in this study effectively captures and quantifies fire intensity. The assessment sys-
tem developed in this study is accurate in evaluating high-fire-intensity areas. These re-
gions are less likely to be misclassified as low-intensity areas because the pixel-scale, struc-
ture-scale, object-scale, and scene-scale features are more pronounced in high-intensity 
regions, so they are easier to evaluate accurately. In contrast, lower-intensity areas are 
more susceptible to inaccuracies due to factors such as remote sensing image quality and 
shooting conditions, which lead to an overestimation of surface feature differences and 
intensity levels. 

 
Figure 14. The assessed land surface anomaly intensity and true land surface anomaly intensity of 
the label points. (Classified represents the assessed land surface anomaly level, GroundTruth rep-
resents the true land surface anomaly intensity level, and Count represents the number of label 
points). 

As shown in Figure 15, in some areas with smoke coverage, the fire intensity assess-
ment results did not align with the actual situation: some high-intensity fire zones were 
evaluated as low-intensity areas. The reason for this discrepancy is that dense smoke ob-
structed the view, so the feature differences were underestimated for these regions, which 
can result in lower pixel-scale and structure-scale intensities. Additionally, smoke caused 
the extracted burned area to appear more fragmented, which led to lower object-scale and 
scene-scale intensities. Consequently, when the features from the pixel, structure, object, 
and scene scales were combined, the overall calculated fire intensity appeared lower than 
the actual ground conditions. 
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Figure 15. Assessed land surface anomaly intensity and satellite images. (a) Assessed land surface 
anomaly intensity; (b) pre-fire image (Sentinel-2); (c) post-fire image (Sentinel-2). 

5. Discussion 
Experiments have shown that methods for quantitatively measuring land surface 

anomaly intensity using multiscale remote sensing features can be used to assess fire in-
tensity quantitatively, and the assessment results can better match real land surface con-
ditions. To explore the universality of the method, we applied the proposed method to 
other land surface anomalies, the Palu earthquake and Midwest flooding. The land surface 
anomalies we chose are shown in Figure 16. 

 
Figure 16. Selected land surface anomalies. 

For the land surface anomaly intensity assessment of the Palu earthquake, the calcu-
lated feature weights were as follows: pixel-scale features: 0.1732; structure-scale features: 
0.4326; object-scale features: 0.1525; and scene-scale features: 0.2417. The land surface 
anomaly intensity results are shown in Figure 17, and the weights of the earthquake in-
tensity assessment feature system are shown in Table 4. 
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Figure 17. The land surface anomaly intensity of the Palu earthquake. 

Table 4. Weights of earthquake intensity assessment feature system. 

Pixel Scale Structure Scale Object Scale Scene Scale 
Weight: 0.1732 Weight: 0.4326 Weight: 0.1525 Weight: 0.2417 

Features Weight Features Weight Features Weight Features Weight 
dRED 0.0656 dContrast 0.2274 Edge ratio 0.1628 Area ratio 1.0 

dGREEN 0.0634 dEntropy 0.1552 Area 0.8372   
dBLUE 0.0654 dEnergy 0.2491     
dNIR 0.0823 dCorrelation 0.1694     

dSWIR1 0.0545 dVariance 0.1989      
dSWIR2 0.0612        
dNDVI 0.0697       
dBAR 0.0186       
dNBR 0.0147       
dVV 0.2379       
dVH 0.2667       

Based on empirical knowledge, earthquakes can damage buildings and surface infra-
structure and significantly change surface texture features. Consequently, the structure-
scale features received relatively higher weights. In contrast, since the spectral features of 
buildings do not significantly change before and after an earthquake and because the im-
pact of an earthquake typically affects individual buildings or groups of buildings, the 
differences at the pixel, object, and scene scales are less pronounced. Therefore, the 
weights for the pixel-scale, object-scale, and scene-scale features are relatively low. 

At the pixel scale, the weight of the spectral features was relatively low. The damage 
to buildings and other surface facilities caused by earthquakes changed the surface rough-
ness, so the difference in radar features was more significant, and the contribution was 
greater in the assessment of land surface anomaly intensity. At the structure scale, dVari-
ance, dContrast, and dEnergy increased in weight because of the significant changes in 
surface grooves, which dVariance and dContrast can better reflect. At the object scale, the 
weight of the area was much greater than the edge ratio. The reason may be that the objects 
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affected by the earthquake were mostly single buildings or buildings with similar mor-
phological characteristics and more significant area differences. 

The land surface anomaly intensity was compared with the real surface conditions in 
Figure 18. The results revealed that the overall distribution pattern of the land surface 
anomaly intensity was consistent with the actual surface conditions. Areas where the 
earthquake caused significant building collapse and vegetation damage presented rela-
tively high land surface anomaly intensities. For example, as shown in Figure 18, the re-
gion experienced severe vegetation damage along roads after the anomaly became more 
intense. Similarly, other densely built areas, where numerous buildings were heavily 
damaged or destroyed, also presented higher intensities. 

When the accuracy assessment method is used in the accuracy assessment section, 
the overall accuracy of the land surface anomaly intensity assessment is 84.7%, which in-
dicates a high level of accuracy in the intensity evaluation. 

The land surface anomaly intensity assessment for Midwest flooding yielded the fol-
lowing feature weights: pixel-scale features at 0.3541, structure-scale features at 0.1790, 
object-scale features at 0.2279, and scene-scale features at 0.2390. The land surface anom-
aly intensity results are shown in Figure 19, and the weights of the flooding intensity as-
sessment feature system are shown in Table 5. 

 
Figure 18. The assessed land surface anomaly intensity and satellite images of the Palu earthquake. 
(a) The assessed land surface anomaly intensity (images 1–4 in the legend indicate the land surface 
anomaly intensity from low to high, as shown in Table 2); (b) a pre-earthquake image (Sentinel-2); 
(c) a post-earthquake image (Sentinel-2). 

 
Figure 19. Land surface anomaly intensity of Midwest flooding. 
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Table 5. Weights of flooding intensity assessment feature system. 

Pixel Scale Structure Scale Object Scale Scene Scale 
Weight: 0.3541 Weight: 0.1790 Weight: 0.2279 Weight: 0.2390 

Features Weight Features Weight Features Weight Features Weight 
dRED 0.1374 dContrast 0.3201 Edge ratio 0.0298 Area ratio 1.0 

dGREEN 0.2977 dEntropy 0.1432 Area 0.9702   
dBLUE 0.0950 dEnergy 0.1455     
dNIR 0.2401 dCorrelation 0.2012     

dSWIR1 0.0067 dVariance 0.1900      
dSWIR2 0.0032        
dNDVI 0.0289       
dBAR 0.0234       
dNBR 0.0330       
dVV 0.0779       
dVH 0.0567       

Pixel-scale features have relatively high weights. This result can be attributed to the 
nature of flooding disasters, where flooding submerges land, increases water turbidity, 
and alters the spectral characteristics of water bodies. Additionally, areas that originally 
exhibited land spectral features now display water spectral features. As a result, the spec-
tral features of the land surface undergo significant changes, so pixel-scale features are 
more sensitive to the evaluation of the land surface anomaly intensity. Moreover, since 
water bodies generally maintain uniformity with minimal changes in texture, the struc-
ture-scale features exhibited less variation and had lower sensitivity in assessing the land 
surface anomaly intensity. 

At the pixel scale, the spectral feature weight is relatively high because flooding af-
fects the spectral characteristics of the water body and its surrounding areas. For the struc-
ture scale, the weight of dContrast is relatively high because the grooves of the image 
changed after flooding part of the land. The weight of the area under the object scale is 
much greater than the edge ratio, possibly because the affected area of flooding was 
mainly a continuous surface area that spread outwards along the edge of the water. The 
shapes are similar, so the difference between the edge ratios of the objects is small, and 
the area becomes the dominant factor that affects the intensity assessment at the object 
scale. 

The land surface anomaly intensity is compared with the real surface conditions, as 
shown in Figure 20. The results indicate that the land surface anomaly intensity can reflect 
the disaster situation. However, due to the differences in imaging time phases caused by 
prolonged flooding duration, some areas may exhibit erroneous land surface anomaly in-
tensities. The observed changes in spectral and texture features in these regions might not 
be due to flooding but rather to differences in imaging times. This result highlights a lim-
itation of the proposed method, which heavily relies on imagery and can capture only 
relative changes between two images. 

When the accuracy assessment method is used in the accuracy assessment section, 
the overall accuracy of the land surface anomaly intensity assessment is 82.5%, which in-
dicates relatively high accuracy in the intensity evaluation. 
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Figure 20. The assessed land surface anomaly intensity and satellite images of Midwest flooding. 
(a) The assessed land surface anomaly intensity (images 1–4 in the legend indicate the land surface 
anomaly intensity from low to high, as shown in Table 2); (b) a pre-flooding image (Sentinel-2); (c) 
a post-flooding image (Sentinel-2). 

Based on the above cases, the method of measuring land surface anomaly intensity 
using multiscale remote sensing features can be applied to assess the intensity of various 
land surface anomaly events. The determination of feature weights using the entropy 
weight method relies solely on remote sensing data without requiring additional expert 
knowledge or manual intervention. This approach enables adaptive adjustments of the 
weights of remote sensing features in different types of land surface anomaly intensity 
assessments. As a result, the sensitivity of various remote sensing features can be auto-
matically adjusted according to the type of land surface anomaly being evaluated. The 
feature weights that are determined by the entropy weight method, which is based on 
mathematical principles, also align with empirical knowledge. Features that are signifi-
cantly affected by land surface anomaly events are expected to play a dominant role in 
intensity assessment, and these features often receive higher weights when the entropy 
weight method is used. Conversely, less important features are assigned lower weights 
and have a diminished influence on enabling automated feature selection. 

The proposed land surface anomaly intensity assessment framework, which is based 
on pixel-scale, structure-scale, object-scale, and scene-scale features, offers significant ad-
vantages and broad application prospects in quantitatively evaluating land surface anom-
aly intensity. In terms of early warning for surface anomalies via remote sensing, the pro-
posed method can rapidly generate assessment results to help identify key affected areas 
and support efficient post-disaster rescue and recovery efforts. This method satisfies the 
evolving needs for the remote sensing monitoring and early warning of land surface 
anomaly events in disaster response, environmental emergency management, and regu-
latory oversight in China. 

Despite the many advantages of this method in land surface anomaly intensity as-
sessment, several limitations remain. First, land surface anomalies such as ground subsid-
ence are three-dimensional land surface anomaly events. The changes in three-dimen-
sional characteristics can also be reflected through the remote sensing images obtained 
before and after the land surface anomaly event. This method still fits our proposed defi-
nition of remote sensing-based land surface anomaly intensity detection. However, our 
proposed method does not consider these factors. Three-dimensional characteristics 
should also be included to assess different kinds of land surface anomalies. Second, the 
current approach primarily uses a linear expression, which may not fully capture the com-
plexity of nonlinear land surface anomalies. Moreover, the lack of clarity in physical 
meaning is a major problem with the current methodology. In the future, we will continue 
to explore the applicability of the proposed method to other types of land surface anom-
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alies. Our future research should also clarify the physical implications; focus on develop-
ing nonlinear methods for expressing land surface anomaly intensity; and integrate unsu-
pervised clustering techniques, traditional machine learning, and deep learning to in-
crease the adaptability and accuracy of assessments of nonlinear land surface anomalies. 

6. Conclusions 
This study developed a remote sensing evaluation framework for land surface anom-

aly intensity based on the pixel scale, structure scale, object scale, and scene scale. A re-
mote sensing evaluation feature system was established to quantitatively assess the land 
surface anomaly intensity according to an example of a Chongqing fire. The methodology 
used to measure the land surface anomaly intensity was applied to other events, such as 
earthquakes and floods. The main conclusions are as follows: 
(1) Similar to humans, which use their eyes to observe changes in the Earth’s surface, 

remote sensing serves as a pair of eyes in space that can detect land surface changes 
from afar. This technology enables the monitoring of land surface anomalies, analysis 
of their intensity, and assessment of their impacts. Remote sensing provides a versa-
tile tool for measuring the intensity of various land surface anomalies, so it is indis-
pensable for understanding and addressing these phenomena. 

(2) The developed land surface anomaly intensity evaluation method, which is based on 
the pixel, structure, object, and scene scales, effectively quantifies the land surface 
anomaly intensity with high accuracy. The method is particularly effective in repre-
senting the intensity of severely affected areas. Structure-scale and pixel-scale fea-
tures more significantly contribute to expressing the land surface anomaly intensity. 

(3) The proposed multiscale feature-based method for evaluating land surface anomaly 
intensity via remote sensing adapts feature weights to different types of land surface 
anomaly events and demonstrates broad applicability. This study provides a timely 
basis for decision-making in early warning systems for land surface anomalies and 
satisfies the need for real-time alerts in China’s new era. This approach enhances pro-
active capabilities in emergency response, crisis management, and regulatory en-
forcement. 
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