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Abstract— Satellite passive microwave (PMW) remote sensing
is widely used for monitoring the snow water equivalent (SWE)
in the Northern Hemisphere. Existing operational SWE retrieval
methods, especially those without assimilating ground-based snow
depth priors, still utilize globally constant coefficients to construct
regression-based retrieval algorithms. The current Fengyun-3
(FY-3) series of SWE product algorithms has made improvements
in China, where biases have been significantly reduced locally but
not in other regions. Within the context of the successful launch
of the FY-3F satellites in 2023, we developed a better Northern
Hemisphere algorithm for the Microwave Radiation Imager-II
(FY-3F/MWRI-II) using pixel-sensitive coefficients regressed on
a reference SWE dataset. We utilized the random forest model
coupled with the snow emission model (HUT-RF) to obtain a
high-accuracy SWE reference dataset. Then, we employed linear
regression equations to fit the reference HUT-RF dataset at
each pixel to construct the new operational FY-3F algorithms.
We innovatively introduced the brightness temperature differ-
ences between 18.7 and 89 GHz and the polarization differences
at 10.65 GHz in the regression after noting their sensitivity
in deep snow estimation. The proposed FY-3F algorithm was
extensively validated via four spatially independent datasets.
The results demonstrated that the proposed FY-3F algorithm
performed well in non-mountainous and sparsely forested areas,
e.g., the overall unbiased root mean square error (unRMSE)
values were 27.15 mm over Russia and 13.70 mm over China.
High uncertainties still occurred in complex terrains and densely
forested areas, e.g., the overall unRMSE values were 75.30 mm
over Canada and 129.06 mm over western North America. The
proposed FY-3F algorithm could improve global snow cover
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monitoring capabilities and enhance the complete and timely
understanding of SWE changes.

Index Terms— FY-3F/MWRI-II, passive microwave (PMW)
remote sensing, pixel-sensitive retrieval algorithm, snow water
equivalent (SWE).

I. INTRODUCTION

THE snow water equivalent (SWE), a key metric related to
water storage in snowpacks, greatly impacts agricultural

production, hydropower generation, water supply, and natural
disaster management applications [1], [2], [3], [4], [5], [6].
Spaceborne passive microwave (PMW) remote sensing is a
valid tool for monitoring the seasonal SWE at the global
scale because of its independence from solar illumination,
penetrability of clouds, and sensitivity to dry snowpack [7],
[8], [9]. However, a complete and timely understanding of the
SWE in spatiotemporal mapping is still restricted by several
factors, e.g., the widespread distribution of snow cover and
high temporal dynamicity [10], [11], [12], [13], [14].

To date, several international agencies have created various
global operational SWE products, such as the Advanced
Microwave Scanning Radiometer for Earth (AMSR-E)
Observing System product [15] managed by the National
Aeronautics and Space Administration (NASA), the standard
AMSR-E and Advanced Microwave Scanning Radiometer-2
(AMSR2) products of the Japan Aerospace Exploration
Agency (JAXA) [16], and the Global Snow Monitoring for Cli-
mate Research (GlobSnow) SWE product [17], [18] published
by the European Space Agency (ESA). The National Satellite
Meteorological Center, managed by the China Meteorological
Administration (CMA), also provides daily SWE monitoring
in real time and has produced a family of daily global-scale
records from 2011 to the present that rely on Microwave
Radiation Imager (MWRI) instruments onboard the Fengyun-
3B, -3C, and -3D (FY-3B/3C/3D) series satellites [19], [20].
The FY-3B SWE retrieval algorithm over China was designed
for the FY-3B satellite. It is based on the semiempirical
relationships between ground-based SWE measurements and
brightness temperature (Tb) gradients, e.g., between 18.7 and
36.5 GHz, 10.65 and 18.7 GHz, and 18.7 and 89 GHz [19].
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The FY-3B SWE retrieval algorithm accounts for the influence
of various land cover types (e.g., forestland, grassland, farm-
land, and barren land) on the SWE. For example, in China,
the snow depth of a specific pixel is a weighted result based
on land cover fractions. After the launch of the FY-3C satellite
in 2013, the FY-3B retrieval algorithm continued to be used
for SWE mapping across China. To achieve global SWE
monitoring for the FY-3B/3C satellites, the standard AMSR2
algorithm [16] has been directly used outside China. The
AMSR2 algorithm accounts for forest effects on the SWE,
expressed as a weighted result of the SWE values of the
open and forest subpixels. Based on the previous validation,
the FY-3B SWE retrieval algorithm tends to underestimate
the SWE in Northeast China and Northwest China [19],
[20], [21]. Therefore, after the launch of the FY-3D satel-
lite in 2017, we applied a spatial partitioning strategy to
develop SWE retrieval algorithms for Northeast China and
Northwest China (hereafter referred to as the FY-3D SWE
retrieval algorithm) [20]. In Northeast China, the FY-3D
algorithm compensates for snow depth via the forest cover
fraction. In Northwest China, cross-polarization differences
in high and low frequencies at 18.7 and 36.5 GHz are
adopted to explain the effect of snow metamorphism on
the SWE.

Numerous studies have shown that the currently available
operational FY-3D SWE retrieval algorithm faces certain
challenges, such as different retrieval methods in China and
outside China, most likely resulting in spatially distributed
SWE patches. Moreover, the FY-3D SWE algorithm can
underestimate snowpacks above 20 cm in China [20], [21]
and overestimate shallow snowpacks below 5 cm [22]. Outside
China, the FY-3D SWE retrieval method achieved similar
performance as the standard AMSR2 product; for example,
it is unresponsive to snow depth and seriously underestimates
the global scale [23], [24].

In addition to the mixed-pixel problem in spaceborne PMW
remote sensing, the main challenges in SWE retrieval include
variable snow microstructures (e.g., snow density and snow
grain size) and uncertain radiative interactions among snow,
forest canopies, and the underlying soil. The inversion coeffi-
cients of widely used empirical algorithms are generally static.
The basic assumption is that the snow microstructure is fixed;
for example, a snow density of 300 kg/m3 and a grain size
of 0.3 mm were considered in Chang’s method [8]. In fact,
snow microstructures evolve throughout the snowy season. For
example, the grain size can increase from 0.3 mm (fresh snow)
to 4 mm (depth hoars), which results in different scattering
effects. Moreover, static retrieval algorithms were developed
based on the limited station-based measurements, in which
the representativeness and proportionality of the training sam-
ples are problematic. The abovementioned factors generally
result in poor applicability and robustness of the currently
used operational retrieval methods. Although the standard
AMSR2 algorithm adopts a dynamic polarization difference
index to compensate for the retrieval biases caused by the
snow microstructure, previous articles have demonstrated that
this algorithm provides a slight advantage over typical static
methods [16], [25], [26].

Another persistent question is the representativeness of
ground truth measurements within 25 × 25 km satellite
pixels. Most operational SWE retrieval methods were built
based on empirical or semiempirical relationships between
ground-based station measurements and satellite-observed
brightness temperatures (point-to-pixel). However, whether
these point observations represent snowpack in larger areas
is unknown. Moreover, ground truth measurements are sparse,
especially in complex mountains. Therefore, it is necessary to
develop an SWE retrieval algorithm based on pixel-to-pixel
training samples, partly to avoid scale issues [27].

Within the context of the artificial intelligence era, machine
learning techniques have the potential for use in SWE predic-
tion [26], [28], [29], [30], [31], [32], [33], [34], [35]. We also
previously attempted to use the random forest (RF) approach
to estimate snow depth across China [21]; the results demon-
strated that transfer learning for machine learning approaches
is problematic; namely, well-trained machine learning models
in a given domain often exhibit poor performance when
directly applied to other domains. This occurs because snow-
pack characteristics (grain size, density, and so on) are highly
variable, while no predictor variable in machine learning
indicates a change in snowpack features [36], [37]. To address
this problem, we introduced a prior snowpack descriptor, i.e.,
the effective grain size optimized by the Helsinki University
of Technology snow emission model (HUT), into the RF
model to improve SWE estimation [38]. A spatially indepen-
dent verification revealed that the proposed HUT-RF model
outperforms the RF algorithm without involving the effective
grain size. Although the HUT-RF approach relies heavily on
ground-based snow depth priors to optimize the effective grain
size, it can generate long time series of spatially continuous
SWE products in the Northern Hemisphere, which is important
for building a pixel-sensitive retrieval algorithm. Launched on
August 3, 2023, the FY-3F satellite, which is a substitute
for the FY-3C satellite, is equipped with second-generation
MWRI (MWRI-II) sensors to provide global surface moni-
toring. Within this context, it is necessary to develop a new
operational SWE retrieval algorithm for FY-3F/MWRI-II.

Overall, the objectives of this study are to 1) develop a
pixel-sensitive SWE retrieval algorithm for FY-3F/MWRI-II
in the Northern Hemisphere in which the inversion coef-
ficients vary pixel by pixel (hereafter referred to as the
FY-3F algorithm); 2) verify its performance via four spatially
independent verification datasets; and 3) compare its SWE
estimates with those of the widely used GlobSnow-v3.0 prod-
uct. To our knowledge, this type of pixel-based algorithm
built for the Northern Hemisphere is proposed for the first
time. This study is structured into five sections. In Section II,
the data used and the proposed methodology are introduced.
The results are described in Section III. In Section IV, the
algorithm-related sources of uncertainty are examined. Finally,
conclusions are given in Section V.

II. DATA AND METHODOLOGY

A. PMW Remote Sensing Data

The FY-3F satellite managed by the CMA was launched
on August 3, 2023. It is a satellite in sun-synchronous orbit
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TABLE I
COMPARISON OF THE AMSR2 AND FY-3 SERIES PAYLOADS

with local descending overpasses at approximately 10:00 A.M.
The MWRI-II instrument onboard the FY-3F satellite is a
22-channel, 13-frequency, H/V-polarization radiometer that
senses microwave signals in the 10.65–118.75-GHz channels
(Table I). Compared with the MWRI-I instruments onboard
the FY-3C and -3D satellites, FY-3F/MWRI-II has enhanced
observation abilities with additional channels (Table I) and
improvements in calibration and positioning accuracy and
observation sensitivity.

Owing to the limited availability of FY-3F/MWRI-II
observations, alternative satellite data are necessary.
Although the AMSR2 onboard the GCOM-W1 satellite
has sensed Earth radiation from space since May 2012,
its configuration differs from that of FY-3F/MWRI-II, e.g.,
incident angle, equator crossing time, and footprint size
(Table I). Thus, the FY-3C/MWRI-I brightness temperature
product (http://satellite.nsmc.org.cn) was used for development
and validation because its configuration is similar to that of
FY-3F/MWRI-II.

B. Training and Validation Datasets

We collected daily meteorological station measurements
over global land areas from the Global Historical Climatol-
ogy Network-daily (GHCN-daily) database [39]. In addition,
data acquired from stations of the China Meteorologi-
cal Data Service Center were used as supplemental data
(http://data.cma.cn/en). The attribute elements of each station
consist of the location name, latitude, longitude, maximum
temperature, minimum temperature, and snow depth. Because
snow depth is the most important parameter in this study,
only weather stations (4485) that record snowfall are shown in
Fig. 1(a). The measurements acquired from September 2013 to
May 2022 were used for training to develop the FY-3F SWE
retrieval algorithm.

The ground-based snow depth observations in complex
topographic areas are sparse and even lacking. Previous studies

Fig. 1. (Top) Spatial distribution of the snow depth stations in the Northern
Hemisphere. (Bottom) Base map is the forest fraction calculated based on
the MODIS land cover product and the average snow depth of C-SNOW in
January 2019.

have demonstrated that the C band is suitable for retrieving
deep snowpacks (>100 cm) because low-frequency signals
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exhibit greater penetrability than high-frequency signals (e.g.,
the Ku band) do [40]. Thus, we selected synthetic aperture
radar (SAR) Sentinel-1 snow depth retrievals (C-SNOW)
during the 2016–2020 period to compensate for the lack of
observations in the mountains [Fig. 1(b)]. C-SNOW snow
depth retrievals were obtained over the Northern Hemisphere
mountains, and the spatial resolution of the observations is
∼1 km [40], [41]. Here, only snow depth values greater than
100 cm were selected as training samples. One reason is
that the C-band signal is sensitive to deep snow because of
its strong penetration ability compared with that of the Ku
band. Another reason is that nearly 90% of station-based snow
depth samples range from 1 to 100 cm, and more deep snow
conditions are necessary for training the machine learning
model. Quality control was further conducted according to
the product flags, for example, masking the values in densely
vegetated areas, glaciated areas, and wet snow conditions.
Here, C-SNOW retrievals outside Europe between September
2016 and August 2017 were also removed because of low
accuracy associated with the reduced frequency of Sentinel-1
observations (only ascending or descending observations) [40].
To match the FY-3C pixel resolution, the C-SNOW product
was resampled to a 25 × 25 km EASE-GRID size. All the
C-SNOW snow depth values within an FY-3C pixel were aver-
aged as ground truth data. Here, ground-based observations
were used as truth data, and C-SNOW SWE values were used
as candidates; namely, if the ground-based observations were
lacking, C-SNOW snow depth data were then selected as truth
data. To transfer snow depth to the SWE, a constant snow
density of 240 kg/m3 was used. The selected 16 800 C-SNOW
SWE samples at 25 × 25 km EASE-GRID ranged from
approximately 240–800 mm in this work and were mostly
distributed in the Cordillera Mountains.

To assess the proposed FY-3F SWE algorithm, four spatially
independent reference datasets distributed across Russia, North
America, and China were collected, as listed in Table II.

1) Snow Survey Data for Russia: Snow surveys were con-
ducted at 517 meteorological sites every five to ten days [42]
during the snow season (green points in Fig. 2). The snow
course was approximately 1–2 km long, the snow depth was
recorded every 10–20 m, and a snow pit (snow density and
snow temperature) was recorded every 100–200 m. After
cross-checking various datasets, 44 snow courses overlapped
with the GHCN-daily stations. To ensure that the Russia
dataset was independent of the training samples, we removed
these 44 snow courses from the Russia dataset. A total of
13 526 samples were collected from 2013 to 2018 as evaluation
data in this study.

2) Canadian Historical Snow Water Equivalent Dataset:
Canadian Historical Snow Water Equivalent (CanSWE) obser-
vations [43] were collected via various measurement methods,
e.g., field campaigns (snow rulers or scales), snow pillows,
passive gamma rays, Global Navigation Satellite System-
Reflectometry (GNSS-R), and cosmic rays (light blue points
in Fig. 2). The available variables were snow depth, snow
density, and SWE. A total of 40 224 samples from 2013 to
2018 were used to verify the FY-3F SWE product in
this study.

TABLE II
SUMMARY OF THE FOUR VALIDATION DATASETS

Fig. 2. Spatial distribution of the validation dataset locations in the Northern
Hemisphere. The base map shows the GlobSnow-v3.0 monthly mean snow
depth in March 2013.

3) Snowpack Telemetry Dataset: The snowpack telemetry
(SNOTEL) stations are located mainly in the mountains of the
United States and Canada, where the SWE is automatically
acquired by snow pillows (yellow points in Fig. 2). The
daily time series of SNOTEL records were obtained from the
Natural Resources Conservation Service and National Water
and Climate Center [44]. The raw SNOTEL datasets were
systematically processed to address data quality concerns.
In addition, we removed the 237 snowpits overlapping the
GHCN-daily stations to ensure that the SNOTEL dataset
was independent of the training samples. A total of 257 689
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Fig. 3. Working chain of the FY-3F SWE retrieval algorithm.

samples from 2013 to 2018 were used to verify the FY-3F
SWE algorithm in this study.

4) Dense Field Sampling Over China: A dense field
campaign was performed across China to measure snow
characteristics, including snow depth and snow density (blue
points in Fig. 2), during the winter snow season of 2018 in
Northeast China and northern Xinjiang. All the measurements
(4–35) obtained from the FY-3C pixels (25 × 25 km) were
averaged to obtain the ground truth values (from 5 to 100 mm).
Seventy-eight satellite pixels were matched based on 425 field
measurements in this study.

C. Other Auxiliary Data

The effect of the landscape on SWE retrieval has been
explored in previous studies [19], [38], [45]. In this work,
a MODIS Level 3 land cover product with a 500-m spatial
resolution (MCD12Q1) was downloaded. Seventeen land cover
classes were further regrouped into six categories: forest-
land, farmland, grassland, barren land, water bodies, and
construction land. A land cover fraction map of the Northern
Hemisphere at a 25 × 25 km resolution was generated based
on the MCD12Q1 product. To reduce the influence of water
and urban landscapes on the SWE estimates, the corresponding
pixels (fraction > 30%) were removed. The orographic effect
also dominates snow accumulation, ablation, and redistribu-
tion [45], [46], [47], [48], [49]. Thus, the resampled Shuttle
Radar Topography Mission (SRTM) digital elevation model
(DEM) data with a 25 × 25 km spatial resolution were used
in this study.

In this study, the GlobSnow-v3.0 effective grain size product
was downloaded from www.globsnow.info [18], [50]. In the
GlobSnow methodology, the snow depth interpolated with
weather station measurements is applied as a prior field to
optimize the effective grain size in the HUT model. Therefore,

the GlobSnow effective grain size product was used directly
in Section II-D.

D. Methodology

Fig. 3 shows a flowchart of the construction of the
FY-3F SWE retrieval algorithm. Our previous studies
demonstrated that combining the snow emission model and
machine learning approach could greatly improve SWE
estimation [38]. Therefore, the first step was to iteratively
optimize the grain size via a snow forward model in this
study (Fig. 3). To improve the computational efficiency,
we directly selected GlobSnow-v3.0 effective grain size data
as predictors for the RF model in this study. Then, an SWE
retrieval method (HUT-RF) that couples the snow emission
model (providing effective grain size) with the RF technique
(possessing powerful fitting ability) was constructed (Fig. 3).
Owing to the absence or incredibility of snow depth data in
complex terrains, the Sentinel-1 C-SNOW dataset was used
here. Afterward, the proposed HUT-RF model was used to
produce a long-term spatially continuous SWE product (as a
reference dataset). Eventually, the FY-3F algorithm was built
for each snow-covered pixel based on the reference SWE
dataset. A microwave snow cover detection method [51] was
used to distinguish snow and snow-free pixels prior to SWE
retrieval according to previous assessments [52], [53].

To demonstrate the performance of the proposed FY-3F
algorithm, it was verified with various spatially independent
SWE observations in Russia, North America, and China and
was compared with the widely used GlobSnow-v3.0 product.
Here, only the GlobSnow-v3.0 product was selected for com-
parison with our proposed FY-3F algorithm because existing
publications have demonstrated that it is currently the most
widely used and accurate operational remote sensing SWE
product [18], [23], [24], [38].
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1) Effective Grain Size Optimized by the Microwave Emis-
sion Model: In GlobSnow, a methodology that applies a snow
microwave forward model to iteratively optimize the grain
size was proposed [17]. In this method, synoptic ground-based
snow depth values are used to drive the snow forward model to
simulate the microwave brightness temperature of snow. Then,
the differences between the model simulations and satellite
observations at 18.7 and 36.5 GHz are minimized by iteratively
optimizing the effective grain size. The fitting procedure is as
follows:

mind0
{
[Tb18.7V,model(SDini, d0) − Tb36.5V,model(SDini, d0)]

−[Tb18.7V,satellite − Tb36.5V,satellite]
}2 (1)

where Tbpq,model denotes the brightness temperature simula-
tions by using snow emission models, such as the HUT, the
dense media radiative transfer (DMRT), and the microwave
emission model of layered snowpacks (MEMLS). Tbpq,satellite
denotes the satellite observations, e.g., FY-3C/MWRI in this
study. d0 is the optimized effective grain size according to
the HUT and DMRT models and the effective correlation
length according to the MEMLS model. SDini denotes the
ground-based snow depth as a background field. The iteration
ranges of the grain size for the HUT and DMRT models
were set to 0–4 and 0–2 mm, respectively, and 0–0.8 for the
MEMLS model.

We previously compared the effective grain size optimized
by the HUT, MEMLS, and DMRT models. We found that
their optimized effective grain size data are highly correlated,
although the DMRT model is a fully physically based model
and the MEMLS model analytically calculates scattering coef-
ficients via the improved band approximation (IBA). Thus,
we consider that the GlobSnow effective grain size product
optimized by the semiempirical HUT model is reliable.

We also studied snow depth retrieval algorithms in previous
studies by coupling a snow physical model (e.g., the Snow
Thermal model, SNTHERM) and a machine learning approach
in the Northern Hemisphere [34]. The results revealed that
the effective grain size at 36.5 GHz calculated from the
SNTHERM multilayer snow profile simulations was correlated
with the optimized effective grain size determined from the
GlobSnow product, which explains the physical basis of the
effective grain size and its relationship with the measured
snow microstructure under natural conditions. Owing to the
low computational efficiency of the SNTHERM model, the
GlobSnow product was used to determine the effective grain
size in this study.

2) Determination of the Predictor and Target Variables
for the HUT-RF Model: The predictor variables include the
brightness temperature at 10.65, 18.7, 36.5, and 89 GHz;
land cover fraction (forestland, farmland, grassland, and barren
land); elevation; latitude; longitude; day of year (DOY); and
effective grain size (Table III). Owing to the coarse spa-
tial resolution of the FY-3C/MWRI-I and FY-3F/MWRI-II
data, a pixel typically consists of several land cover types,
e.g., grassland, cropland, barren land, and forestland. Previ-
ous studies have indicated that land cover type influences

snow distribution and changes the snow microstructure [26],
[38]. Moreover, topography (e.g., elevation) and geographic
location (latitude and longitude) dominate snow spatial pat-
terns [47], [48], [49]; for example, deep snow typically occurs
in high-elevation or high-latitude areas. The DOY reflects the
seasonal snow cover characteristics; for example, the SWE
and grain size typically increase during the snow accumulation
period. Therefore, the land cover fraction, elevation, latitude,
longitude, and DOY were selected as predictor variables
(Table II).

Microwave signals are sensitive to dry snowpack because of
volume scattering caused by snow particles. Thus, brightness
temperature gradients are typically used to retrieve the SWE.
Theoretically, Tb18.7V is subjected to more snow metamor-
phism and forest than Tb10.65V [54]. Thus, Tb10.65V-Tb36.5V was
selected for this study. Tb89V is sensitive to relatively shallow
snowpacks because of its low penetrability [19]. Typically,
microwave emission at 89 GHz dominates the brightness
temperature. Interestingly, our analysis revealed that Tb18.7V-
Tb89V presented a negative response to SWE (see Section IV).
Thus, Tb18.7V-Tb89V was selected as one predictor variable.
The presence of deep snow and coarse particles (e.g., depth
hoars) can result in notable volume scattering of snowpacks
to microwave signals. Thus, depolarization effects typically
occur. According to previous studies [12], [16], [38], [49]
and our tests (see Section IV), the polarization difference is
sensitive to snow metamorphism (e.g., grain size) and snow
depth; therefore, Tb10.65V-Tb10.65H was further selected as a
predictor variable in this study.

For the RF machine learning model, two key parameters
need to be determined: the number of decision trees (ntree) in
the ensemble and the number of predictor variables (mtry)
randomly selected at each node. In this study, ntree was
set to 500, which was sufficient for error convergence, and
mtry was 4, approximately one-third of the predictor variables
(Table III). The training sample size was 247 800, including
ground-based records from the GHCN-daily and Chinese
stations and C-SNOW snow depth estimates (Table III). The
spatially independent validation datasets are shown in Table II.
See the details in Section II-B. The well-trained HUT-RF
model was subsequently applied to produce a snow depth
reference dataset for the Northern Hemisphere during the
2013–2020 period. The spatial independence of the HUT-RF
model is verified in Section III-B.

3) Design of the FY-3F-SWE Retrieval Algorithm: One
advantage of the HUT-RF model is that it can provide a
historically long-term spatially continuous SWE dataset in the
Northern Hemisphere, which can be used as reference SWE
values due to the inclusion of ground-based measurements
(Fig. 3). To achieve operational application for snow moni-
toring, a pixel-sensitive algorithm for FY-3F regression based
on the HUT-RF reference dataset was utilized. The format
of the proposed FY-3F algorithm is similar to that of the
traditional empirical equation, but the fitting coefficients are
dynamic on a pixel-by-pixel basis. Owing to the available
typical frequencies (10.65, 18.7, 36.5, and 89 GHz) for FY-
3F/MWRI-II and their sensitivity to the SWE (see Table III),
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TABLE III
PREDICTOR AND TARGET VARIABLES FOR THE HUT-RF MODEL

we constructed a multiband retrieval algorithm. The format of
the proposed FY-3F algorithm is as follows:

SWE = slope1 × (Tb10.65V − Tb36.5V)

+ slope2 × (Tb18.7V − Tb89V)

+ slope3 × (Tb10.65V − Tb10.65H) + intercept (2)

where Tb10.65V, Tb18.7V, Tb36.5V, and Tb89V denote the
brightness temperatures at vertical polarizations ranging from
10.65 to 89 GHz, and SWE is the estimated SWE. Slope
and intercept coefficients were calculated by fitting the
Tb differences and SWE values retrieved by HUT-RF at
each snow-covered pixel. The basic principles for select-
ing Tb10.65V-Tb36.5V, Tb18.7V-Tb89V, and Tb10.65V-Tb10.65H are
shown in Table III. We also tested the roles of the three Tb
differences in (2). Refer to Section IV for more details.

III. RESULTS

A. Development of the FY-3F SWE Retrieval Algorithm

Based on the snow depth reference dataset for the Northern
Hemisphere during the 2013–2020 period, the slope and inter-
cept coefficients of function (2) were fit pixel by pixel. Fig. 4

shows the spatial distributions of slope1, slope2, slope3, and
the intercept in the Northern Hemisphere. The relationships
between the satellite-based observations and the reference
snow depth were determined by slope1, slope2, and slope3.
These fitting coefficients exhibited high spatial heterogeneity
(Fig. 4). Slope1 reflects the role of Tb10.65 and Tb36.5 in
retrieving snow depth and indicates patterns similar to those
of snow depth and terrain. The thicker the snow cover is,
the greater the slope is. For slope2, the role of Tb18.7 and
Tb89 in retrieving the snow depth is notable above a northern
latitude of 50. Slope3 denotes the role of the polarization
difference at 10.65 GHz (Tb10.65V-Tb10.65H) in retrieving the
snow depth; it exhibits similar patterns as slope1, indicating
that it compensates for snow depth estimates. A more detailed
discussion is given in Section IV.

The intercept denotes the systematic biases. Assuming that
the fitting relationship between the SWE and satellite obser-
vations is robust, the intercept should equal zero when snow
is free based on scattering theory. However, deep snowpack,
snow metamorphism, and forest landscapes generally lead to
saturation effects resulting from microwave signals. Within
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Fig. 4. Spatially dynamic fitting coefficients of (a) slope1, (b) slope2,
(c) slope3, and (d) intercept for the FY-3F snow depth retrieval algorithm
in the Northern Hemisphere.

this context, the intercept can partially correct the errors under
low- and high-end snowpack conditions and improve snow
depth estimates overall. As shown in Fig. 4, the intercept
coefficient is generally high under deep snow conditions, such
as above 50◦N, and in the Canadian Rocky Mountains and
the Coast Mountains, whereas it is negative in shallow snow
cover areas, which are lower than approximately 50◦N. Here,
the microwave snow identification method proposed by Dozier
et al. [47] was used to detect dry snow according to a previous
assessment [48], [49].

Fig. 5 shows a comparison of the station-based snow depth
values with the HUT-RF and FY-3F model estimates in the
Northern Hemisphere. The HUT-RF model outperformed the
developed FY-3F algorithm; for example, the HUT-RF model
yielded the unbiased root mean square error (unRMSE) values
of 10.16 and 25.19 mm. Fig. 5 shows the histograms of the
residual errors of these two models, which clearly exhibit
a normal distribution. For the HUT-RF model, 90% of the
biases varied between −10 and 10 mm, indicating that the
reference snow depth dataset based on the HUT-RF model
is reliable. For the FY-3F algorithm, most residual errors
varied between −30 and 30 mm. The spatial independence
verification of the HUT-RF model and FY-3F algorithm is
described in Section III-B.

B. Validation and Comparison of the SWE Estimates

Four spatially independent datasets were selected to ver-
ify the performance of the HUT-RF model and FY-3F
SWE retrieval algorithm in the Northern Hemisphere. More-
over, these products were compared with the widely used
GlobSnow-v3.0 product. Fig. 6 shows the validation and
comparison results for the HUT-RF, FY-3F, and GlobSnow-
v3.0 SWE estimates over Russia. Overall, the HUT-RF
model performed best among these three algorithms. The
FY-3F and GlobSnow-v3.0 estimates yielded similar unRMSE

Fig. 5. Comparison of the station-based SWE data with (a) HUT-RF model
and (b) FY-3F algorithm results. (c) and (d) Residual error plots for the
HUT-RF model and FY-3F algorithm, respectively.

Fig. 6. Validation of (a) HUT-RF, (b) FY-3F, and (c) GlobSnow-v3.0 SWE
estimates over Russia (snow course) and (d) comparison with respect to
unRMSE.

(27.15 and 33.32 mm, respectively) and correlation coefficient
(0.81 and 0.88, respectively) values. Fig. 6(d) shows the
monthly performances of the above three retrieval algorithms
and products. The unRMSE increased during the snowy sea-
son from November to the following May. The FY-3F and
GlobSnow-v3.0 SWE estimates from November to March
agreed well but differed between April and May. One reason is
that there were few available station measurements during the
late snowy season, which resulted in high uncertainty in the
interpolated effective grain size of the HUT model. Therefore,
the GlobSnow-v3.0 product achieved poor performance in
April and May.

Fig. 7 shows the validation and comparison results for the
HUT-RF, FY-3F, and GlobSnow-v3.0 SWE estimates over
Canada. The ground snow pits in Canada are mostly dis-
tributed in complex mountains and forest-covered areas where
snow cover is typically thick (up to 700 mm). Thus, the overall
performance of these three algorithms was lower than that in
Russia (Figs. 6 versus 7, respectively). Even for the HUT-RF
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Fig. 7. Validation of (a) HUT-RF, (b) FY-3F, and (c) GlobSnow-v3.0 SWE
estimates and (d) comparison with respect to unRMSE over North America
(Canada snowpits).

Fig. 8. Validation of (a) HUT-RF, (b) FY-3F, and (c) GlobSnow-v3.0 SWE
estimates and (d) comparison with respect to the monthly unRMSE over North
America (SNOTEL snowpits).

model, the unRMSE and bias values reached 42.94 and
−21 mm, respectively. The FY-3F algorithm also yielded large
errors (unRMSE of 75.3 mm) and severe underestimations
(bias of −49 mm). A discussion is provided in Section IV. The
GlobSnow-v3.0 product has no response to SWE variation,
indicating that it is not applicable in complex terrain areas.
Fig. 8(d) shows the monthly performance of these three
algorithms. The unRMSE of the HUT-RF model increased
during the snowy season from November to the following May.
However, the FY-3F and GlobSnow-v3.0 SWE algorithms all
presented high unRMSE values throughout the entire snowy
season, especially for the GlobSnow-v3.0 product.

Fig. 8 shows the validation and comparison results for
the HUT-RF, FY-3F, and GlobSnow-v3.0 SWE estimates over
western North America. The SNOTEL stations were designed
for remote and complex mountains (e.g., the Canadian Rocky

Fig. 9. Validation and comparison of (a) FY-3F and (b) GlobSnow-v3.0 SWE
estimates across China (field sampling).

Mountains and the Coast Mountains), where the SWE is typi-
cally up to 1000 mm (Fig. 2). The HUT-RF model performed
well, with the unRMSE and bias values of 51.61 and −25 mm,
respectively, which contributed to the predictor variables of
the effective grain size, elevation, and forest fraction and the
target variable, in which Sentinel-1 snow depth observations
were involved (Fig. 1). The FY-3F algorithm exhibited high
uncertainty, with an unRMSE value of up to 129.06 mm. The
GlobSnow-v3.0 product exhibited almost no response to SWE
changes. Fig. 8(d) shows the monthly performance of these
three algorithms. Even for the HUT-RF model, the unRMSE
value reached 80 mm in May. For the FY-3F and GlobSnow-
v3.0 SWE algorithms, the estimates notably deviated from the
station measurements.

Fig. 9 shows the validation and comparison results for
FY-3F and GlobSnow-v3.0. SWE estimates over China. The
color bar indicates the sample number in the satellite pixels.
The results revealed that the FY-3F algorithm yielded results
similar to those of the GlobSnow-v3.0 product, with the
unRMSE (corr.coe) values of 13.73 (0.75) and 17.61 (0.62)
mm, respectively.

C. Spatial Distribution and Monthly Performance

Fig. 10 shows the monthly spatial distributions of the
FY-3F and GlobSnow-v3.0 SWE estimates in the Northern
Hemisphere. The results indicated a basically consistent spatial
pattern between the FY-3F and GlobSnow-v3.0 estimates.
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Fig. 10. Monthly distributions of the FY-3F and GlobSnow-v3.0 SWE
estimates in the Northern Hemisphere.

Most complex mountains are masked in the GlobSnow-
v3.0 product because ground-based snow depth measurements

are rare. Thus, the snow cover areas in the GlobSnow-
v3.0 estimates were evidently smaller than those in the FY-3F
estimates. Here, the different microwave snow identification
methods used in the GlobSnow-v3.0 and FY-3F methods also
influenced the obtained snow cover areas.

Owing to the high uncertainties of SWE estimates over
complex terrains, current PMW products typically mask
SWE estimates in mountainous regions, e.g., the GlobSnow-
v3.0 product. Fig. 11 shows the monthly spatial distributions
of the FY-3F SWE estimates in the Canadian Rocky Moun-
tains, High Mountain Asia, and East Siberian Mountains.
Although spatially independent validation revealed that the
FY-3F algorithm exhibited high uncertainty over complex
mountains (Figs. 7 and 8), it could reflect the spatial patterns
of the SWE and provide spatially continuous SWE mapping,
except for some water bodies (Fig. 11). The SWE was
typically high in mountainous areas relative to flat areas. More-
over, the SWE gradually increased from December 2017 to
April 2018.

IV. DISCUSSION

In this study, the HUT-RF model was used to provide
spatially continuous reference snow depth data for building
the FY-3F SWE retrieval algorithm. Generally, both the grain
size and the SWE influence the optical thickness of snow.
Thus, their coupling increases the complexity of SWE retrieval
via empirical and semiempirical methods. In the HUT-RF
model, the effective grain size optimized by the HUT model
is involved, partially enhancing the predictive power of the
machine learning approach. Moreover, the land cover fraction,
elevation, and DOY variables are considered in the HUT-RF
model, which partially reduces the influence of the terrain and
forests on the SWE estimates [38]. In addition, machine learn-
ing techniques present greater potential in fitting multivariate
nonlinear relationships between predictor variables and SWE
than traditional statistical regression methods do. Thus, the
HUT-RF retrievals are partially reliable as a reference dataset
for building the FY-3F SWE retrieval algorithm (Figs. 6–8).

However, HUT-RF is not a physics-based model that can
clarify the radiative transfer process of layered natural media
(e.g., soil, snow, forest, and atmosphere) or their interactions.
Thus, uncertainties remain in some areas, although the overall
performance of the HUT-RF model is promising. For example,
especially for the late snow season (April and May), the
unRMSE values ranged from 30 to 110 mm [Figs. 6(d)–8(d)].
This is partially due to the saturation of PMW signals caused
by liquid water in wet snow conditions, which affects the
SWE estimates [13]. Another reason is that the frequent
melt-free snow events in late snow seasons lead to snow
grain growth [12], which increases the volume scattering of
snowpack (Figs. 7–8).

Another noteworthy issue is the representativeness and
imbalance of training samples for machine learning models.
In this work, the target variable for training the RF-HUT model
was acquired from weather stations, while its representative-
ness in a coarse pixel remains to be evaluated, especially in
complex mountains and densely forested areas [27]. Moreover,
most stations are distributed in flat and open areas where the
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Fig. 11. Monthly distributions of the FY-3F SWE estimates in the Cordillera Mountains, High Mountain Asia, and East Siberian Mountains.

snow depth is typically shallow compared with that in complex
terrain areas. Thus, approximately 90% of the snow depth
records range from 1 to 100 cm. Although Sentinel-1 snow
depth data are considered in the RF-HUT model to enhance the
balance of training samples, their retrievals in deep snowpack
areas also present high errors in complex areas (wet snow and
forest canopies) and fewer Sentinel-1 observation areas (e.g.,
North America and Asia), where repeat cycles occur every
6–12 days [40], [41]. Thus, imbalanced training samples also
decrease the predictive power of machine learning.

The overall uncertainties in the HUT-RF estimates [the
dependent variables in function (2)] can be propagated into
the FY-3F algorithm; for example, its unRMSE values range
from 50 to 160 mm, even exceeding 50% of the relative error
[Figs. 6(d)–8(d)]. In future work, improving the understanding
of the representativeness of reference SWE values and enhanc-
ing the balance of training samples by means of airborne
SAR observations (a combination of C-band, X-band, and
Ku-band data), automatic measurement networks, e.g., GNSS-
R, satellite altimetry, light detection and ranging (LiDAR),
and large model simulations (a combination of snow physical
models and deep learning techniques), could contribute to the
development of robust SWE retrieval algorithms and more
accurate validation of SWE products.

Fig. 12 shows the overall relationship between the bright-
ness temperature differences and the observed SWE values
derived from the Russia, CanSWE, and SNOTEL datasets.
Tb10.65V-Tb36.5V exhibited a nonlinear relationship with the
ground-based SWE data, first increasing from 0 to 100 mm
and then decreasing above 100 mm. Tb18.7V-Tb89V indi-
cated a downward trend for 0–200 mm snowpacks over
Russia and 0–400 mm snowpacks over Canada, indicat-
ing greater sensitivity to the SWE than Tb10.65V-Tb36.5V.
At 89 GHz, microwave emission dominates the brightness
temperature, whereas volume scattering dominates radia-
tion at 18.7 GHz. Thus, Tb18.7V-Tb89V decreases with
increasing SWE. Over Eurasia, the polariton difference
Tb10.65V-Tb10.65H exhibited an upward trend for 0–100 mm
snowpacks [Fig. 12(a)]. This is because vertically polarized
signals have stronger penetration ability than horizontally
polarized signals do. In Canada, Tb10.65V-Tb10.65H exhibited
a downward trend for 0–400 mm snowpacks [Fig. 12(b)].
This phenomenon is related to both the SWE and forest
cover. The CanSWE dataset shows that the SWE increases
with increasing forest fraction (Fig. 13). Thus, the volume
scattering effects caused by the forest canopy and snowpack
reduce the polariton difference, namely, the depolarization
effect.
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Fig. 12. Overall relationships between the brightness temperature differences
and observed SWE values derived from (a) Russia, (b) CanSWE, and (c) SNO-
TEL datasets. The error bars and colored solid dots indicate the standard
deviation and average value, respectively, of the brightness temperature data
in specific SWE ranges.

Fig. 12(c) shows that the brightness temperature differences
of Tb18.7V-Tb89H and Tb10.65V-Tb10.65H were insensitive to
the SWE for the SNOTEL dataset. This can be explained
by the dense distribution of forest landscapes and the large
amount of snow [40] in the Canadian Rocky Mountains and
the Coast Mountains. Fig. 14 shows a case study of the time
series brightness temperature differences and SNOTEL SWE

Fig. 13. Relationships between the forest fraction data and observed SWE
values derived from the CanSWE and SNOTEL datasets.

Fig. 14. Time series of the brightness temperature differences and SWE
values (SNOTEL) in the forest areas.

values in a forested satellite pixel. The reference period was
from November 2013 to May 2014 because of the continuous
and greater number of observations relative to those in other
periods. The hollow circles denote ground-based SWE values,
and the pentagram-shaped and triangular solid dots denote the
reference (HUT-RF model) and estimated (FY-3F) SWE data,
respectively. The ground-based and reference SWE values
increased from November 2013 to May 2014, whereas the
brightness temperature differences were mostly insensitive to
SWE changes, which led to severe underestimation by the
FY-3F SWE retrieval algorithm (Figs. 7, 8, and 14). This
occurred because dense forest cover (79%) masks microwave
radiation stemming from snowpacks and soil. Forest canopy
emissions are relatively stable during snowy winter seasons
because of the low water content of vegetation and frozen
ground. Therefore, notable volume scattering of the canopy
and snow reduces the difference in Tb10.65V-Tb10.65H.

To determine the roles of Tb10.65V-Tb36.5V, Tb18.7V-Tb89V,
and Tb10.65V-Tb10.65H in the pixel-sensitive retrieval algorithm,
three scenarios were further tested (Table IV). In Scenario 1,
only Tb10.65V-Tb36.5V was used to fit the slope and intercept
for each pixel. In Scenarios 2 and 3, two brightness tem-
perature gradients, Tb18.7V-Tb89V and Tb10.65V-Tb10.65H, were
added step by step to regress with the SWE. The spatially
independent validation results revealed that Tb18.7V-Tb89V and
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TABLE IV
SUMMARY OF THE PERFORMANCES OF THE THREE RETRIEVAL ALGORITHMS

Tb10.65V-Tb10.65H improved the SWE estimates over Eurasia
(Russia dataset), for example, with unRMSE values ranging
from 30.6 to 27.4 and 27.2 mm, respectively. Over North
America, the CanSWE dataset, Tb18.7V-Tb89V, and Tb10.65V-
Tb10.65H also slightly contributed to the retrieval of the SWE,
for example, with the unRMSE values of 78.1, 76.9, and
75.3 mm, respectively, for Scenarios 1–3 (Table IV). For the
SNOTEL dataset, Tb18.7V-Tb89V even increased the uncertain-
ties of the estimated SWE, for example, with the unRMSE val-
ues of 127.7 and 129.8 mm for Scenarios 1 and 2, respectively
(Table IV). These results correspond to the analysis in Fig. 12.

According to the results shown in Figs. 13 and 14, SWE
retrieval in forested areas still faces challenges. Although the
forest fraction was considered in the HUT-RF model to reduce
the influence of forests on SWE references, the pixel-based
regression algorithms did not compensate for the SWE via
the forest cover fraction. For example, the satellite brightness
temperature was stable in densely forested areas (Fig. 14),
which resulted in an almost static estimated SWE. Thus,
it is necessary to implement a forest correction step for the
brightness temperature prior to estimating the SWE. From
the perspective of radiative transfer, an integrated microwave
emission model that considers the influence of the forest
landscape is the base method used to correct the satellite
brightness temperature. We are now attempting to establish
a microwave emission model, in which the advanced integral
equation model (AIEM) and HUT are used to simulate soil and
snow brightness temperatures, respectively, and a zero-order τ -
ω forest model is used to describe canopy self-radiation and
interactions with snow and soil [55]. Based on the integrated
microwave emission model, we skillfully combined two radia-
tive transfer equations for adjacent forests and open pixels
to extract canopy transmissivity. A semiempirical canopy
transmissivity model based on forest biomass was then built
to correct satellite-observed brightness temperatures. We are
now designing an airborne-based observation experiment to
evaluate this method. We will expand this methodology to
the global scale for satellite applications. The detailed results
will be presented in a future publication, and we believe that
the forest-corrected brightness temperature will improve the
effective grain size and SWE estimates in forested areas.

V. CONCLUSION

In this article, a new operational SWE retrieval algorithm
for FY-3F/MWRI-II in the Northern Hemisphere was pro-
posed. The proposed algorithm differs from traditional static
methods based on its spatially dynamic regression coefficients.
To verify the performance of the FY-3F SWE algorithm, four
spatially independent verification datasets across the Northern
Hemisphere were used in this study. Moreover, the FY-3F
SWE estimates were compared with those of the widely
used GlobSnow-v3.0 product. The results showed that the
HUT-RF model SWE estimates conformed to the ground-
based measurements, but the HUT-RF model relied heavily on
ground-based snow depth observations. Thus, a pixel-sensitive
FY-3F retrieval algorithm was built based on a spatially
continuous SWE reference dataset generated by the HUT-
RF. Our verification also revealed that the proposed FY-3F
algorithm yielded results similar to those for the GlobSnow-
v3.0 product in plain terrains and sparsely forested areas. For
example, the unRMSE values over Russia were 27.15 and
33.32 mm for the FY-3F and GlobSnow-v3.0 algorithms,
respectively. In complex terrains and densely forested areas,
the FY-3F algorithm performed better than the GlobSnow-
v3.0 product did, but it also had high uncertainties, with overall
unRMSE values of 75.3 mm over Canada and 129.06 mm
over western North America. Another advantage of the FY-
3F SWE retrieval algorithm is that it can provide SWE
information in complex mountains where a mass of snow is
stored. Compared with those of the FY-3B/C/D algorithms,
the proposed SWE retrieval method for FY-3F yielded con-
sistent results across the Northern Hemisphere, avoiding SWE
patches. We also attempt to validate the proposed algorithm
against FY-3G/MWRI-RM and FY-3F/MWRI-II observations,
which could increase the number of applications of FY-3
series satellites. It is also necessary to compare the differences
between FY-3C/MWRI observations and FY-3F/MWRI-II or
FY-3G/MWRI-RM observations and then update the pro-
posed algorithm in the future after enough FY-3F/3G-observed
brightness temperature products are obtained. Undeniably, the
proposed FY-3F algorithm enhances Earth monitoring capabil-
ities and contributes to a complete and timely understanding
of SWE changes at the global scale.
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