
Received 11 September 2022, accepted 25 September 2022, date of publication 27 September 2022,
date of current version 7 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3210218

Spatial Downscaling of Vegetation Productivity
in the Forest From Deep Learning
TAO YU 1,2, YONG PANG 1,2, RUI SUN 3,4, AND XIAODONG NIU1,2
1Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China
3State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100875, China
4Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Institute of Remote Sensing Science and
Engineering, Beijing Normal University, Beijing 100875, China

Corresponding author: Yong Pang (pangy@ifrit.ac.cn)

This work was supported in part by the Fundamental Research Funds of the Chinese Academy of Forestry (CAF) under Grant
CAFYBB2021SY009 and Grant CAFYBB2022QA002, and in part by the National Natural Science Foundation of China under Grant
32101522.

ABSTRACT Accurately estimating vegetation productivity in the forest areas is important for studying
the terrestrial ecosystem and carbon cycles. Global LAnd Surface Satellite (GLASS) vegetation production
datasets provide new long-term basic products of gross primary production (GPP) and net primary production
(NPP) for monitoring the issues related with carbon exchange and carbon storage. But the coarse spatial
resolution of the GLASS GPP/NPP products have limited their application in ecosystem service assessment
in regional scales. In this paper, a spatial downscaling method based on GLASS vegetation production
datasets and four typical deep learning methods (deep neural network, convolutional neural network,
back propagation neural network and recurrent neural network) was proposed to generate high resolution
GPP/NPP in the forest areas in the upper LuanheRiver basin in the north of Hebei Province in China. Then the
downscaledGPP/NPPwere validatedwith groundmeasurement data and reference high resolutionGPP/NPP
data, and the accuracy of downscaled GPP/NPP from different deep learningmethods was compared. Results
of this paper indicated the applicability and feasibility of deep learning methods in downscaling GPP/NPP.
Direct validation and cross validation demonstrated that downscaled GPP/NPP using convolutional neural
network obtained the highest accuracy.

INDEX TERMS Downscaling, vegetation productivity, deep learning, GLASS, validation.

I. INTRODUCTION
Vegetation productivity is the largest carbon flux compo-
nent in terrestrial ecosystems and plays an important role in
describing global or regional carbon exchange and carbon
cycle [1]. Based on the light use efficiency (LUE) theory or
the eco-physiological process [2], many global or regional
gross primary production (GPP) and net primary production
(NPP) have been generated, such as the MODerate Reso-
lution Imaging Spectroradiometer (MODIS) daily GPP and
annual NPP products, SPOT Vegetation (VGT) products.
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Global LAnd Surface Satellite (GLASS) vegetation produc-
tion datasets were published in recent years and was believed
to be a dataset with less inter-annual variations by inte-
grating the regulations of several major environmental vari-
ables [3], [4]. But the coarse spatial resolution (500 m) of
the GLASS GPP/NPP products have limited their application
in ecosystem service assessment in regional scales. Although
some efforts have been made and some progress have been
achieved [5], [6], [7], how to exploit multiple scale data
streams to generate high resolution vegetation productivity is
still challenging, especially in the forest areas with complex
terrain and high spatial heterogeneity [6]. Advances and new
methods are urgent needed to generate high resolution GPP
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and NPP in forest areas by combining multiple scale remote
sensing data, which is important in improving the estimates
of carbon stocks and flux in forest.

Spatial downscaling represents the process to increase the
spatial scale based on the coarse datasets and information
from ancillary data at a finer resolution [8], [9]. In recent
years, many attempts have been made to downscale coarse
resolution remote sensing datasets to generate high resolution
GPP/NPP through statistical linksmodels or data fusionmod-
els. Statistical models link coarse GPP/NPP with high resolu-
tion datasets through statistical model by using the predictors,
such as vegetation indexes (VI), solar-induced chlorophyll
fluorescence (SIF) [10], [11]. For example, Chen et al. [12]
proposed a linear downscaling model from MODIS to Land-
sat to obtain high resolution albedo, evapotranspiration and
GPP. Yue et al. [13] used the Carnegie-Ames-Stanford-
Approach (CASA) model and statistical downscaling meth-
ods to calculate the NPP and soil water content. Hu and
Mo [14] developed a framework to disaggregate the Global
Ozone Monitoring Experiment-2 (GOME-2) SIF dataset to
detecting regional GPP variations by using statistical rela-
tionships between SIF and Normalized Difference Vegetation
Index (NDVI), the fraction of absorbed photosynthetically
active radiation (FPAR) and soil moisture index. But studies
have indicated that accuracy of statistical downscaling model
depend on the robustness of the empirical equations. The
statistic relationship used in the downscaling process may
vary and became instability in different regions [6], especially
in the complex terrain areas like forest.

The data fusion models provide a new way for generation
of high resolution data from multiple sources and multiple
scale data streams. Many researchers had tried to use data
fusion models, such as the spatial and temporal adaptive
reflectance fusion model (STARFM) [15], enhanced spatial
and temporal adaptive reflectance fusion model (ESTARFM)
[16], to integrating multiple scale satellite images to obtain
high resolution surface reflectance datasets, then to generate
high resolution GPP/NPP. For example, Singh [17] blended
Landsat and MODIS data to generate high resolution chloro-
phyll index to retrieve GPP. Yu et al. [18] proposed a down-
scaling method for leaf area index (LAI) and FPAR based
on STARFM and used Multi-source data Synergized Quan-
titative (MusyQ) algorithm to generate time series GPP/NPP
in high resolution. He et al. [19] used a satellite data-driven
LUE model to estimate GPP at 30 m resolution using a fused
NDVI dataset which were reconstructed by blending Landsat
andMODIS reflectance data. But the data fusion models may
bring some uncertainly to the input data, and then to the
GPP/NPP estimation [20]. Illustrating the errors transfers in
the downscaling process was difficult [21], [22]. What was
more, the applicability and accuracy of data fusion models
in the high heterogeneity forest areas was still need to be
improved [23]. In this condition, developing some methods
for direct downscaling GPP/NPP to reduce the error accu-
mulation and propagation becomes necessary and of great
significance.

As deep learning has the capacity to simulate complex
nonlinear relationships between multiple scale remote sens-
ing images, some downscaling methods based on deep learn-
ing have also been developed in recent years. For example,
Zhu et al. [24] downscaled the snow depth maps by fusing
microwave and optical remote sensing data from deep neural
network (DNN). Zhao et al. [25] compared the performance
of deep belief network (DBN), residual network (ResNet)
and back-propagation neural network (BPNN) in downscal-
ing soil moisture. Wang et al. [26] developed a novel super
resolution deep residual network (SRDRN) to downscale
daily precipitation and temperature. Yu et al. [27] proposed
an inverse weighted distance and a feed forward neural net-
work (IDW+DNN) and a deep matrix network (DMN) to
downscale tropospheric nitrogen dioxide. To sum up, deep
learning methods have shown great potential in environmen-
tal parameters downscaling [28]. But few studies focused
on the performance of typical deep learning models in the
vegetation productivity downscaling. Therefore, comparison
of the accuracy of these deep learning methods and analyzing
the applicability of these methods in GPP/NPP downscaling
is urgent.

Objectives of this paper are: (i) to generate a 30 m
GPP/NPP products in forest area from 500mGLASS datasets
by using a downscalingmethod, (ii) to assess the performance
of the downscaling method from different deep learning
methods. This paper may provide a new way to generate high
resolution GPP/NPP in forest area from coarse resolution
GPP/NPP datasets by using the deep learning models. Orga-
nization of this paper is as follows: firstly, the study area and
the GPP/NPP downscaling methods based on deep learning
will be introduced in the Data and methods (section II). Then
the downscaled GPP/NPP will be validated using the ground
observation data and the reference data, and the accuracy of
different downscaling methods from deep learning will be
compared in the Results (Section III). At last, advantages and
uncertainly of the downscaling methods will be analyzed in
the Discussion (section IV).

II. DATA AND METHODS
A. STUDY AREA
A case study was conducted in the forest area
(41◦41′ ∼ 42◦34′N, 116◦36′ ∼ 117◦49′E) in upper Luanhe
River basin in the north of Hebei Province in China. For-
est types in this area mainly included evergreen needle-leaf
forest (ENF), deciduous broadleaved forest (DBF), mixed
forest (MF), deciduous needle-leaf forest (DNF) (Figure 1).
This area had a semiarid continental monsoon climate, with
a temperature about 0◦C in winter and 20◦C in summer.
Annual mean precipitation of this area was about 400 mm
[7]. The Saihanba Forest Farm, which was a national forest
park and nature reserve as well as an important ecological
shield in northern China, was located in the northern areas
of the study area. Mainly tree species in the forest farm were
larch (Larix ologensis), Scots pine (Pinus sylvestris), birch
(Betula platyphylla Suk) and spruce (Picea asperata Mast).
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FIGURE 1. Forest types, location of field sties and flux tower sites of the study area.

B. DATA AND DATA PROCESSING
1) REMOTE SENSING DATA
GLASS GPP/NPP Products: The GLASS GPP products
(Version V60) were generated based on the revised light
use efficiency model with a spatial resolution of 500 m and
temporal resolution of 8 days. By integrating the regulations
of some environmental variables, such as atmospheric car-
bon dioxide concentration, radiation components, and atmo-
spheric vapor pressure deficit (VPD) of the revised LUE
model, the GLASS GPP/NPP were believed to be more
temporally continuous than MODIS products and effectively
reproduce the inter-annual variations [3], [4]. The GLASS
NPP products (Version V60) with a spatial resolution of
500 m and temporal resolution of 8 days were derived from
GLASS GPP by using a respiration index (ratio of NPP to
GPP) which were calculated from 19 dynamic global vege-
tation models. Validation with field sites demonstrated that
GLASS GPP/NPP products had high accuracy (mean R2

was 0.81, averaged RMSE and absolute value of bias were
2.13 and 0.81 g Cm−2 d−1 over all the investigation sites) [4].
Quarterly GLASSGPP/NPP from 2017 to 2021were summa-
rized from the 8-days products and were used in this paper
to train the deep learning model to generate high resolution
GPP/NPP datasets.

Landsat Data: The composited cloud free and radio-
metrically consistent reflectance of 8 bands (band 1:
0.433∼0.453 µm; band 2: 0.450∼0.515 µm; band 3:
0.525∼0.600 µm; band 4: 0.630∼0.680 µm; band 5:
0.845∼0.885 µm; band 6: 1.560∼1.660 µm; band 7:
2.100∼2.300µm; band 9: 1.360∼1.390µm) in every quarter

with a spatial resolution of 30 m from 2017 to 2021 were
obtained from Landsat 8 Operational Land Imager (OLI)
images by using a pixel-based compositing algorithm [29].
NDVI, kernel NDVI (kNDVI) [30], enhanced vegetation
index (EVI) and Normalized DifferenceWater Index (NDWI)
were also calculated in every quarter from 2017 to 2021. The
accuracy of the composited images could be higher than 90%
when validated with the realistic reference image.

Forest type map: Forest types in this paper were derived
from GLC_FCS30-2020. With 2019∼2020 time series Land-
sat surface reflectance data, Sentinel-1 Synthetic Aperture
Rada (SAR) data, digital elevation model (DEM) terrain ele-
vation data, global thematic auxiliary dataset and prior knowl-
edge dataset, the GLC_FCS30-2020 products were generated
from a random forest classificationmethod [31], [32]. Studies
have demonstrated that this land cover map have a high
accuracy (overall accuracy: 95.1 %, kappa coefficient: 0.898)
when validated with 15 regional field data.

DEM: The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation
Model (GDEM) Version 3 (ASTGTM) with a spatial res-
olution of 30 were collected in this paper to analyze the
spatial heterogeneity [33]. Validated with 10 m Japan digital
topographic datasets demonstrated that geolocation error was
about 0.3 m to west, 5.4 m to the north, and the standard
deviation of the elevation error was 12.1 m.

2) CARBON FLUX DATA
Carbon flux data from 2020 August 1st to 2021 August 1st
with a time interval of 30 minutes were collected at two
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FIGURE 2. Flowchart of downscaling and validation of GLASS GPP/NPP.

eddy covariance systems at Saihanba forest farm. Location
of the two eddy covariance systems were shown in Figure 1.
The underlying forest types of these two eddy covariance
systems were Larch and Pinus sylvestris, respectively. Steps
to process the datasets included time delay correction, den-
sity fluctuation, secondary coordinate rotation, sonic virtual
temperature conversion, gaps filling and flux partitioning
[34], [35], [36]. GPP were then obtained by partitioning the
observed net flux into GPP and ecosystem respiration, which
could be described as [35], [36]:

GPP = Reco − NEE (1)

where NEE is the net ecosystem carbon dioxide exchange,
Reco is the ecosystem respiration.

3) FIELD DATA
Ground-based field data were collected at 32 plots (including
11 sample plots of Pinus sylvestris, 4 sample plots of white
birch, and 17 sample plots of larch) in September 2017 and
July 2018 in Saihanba forest farm (Figure 1). Geographic
coordinates, diameter at breast height (DBH) of all trees in
each 30 m × 30 m were measured. Core samples from both
sides of the tree were obtained with a 5-mm diameter drill
at breast height. Then the calendar year of each tree ring
was obtained by using the standard dendrochronological tech-
niques [37]. The annual DBH and tree height were obtained
based on tree-ring width data. And the annual aboveground
biomass was estimated according to the biomass estimation
formula of each tree species [38]. Since the field sites were
located in the areas with less forest management activities,
annual increase of biomass was approximately regarded as
annual NPP, and was used to validate the downscaled NPP in
this paper [7].

4) METEOROLOGICAL DATA
Quarterly meteorological datasets (mean temperature and
precipitation) with a spatial resolution of 30mwere generated
by averaging the daily mean temperature and precipitation
interpolated from 17 meteorological stations in and around
the study area. Quarterly mean solar shortwave radiation with
a spatial resolution of 30 m was obtained by averaging the
daily solar shortwave radiation which was derived from a
Mountain Microclimate Simulation Model (MT-CLIM) [39].

C. METHODS
Flowchart of downscaling GLASS GPP/NPP based on deep
learning method was shown in Figure 2. Firstly, homo-
geneous pixels were selected by using the information
from Landsat VI in the GLASS pixels. Then the training
datasets were built based on the homogeneous pixels GLASS
GPP/NPP, themeteorological datasets (PAR, temperature and
precipitation), Landsat data (VIs, surface reflectance) and
DEM. Third, the deep learning models were build based
on the training datasets to generate GPP/NPP with a spatial
resolution of 30 m. At last, direct validation and cross vali-
dation were conducted to assess the accuracy of downscaled
GPP/NPP.

1) DOWNSCALING OF GLASS GPP/NPP
In the high heterogeneity forest areas, the coarse spatial
resolution (500 m) GLASS pixels were usually mixed pixels
and contained mixed information from vegetation and back-
ground soil. To build more robust relationship between the
GPP/NPP and the input variables, and reduce the uncertainly
of deep learning models, pure GLASS pixels were selected
to obtain high quality samples to train the deep learning
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FIGURE 3. GLASS GPP (a) and GLASS NPP (b).

models. In this paper, the pure pixels were selected based
on the coefficients of variation in each GLASS pixels. The
coefficients of variation were defined as the ratio of the
standard deviation to the mean value [40] of Landsat NDVI
in each GLASS pixels. The minimum 30 % coefficient of
variation of the pixels for each forest type (ENF, DBF, MF,
DNF) were selected as the pure pixels.

As GPP/NPP could be stressed by air temperature and
water conditions, four VIs (NDVI, kNDVI, EVI and NDWI)
related with photosynthetic activity, vegetation density and
water conditions were selected as ones of the input variables
of deep learning model in this paper. Specifically, NDVI
and EVI, which could describe the terrestrial photosynthetic
vegetation activity [41], have been widely used in GPP/NPP
estimates. kNDVI is more resistant to saturation, bias and
complex phenological cycles, and shows good correlations
in applications of biomass and vegetation productivity esti-
mation [30]. NDWI is an index which sensitive to changes
in hydrological condition and liquid water content of vege-
tation canopies, which could reflect the level of water stress
when estimating GPP/NPP [18], [42]. Then the training data
were built based on the GLASS GPP/NPP in the pure pixels
and corresponding meteorological datasets (photosyntheti-
cally active radiation, temperature and precipitation), Landsat
datasets (surface reflectance, VIs) and DEM. To make these
datasets comparable, the meteorological datasets and Landsat
datasets in the pure pixels were aggregated to the GLASS
scale (500 m ∗ 500 m). For each forest type (ENF, DBF,
MF, DNF), 70% of the training samples were used to build
the deep learning models, and the rest 30% of the training
samples were used to validate the models.

Deep learning could simplify the physical models in envi-
ronmental parameters retrieval, and is effective in establish-
ing the relationships between remote sensing images and

environmental parameters [28]. The BPNN is a traditional
neuron network framework, while DNN, convolutional neu-
ral network (CNN) and recurrent neural network (RNN) are
the mainstream deep learning architectures in remote sensing
[28]. In this paper, four deep learning models (DNN, CNN,
BPNN and RNN) were adopted to generate 30 m GPP/NPP
based on the training datasets from the pure GLASS pix-
els, and corresponding meteorological datasets and Landsat
datasets.

2) VALIDATION OF THE DOWNSCALED GPP/NPP
To assess the performance of downscaling method in this
paper, direct comparison was made between the downscaled
GPP and field GPP derived from carbon flux data, and direct
comparison was made between the downscaled NPP and
field investigated NPP. The average GPP/NPP values in a
3 pixels× 3 pixels window around the field sites were used to
compare with the field GPP/NPP to reduce the co-registration
errors between images and field plot sites. Besides, the down-
scaled GPP/NPP were validated by using the reference down-
scaled GPP/NPP [7] pixel by pixel. The reference downscaled
GPP/NPPwere generated by using a data fusion approach and
the MuSyQ model [7]. Determination Coefficient (R2) and
Root Mean Square Error (RMSE) were used to quantify the
accuracy of downscaled GPP/NPP. And the mean difference
(MD) [43] was adopted in this paper to evaluate the degree of
under or over prediction of the results.

III. RESULTS
A. VALIDATION WITH GROUND OBSERVED GPP/NPP
Compared with 500 m GLASS GPP/NPP (Figure 3), the
downscaled 30 m GPP/NPP (Figure 4, Figure 5) demon-
strated finer scale features with more clear identification.
In general, the spatial distribution features of the downscaled
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FIGURE 4. Downscaled GPP from DNN (a), CNN (b), BPNN (c) and RNN (d).

GPP/NPP from DNN, CNN, BPNN and RNN were almost
consistent with the GLASS GPP/NPP products.

Validation against field GPP from carbon flux data showed
that downscaled GPP using deep learning methods could
obtain high accuracy (R2 ranged from 0.86 to 0.92, RMSE
ranged from 60.51 g C m−2 3months−1 to 74.54 g C m−2

3months−1, and MD ranged from 25.14 g C m−2 3months−1

to 40.46 g C m−2 3months−1) (Figure 6). Among the four
deep learning downscaling methods, the downscaled GPP
from CNN had the highest accuracy (R2

= 0.92, RMSE =
60.51 gCm−2 3months−1,MD= 25.14 gCm−2 3months−1)
(Figure 6(b)).
In general, a good linear relationship existed between

the downscaled NPP and field observed NPP (R2 ranged
from 0.71 to 0.80, RMSE ranged from 74.33 g C m−2

3months−1 to 92.63 g C m−2 3months−1, and MD
ranged from 41.65 g C m−2 3months−1 to 54.21 g C m−2

3months−1) (Figure 7). R2 could reach 0.80, RMSE was
only 74.33 g C m−2 3months−1, and MD was 41.65 g C m−2

3months−1 using CNN (Figure 6(b)), which also indicating
that downscaled NPP from could obtain the highest accuracy
from CNN. It was found that most plots in Figure 7 were

located under the 1:1 line, indicating that the downscaledNPP
products were overestimated in the study area. The main rea-
son was that the GLASS NPP products were overestimated.
As the training samples were collected from the GLASS
products, the downscaled NPP were also overestimated at
most times.

B. VALIDATION WITH REFERENCE GPP/NPP
1) TIME SERIES OF DOWNSCALED GPP/NPP
In general, time series of GLASSGPP, downscaled GPP from
deep learning, and the reference GPP achieved good agree-
ments at ENF, DNF, DBF and MF (Figure 8). We could find
that the downscaled GPP agreed better with the GLASS GPP
as the training datasets were obtained from the GLASS GPP
products. The downscaled GPP shown more seasonal varia-
tions thanGLASS products, and the seasonal trend ismatched
well with the reference GPP. What is more, downscaled
GPP were higher than GLASS GPP at the first quarter and
the fourth quarter (downscaled GPP were about 40 g C m−2

3months−1 ∼ 100 g C m−2 3months−1, GLASS GPP and
reference were less than 20 g C m−2 3months−1), while the
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FIGURE 5. Downscaled NPP from DNN (a), CNN (b), BPNN (c) and RNN (d).

FIGURE 6. Direct validation downscaled GPP from DNN (a), CNN (b), BPNN (c) and RNN (d).

downscaled GPPwere lower than GLASSGPP at most times.
The main reason may the limitations of deep learning model,

leading to the overestimation at the low GPP values, and the
underestimation at high GPP values.

VOLUME 10, 2022 104455



T. Yu et al.: Spatial Downscaling of Vegetation Productivity in the Forest From Deep Learning

FIGURE 7. Direct validation of downscaled NPP from DNN (a), CNN (b), BPNN (c) and RNN (d).

FIGURE 8. Comparison of time series of GLASS GPP, downscaled GPP and reference GPP.

Temporal patterns of GLASS NPP, downscaled NPP and
reference NPP were shown in Figure 9. We could also
find that the downscaled NPP matched better with the
GLASS NPP, but the seasonal trend matched better with

the reference NPP. Also, the downscaled NPP were over-
estimated at the first quarter and the fourth quarter, and
underestimated at the second and third quarter to some
extent.
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FIGURE 9. Comparison of time series of GLASS NPP, downscaled NPP and reference NPP.

TABLE 1. Comparison of downscaled gpp with reference gpp.

TABLE 2. Comparison of downscaled NPP with reference NPP.

2) CROSS VALIDATION WITH REFERENCE GPP/NPP
The downscaled GPP/NPP were validated by using the
reference GPP/NPP pixel by pixel. In general, good
linear relationships existed between the downscaled
GPP and the reference GPP, as shown in Table 1
(R2 ranged from 0.47 to 0.64, RMSE ranged from
89.64 g C m−2 year −1 to 127.90 g C m−2 year−1,
MD ranged from 50.91 g C m−2 year−1 to
90.36 gCm−2 year −1). The best consistency existed between
the downscaled GPP and reference GPP using CNN (R2:
0.49∼0.64, RMSE: 90.26 g Cm−2 year−1∼ 120.36 g C m−2

year −1, MD: 60.17 g C m−2 year−1 ∼ 76.34 g C m−2

year−1). The accuracy of downscaled GPP fromRNNwas the
lowest when validated with reference GPP (R2: 0.47 ∼ 0.53,
RMSE: 105.61 g C m−2 year −1 ∼ 125.60 g C m−2 year−1,
MD: 70.47 g C m−2 year−1 ∼ 90.36 g C m−2 year −1).
The downscaled NPP shown good consistency with the ref-

erence NPP, as shown in Table 2 (R2 ranged from 0.43 to 0.65,

RMSE ranged from 50.92 g C m−2 year−1 to 75.95 g C m−2

year−1, MD ranged from 35.38 g C m−2 year −1 to
65.85 g C m−2 year−1). The highest accuracy was achieved
of downscaled NPP from CNN (R2: 0.49 ∼ 0.65, RMSE:
50.92 g C m−2 year−1 ∼ 65.20 g C m−2 year −1, MD:
35.38 g C m−2 year−1 ∼ 50.74 g C m−2 year−1), while the
accuracy was the lowest of downscaled NPP from RNN (R2:
0.44∼ 0.56, RMSE: 54.50 g Cm−2 year−1 ∼ 75.95 g C m−2

year −1, MD: 41.20 g C m−2 year−1 ∼ 65.85 g C m−2

year−1).

IV. DISCUSSION
A. COMPARISON OF THE ACCURACY OF GPP/NPP FROM
DOWNSCALING METHODS
Machine learning and deep learning have been used in the
field of scale transfers in remote sensing, such as random
forest (RF) [44], support vector machine (SVM) [45]. Stud-
ies have indicated that sufficient number of samples with
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TABLE 3. Comparison of the accuracy of GPP/NPP from different downscaling methods.

good quality was the base of the machine learning or deep
learning models [46], [47], [48]. In this paper, a GPP/NPP
downscaling method was proposed based on deep learning
models and GLASS datasets. The deep learning models was
trained on the pure pixels of GLASS products to increase
the stability and reliability of downscaling model to generate
high accuracy GLASS-like GPP/NPP. A high accuracy was
obtained when validating with ground measurement data and
reference high resolution GPP/NPP datasets. Comparison
with the accuracy of several typical downscaling GPP/NPP
methods, including the statistical models, data fusion models
and interpolation models (Table 3), indicated that the accu-
racy of the GPP/NPP downscaling method in this paper was
satisfactory.

B. UNCERTAINTIES ANALYSIS
In the process of GPP/NPP downscaling and validation, the
uncertainly of the input datasets, the limitations of deep learn-
ing model, the compositing algorithm of cloud free images,
and the ways to validate the predicts, would bring some errors
to the results.

First, the accuracy of deep learning model depends on
the quality of the training samples to a large extent. Deep
learning is believed to be a process of learning big data
based on large-scale computing power [50]. The large scale
and high quality training datasets could not only bring up
benchmarks for the deep learning works, but also could
improve the applicability and feasibility of the deep learn-
ing models [51]. In this paper, GPP/NPP in pure GLASS
samples and corresponding composited Landsat datasets and
meteorological datasets were used as the inputs to train the
deep learning model. Therefore, the accuracy of downscaling
results was related to the accuracy of source data (GLASS,
Landsat andmeteorological datasets, DEM). Any errors in the
source datawould propagate into the final downscaled results.
To improve the quality of training data, ways to selecting

more representative training samples with higher precision
and lower spatial heterogeneity may be developed in the
future.

Second, limitations of deep learning model may have some
influence on the accuracy of downscaling GPP/NPP. Specif-
ically, the deep learning models may tend to not reconstruct
the spatial pattern and may overestimate the results in low
values and underestimated the results in high values [52],
[53]. In the future, hyper-parameters in the deep learning
models would be optimized to improve the accuracy.

Third, the composting algorithm to obtain cloud free and
radiometrically consistent Landsat reflectance have some
impact on the results. A pixel-based algorithm [24] which
was applicable for integrating different pixel characteristics
for optimized compositing was adopted in this paper. When
the images were far from the center of time interval, some
errors may be introduced in the compositing process, which
may bring some uncertainly in the high resolution GPP/NPP
estimation.

Lastly, ways to validate the GPP may also bring some
uncertainly. Studies have indicated that validating GPP at
footprint source scale may be more reasonable than at in-situ
scale [35], [36]. In the future, footprint of the field GPP in
the forest may be analyzed, and some up-scaling methods
would be used for up-scaling the in-situ GPP/NPP to footprint
source area or to regional scale to validate the results.

V. CONCLUSION
Estimating vegetation productivity is important in the
research of terrestrial ecosystems, carbon cycles and cli-
mate change. In this paper, pure GLASS vegetation pro-
duction pixels and corresponding Landsat data, meteoro-
logical data and DEM were used to train the deep learn-
ing models (DNN, CNN, BPNN, RNN), which were then
used to downscale GLASS datasets to generate high resolu-
tion GPP/NPP. Validated with field data demonstrated that

104458 VOLUME 10, 2022



T. Yu et al.: Spatial Downscaling of Vegetation Productivity in the Forest From Deep Learning

the model gained high accuracy (R2
: 0.86∼0.92, RMSE:

60.51 g C m−2 3months−1 ∼ 74.54 g C m−2 3months−1 for
downscaled GPP; R2: 0.71∼0.80, RMSE: 74.33 g C m−2

3months−1 ∼ 92.63 g C m−2 3months−1 for downscaled
NPP). Compared with the reference GPP/NPP showed that
good consistency existed between the downscaled GPP/NPP
time series and the reference GPP/NPP time series, and
good linear relationships existed between the downscaled
GPP/NPP and reference GPP/NPP (R2: 0.47∼0.64, RMSE:
89.64 g C m−2 year−1 ∼ 127.90 g C m−2 year−1 for down-
scaled GPP; R2: 0.43∼0.65, RMSE: 50.92 g C m−2 year−1

∼ 75.95 g C m−2 year−1 for downscaled NPP). Results of
this paper indicated that deep learning has great potential
in downscaling GPP/NPP, and downscaled GPP/NPP in the
study area could obtain the highest accuracy.
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