

基于星载POLDER冰雪数据评价三个BRDF模型

Evaluation of three BRDF models' performance using spaceborne POLDER snow data 郭静;焦子锑;丁安心;张小宁;董亚冬;崔磊;尹思阳;常雅轩;谢蕊

引用本文:

郭静, 焦子锑, 丁安心, 等. 基于星载POLDER冰雪数据评价三个BRDF模型[J/OL]. 遥感学报, 2021, 0. DOI: 10.11834/jrs.20210010. Evaluation of three BRDF models' performance using spaceborne POLDER snow data[J/OL]. Journal of Remote Sensing, 2021, 0. DOI: 10.11834/jrs.20210010.

在线阅读 View online: http://www.ygxb.ac.cn/thesisDetails?columnId=10705795&Fpath=&graphicAbstract=www.undefined& index=0

您可能感兴趣的其他文章

Articles you may be interested in

基于星载 POLDER 冰雪数据评价三个 BRDF 模型

郭静^{1,2}, 焦子锑^{1,2}, 丁安心^{1,2}, 董亚冬^{1,2}, 张小宁^{1,2,3}, 崔磊^{1,2}, 尹思阳^{1,2},常雅轩^{1,2},谢蕊^{1,2}

1.北京师范大学 地理科学学部,遥感科学与工程研究院,北京 100875; 2.北京师范大学 遥感科学国家重点实验室, 北京 100875; 3.北京师范大学 水科学研究院, 北京 100875

摘 要: 冰雪在短波区域具有很强的各向异性反射特征,对全球能量平衡及水循环等有重要作用。目前,国内外 学者发展了一系列应用于冰雪的二向性反射分布函数(Bidirectional Reflectance Distribution Function, BRDF)模型, 全面比较和评估这些模型对星载多角度遥感产品的业务化模型选择有重要参考价值和指导意义。本文基于全球 Polarization and Directionality of Earth Reflectances (POLDER) 冰雪多角度反射率数据,选取三个模型,包括核驱 动、半经验的 Moderate Resolution Imaging Spectroradiometer(MODIS)业务化 RossThick-LiSparseReciprocal(RTLSR) 模型,新进辐射传输物理模型(Asymptotic Radiative Theory, ART),以及新发展的 RTLSR- Snow (RTLSRS) 模型进行了全面比较分析,研究结果表明: (1) 在拟合所有 POLDER 数据时, RTLSRS 模型都具有最高精度,对 于单组纯雪数据,RTLSRS模型的最小二乘拟合的均方根误差(RMSE)比ART模型降低了45.45%,比RTLSR模 型降低了 81.45%。对于非纯雪数据, RTLSRS 模型与 RTLSR 模型的拟合能力总体差别不大, 但其 RMSE 比 RTLSR 模型降低了 67.5%, ART 模型的精度最差。(2) 虽然 RTLSRS 可以高精度拟合所有数据, 但该模型拟合纯雪 (R²=0.969, RMSE=0.012) 精度较优于非纯雪(R²=0.935, RMSE=0.018)。(3) 对 RTLSRS 模型进行简化,仅 保留其各向同性核和雪核(Isotropic-Snow Model, ISM),验证结果表明:简化后的模型能够很好地表征雪的二向 散射能力,使用 POLDER 全部纯雪数据进行拟合时,R²达到了 0.949, RMSE 为 0.034。本文有助于用户在应用冰 雪多角度数据时选择更合适的 BRDF 模型,同时对理解这些模型的误差提供了有价值的参考。 关键词: 冰雪, ART, RTLSR, RTLSRS, POLDER, 核驱动 BRDF 模型

NATIONAL 文献标志码: A 中图分类号: TP701 TIUNTE 学体

1引言

USING BULLETIN 地表是非朗伯体,反射模式随入射和观测方向 的变化而变化(Bréon 和 Maignan, 2017),二向性 反射率分布函数 (BRDF) 用来描述地表反射模式的 固有属性(Schaepman-Strub 等, 2006; Wen 等, 2018)。 当前,对地表二向反射特征的研究已经成为定量遥 感的一个重要研究方向。积雪是一种重要的地表覆 盖类型,对全球水循环、辐射收支平衡等研究具有 重要意义(蒋熹, 2006; Jiao 等, 2019), 精确描述 雪的散射特性对深入理解各循环有重要作用。纯雪 是反射最强的自然表面之一(Wiscombe 等, 1980), 在可见光范围内,新雪的反射率接近1(Singh等, 2010)。总体上,雪具有强的前向散射特性,尤其 在大太阳天顶角的情况下(Peltoniemi 等, 2005;潘 海珠等,2015; 瞿瑛等,2016)。在现阶段,雪表 面的多角度测量数据仍然十分缺乏,尤其在地形复

.s.cn 杂或气候恶劣的地区, 雪的野外多角度观测数据很 难获取(Robinson 等, 1993),对于这些地区,采 用机载或星载多角度传感器是获取多角度数据的主 要的手段,因此,一些多角度卫星数据,如 MODIS 和 POLDER 等多角度数据已经得到广泛应用(Lucht 和 Roujean, 2000; Schaaf 等, 2002; Jiao 等, 2016; 常雅轩等, 2019; 董亚冬等, 2014; 丁安心等, 2019)。

除了对冰雪多角度数据的广泛需求,雪的散射 模型是定量解决与雪相关应用的关键因素。目前, 国内外研究人员已经提出并发展了一系列的二向性 反射模型来模拟或重构雪的方向性散射特征。这些 模型主要分为三类,(4)物理模型,例如,简化的 辐射传输模型-WW 模型、Warren 和 Wiscombe, 1980)、离散纵坐标辐射传输(DISORT)模型 (Stamnes 等, 1988),根据雪的特性发展的渐进辐 射传输 (ART) 模型 (Kokhanovsky 等, 2004) 和 基于蒙特卡洛光线追踪技术和辐射传输理论提出的 bic-PT 模型(Xiong 等, 2014); (2) 经验模型,

收稿日期: ; 修订日期:

基金项目: 国家重点研发计划(编号: 2018YFA0605503); 国家自然科学基金面上项目(编号: 41971288 和 41571326)。 ◎ 《遥感学报)

第一作者简介: 郭静(1996—),女,硕士研究生,现从事定量遥感、雪的反射率模型等研究工作,E-mail: guojing0404@mail.bnu.edu.cn

通信作者简介: 焦子锑(1970—),男,教授,博导。主要研究方向为多角度光学遥感的建模、反演与应用(土壤-植被-冰雪),共 发表论文 100 余篇, 其中 SCI/EI 50 余篇。E-mail: jiaozt@ bnu.edu.cn.

例如,基于统计的线性 Walthall 模型(Walthall 等, 1985),一般来说这种模型应用范围较窄;(3)半 经验模型,例如,Rahman-Pinty-Verstraete(RPV) 模型(Rahman 等,1993)和 RTLSR 模型(Lucht 和 Roujean, 2000)、Qu 等人发展的四核核驱动模 型(2013)以及 RTLSRS 模型(Jiao 等, 2019)。

RTLSR 模型是 MODIS 反照率产品的业务化算 法,该模型最初针对植被-土壤系统发展而来,但由 于植被-土壤系统和冰雪具有明显不同的散射特性, 该模型对雪反射率的拟合结果并不理想。Wu(2012) 等人曾对该模型拟合冰雪的效果进行验证,结果表 明, 当不约束核权重系数时, 几何光学核的权重系 数通常为负值,此时对雪的散射拟合较好,在红光 波段 RMSE 为 0.0485, 但此时无法解释负值参数的 物理意义。考虑到 MODIS 业务化算法对该模型参 数有约束的条件要求(即各权重系数为非负),丁 安心等人(2019)对 RTLSR 模型表征雪的二向性散 射能力进行了评估,限制模型的权重系数不为非负 值,利用 ART 模型挑选了 284 个 POLDER 纯雪像 元进行拟合,在红光波段的决定系数为 0.2774, RMSE 为 0.0378; Jiao 等人(2019)利用 RTLSR 模 型对南极观测的站点数据进行拟合,红光波段 RMSE 达到了 0.094, 并且 RMSE 随波长的增加而 增大。

ART 模型是 Kokhanovsky 等人(2004)根据雪的特征得到的辐射传输模型,在全球陆表特征参量 (GLASS)的反照率产品研究中发挥了很大作用。

使用格林兰岛和南极洲的POLDER数据以及南极洲获取的站点数据进行验证,结果表明,在大多数情况下,ART模型的模拟结果与POLDER观测数据相关性能达到 0.85 以上,偏差小于 0.1,但是该模型在前向大观测角度低估了测量结果(Kokhanovsky和Bréon, 2012)。目前,有两个修正后的核驱动模型考虑了冰雪的反射特征。Qu等人(2014)根据 RPV模型得到一个冰雪散射核,然后进一步构建了四核的核驱动模型,但该模型在太阳角为 35°-55°时难以表征冰雪的特征。

为了更好地用半经验的核驱动模型描述雪的散 射特征,Jiao等人对ART模型进行校正得到冰雪散 射核,结合 RTLSR模型发展了 RTLSRS模型(Jiao 等人,2019),该模型能够表征植被-土壤-冰雪系 统,与ART模型相比,RTLSRS模型的冰雪散射核 通过引入前向散射调整参数,更好地表征雪的前向 散射特性,尤其在大角度下。使用 POLDER 数据和 南极洲站点数据进行验证,表现出较高的精度 (R²≈0.9),RMSE均小于 0.04(Jiao等,2019)。 Ding 等人(2019)的研究也表明,Jiao等人提出的 冰雪散射核能够更好地拟合各种冰雪多角度数据。 因此本文选取了ART 模型、RTLSR 模型以及复合 了两模型优点的 RTLSRS 模型进行研究。

但是,上述提到的研究只考虑了用纯雪数据对 模型进行验证,例如,Kokhanovsky 等人(2012) 对 ART 模型进行验证时,只选取了格林兰岛中心和 南极洲的数据;丁安心等人(2019)在对 MODIS 业 务化模型进行评估时,以均质度为 100%、在蓝波段 的反射率大于 0.4 以及 ART 模型拟合较好的结果作 为前提条件来筛选纯雪数据;Jiao 等人(2019)在 模型验证时选取的数据为南极雪数据以及格林兰岛 的数据。对于可能为非纯雪(即一个像元中包含两 种及两种以上地表类型)的验证仍然不够,特别是 由于 POLDER 数据有较粗的空间分辨率(天顶方向 空间分辨率约为 6×7km)。此外,对这些模型进行 系统比较,尤其针对雪的 BRDF 数据,如何进一步 简化 RTLSRS 模型,使其更容易被用户使用,是模 型发展和评估过程中需要考虑的问题。在此研究中, 我们进一步量化了最新发展的 RTLSRS 模型相对于 RTLSR 模型和 ART 模型的优势。

本文收集了 2006(649 个像元)和 2008 年(600 个像元)的所有 POLDER 冰雪多角度数据,按该数 据库提供的"均质度"(homogeneity)参数将其初 步分为纯雪(均质度=100%)和非纯雪(均质度 <100%)数据,分别使用上述三个模型对这两种数 据进行拟合,根据决定系数(R²),均方根误差 (RMSE)和偏差(bias)三个指标来比较这三种模 型对不同数据的拟合能力,为用户在不同情况下选 择合适的模型提供依据。同时,考虑到用户对于模 型简化的需求,对 RTLSRS 模型进行简化,仅保留 了各向同性散射核和雪核,并对该模型对纯雪的表 征能力进行分析和验证。

2数据

2.1 数据说明

POLDER-3 传感器搭载在法国空间研究中心的 PARASOL 卫星上,空间分辨率较粗,星下点分辨 率约为 6×7km, 观测天顶角可达到 60°-70°, 观测 方位角可以覆盖 0°-360°的任何方位。POLDER-3 辐射计包含一个宽视场透镜的二维 CCD 矩阵, 在沿 轨方向的观测角可以达到 51°,交轨方向的观测角 可以达到±43%、因此,能获取较大范围的多角度数 据。PARASOL为太阳同步卫星,即,在不同轨道 上获取数据时的太阳角近似不变,该卫星可以实现 在不同轨道上经过相同的地表时,获取不同角度的 观测数据,每一个像元最多可累积到16个(平均有 14 个)不同角度的观测(Deschamps 等, 1994)。 因此, POLDER-3 仪器能够收集足够多的多角度数 据,是地面目标反射率建模验证重要的多角度数据 源(Kokhanovsky 等, 2012; 常雅轩等, 2019; 丁 安心等,2019) @。《谣感学报》

POLDER 数据共包括可见光与近红外 9 个波段 (中心波长分别为 443nm, 490nm, 565nm, 670nm, 763nm, 765nm, 865nm, 910nm 和 1020nm),其 中 490nm, 670nm 和 865nm 包含光的偏振信息。早 期, Lacaze 等人(2009)构建了 POLDER-3 辐射计 2005年11月至2006年10月的多角度反射率数据 库 (本文称2006年数据库, http://postel.mediasfrance.org)。最近,Bréon等人 (2017)构建了2008年全年的多角度数据库,该数 据库中冰雪数据是根据国际地圈生物圈计划 (IGBP)的雪类型得到,只有像元中雪面积明显占 优(>75%)的数据才得以保留,对保留的像元利用 BRDF模型计算质量得分,每个月筛选得分最高的 50个像元形成最终的数据库,以确保数据库中的数 据可以覆盖雪主要空间与时相的变化 (<u>https://doi.pangaea.de/10.1594/PANGAEA.864090</u>)。POLDER多角度数据均已经过地理编码、辐射 定标、大气校正和去云处理,以ASCII 格式存放, 主要包括像元的经纬度、IGBP 类别、NDVI、轨道 号、像元均质度、获取日期、太阳天顶角、观测天 顶角、相对方位角、各波段的反射率以及角度校正 参数等。POLDER 冰雪数据在全球的分布如图 1 所 示(底图来自自然资源部网站,审图号为:GS(2016) 1664 号)。从图 1 中可以看出,纯雪数据(黑色点) 大都分布在南极洲和格林兰岛附近,很少一部分分 布在中高纬地区,非纯雪数据(红色点)主要分布 在格林兰岛附近的小岛上,还有一部分数据分布在 中纬地区,中纬地区的非纯雪数据收集时间集中在 9-11 月。

图 1 POLDER 冰雪数据全球分布图,其中黑色的点为纯雪像元位置(即,像元均质度为 100%),红色的点为非纯 雪像元位置(即,像元均质度小于 100%),蓝色的点为本文选取的典型纯雪像元位置,紫红色的点为本文选取的典型 非纯雪像元位置

Fig.1 The distribution of global POLDER snow data, the black dots represent the pure snow (i.e. the pixels that homogeneity equals 100%), the red dots represent the impure snow (i.e. the pixels that homogeneity is less than 100%), the fuchsia dot is a typical pure snow pixel, the green dot is a typical impure snow pixel

2.2 数据预处理

POLDER 数据在不同波段的观测角有微小的差异。Bréon 等人建立的数据集中给定的观测天顶角和相对方位角是 670nm 波段处的对应角度,其余波段的角度信息可以通过数据文件中的校正公式进行校正。由于本文中使用的数据均为 670nm 处的数据,因此无需校正。

本文根据 POLDER 数据库中雪的"均质度"是 否为 100%初步分为两类(后文中表述为"纯雪"和 "非纯雪")。"均质度"定义为每个 POLDER 像 元中心对应的 5×5 个 MODIS 像元中 IGBP 为雪的像 元所占的比例(Br éon 等, 2017),将这些数据的 ASCII 文件进行初步处理得到包含"观测天顶角 (θ_v) "、"观测方位角 (ϕ_v) "、"太阳天顶角 (θ_i) "、 "太阳方位角 (ϕ_i) "以及各个波段"反射率"的 文本形式,分年月按波段存放。综合 2006 和 2008 年的冰雪数据,纯雪数据共有 897 个像元,非纯雪数据共有 352 个像元。本

3.1 RTLSR 模型

核驱动模型最早是由 Roujean 等人(1992)提 出用来表征地表二向性反射模式的半经验模型,该 模型由三个散射组分(各向同性散射、体散射、几 何光学散射)的线性加权和构成,这些散射组分可 以简化为核函数,等其值随着观测和光照几何位置的 变化而变化。核驱动模型的基本表达式如下:

$$R(\theta_{i},\theta_{v},\varphi,\lambda) = f_{iso}(\lambda) + f_{vol}(\lambda)K_{vol}(\theta_{i},\theta_{v},\varphi) + f_{geo}(\lambda)K_{geo}(\theta_{i},\theta_{v},\varphi)$$
(1)

公式(1)中, $R(\theta_i, \theta_v, \varphi, \lambda)$ 是 λ 波长处的反射率。

各向同性核值为 1, $K_{vol}(\theta_i, \theta_v, \varphi)$ 代表冠层内部多次 散射引起的体散射核,目前常用的主要有 Rossthick 核和 Rossthin 核; $K_{geo}(\theta_i, \theta_v, \varphi)$ 代表离散冠层的单 次散射引起的几何光学散射(阴影效应)核,主要 包括 Roujean 核、LiSparse 核、LiDense 核和 LiTransit 核以及它们的互易形式(董亚冬,2014; Dong 等, 2016; Dong 等,2018; 常雅轩等,2019)。这些核 都是关于太阳天顶角 θ_i (solar zenith angle,SZA)、 观测天顶角 θ_v (view zenith angle,VZA)和相对方 位角 φ (relative azimuth angle,RAA)的函数。 $f_{iso}(\lambda) \ (\lambda) \ nf_{geo}(\lambda) \ fy \ (\lambda)$ 和 $f_{geo}(\lambda)$ 分别为三个核的权重系数, $f_{iso}(\lambda)$ 可以表示为在天顶入照和反射方向的波段反 射率值, $f_{vol}(\lambda)$ 和 $f_{geo}(\lambda)$ 是模型的各向异性参数, 主要表征地表反射的非朗伯性。

MODIS 业务化算法采用的体散射核为 RossThick核、几何光学散射核为LiSparseR核,简称为RTLSR模型。RossThick核基于Ross辐射传输 理论的单次散射近似假设,针对一维随机分布叶片 冠层进行建模,主要用来表征碗状的BRDF反射模 式(Jiao等,2018),LiSparseR核是基于李小文和 Strahler的几何光学模型的方法,描述了离散植被三 维结构及其阴影作用所产生的几何光学散射,主要 表征类似屋顶状的BRDF反射模式(Li和Strahler, 1985;1992)。RTLSR模型是针对植被,土壤系统提 出的,因此能较好拟合植被,土壤系统 BRDF 较强的 后向散射特性。

RTLSR 模型中体散射和几何光学核的计算公式如下:

$$K_{RT} = \frac{(\pi/2 - \xi)\cos\xi + \cos\xi}{\cos\theta + \cos\theta} - \frac{\pi}{4}$$
(2)

$$K_{LSR} = O(\theta_i, \theta_v, \varphi) - \sec \theta_i - \sec \theta_v$$

+ $\frac{1}{2} (1 + \cos \xi) \sec \theta_i \sec \theta_v$ (3)

$$\cos \xi = \sin \theta_i \sin \theta_v \cos \varphi + \cos \theta_i \cos \theta_v \tag{4}$$

$$O(\theta_i, \theta_v, \varphi) = \frac{1}{\pi} (\arccos X + X \sqrt{1 - X^2})$$

$$*(\sec \theta_i + \sec \theta_v)$$
(5)

$$\theta' = \arctan(\frac{b}{r} \cdot \tan \theta) \tag{6}$$

$$X = \frac{h}{b} \frac{\sqrt{D^2 + (\tan \theta_i^{\dagger} \tan \theta_v^{\dagger} \sin \phi)^2}}{\sec \theta_i^{\dagger} + \sec \theta_v^{\dagger}}$$
(7)

$$D = \sqrt{\tan^2 \theta'_i \tan^2 \theta'_v - 2 \tan \theta'_i \tan \theta'_v \cos \varphi}$$
(8)

上式中, ξ 是观测方向与太阳入射之间的相角, $O(\theta_i, \theta_v, \varphi)$ 是重叠函数,表征由于光照阴影和视线阴 影重合部分的面积, h/b 和 b/r分别是描述树冠形状和 相对高度的结构参数, h 代表树冠中心到地面的平均 高度, b 和 r分别描述椭圆树冠的长半轴和短半轴。 该模型中,这两个比值分别为 h/b=2, b/r=1。

根据多角度观测数据,利用最小二乘法反演出 最优的三个权重系数 f_{iso}、 f_{vol}和 f_{geo},然后理论上 就可以计算任意太阳光入射和观测方向的二向反射 率,以及估算地表反照率。最小二乘误差函数如下:

$$e^{2}(\lambda) = \frac{1}{x} \sum_{i} \frac{(\rho(\theta_{i}, \theta_{v}, \varphi, \lambda) - R(\theta_{i}, \theta_{v}, \varphi, \lambda))^{2}}{\omega_{i}(\lambda)}$$
(9)

其中, x 为自由度,即观测个数与参数个数之差, $\rho(\theta_i, \theta_v, \varphi, \lambda)$ 和 $R(\theta_i, \theta_v, \varphi, \lambda)$ 分别代表模型模拟值和 观测值, $\omega_i(\lambda)$ 是每个观测值的权重。当最小二乘误 差函数取最小值时的模型参数即为三个权重系数的 取值(Lucht和 Roujean, 2000; Roujean等, 1992)。

3.2 渐进辐射传输模型

渐进辐射传输模型是由 Kokhanovsky 等人 (2004)提出,又称双参数模型,该模型考虑雪粒子 为不规则粒子,以雪粒径和污染物两个变量作为主要 驱动参数,具体计算公式如下:

$$R(\theta_i, \theta_v, \varphi) = R_0(\theta_i, \theta_v, \varphi) \exp(-yf(\theta_i, \theta_v, \varphi))$$
(10)

 $\theta_i, \theta_v, \varphi$ 的意义同公式(1)。 R_0 表示半无限、非吸收介质表面的反射率。计算公式如下:

$$R_{0}(\mu_{i},\mu_{\nu},\phi) = \frac{K_{1} + K_{2}(\mu_{i} + \mu_{\nu}) + K_{3} \cdot \mu_{i}\mu_{\nu} + P(\xi)}{4(\mu_{i} + \mu_{\nu})}$$
(11)

其中, $K_1 = 1.247$, $K_2 = 1.186$, $K_3 = 5.157$ 。 $\mu_i \ \pi \ \mu_v \ \beta$ 别为 $\cos \theta_i \ \pi \ \cos \theta_i$ 。

 $P(\xi) = 11.1 \exp(-0.087(180 - \xi)) + 1.1 \exp(-0.014(180 - \xi))$ (12)

(10)中的指数项代表雪的光吸收效应导致反射率的下降,计算公式如下:

$$y = \sqrt{\beta L} \tag{13}$$

$$\beta = 4\pi (\chi + M) / \lambda$$
 (14)

由(13)、(14)式可得:
$$y = \sqrt{4\pi L(\chi + M)/\lambda}$$
 (15)

式(15)中, L参数与有数雪粒径 d 有关, 近似为 13d, M 与雪中污染物的质量浓度成正比。由于较长波长处 雪的吸收主要取决于雪粒径,因此可以利用 1020nm 处的反射率来计算雪粒径。得到雪粒径后,较短波长 处的反射率就可以用于估算雪中污染物对光的吸收 (即参数 M) (Kokhanovsky 和 Schreier, 2009)。 计算公式如下:

$$L = \frac{\left[\frac{R_0}{K_0} \ln(\frac{R_0}{R})\right]^2 \times \lambda_{1020}}{4\pi \chi_{1020}}$$
(16)

$$\mathbb{C} \ll \frac{R_{0}}{K_{0}} \ln(\frac{R_{0}}{R})]^{2} \times \lambda_{490}$$

$$M = \frac{M}{4\pi L}$$
(17)

由于污染物在 1020nm 波段的吸收很弱,因此利用该 波段信息来计算 L 时,可以取 M=0。 λ_{1020} 为 1020nm 的波长, χ_{102} 为 1020nm 波长对应的冰的复折射指数的

虚部: M 值与污染物的复折射指数的虚部成正比,并 且与波长有关,但是由于这种相关性在可见光和近红 外波段范围内非常弱,可以忽略。利用 490nm 的波段 信息来计算 M, λ490 和 χ490 的含义同上。部分波长对应 的冰的复折射指数的虚部如表 1 所示(Kokhanovsky 和 Br éon, 2012)。

表1 部分波长对应的冰的复折射指数虚部 Table 1 Imaginary part of the ice refractive index for partial wavelengths

 $K_0(\theta_i)$ 是逸出函数,描述了光源在介质中的无限深度 处时,从半无限-非吸收介质层逃逸的光的角度分布 (Kokhanovsky和 Zege, 2004),按照经验公式给出:

$$K_0 = \frac{3}{7} (1 + 2\theta) \tag{18}$$

 $f(\theta_1, \theta_2, \phi)$ 是一个与观测-照明几何相关的角度函数:

$$f(\theta_i, \theta_v, \varphi) = \frac{K_0(\theta_i) K_0(\theta_v)}{R_0(\theta_i, \theta_v, \varphi)}$$
(19)

3.3 RTLSRS 模型

NATION 最近, Jiao 等人 (Jiao 等, 2019) 基于解析的 ART 模型,通过对其前向散射进行校正,提出一个 雪散射核,并应用于核驱动模型 RTLSR 框架中,简 称为 RTLSRS 模型, 使模型可用于"土壤-植被-冰 雪"体系,其公式可以表示为:

> $R(\theta_i, \theta_v, \varphi, \lambda) = f_{iso}(\lambda) + f_{vol}(\lambda)K_{vol}(\theta_i, \theta_v, \varphi)$ $+f_{geo}(\lambda)K_{geo}(\theta_i,\theta_v,\varphi)+f_{snw}(\lambda)K_{snw}(\theta_i,\theta_v,\varphi)$

> > (20)

公式(20)中, $f_{srrw}(\lambda)$ 代表雪核的权重系数, $K_{\text{env}}(\theta_i, \theta_v, \varphi)$ 代表雪核,其它参数的含义同公式 (1)。雪核的计算公式如下(Jiao等, 2019): $K_{smv}(\theta_i, \theta_v, \varphi) = R_0(\theta_i, \theta_v, \varphi)(1 - \alpha \cos \xi \cdot \exp(-\cos \xi))$ $+0.4076\alpha - 1.1081$

(21)

该雪核是关于观测天顶角、太阳天顶角以及二 者相对方位角三个角度的函数,其中 α 是用于进一 步调整雪的前向散射的参数,其余参数的含义同上。 求解四个权重系数及最优α值的方法与反演 RTLSR 模型参数的方法一致。但与 RTLSR 求解过程不同的 是,这个模型中的未知数除了四个权重系数还有 α 值,最小二乘误差函数最小时对应的 α 和四个参数 即为所求。Jiao等人(Jiao, 2019)的研究中表明, α的最优值约为0.3,为了获取更精准的最优值,在 本文中,我们重新计算并采用了 0~0.5 范围内的最 优 α 值。以该范围作为前提条件,使用最小二乘法

确定 α 不需要考虑雪的光学和结构特性。

需要说明的一点是,在本文的研究中,对核系 数讲行了非负约束,这主要是由于核系数为负值时 无法解释其物理意义,同时也避免了该模型反演时 的病态问题(Wu等, 2011: Jiao等, 2015)。

对于纯雪而言,体散射和几何光学的贡献通常 很小 (Ding 等, 2019; Jiao 等, 2019), 因此, 为 了便于用户应用该模型,本研究对模型进一步简化, 只保留各向同性散射(Isotropic)和雪散射(Snow) 两个组分的简化模型(简称为 ISM),以探索该简 化模型是否能够满足大多数用户对纯雪拟合的精度 要求。

3.4 比较方法^{TIO} REMOT

在模型比较时,本研究结合了典型数据分析与 全体数据统计相结合的分析比较方法。首先,在纯 雪数据和非纯雪数据中分别选取一个典型像元,用 三个模型分别拟合,根据均方根误差(RMSE)、 决定系数(R²)和偏差(Bias)等指标进行比较分 析; 然后, 我们分别使用全部纯雪、非纯雪数据进 行拟合,比较整体拟合效果。此外,由于 670nm 处 雪的吸收接近 0,并且该波段为可见光范围内的典 型波段,因此,整个分析过程均以 670nm 处的数据 为例。

4.1 模型比较与评估

4.1.1 基于典型纯雪的案例分析

在 POLDER 数据库中选取一组位于南极洲区域 比较典型的纯雪数据(74.97 S, 119.89 E),编码 为 IGBP 15 200802brdf ndvi02 2970 3800, 地理位 置由图 1 中蓝色实点给出。该像元的归一化植被指 数(NDVI)为-0.04,表明红波段比近红外波段有更 高的反射,数据获取时间为2008年2月,该像元内 总共包括 777 个多角度反射率观测数据,太阳天顶 角分布在 61.1° 74.7 乾围内,角度分布如图 2 所示。 REMOTE SENSING BULLETIN

◎ 《遥感学报》

Fig.2 The angle distribution of the pure snow pixel

图 2 中,较大的点代表太阳位置,较小的点代 表传感器位置,与中心的距离代表观测天顶角的大 小,不同的颜色代表一个月中不同日期的观测,横、 纵坐标分别代表主平面和垂直主平面,正值代表前 向,负值代表后向。从图 2 中可以看出该像元的观 测角范围在 0-65 向,主平面与垂直主平面都有足够 多的观测值,角度采样很好。取该像元 670nm 波段 处的信息,使用三个模型分别对这组数据进行拟合, 主平面上的比较结果如图 3 所示;这里选取的主平 面上的数据为距离主乎面范围 10 切内的数据,太 阳天顶角设置为该像元内观测的所有太阳天顶角的 均值:

图 3 主平面上纯雪数据三种模型拟合结果 Fig.3 The fitting result of three models for the pure snow pixel in the principal plane (PP)

从图 3 中可以看出,对于这组典型纯雪数据, 在整个观测范围内, RTLSR 模型的模拟值与观测值 差别最大,基本没有表征出该组纯雪数据在主平面 上的基本变化趋势。ART 模型模拟值与观测值相比 整体趋势一致,但是前向大角度时的拟合略微低估, RTLSRS 模型整体拟合最好,相对于 ART 模型,在 前、后向大角度下都可以很准确地拟合这组纯雪反 射率,尤其前向大角度更准确地表征出纯雪在大太 阳角下较强的前向散射特性。具体的模型参数以及 统计值如表 2 所示:

表 2 三种模型拟合纯雪反射数据的模型参数及统计量 Table 2 The model parameters and statistics for three models in fitting pure snow pixel reflectances

	模型参数	. 8	RMSE	\mathbb{R}^2	Bias
ART	$L(\mu m)$	L 0.005	0.022	0.932	-0.008
RTLSR	Fiso IF	0.922 0.039 0	0.065	0.029	0
RTLSRS	fiso fvol fgeo fsnw α	0.962 0.019 0.008 0.689 0.140	0.012	0.969	0

RTLSR 模型的 R² 仅为 0.029, 由于对该模型参 数反演进行了非负约束,该模型甚至无法拟合观测 数据基本趋势的变化。由表 2 可见,该模型的几何 光学核系数为 0, 说明此时几何光学散射核对反射 率无贡献,体散射核系数很小,表明其对反射率的 贡献也很小,此时主要是各向同性散射起作用,拟 合结果近似朗伯,所以,该模型无法对纯雪的前向 散射进行基本变化趋势的描述和预测。对于 ART 模 型, 决定系数 R²为 0.932, RMSE 达到了 0.022, 该 模型基本能够表征纯雪的前向散射特征,但在前、 向后大的观测天顶角时存在明显的低估,从而导致 与观测数据相比仍存在较大的偏差。对于这组纯雪 数据, RTLSRS 模型拟合精度最高, R²达到了 0.969, 偏差基本可以忽略。与其它两个模型相比,该模型 拟合的 RMSE 仅为 RTLSR 模型的 18.46%, 比 ART 模型的 RMSE 减少了 45 45%。由表 2 可见,体散射 核和几何光学核对反射率的贡献很小,各向同性散 射和雪核起主要作用(分别为0.962和0.689),因 此, 该案例分析表明, RTLSRS 模型能够很好地描 述纯雪的散射情况。

4.1.2 基于典型非纯雪的案例分析

同样,我们在 POLDER 数据库中选取了一组非 纯雪典型数据,该数据位于格林兰岛地区边缘经纬 度为(80.58 N, 25.3 W),在数据库中的编码为 IGBP_15_200807brdf_ndvi04_0170_3166,具体见图 1 中紫红色色实心点的位置,POLDER 数据库中给 出像元"均质度"指标为 84%,从地表类型上说明 该组数据混入较多非雪的数据成分。该像元反射率 获取时间为 2008 年 7 月,像元内包括 1161 个反射

率观测数据,太阳天顶角分布在 57°—74°之间,角 度采样分布如图 4,图中标记的含义同图 2。

Fig.4 The angle distribution of the impure snow pixel

我们提取该像元 670nm 的反射率数据,分别使 用三种模型进行拟合,主平面上的观测数据和拟合 曲线如图 5 所示,分析方法上与上述分析纯雪像元 一致。

图 5 非纯雪数据三种模型在主平面上的拟合结果 Fig.5 Model-fits for impure data in the PP

从图 5 中可以看出,该组非纯雪数据表现出较 强的后向散射,且反射率均低于 0.5,仅从反射率的 较小的量值变化基本可以判断出该组数据纯雪的概 率很小。此时,RTLSR 模型和 RTLSRS 模型拟合的 BRDF 形状很相似,均能较好地描述该组数据的散 射特性,而 ART 模型拟合的 BRDF 曲线仍然表现出 较强的前向散射,与该像元表现出的实际的散射特 征完全不一致,表明 ART 模型此时并不能表征该非 纯雪像元基本散射特征的变化。具体的模型参数以 及统计值如表 3 所示。

表 3 三种模型拟合非纯雪数据的模型参数及统计量 Table3 The model parameters and statistics for three models in fitting impure snow data

		0 1			
	模型参数		RMSE	\mathbb{R}^2	Bias
ART	$L(\mu m)$	0.06	0.136	0.016	0.011
	М	3.69E-06	0.150		
RTLSR	f_{iso}	0.194		0.908	0
	f_{vol}	0.067	0.04		
	f_{geo}	0.026			
RTLSRS	f_{iso}	0.231			
	f_{vol}	0.026		0.926	0
	f_{geo}	- 0.042	0.013		
	TIGsnw)	0,106			
L1	REME	0.3			
0	BUL				

从表3中可以看出,对于这组典型非纯雪数据的拟合,ART模型的模拟值与POLDER观测数据几 乎不相关,R²接近0,RMSE达到了0.136,且偏差 不可忽略;RTLSR模型的决定系数可达到0.908, RMSE比ART模型降低了70.58%;RTLSRS模型的 决定系数可达到0.926,RMSE为0.013。从表3中 可以看出,此时,RTLSR模型的三个核系数在起着 不同程度的作用,但总体上体散射核和几何光学核 对反射率的贡献相对较小,各向同性核起主导作用, 这表明,对于这组典型的非纯雪像元,反射量值(即, *f*_{iso})在散射中占主导,对于RTLSRS模型的拟合, 各向同性核与雪核共同起主导作用。

4.1.3 基于所有雪数据的统计分析

使用三个模型分别对 POLDER 数据库所有雪数 据进行拟合,所有的纯雪数据包括 897 个像元, 12457872 个多角度反射率观测值,所有的非纯雪数 据包括352个像元,233998个多角度反射率观测值。 同样,我们仍选用 670nm 波段,密度散点图如图 6 所示,其中(a)为拟合纯雪的结果,(b)为拟合 非纯雪的结果,图中深色代表出现频率较高的点, 浅色代表频率较低的点,黑色、蓝色、红色分别代 表 RTLSRS 模型、ART 模型以及 RTLSR 模型。图 中有部分反射率值大于沟,这是由于纯雪总体上有 很高的反射率,是地球表面具有最高反射率的地表 类型;另外, 传感器除了接收太阳直射光的反射, 还接收散射光造成的反射,这些散射光引起的反射 率的变化在 0.01~1 之间(Peltoniemi 等, 2010), 同时雪具有较强的前向散射,当太阳天顶角较大时, 反射率的值可能大于 1, 这部分数据对于雪的反射 是有效数据。

由图 6 可以看出,在使用全部数据进行拟合时, RTLSRS 模型对纯雪和非纯雪数据的拟合都表现得 最好,并且对纯雪的软合精度优于非纯雪。R²接近 1,偏差几乎可以忽略,但 RMSE 对于纯雪像元更 小。总体上看,ART 模型对纯雪和非纯雪进行拟合 时,都表现出较好的拟合,这主要是由于对于 POLDER 数据库而言,雪数据的选择总体上可信,

虽然 POLDER 像元空间分辨率较大, 混合像元效应 所导致的非纯雪情况不可能完全避免,但是考虑如 何对现有数据库雪的数据进一步优化,对于雪参数 的反演和雪散射模型的验证仍是一个迫切需要解决 的问题。对于 RTLSR 模型, 拟合非纯雪的能力明显 强于 ART 模型, 略弱于 RTLSRS 模型, 这主要是因 为增加了雪核, 意味着增加了更多的自由参数。但 RTLSRS 模型和 RTLSR 模型在表征非纯雪特性时总 体上表现出较好的一致性,大部分像元都重合,而 在表征纯雪特性时, RTLSR 模型存在明显的低估

(图6(a)灰色部分)。此外,无论对纯雪还是非 纯雪, 三个模型的差别主要表现在反射率较低的部 分,在这部分 ART 模型的离散程度非常大,而 RTLSR 和 RTLSRS 模型在该部分拟合的精度较高。 一个主要的原因是因为这部分 POLDER 观测在数据 在质量上整体不确定性较大,因此,如何进一步优 化这些数据,在现有 POLDER 数据库的基础上,为 用户提供更可靠的 POLDER 数据是一个重要的工作 方向。

Fig.6 Density-slice scatter plots for three models in simulating all POLDER snow reflectances

4.2 对于纯雪数据的 RTLSRS 简化模型

从 4.1.1 结果分析中我们可以看出, RTLSRS 模 型在表征纯雪的二向性反射时,体散射核和几何光 学散射核对反射率的贡献很小,其至可以忽略,为 了进一步分析这种情况,我们对纯雪中 897 个像元 分别进行拟合,各核系数的均值与标准差如表4所 示:

表 4 897 个纯雪像元的 RTLSRS 模型核系数统计 Table 4 The statistic of the RTLSRS model parameters for 897 pure snow pixel

	f_{iso}	f_{vol}	f_{geo}	f_{snw}	
平均值	0.908	0.042	0.010	0.484	
标准差	0.136	0.044	0.013	0.255	

从表 4 可以看出,对全部纯雪数据的拟合中, 体散射核和几何光学散射核的贡献总体上均明显小 于其余两个核,尤其与雪核权重系数相比,平均值 约占雪权重系数的约5%。因此,为了用户更简单地 使用该模型,我们在此将 RTLSRS 模型进行简化, 仅保留各项同性散射核和雪核两个散射组分。我们 将只保留各向同性散射组分(Isotropic)和雪散射组 分(Snow)的 RTLSRS 模型简称 ISM 模型,并对该 模型进行进一步分析评估。

图 7 在主平面上纯雪数据拟合 ISM 模型结果 Fig.7 The result of ISM model in simulating the pure snow data in PP

图 7 中显示的为典型纯雪数据 670nm 波段主平

面的拟合情况,从拟合结果可以看出,对于纯雪数 据, ISM 模型与 RTLSRS 模型总体上具有很好的一 致性,这主要是由于雪核有很好的前向散射能力, 但是, ISM 模型在后向有很小的低估, 与 ART 相比, 在前向的拟合能力明显优于 ART 模型, 但在后向大 角度的拟合能力比 ART 模型略差。但考虑到对于纯 雪而言, 尤其在大太阳和观测角度, 用户更关心的 是雪前向的散射能力,因此,对于用户而言,虽然 使用简化模型会在后向略微损失一点精度, 但使用 ISM 模型也不失为一种较好的选择。

同样,使用全部数据进行拟合时的结果如图 8 所示,可以看出,整体拟合精度较高,虽然 RMSE 比 RTLSRS 模型增加了 19.4%,但比ART 模型减少 了 24.3%,比 RTLSR 模型减少更多,误差较大的数 据主要出现在反射率较低的部分,在反射率较高的 部分拟合程度较好。因此,该结果表明, ISM 模型 总体上可以很好地用于纯雪数据的拟合,且表现出 比 ART 模型更高的精度。

www.jors.cn 5 结论与讨论

5.1 结论

本文主要做了以下几方面研究: 第一, 基于 POLDER 数据库,分别使用纯雪数据和非纯雪的 BRDF 数据对 ART、RTLSR 和 RTLSRS 三个模型拟 合冰雪二向反射特征的能力进行了全面评估,第二, 进一步对 RTLSRS 模型进行了简化,得到 ISM 模型, 并用 POLDER 纯雪数据对该模型进行了评估和检 验, 第三, 对现有 POLDER 数据库中的冰雪数据质 量进行了初步分析,主要得到结论如下:

(1) 无论是应用 POLDER 数据库中的纯雪还 是非纯雪数据, RTLSRS 模型的拟合精度都是最高 的,且该模型表征纯雪的能力强于非纯雪,拟合纯 雪的 RMSE 比非纯雪减少了 35.5%。

(2) 对于纯雪数据, RTLSR 模型的拟合精度 最低,其次是 ART 模型, RTLSRS 模型的拟合精度 最高。具体而言, RTLSRS 模型的 RMSE 拟合结果 比 ART 模型降低了 45.45%, 比 RTLSR 模型降低了 81.54%; 对于非纯雪数据, RTLSRS 模型的精度也 是最高,决定系数可达 0.982, RMSE 为 0.044,其 次是 RTLSR 模型,此时这两者模拟的精度相差不 大,ART 模型拟合精度最低。

(3) 对于纯雪数据, RTLSRS 模型的几何光学 核和体散射核对反射率贡献很小,表明这两个核在 模型中的作用很小,因此,对于纯雪 BRDF 数据, RTLSRS 模型可以进一步简化为 ISM 模型, 目 ISM 模型纯雪拟合的精度高于 ART 模型。 REMOTE NATIÓ

FTIN

5.2 讨论

POLDER 冰雪数据质量对冰雪模型的发展、评 估、验证和应用有重要影响。我们在研究过程中发 现,虽然POLDER冰雪数据库总体上有较好的质量, 但现有 POLDER 冰雪数据的质量评价指标还不能完 全满足用户的应用需求。从图 6、图 8 的总体拟合 图中可以看出,对于纯雪,反射率较高的像元出现 的频率较高,但仍有一部分像元反射率很低(约占 全部数据的4%),在光学波段(此文中选用红波段), 在大太阳天顶角的情况下,纯雪的反射往往在天顶 观测方向有最小值(图7),即使假设这些反射率 的最小量值完全来自于天顶方向,基于定性分析表 明,这些反射率在量值上也明显不符合典型纯雪的 高反射特性(Qu等, 2014)。

同样,在图6(b)中,频率较高的像元有两个 比较集中的区域,分别是 0.9 附近(约占总数据的 50%)以及小于 0.5 范围内(约占总数据的 47%), 即,有50%的数据方向反射率很高,接近1.0及以 上,这与纯雪的高反射特征很接近。很明然,纯雪 和非纯雪数据中均存在一些特例,并且这些特例所 占的比例很高,这肯定会对雪散射模型的验证造成 一定的不确定性。

造成这样的结果一部分原因是 POLDER 数据分 辨率较粗, 仅用现有 IGBP 类型作为纯雪的判别不 足以准确判定雪的类型, 因此, 现有 POLDER 数据 库中冰雪数据的"均质度"指标很难完全满足用户从 该数据库中提取纯雪数据的需求,基于本文的研究 结果,考虑如何结合雪的 BRDF 反射特征,发展识 别雪的新指标体系是我们下一步的工作主要研究方 向。本文的研究结果为遥感界同行更好应用 POLDER 数据库进行冰雪散射的研究,以及在遥感 产品生产过程中模型的选择,有重要的借鉴作用和 指导意义。

◎ 《遥感学报》

参考文献(References):

Bréon, F M. and Maignan F. 2017. A BRDF-BPDF database for the analysis of Earth target reflectances. Earth System Science Data 9 (1): 31-45.

[DOI:10.5194/essd-9-31-2017]

Chang Y X, Jiao Z T, Dong Y D, Zhang X N, He D D, Yin S Y, Cui L and Ding A X. 2019. Parameterization and correction of hotspot parameters of Ross-Li kernel driven models on POLDER dataset. Journal of Remote Sensing, 23(4);661-672(常雅轩, 焦子 锑,董亚冬,张小宁,何丹丹,尹思阳,崔磊和丁安心. 2019. Ross-Li 核驱动模型热点参数化及其校正 —以POLDER数据为例. 遥感 [DOI: 10.11834/jrs.20198332] W .jors

Cui, L, Jiao Z, Dong Y, Sun M, Zhang X, Yin S, Ding A, Chang Y, Guo J and Xie R. 2019. Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sensing 11 (19): 2239.

[DOI: 10.3390/rs11192239]

- Deschamps P Y, Br éon F M, Lorey M, Podaire A, Bricaud A, Bruiez J C and Seze G. 1994. The POLDER mission: Instrument characteristics and scientific objectives. IEEE Transactions on geoscience and remote sensing 32 (3): 598-615. [DOI: 10.1109/36.297978]
- Ding A, Jiao Z, Dong Y, Qu Y, Zhang X, Xiong C, He D, Yin S, Cui L and Chang Y. 2019. An assessment of the performance of two snow kernels in characterizing snow scattering properties. International Journal of Remote Sensing, 40(16): 6315-6335..

[DOI: 10.1080/01431161.2019.1590878]

- Ding A and Jiao Z, Dong Y, Zhang X, He D, Cui L, Yin S and Chang Y. 2019. Performance assessment of the operational MODIS BRDF model for snow/ice cover. Journal of Remote Sensing, 23(6): 1147-1158.(丁安心, 焦子锑, 董亚冬, 张小宁, 何丹丹, 崔磊, 尹思阳和常雅轩. 2019. 业务化 MODIS BRDF 模型对冰雪 BRDF/反照率的反演能力评估. 遥感学报, 23(6): 1147-1158) [DOI: 10.11834/jrs.20198037]
- Dong Y, Jiao Z, Zhang H, Bai D, Zhang X, Li Y and He D. 2016. A visualization tool for the kernel-driven model with improved ability in data analysis and kernel assessment, Computers & geosciences, 95, 1-10. · N

[DOI: 10.1016/j.cageo.2016.06.010]

- Dong Y, Jiao Z, Ding A, Zhang H, Zhang X, Li Y, He D, Yin S and Cui L. 2018. A modified version of the kernel-driven model for correcting the diffuse light of ground multi-angular measurements. Remote sensing of environment, 210, 325-344. [DOI: 10.1016/j.rse.2018.03.030]
- Dong Y, Jiao Z, Zhang H, Li J, Jiao G and Shi H. 2014. Efficient algorithm for improving the hotspot effect of the operational MODIS BRDF product. Journal of Remote Sensing, 18(4):804-825.(董亚 冬, 焦子锑, 张虎, 李佳悦, 焦广平和石涵宇. 2014. 改善 MODIS BRDF 产品热点效应的方法研究. 遥感学报, 18 (4): 804-825.) [DOI: 10.11834/jrs.20143229]
- Dong Y, Jiao Z, Yin S, Zhang H, Zhang X, Cui L, He D, Ding A, Chang Y and Yang S. 2018. Influence of snow on the magnitude and

seasonal variation of the clumping index retrieved from modis brdf products. Remote Sensing, 10(8), 1194.

[DOI: 10.3390/rs10081194]

- Jiang X. 2006. Progress in the Research of Snow and Ice Albedo. Journal of Glaciology and Geocryology, 2006, 28(5): 728-738.(蒋熹. 2006. 冰雪反照率研究进展. 冰川冻土. V28 (5): 728-738.) [DOI: 10.3969/j.issn.1000-0240.2006.05.016]
- Jiao Z, Ding A, Kokhanovsky A, Schaaf C, Br éon F M, Dong Y, Wang Z, Liu Y, Zhang X, Yin S, Cui L, Mei L and Chang Y. 2019. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sensing of Environment, 221: 198-209.

[DOI: 10.1016/j.rse.2018.11.001]

Jiao Z, Schaaf B C, Dong Y, Román M, Hill M J, Chen J, Wang Z, Zhang H, Saenz E, Poudyal R, Gatebe C, Bréon F M, Li X and Strahler A 2016. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sensing of Environment 186: 135-151.

[DOI: 10.1016/j.rse.2016.08.007]

Jiao Z, Zhang H, Dong Y, Liu Q, Xiao Q and Li X. 2015. An algorithm for retrieval of surface albedo from small view-angle airborne observations through the use of BRDF archetypes as prior knowledge. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3279-3293. [DOI: 10.1109/JSTARS.2015.2414925]

Jiao Z, Hill M J, Schaaf C B, Zhang H, Wang Z and Li X. 2014. An anisotropic flat index (AFX) to derive BRDF archetypes from MODIS. Remote Sensing of Environment, 141, 168-187.

[DOI: 10.1016/j.rse.2013.10.017]

Jiao Z, Zhang X, Br éon F M, Dong Y, Schaaf C B, Rom án M, Wang Z, Cui L, Yin S, Ding A and Wang J. 2018. The influence of spatial resolution on the angular variation patterns of optical reflectance as retrieved from MODIS and POLDER measurements. Remote sensing of environment, 215: 371-385.

[DOI: 10.1016/j.rse.2018.06.025]

Jiao Z, Dong Y and Zhang H. 2016. To reconstruct hotspot effect for MODIS BRDF archetypes using a hotspot-corrected kernel-driven BRDF model. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2654-2656.

[DOI: 10.1109/IGARSS.2016.7729685]

Jiao Z, Dong X, Schaaf C B, Chen J, Rom án M, Wang Z, Zhang H, Ding A, Hill M J, Zhang X and Strahler A. 2018. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote sensing of environment, 209: 594-611.

[DOI: 10.1016/j.rse.2018.02.041]

Kokhanovsky A A and Zege E P. 2004. Scattering optics of snow. Applied Optics, 43 (7): 1589.

[DOI: 10.1364/AO.43.001589]

Kokhanovsky A A and Brom FW (2012). Validation of an Analytical Snow BRDF Model Using PARASOL Multi-Angular and Multispectral Observations. IEEE Geoscience and Remote Sensing Letters 9 (5): 928-932.

[DOI: 10.1109/LGRS.2012.2185775]

Kokhanovsky A A and Schreier M. 2009. The determination of snow

specific surface area, albedo and effective grain size using AATSR space-borne measurements. International Journal of Remote Sensing 30 (4): 919-933.

[DOI: 10.1080/01431160802395250]

- Lacaze R and Fédèle E and Bréon F M. 2009. POLDER-3/PARASOL BRDF Databases User Manual. CEA/LSCE, CNES, Tech.Rep, 1.
- Li X. and Strahler A H. 1985. Geometric-optical modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing(5): 705-721.

[DOI: 10.1109/TGRS.1985.289389]

- Li X. and Strahler A H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE transactions on Geoscience and Remote Sensing 30 (2): 276-292.
 [DOI: 10.1109/36.134078]
- Lucht W and Roujean J L. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sensing Reviews, 18 (2-4): 343-379.
 [DOI: 10.1080/02757250009532395]
- Pan H,Wang J and Li H. 2015. Accuracy validation of the MODIS snow albedo products and estimate of the snow albedo under cloud over the Qilian Mountains. Journal of Glaciology and Geocryology, 2015, 037(001): 49-57. (潘海珠, 王建, 李弘毅. 2015. 祁连山区MODIS积 雪反照率产品的精度验证及云下积雪反照率估算研究.冰川冻土, 2015, 037(001):49-57.)
- Peltoniemi J I, Kaasalainen S, Naranen J, Matikainen L and Piironen J. 2005. Measurement of directional and spectral signatures of light reflectance by snow. IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2294-2304.

[DOI: 10.1109/TGRS.2005.855131]

Peltoniemi J I, Suomalainen J, Hakala T, Jyri Näränen and Torppa J. 2010. Reflectance of various snow types: measurements, modeling, and potential for snow melt monitoring. Light Scattering Reviews 5.393-449.

[DOI: 10.1007/978-3-642-10336-0_9]

- Qu Y, Liu Q, Liang S, Wang L, Liu N and Liu S. 2013.
 Direct-Estimation Algorithm for Mapping Daily Land-Surface
 Broadband Albedo From MODIS Data. IEEE Transactions on
 Geoscience & Remote Sensing 52 (2): 907-919.
 [DOI: 10.1109/TGRS.2013.2245670]
- Qu Y, Liu Q and Liu S H. 2016. A forward kernel function for fitting in situ measured snow bidirectional reflectance factor. Spectroscopy & Spectral Analysis, 36 (09): 2749-2754.(瞿瑛,刘强和刘素红. 2016. 基于前向散射核函数拟合冰雪反射光谱各向异性.光谱学与光谱 分析, 36 (09): 2749-2754.)

[DOI: 10.3964/j.issn.1000-0593(2016)09-2749-06]

- Rahman H, Pinty B and Verstraete M M. 1993. Coupled surface-atmosphere reflectance (csar) model: 2.semiempirical surface model usable with noaa advanced very high resolution radiometer data. Journal of Geophysical Research, 98(D11), 20791. [DOI: 10.1029/93jd02072]
- Robinson D A, Dewey K F and Heimi Jr R R. 1993. Global snow cover monitoring——An update. Bulletin of the American Meteorological Society, 74(9): 1689-1696.

[DOI:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2]

Roujean J L, Leroy M and Deschamps P Y. 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. Journal of Geophysical Research: Atmospheres, 97 (D18): 20455-20468.

[DOI: 10.1029/92JD01411]

Schaaf C B,Gao F,Strahler A H,Lucht W,Li X,Tsang T,Strugnell N C,Zhang X,Jin Y,Muller J,Lewis P,Barnsley M,Hobson P,Disney M,Roberts G,Dunderdale M,Doll C,D'Entremont R P,Hu B,Liang S,Privette J L and Roy D. 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1): 135-148

[DOI: 10.1016/s0034-4257(02)000913]

Schaepman-Strub G, Schaepman M E, Painter T H, Dangel S and Martonchik J W. 2006. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote sensing of environment, 103(1), 27-42.

[DOI:10.1016/j.rse.2006.03.002]

- Singh S K, Kulkarni A V and Chaudhary B S. 2010. Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size. Annals of Glaciology, 51(54):83-88. [DOI: 10.3189/172756410791386535]
- Stamnes K, Tsay S C, Wiscombe W J and Jayaweera K. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27(12), 2502-2509.

[DOI: 10.1364/AO.27.002502]

Walthall C L, Norman J M, Welles J M,Campbell G and Blad B L.1985.Simple Equation to Approximate the Bidirectional Reflectance from Vegetative Canopies and Bare Soil Surfaces. Appl. Opt, 24, 383.

[DOI: 10.1364/AO.24.000383]

Wiscombe, Warren J, Warren Stephen and G. 1980. A model for the spectral albedo of snow. i: pure snow. J.atmos.sci.

[DOI:10.1175/1520-0469(1980)037<2712:amftsa>2.0.co;2]

Wen J, Liu Q, Xiao Q, Liu Q, You D, Hao D, Wu S and Lin X. 2018. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments[J]. Remote Sensing, 10(3).

[DOI: 10.3390/rs10030370] 42 1000

- Wu H, Liang S, Tong L and He T. 2011. Snow BRDF characteristics from MODIS and MISR data. 2011 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 3187-3190. [DOI: 10.1109/IGARSS.2011.6049896]
- Wu H, Liang S, Tong L He T and Yu Y. 2012. Bidirectional Reflectance for Multiple Snow-Covered Land Types From MISR Products. IEEE Geoscience and Remote Sensing Letters, 9 (5): 994-998.

[DOI: 10.1109/LGRS.2012.2187041]

Xiong C and Shi J. 2014. Simulating polarized light scattering in terrestrial snow based in bicommous random medium and Monte Carlo ray tracing. Journal of Quantitative Spectroscopy & Radiative Transfer 133: 177-189.

[DOI: 10.1016/j.jqsrt.2013.07.026]

Evaluation of three BRDF models' performance

using spaceborne POLDER snow data

GUO Jing^{1, 2}, JIAO Ziti^{1, 2}, DING Anxin^{1, 2}, DONG Yadong^{1, 2, 3}, ZHANG Xiaoning^{1, 2}, CUI Lei^{1, 2},

NFaculty of Geographical Science, Beijing Normal University, Beijing 100875, China; 3. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 3. College of Water Sciences, Beijing Normal University, Beijing 100875, China

Abstract:

Objective

The snow/ice scatters sun radiation in a strong anisotropic fashion, especially in shortwave region, which in turn causes a significant difference in the study of the global energy balance and water cycles. Up to present, remote sensing community has developed a series of reflectance models for various applications in snow surface. Comprehensive comparison and evaluation of these models are essentially helpful in choosing an algorithm to produce satellite multi-angle remote sensing product. In this paper, we use the Polarization and Directionality of Earth Reflectances (POLDER) multi-angle snow data to compare and evaluate the performance of three models to characterize the snow scattering. Three models including the kernel-driven linear RossThick-LiSparseReciprocal (RTLSR) model as the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo operational algorithm, the Asymptotic Radiative Theory model (ART) and the lately-developed RTLSR-Snow (RTLSRS) model have been well used in some studies.

Method

First, the POLDER data are divided into pure snow data and impure snow data by the homogeneity index provided by the POLDER database, and then we use three BRDF models to fit (1) a single pure snow BRDF dataset; (2) the entire archive of the pure snow BRDF data; (3) a single impure snow BRDF dataset; and (4) the entire achieve of the impure snow BRDF data, respectively. We analyze the result with the R², RMSF and bias. As the volumetric scattering kernel and geometric optical kernel contribute little to pure snow reflectances, we further simplify the RTLSRS model by keeping only isotropic scattering and snow scattering kernel in the kernel-driven model framework (i.e., Isotropic and Snow-kernel Model, ISM). The performance of the ISM model has further been evaluated using the POLDER pure snow data.

Result

The results are as follows: (1) The RTLSRS is the most accurate model among all models being considered. For a single pure snow BRDF dataset, the RTLSRS model has a RMSE value that is 45.45% and 81.45% lower than that of ART and RTLSR model, respectively. For a single impure snow BRDF dataset, the BRDF curve of RTLSRS model is generally similar with RTLSR model's, but the RMSE is 67.5% lower than RTLSR. The RMSE of the ART model is the largest in this case, arriving at 0.136. (2) The accuracy of the RTLSRS model in simulating the

pure snow data ($R^2=0.969$, RMSE=0.012) is higher than that of the impure snow data ($R^2=0.935$, RMSE=0.018). (3) The simplified ISM model can characterize the pure snow BRDF data well. The R^2 and RMSE can reach 0.949 and 0.034 for the entire POLDER pure snow data, even better than the ART model.

Conclusion

RTLSRS has the highest accuracy in fitting various POLDER BRDF snow data. Although the ISM has somewhat low accuracy relative to its original RTLSRS model, it shows a higher accuracy than the ART model in fitting the POLDER pure snow data. Our results also present that the index of the "homogeneity" provided by the entire archive of the POLDER snow database cannot necessarily meet the requirement to identify the pure snow pixels of POLDER snow data. Therefore, it is necessary to develop a new method to further refine the POLDER snow data and provide more details that can improve the understanding for potential users in relation to snow optical scattering.

Key words: snow, ART, RTLSR, RTLSRS, POLDER, kernel-driven BRDF model

Supported by the National Key R&D Program of China [2018YFA0605503]; the National Natural Science Foundation of China [41971288 and 41571326]

NATIONAL REMOTE SENSING BULLETIN

www.jors.cn

www.jors.cn

NATIONAL BENSING BULLETIN

◎《遥感学报》