
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20

Big Earth Data

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbed20

Daily snow water equivalent product with SMMR,
SSM/I and SSMIS from 1980 to 2020 over China

Lingmei Jiang, Jianwei Yang, Cheng Zhang, Shengli Wu, Zhen Li, Liyun Dai,
Xiaofeng Li & Yubao Qiu

To cite this article: Lingmei Jiang, Jianwei Yang, Cheng Zhang, Shengli Wu, Zhen Li, Liyun Dai,
Xiaofeng Li & Yubao Qiu (2022): Daily snow water equivalent product with SMMR, SSM/I and
SSMIS from 1980 to 2020 over China, Big Earth Data, DOI: 10.1080/20964471.2022.2032998

To link to this article:  https://doi.org/10.1080/20964471.2022.2032998

© 2022 The Author(s). Published by Taylor &
Francis Group and Science Press on behalf
of the International Society for Digital Earth,
supported by the CASEarth Strategic Priority
Research Programme.

Published online: 17 Feb 2022.

Submit your article to this journal 

Article views: 85

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbed20
https://www.tandfonline.com/loi/tbed20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20964471.2022.2032998
https://doi.org/10.1080/20964471.2022.2032998
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2022.2032998
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2022.2032998
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2022.2032998&domain=pdf&date_stamp=2022-02-17
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2022.2032998&domain=pdf&date_stamp=2022-02-17


DATA ARTICLE

Daily snow water equivalent product with SMMR, SSM/I and 
SSMIS from 1980 to 2020 over China
Lingmei Jiang a, Jianwei Yanga, Cheng Zhanga, Shengli Wub, Zhen Lic, Liyun Daid, 
Xiaofeng Lie and Yubao Qiu c

aState Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and 
Aerospace Information Research Institute of Chinese Academy of Sciences, Faculty of Geographical Science, 
Beijing Normal University, Beijing, China; bNational Satellite Meteorological Center, China Meteorological 
Administration, Beijing, China; cKey Laboratory of Digital Earth Science, Aerospace Information Research 
Institute, Chinese Academy of Sciences, Beijing, China; dKey Laboratory of Remote Sensing of Gansu 
Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment 
and Resources, Chinese Academy of Sciences, Lanzhou, China; eNortheast Institute of Geography and 
Agroecology, Chinese Academy of Sciences, Changchun, China

ABSTRACT
The reliable knowledge of seasonal snow volume and its trend is 
very important to understand Earth’s climate system. Thus, a long- 
time snow water equivalent (SWE) dataset is necessary. This work 
presents a daily SWE product of 1980–2020 with a linear unmixing 
method through passive microwave data including SMMR, SSM/I 
and SSMIS over China after cross-calibration and bias-correction. 
The unbiased root-mean-square error of snow depth is about 5– 
7 cm, corresponding to 10–15 mm for SWE, when compared with 
stations measurements and field snow course data. The spatial 
patterns and trends of SWE over China present significant regional 
differences. The overall slope trend presented an insignificant 
decreasing pattern during 1980–2020 over China; however, there 
is an obvious fluctuation, i.e. a significant decrease trend during the 
period 1980–1990, an upward trend from 2005 to 2009, a significant 
downward trend from 2009 to 2018. The increase of SWE occurred 
in the Northeast Plain, with an increase trend of 0.2 mm per year. 
Whereas in the Hengduan Mountains, it presented a downward 
trend of SWE, up to −0.3 mm per year. In the North Xinjiang, SWE 
has an increasing trend in the Junggar Basin, while it shows 
a decreasing trend in the Tianshan and Altai Mountains.
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1. Introduction

Approximately one-third of the Earth’s land surface is covered seasonally by snow, and up 
to 50% of the Northern Hemisphere lands surface has snow cover during the winter 
(Bormann, Brown, Derksen, & Painter, 2018). Snow cover has great influence on global and 
regional energy, water, and carbon cycles. There are three main continuous snow regions 
with seasonal snow cover in China, including Qinghai-Tibetan Plateau (QTP), northern 
Xinjiang (NXJ), northeast China (NE), and the snow cover extent in winter of these three 
regions covers 27% the total area of China (Huang et al., 2016). Especially in the QTP and 
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Xinjiang as semi-arid regions of China, the snowmelt water plays a very important role in 
agriculture and water supply (Qin et al., 2020; Wang, Huang, Wang, Zhou, & Liang, 2019). 
The change in snow cover conditions can have serious economic and social impacts. 
Snow water equivalent (SWE) describes the amount of water contained in snowpack 
when it is completely melted. Hence, the knowledge of snow water equivalent is essential 
in the assessment of the energy and water cycle in the climate system, in validating 
General Circulation Models (GCM) snow cover simulations and for hydrology and water 
resource planning. Under the global climate change conditions, the spatial-temporal 
snow variability in China is a direct response to global climate change. Therefore, it is 
necessary to have a long time series of snow water equivalent data to study its response 
to the climate change, including snow water storage and snow cover extent area 
variation.

It is still difficult to predict SWE variability over large and remote areas due to the high 
spatial and temporal variability of the snowpack and the lack of in situ data. Passive 
microwave remote sensing has the capability to obtain SWE information at regional or 
global scales (Chang et al., 1987; Derksen, Walker, & Goodison, 2005; Foster et al., 1997; 
Kelly, 2009; Takala et al., 2011; Jiang, Wang, Zhang, Yang, & Yang, 2014; Pulliainen et al., 
2020). It has been almost four decades to estimate SWE from space-borne passive 
microwave observations since the first operational radiometer in space, the Scanning 
Multichannel Microwave Radiometer (SMMR) aboard the National Aeronautics and Space 
Administration (NASA) Nimbus-7 satellite. The most widely used algorithm was built 
based on the relationship of brightness temperature difference between 19 GHz and 
37 GHz and snow depth or SWE (Chang et al., 1987). The emission at lower frequency 
channel (19 GHz) from dry snow is mainly affected by the properties of the soil back-
ground and snow, while the snow emission at higher frequency (37 GHz) is sensitive to 
snow mass and grain size (Shi et al., 2016). Derksen et al. (2005) developed a land 
sensitivity SWE retrieval algorithms with an unmixed method in Canada. Che, Xin, Jin, 
Armstrong, and Zhang (2008) modified Chang’s algorithm using the ground measure-
ments of 2003 for SSM/I, then generated a dataset of snow depth from 1980 to 2019. 
Chang et al. (2009) developed an empirical snow depth algorithm using AMSR-E, by 
incorporating MODIS 8-day snow fraction data at 0.05 degree grid. Jiang et al. (2014) 
developed snow depth retrieval algorithms with mixed pixel method for Fengyun-3B 
(FY3B) meteorological satellite in China. Jiang et al (20142014) modified the FY-3B 
retrieval algorithms, and established regional algorithms in Xinjiang, Northeast of China, 
and other areas for the FY-3D satellite.

Currently, the European Space Agency (ESA) released GlobSnow v3.0 snow water 
equivalent dataset (Luojus, Pulliainen, Takala, Lemmetyinen, & Moisander, 2021; Pulliainen 
et al., 2020). It includes time series of 1980–2018 Northern Hemisphere terrestrial (non- 
mountainous) snow water equivalent data derived from the Nimbus-7 satellite’s SMMR, the 
Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder 
(SSMIS) aboard the Defense Meteorological Satellite Program (DMSP) series of satellites. In 
addition, the Advanced Microwave Scanning Radiometer for Earth Observing System 
(AMSR-E) on board the NASA Aqua satellite, the Advanced Microwave Scanning 
Radiometer 2 (AMSR2) onboard the Global Change Observation Mission 1-Water (GCOM- 
W1) satellite by the Japan Aerospace Exploration Agency (JAXA), and Microwave Radiation 
Imager onboard the Fengyun-3 satellites (FY-3/MWRI) could provide SWE data during the 
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satellite operation since 2002, 2012 and 2010, respectively. Therefore, in order to generate 
a long series of SWE data, SMMR and SSMI, SSMIS sensors’ observations are necessary. In 
China, Che et al. (2008) provides snow depth data in China from 1980 to 2019 with the 
improved Chang’s algorithm in http://westdc.westgis.ac.cn. Through the validation in China, 
none of GlobSnow SWE and AMSR2 products could estimate snow depth and SWE accu-
rately over China because they were calibrated globally may not performed as well as one 
calibrated regionally (Yang and Jiang et al., 2019a, Yang et al., 2020). While Che’s snow 
depth data have improved a lot in China, it still can be improved with more ground 
measurements of China involved in the SWE estimates from satellite passive microwave 
sensors.

From the work of Pulliainen et al. (2020), they derived hemispheric-scale and five 
regions of interest trends of seasonal snow mass for 1980–2018. There are different 
trends derived for these five regions, such as that snow mass has increased across 
large portions of Siberia, while loss of snow mass is evident in Europe, in large 
portions of Yukon/Alaska, and in regions around Hudson Bay. Hence, it is necessary 
to analyze the snow mass trends and patterns in regional-scale, e.g. China. Qin et al. 
(2006) presented the spatial and temporal variabilities of the western China snow 
cover from 1951 and 1997 with 10-yr SMMR 6-day snow depth, NOAA weekly snow 
extent, and the daily snow depth from 106 selected meteorological stations in 
western China. Their results show that western China did not experience 
a continuous decrease in snow cover during the great warming period of the 
1980s and 1990s. Che et al. (2019) found that the snow cover days and depth 
decreased during the period 1980–2018 in the Qinghai-Tibetan Plateau, especially 
after the year of 2000. Both of them derived a little bit different results with different 
data sources and different periods. Xiong, Yao, Shi, Lei, and Pan (2019) found the 
snow melt onset time in the majority of High Mountain Asia occurs earlier, except in 
the Karakorom Mountains and a part of the West Kunlun Mountains. Most of their 
work focused on QTP or western China. Therefore, in order to understand the snow 
mass change in China, it is necessary to analyze the snow mass variability from long 
time series of SWE data.

In this work, we present a time series of 1980–2020 SWE data, with the support of China 
snow survey project by Wang et al. (2018). This SWE data were derived from the produc-
tion of estimated snow depth and snow density in China. Snow depth in each grid-cell 
was estimated with a semi-empirical model with the linear unmixing method (Jiang et al., 
2014; Yang et al., 2018) by the sum of values from three individual land cover algorithms, 
weighted by land cover fraction. And snow density was parameterized through the 
weather station measurements and snow courses during the winter of 2017–2019. 
Based on these data, we analyzed the temporal-spatial variability of snow in China during 
1980–2020. This work is organized as follows: Section 2 presents the methodology and 
data used in this work; section 3 evaluated the snow water equivalent data with ground 
measurements; then presents the spatial variability characteristic of SWE in China; the last 
part is the summary.
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2. Methods

2.1. Data

2.1.1. Weather station measurements and snow course data
In situ snow depth measurements were from the weather stations and field survey course 
in China (Figure 1a). The daily weather station measurements during the period 1980– 
2020 were provided by the National Meteorological Information Centre, China 
Meteorology Administration. The measured snow parameters are snow depth (daily) 
and snow pressure (every five-day), namely SWE. The dataset of daily station measure-
ments can be accessed by scientific researchers through the submission of an application 
(http://data.cma.cn/en). The field snow campaign supported by the Chinese snow survey 
project was conducted from 2017 to 2019 winter months, and provides an important 
validation dataset for this study This dataset can be available from the corresponding 
author on request (Wang et al., 2018). Along these six snow courses (Figure 1a, colored 
lines), a large number of snow pits were measured every 10 to 20 km. The recorded 
parameters include snow depth, density, air temperature, and the stratigraphy of the 
snowpack. There are three stable snow cover areas in winter months across China, 
including NXJ, NE, and the QTP. Thus, two snow courses were, respectively, designed in 
each snow cover areas to survey snow characteristics (Figure 1a). There were total six 
snow courses measurements during the periods 2017/2018 and 2018/2019. However, 
snow courses 3 and 4 located in the QTP were only conducted several days measurements 
during 2017/2018 winter with very shallow, wet and patchy snow. Hence, these data on 
snow course 3 and 4 are not used for validation. The specific parameters in each available 
course are shown in Table 1. These two datasets are available from the corresponding 
authors on request.

To transfer snow depth to SWE, snow density is necessary. In global SWE product, 
a fixed snow density (240 kg/m3), e.g. GlobSnow-2 product, or mean values for each snow 
class (Sturm, Holmgren, & Liston, 1995), e.g. AMSR-E product, were utilized. We also 
attempted to adopt a dynamic model (Sturm et al., 2010) to provide the spatiotemporal 
varied snow densities for calculating SWE. However, there are large differences between 
the station observations and model’s estimates over China (Yang et al., 2020). Based on 

Figure 1. Spatial distribution of (a) meteorological stations and field snow courses; (b) land use types 
over China.
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weather station and snow course data (Yang et al., 2019a), the average snow densities 
span from 160 kg/m3 to 190 kg/m3. Thus, we applied a mean snow density, 180 kg/m3, to 
transfer snow depth to SWE in this study.

2.1.2. Satellite observations
Owing to the similar configurations and inter-sensor calibrations between the SSM/I and 
SSMIS, thus these instruments are selected to provide brightness temperature data from 
1987 to 2020 (https://nsidc.org/data/NSIDC-0032/versions/2). The brightness temperature 
data during the period 1980–1987 were acquired from the SMMR on board the Nimbus-7 
Pathfinder satellite (https://nsidc.org/data/NSIDC-0071/versions/1). The SMMR, SSM/I and 
SSMIS Equal-Area Scalable Earth-Grid (EASE-Grid) brightness temperature product at 
25 km × 25 km resolution were used in this study. Table 2 shows the comparison 
among SMMR, SSM/I and SSMIS radiometers used in this study.

To maintain the maximum consistency of snow depth estimates between SSM/I and 
SSMIS, we conducted an intercalibration of radiometer brightness temperature between 
SMMR and SSM/I (Dai, Che, & Ding, 2015), and SSM/I and SSMIS (Yang et al., 2019b). To 
obtain the spatial coverage of snow depth across China, the ascending and descending 
overpass data were combined, but overpass data at night have priority. The basic rules are 
as following: (a) cold overpass data (ascending for F08-SSM/I; descending for others) are 
used first if both ascending and descending data are all available, in order to avoid the 
influence of wet snow on snow depth estimates; (b) warm overpass data are used to fill 
the gaps of cold overpass orbits; (c) after mentioned above two steps, the previous and 
next days’ data are used to achieve full spatial coverage if there are still existing gaps.

2.1.3. Auxiliary data
In this paper, a linear unmixing algorithm was used to generate a 40-year snow depth 
dataset from 1980 to 2020. To develop the linear unmixing algorithm, the land cover 
fraction data are necessary. 1- km land use data (Figure 1b) is freely available in the Data 
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http:// 
www.resdc.cn). It was derived from 30 m Thematic Mapper (TM) imagery classification. 

Table 1. The main parameters measured along these four snow survey courses (conducted from 
December 2017 to May 2019).

Snow course

Air temperature (°C) Snow depth (cm) Snow density (kg/m3)

samplesmax min max min max min

1 –2.5 –34.0 40 3 285 98 92
2 –1.3 –29.5 66 1 410 118 119
5 –1.8 –32 51 2 370 88 126
6 −3 −32 46 2 263 128 59

Table 2. Summary of the main passive microwave remote sensing sensors. The letter “A” and “D” 
represent ascending and descending, respectively.

Sensor SMMR SSM/I SSMIS

Satellite Nimbus-7 DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17
On orbit time 1978–1987 1987–1991 1991–1995 1995–2008 2006-present
Revisit period every two days daily
Passing time A: 12:00 D: 24:00 A: 06:20 D: 18:20 A: 17:17 D: 05:17 A: 17:58 D: 05:58 A: 17:31 D: 05:31
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The main land cover types consist of grassland, barren, farmland, forest, water body, and 
construction. Then, the land cover fraction at 25 km × 25 km scale was recalculated as the 
ratio of number of a specific land type pixel (1 km × 1 km) to the total pixels (625). To 
reduce the effects of water bodies and artificial structures on passive microwave radio-
metry, the satellite pixels where the total fraction (farmland, barren, grass, and forest) is 
lower than 60% were filter out.

2.2. Methodology

In this paper, we applied a semi-empirical model with the linear unmixing method (here-
after, called LUM algorithm) designed for China’s snow cover (Jiang et al., 2014; Yang et al., 
2018) to estimate snow depth. Then, a parameterized snow density (180 kg/m3) (Yang 
et al., 2019a) was used to transfer snow depth to SWE according to the ground-based 
measurements. A satellite passive microwave pixel usually covers several land use types 
due to its coarse spatial resolution. Thus, the mixed-pixel problem is challenging the snow 
depth retrieval with satellite passive microwave data (Derksen et al., 2005; Jiang et al., 
2014). The LUM algorithm was originally built using SSM/I data, thus, three frequencies, 
19.35 GHz, 37 GHz, and 85.5 GHz (subsequently, 91.655 GHz for SSMIS) were used for the 
regressions of empirically derived algorithms (Yang et al., 2018). Typically, the 19.35 GHz 
channel is sensitive to underground soil, while 37 GHz reflects on the volume scattering of 
snowpack to radiation emitted from the soil. Previous studies also demonstrated that the 
higher frequency, i.e. 85.5 GHz, is more suitable to estimate snow depth for shallow (< 
5 cm) or fresh snowpack than the 36.5 GHz channel (Jiang et al., 2014; Pan, Durand, Vander 
Jagt, & Liu, 2017). Considering that the snow cover across China is usually shallow, e.g. with 
a mean value of 5–10 cm (Huang et al., 2016; Wang et al., 2019; Yang et al., 2020), thus, 
85.5 GHz was used in the LUM algorithm. The LUM algorithm was represented as: 

SD cm½ � ¼ ffgrassland � SDgrassland þ ffforest � SDforest þ ffcropland � SDcropland (1) 

where ff denotes the land cover fraction; the sub-indices grassland, forest, and cropland 
refer to the land cover types; here, it should be noted that the shrub is included in forest, 
and barren in cropland. SDxxxx represents the snow depth in a pure pixel where land cover 
fraction is greater than 85%. The pure-pixel functions were described as: 

SDgrassland ¼ 0:1798� Tb19H37H þ 0:0902� Tb37H85H þ 0:5194� Tb37V37H � 4:67 (2) 

SDcropland ¼ 0:2394� Tb19H37H þ 0:1338� Tb37V85H þ 0:2739� Tb37V37H � 6:50 (3) 

SDforest ¼ 0:5899� Tb19H37H þ 1:2900� Tb37V37H � 0:31 (4) 

where the Tb represents the brightness temperature; V, H are vertical and horizontal polar-
ization respectively. For example, Tb19H37H means brightness temperature difference between 
19.35 GHz and 37 GHz at H-pol. The coefficients were fitted based on weather station 
measurements and satellite Tb observations in the pure pixels during the period 1987–2004.

Owing to absence of 85.5 GHz for SMMR instrument, we directly used the improved 
Chang algorithm proposed by Che et al. (2008) to retrieve snow depths during the period 
1980–1987. This algorithm only used two frequencies, 19.35 GHz and 37 GHz, and was 
applied to generate long-term snow depth product (http://data.casnw.net/portal).

6 L. JIANG ET AL.

http://data.casnw.net/portal


In this paper, our goal is to develop a time series (1980–2020) of snow depth and SWE 
that the accuracy can meet the requirements of hydrological applications and climate 
studies. Thus, five steps were carried out to improve SWE estimates. First, the sensor-cross 
correction in brightness temperature was done based on the linear relationships among 
SMMR, SSM/I and SSMIS (Dai et al., 2015; Yang et al., 2019b). Second, atmospheric 
correction to satellite observed brightness temperature for 36.5 GHz and 89 GHz was 
done using Qiu et al. (2021) method, which partially reduces the SWE estimates’ errors. 
Third, the grid snow depth was estimated using the LUM algorithm. Fourth, we adopted 
a large number of first-hand data (weather station measurements from 1980 to 2020) to 
correct the snow depth estimates, namely, bias correction proposed by Pulliainen et al. 
(2020). There are two steps conducting the bias correction. First, a monthly site-based bias 
in each year was calculated: 

Biasi ¼
1
Ni

XNi

t¼1
SDestimated;i;t � SDmeasured;i;t
� �

(5) 

where i denotes the pixel responding to the weather station; Ni is the number of samples 
within a month, SDestimated is snow depth retrieved by function (1); SDmeasured is the ground 
truth snow depth, from weather station. To obtain pixel-based bias distribution from site- 
based values calculated by the function (5), an ordinary kriging interpolation was used in 
snow-covered areas over China. Then, we used the monthly bias to correct the snow 
depth estimates: 

SDcorrected;y;m;j ¼ SDestimated;y;m;j � Biasy;m;j (6) 

where y denotes the year (1980–2020); m denotes the month; j is the jth pixel; and Biasy,m,j 

is from the kriging interpolation. Finally, the SWE was calculated by multiplication of the 
estimated snow depth by the LUT algorithm and snow density.

Through comparison of seven passive microwave snow cover mapping techniques in 
our previous work (Liu et al., 2018), we found the snow detection method (Li, Liu, Zhu, 
Zheng, & Chen, 2007) applied to Fengyun-3 microwave radiation imager showed best 
performance in China. It is well known, the PMW remote sensing is suitable for retrieving 
SWE and snow depth in dry snow conditions (Chang et al., 1987). Thus, a wet snow 
detection method (; Walker & Goodison, 1993) was used to provide the quality flag on 
SWE product.

3. Data records

The dataset provided in this paper consists of two parts – the quick-view image and the 
SWE product. The quick-view images are stored in PNG format, can be used to quickly 
understand the distribution of SWE over China. The SWE product is daily gridded SWE at 
azimuthal equal-area cylindrical grid coordinates with the spatial resolution of 25 km 
(EASE-GRID). This long-term SWE dataset can meet the requirements of climate change 
studies, and global water cycle applications. The dataset is available at http://www.doi. 
org/10.11922/sciencedb.j00076.00071.

The SWE product’s naming convention is “SATELLITE_SENSOR_SWE_ 
YYYYMMDD_DAILY_025 KM_V1.2.h5”. The “SATELLITE” serves as the satellite platform, e.g. 
DMSP-F17. The “SENSOR” is the type of radiometer, e.g. SSMIS. “SWE” is the abbreviation of 
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snow water equivalent. The file name variables “YYYYMMDD” denote the date stamp, for 
example, 20200101. The “daily” means the revisit time. The “025KM” denotes the spatial 
resolution. The “V1.2” is the product version. The pixel values in the H5 files have specific 
meanings: “0–240” represents the effective value of SWE, and the units of SWE is mm; “250” is 
for dry snow, “251” is for wet snow, “252” is for the free snow, “253” is for the water body, “254” 
means missing data and “255” is for outside China. To position the pixel location, the latitude 
and longitude matrices were also included in the H5 file. The detail information of our SWE 
dataset is summarized in Table 3.

4. Technical validation and trend analysis

The SWE estimates were compared to the weather station measurements during the 
period 2011–2019 (Figure 2). The overall unbiased root mean square error (unRMSE) and 
bias values are 5.09 cm and −0.65 cm, respectively. The correlation coefficient (corr.coe) is 
0.84 (p < 0.01 at 0.05 confidence interval), representing the significant relationship 
between ground-based measurements and snow depth estimates. Although the overall 
bias is only −0.65 cm, the SWE product tends to underestimate snow depth for deep snow 
cover (> 40 cm). However, the number of such cases is small, and therefore not evident in 
Figure 2a. Figure 2b depicts the histogram of the differences of SWE estimates and station 
observations. It presents a statistically normal distribution, and the mean value is about 
0 cm. The most values of the difference in snow depth span from −10 cm to 10 cm.

To determine the interannual variability in the uncertainty, the time series of assess-
ment indexes, including the unRMSE, bias, and corr.coe, are shown in Figure 3. The results 
show that the unRMSE ranges from 3.5 cm to 7.8 cm, and fluctuates significantly during 
the period 2011–2015 (Figure 3). The bias presents a slight change from year to year. The 
corr.coe is greater than 0.75 for any season, indicating the estimated snow depth is 
significantly correlated with the station observation.

Field snow course measurements (Figure 1), as a type of spatially independent refer-
ence data, were also used to assess the SWE estimates. Figure 4 shows the validation 
results of SWE estimates against snow course observations. The unRMSE values are 
5.94 cm, 7.95 cm, and 6.56 cm for snow courses 1, 5, and 6, respectively. For snow course 
2, the unRMSE is as high as 15.18 cm. Moreover, it presents serious underestimation, with 
an overall bias −7.73 cm. The snow course 2 is distributed around the Tianshan mountains 
where the topography is complex and undulated and thus the representativeness of field 

Table 3. The information of the SWE product provided by this paper.
File Name Variable Unit Effective Value Quality Identifier

SATELLITE_SENSOR_SWE_YYYYMMDD_DAILY_ 
025KM_V1.2.h5

SWE mm 0–240 250: dry snow

SD cm 0–100 251: wet snow
Latitude degree 16°N-56°N 252: free snow/
Longitude degree 72°E-142°E 253: water & building/

254: no data
255: outside China

SATELLITE_SENSOR_SWE_YYYYMMDD_DAILY_ 
025KM_V1.2.png

quick-view of SWE
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measurements is poor. The unRMSE values of snow courses 5 and 6 are higher than that in 
snow course 1. This is because the northeast China is covered with forest, disturbing the 
accuracy of SWE product.

Figure 2. Comparison of SWE estimates and weather station measurements.

Figure 3. Time series (2011–2019) comparison between measured and estimated snow depth data.
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According to the SWE product, the annual (the hydrological year, from September of 
the current year to August of the next year) averaged SWE during the period 1980–2018 
was calculated. As shown in Figure 5a, the spatial patterns of SWE over China present 
significant regional differences. The SWE is high in the NE, NXJ and the QTP. The maximum 
SWE estimates are mainly distributed in the Altai Mountains, Tianshan Mountains, the 
Greater Khingan Mountains and the Lesser Khingan Mountains, where the averaged SWE 
value is greater than 25 mm. The second highest value of SWE was mainly distributed in 
the Himalaya Mountains, Kunlun Mountains, Hengduan Mountains and Changbai 
Mountains, where the average SWE value is more than 15 mm.

Figure 5b shows the spatial distribution of annual average snow cover days (SCD) from 
1980 to 2018. The high values of SCD (>120d) are mainly distributed in QTP, NXJ and NE. 
The magnitude of SCD in NE is obviously correlated with latitude, while it is closely related 
to altitude in NXJ and QTP areas. In the high-altitude areas such as Tianshan Mountains, 
Kunlun Mountains and Gangdes Mountains, the SCD value can reach 250 days per year.

The spatial distribution of annual SWE slope trends (Figure 6a) shows a heterogenous 
pattern. The significant increase of SWE occurred in the Northeast Plain and Changbai 
Mountains, as well as some areas of the Lesser Khingan Mountains, and the increase trend 
there could reach 0.3 mm per year. In the Hengduan Mountains, there is a significant 
downward trend of SWE, up to −0.4 mm per year, which is similar to the changing trend of 
SCD (Figure 6b). In NXJ, the SWE has an increasing trend except for the mountain areas, i.e. 

Figure 4. Validation of snow depth product with field snow course data during the period 2018–2019.
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the upward trend in eastern and western segments of Tianshan Mountains can reach 
0.15 mm per year, while the downward trend in central segment of Tianshan Mountains 
and the Altai Mountains is about −0.2 mm per year.

Figure 6b illustrates the spatial distribution of annual snow cover days (SCD) trends by 
slope test. Areas with significant upward trend are mainly distributed in the west of QTP, 
including the Gangdise Mountains, the Himalayas, the Karakoram and Kunlun Mountains, 
with an increasing trend of 5 days per year. In the Altun Mountain and Qilian Mountain 
areas, it also presents a certain degree of increasing trend, about 3 days per year. Areas 
with significant reduction trend are mainly distributed in the Hengduan Mountainous 
Region, where the ratio is about −3 days per year. The SCD in the NE shows a slight 
upward trend, while the SCD in the NXJ presents a slight downward trend.

Figure 7 shows that Annual average SWE in China generally presents a slight down-
ward trend from 1980 to 2018. We calculated the average SWE of all pixels in each year, 
and find that the range is between 8 mm and 17 mm. Two peaks occurred in 
hydrological year 1985 and 2009. A significant decrease trend (p = 0.0030) occurs during 
the period 1980–1990, and later a fluctuating change is presented from 1990 to 2005. 
Owing to the heavy snow in the hydrological year 2009, thus, an increase trend 

Figure 5. Spatial distribution of annual (a) averaged SWE and (b) snow cover days (SCD) during the 
period 1980–2018.

Figure 6. Spatial distribution of annual (a) SWE and (b) SCD trends from 1980 to 2018 based on slope 
test. Only areas with trends having a significance level exceeding 95% are shown.
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(p = 0.0540) occurs from 2005 to 2009. From 2009 to 2018, there is a downward trend 
(p = 0.0570). The overall trend is insignificant (p = 0.1561), with a small regression 
coefficient of −0.0435. Here, it should be noted that own to the different payload 
configurations of SMMR and SSM/I, the snow cover detection and retrieval algorithms 
are not inconsistent before and after 1987, maybe affecting the time series variation.

5. Data set value

This paper provides a long-term SWE product from 1980 to 2020 with a semi-empirical 
linear unmixing algorithm using the space-borne passive microwave observations. The 
inter-instrument brightness temperature biases among SMMR, SSMI and SSMIS were 
removed to maintain the consistency of SWE estimates during the period 1980–2020. 
To improve the accuracy of SWE estimates, a bias correction method based on the ground 
measurements was applied to revise the SWE estimates. The overall unRMSE of SWE 
product is about 10–15 mm in China, which can meet the requirement of climate change 
studies, weather predictions and global water cycle applications.
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