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Abstract: Non-photochemical quenching (NPQ) is an indicator of crop stress. Until now, only a
limited number of studies have focused on how to estimate NPQ using remote sensing technology.
The main challenge is the complicated regulatory mechanism of NPQ. NPQ can be divided into
energy-dependent (qE) and non-energy-dependent (non-qE) quenching. The contribution of these
two components varies with environmental factors, such as light intensity and stress level due to
the different response mechanisms. This study aims to explore the feasibility of estimating NPQ
using photosynthesis-related vegetation parameters available from remote sensing by considering
the two components of NPQ. We concurrently measured passive vegetation reflectance spectra by
spectrometer, as well as active fluorescence parameters by pulse-amplitude modulated (PAM) of rice
(Oryza sativa) leaves. Subsequently, we explored the ability of the selected vegetation parameters
(including the photochemical reflectance index (PRI), inverted red-edge chlorophyll index (IRECI),
near-infrared reflectance of vegetation (NIRv), and fluorescence quantum yield (ΦF)) to estimate
NPQ. Based on different combinations of these remote sensing parameters, empirical models were
established to estimate NPQ using the linear regression method. Experimental analysis shows
that the contribution of qE and non-qE components varied under different illumination conditions.
Under high illumination, the NPQ was attributed primarily to the qE component, while under
low illumination, it was equally attributed to the qE and non-qE components. Among all tested
parameters, ΦF was sensitive to the qE component variation, while IRECI and NIRv were sensitive to
the non-qE component variation. Under high illumination, integrating ΦF in the regression model
captured NPQ variations well (R2 > 0.74). Under low illumination, ΦF, IRECI, and NIRv explained
24%, 62%, and 65% of the variation in NPQ, respectively, while coupling IRECI or NIRv with ΦF
considerably improved the accuracy of NPQ estimation (R2 > 0.9). For all the samples under both low
and high illumination, the combination of ΦF with at least one of the other parameters (including
IRECI, NIRv and PAR) offers a more versatile and reliable approach to estimating NPQ than using
any single parameter alone. The findings of this study contribute to the further development of
remote sensing methods for NPQ estimation at the canopy scale in the future.

Keywords: non-photochemical quenching (NPQ); chlorophyll fluorescence; near-infrared reflectance
of vegetation (NIRv); inverted red-edge chlorophyll index (IRECI); photochemical reflectance index
(PRI); rice (Oryza sativa)
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1. Introduction

Photosynthesis is the result of various biophysical and biochemical processes that are
closely regulated by environmental conditions such as irradiance intensity [1–3]. When light
intensity exceeds the ability of vegetation to use the energy in photosynthesis, the excessive
light energy can result in photooxidative damage to the photosystem II (PSII) reaction cen-
ter [4,5]. To prevent this, most photosynthetic plants use responsive photoprotective mecha-
nisms to dissipate excess excitation energy as heat, which is termed the non-photochemical
quenching of chlorophyll fluorescence (NPQ) [6–9]. Based on the mechanism of NPQ
relaxation kinetics, NPQ comprises at least four components: (i) energy-dependent quench-
ing (qE) [10], (ii) state transitions (qT) [11], (iii) photoinhibition quenching (qI) [12] and
(iv) zeaxanthin-dependent quenching (qZ) [13]. Depending on the relaxation time of these
NPQ components, NPQ is simply divided into qE (energy-dependent) and non-qE (non-
energy-dependent) components: the former is a fast component, and the latter is a moderate
or slow component [13–15]. The contribution of these components to NPQ varies with
different illumination intensity [16,17], due to each component having its own response
mechanism to illumination. Leaf-scale NPQ can be measured by the pulse-amplitude
modulated (PAM) fluorescence technique [14,18,19], and has been widely used to monitor
vegetation stress, such as high light [20], drought [21], and nutrient deficit [19]. However,
few studies have attempted to estimate NPQ through passive remote sensing technology.

The photochemical reflectance index (PRI) is a remote sensing vegetation index, which
reflects the activity of the xanthophyll cycle. The xanthophyll cycle is considered a requisite
for the generation of qE component [15]. Hence, there exists a positive correlation between
PRI and NPQ [22], particularly under conditions of stress [20,23–25]. Several studies have
attempted to estimate NPQ through PRI [20,26]. However, PRI is affected not only by xan-
thophyll cycles but also by other factors, such as carotenoid-to-chlorophyll pigment ratios
and leaf albedo [27–29]. In addition, PRI is not directly linked to the non-qE component of
NPQ. Therefore, confounding factors make estimating NPQ by PRI alone challenging.

Several chlorophyll-sensitive remote sensing indices have been found to be closely
linked to vegetation photosynthesis [30,31]. The inverted red-edge chlorophyll index
(IRECI) makes use of the red-NIR (near-infrared) difference and two narrow bands lo-
cated in the red-edge region, and was initially designed for the retrieval of chlorophyll
content [32], because its narrow bands retain more detailed spectral information related to
biochemical properties, such as nitrogen and chlorophyll pigments [31,33]. More recently,
IRECI was reported to be suitable for monitoring plant photosynthesis under drought
conditions [34]. Another index, the near-infrared reflectance of vegetation (NIRv), is ex-
pressed as the product of the normalized difference vegetation index (NDVI) and NIR
reflectance, which integrates vegetation structure, light absorption and photosynthetic
capacity [30,35]. Previous studies have shown that the NIRv achieves good performances
in monitoring vegetation photosynthesis [30,36]. Although IRECI and NIRv both have a
good relationship with vegetation’s photochemistry, it is still unknown whether they can
be used to estimate NPQ.

In addition to photochemical quenching (PQ) and non-photochemical quenching
(NPQ), leaves also dissipate energy through chlorophyll fluorescence (ChIF) [23,37]. ChlF
are photons with a spectral region around 650–850 nm that are emitted by chlorophyll
pigments after light absorption [23]. ChIF is regarded as the direct proxy of vegetation
photosynthesis [38]. Several studies have analyzed the relationship between the quantum
yield of fluorescence (ΦF) and photochemistry (ΦP) at leaf scale [23,39]. Their results
indicate that ΦF–ΦP typically presents a positive correlation under moderate light con-
ditions, and NPQ would increase while ΦF continues to decrease in this case [23,40]. A
similar finding has been reported by Alonso et al. using an ASD spectroradiometer and
PAM fluorometer, exhibiting a generally negative ΦF–NPQ relationship [20]. However, the
relationship between ΦF and NPQ has not been fully explored. Thus, deeper analysis of
how to effectively estimate NPQ by chlorophyll fluorescence quantum yield is necessary.
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It is essential to take both the qE and non-qE components into account to accurately
estimate NPQ emission. In particular, the non-qE component, despite its mechanism, is
still not fully understood, but plays an indispensable role and includes constituents such
as qT, qI and qZ [8,13]. These constituents are mostly neglected in NPQ estimation using
PRI alone, as they are assumed to represent a rather small proportion and are difficult to
measure [20]. However, the non-qE component, which is hidden within the total NPQ,
might be larger than the qE component under certain conditions [16]. Hence, it is imperative
to further investigate additional remote sensing parameters that are closely related to the
non-qE component to enhance the accuracy of NPQ estimation.

In this study, to evaluate the feasibility of estimating NPQ through remote sensing
parameters by considering the two components in NPQ, we concurrently measured spec-
trum and chlorophyll fluorescence parameters at leaf scale in a rice field under different
illumination conditions. Then, we calculated vegetation parameters and NPQ (including
its components) and explored how to improve the performance in estimating NPQ. The
specific objectives of this study were (1) to investigate the different contributions of qE and
non-qE components under different illuminations, (2) to explore the ability of different
remote sensing parameters (e.g., PRI, NIRv, IRECI, ΦF and PAR) to estimate NPQ, and
(3) to explore whether it is necessary to use combinations of remote sensing parameters to
improve the accuracy of NPQ estimation.

2. Materials and Methods
2.1. Experimental Site and Design

The experiment was carried out in August 2022 at the Jiangxi Provincial Irrigation Ex-
periment Station, Nanchang city, China (115◦58′E, 28◦26′N). This region is in a subtropical,
humid and monsoonal climate zone, with an average annual air temperature of 17–18 ◦C
and an average annual precipitation of 1634 mm [41]. The soil texture is paddy soil with
clay loam.

As shown in Figure 1, there were two 3 × 3 m sampling plots separated from each
other by a row 1.5 m wide and alternate observations for two plots every other day. The
experimental area consisted of typical irrigated rice (Oryza sativa). Leaf data collection
started on 15 August 2022 and ended on 24 August 2022, a period encompassing the range
of the booting and heading stages.
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Figure 1. (a) Overview of the plots. The background is an unmanned aerial vehicle (UAV) image (DJI
Phantom 4 Da-Jiang Innovations Science and Technology Co., Ltd., Shenzhen., China) acquired on
2 August 2022 at 10:28 CST. (b,c) Photographs of two sampling plots.
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2.2. Data Processing
2.2.1. Data Acquisition and Calculation

Chlorophyll fluorescence parameters were recorded using a PAM-2500 portable pulse
amplitude meter (Waltz GmbH, Effeltrich, Germany) (Table 1). To calculate different
vegetation indices, spectra were collected by a customized QE65Pro spectrometer (Ocean
Optics Inc., Dunedin, FL, USA). It had a spectral resolution of ~2.4 nm, a sampling interval
of 0.35 nm, a signal-to-noise ratio of 1000, a wavelength range of 480–850 nm and a ~25◦

field of view. Before the experiments, the spectrometer was wavelength-calibrated with
an Ocean Optics HG-1 mercury–argon calibration lamp and radiometrically calibrated
with an Ocean Optics LS-1-CAL calibration lamp. Moreover, the photosynthetically active
radiation (PAR) recorded by PAM-2500 (named PARPAM-2500) was calibrated with an ML-
020P quantum sensor (EKO Instruments Co., Ltd., Tokyo, Japan) (Figure S1).

Table 1. Chlorophyll fluorescence parameters measured with the PAM-2500.

Abbreviation Description

Ft
Instantaneous steady-state fluorescence measured under ambient light at any
point in time.

Fm
Maximum fluorescence measured upon a saturating light pulse after adequate
dark adaptation. Usually, at 23:00 local time in this study.

F′m
Maximum fluorescence measured upon a saturating light pulse under ambient
light at any point in time.

F′′E
Maximum fluorescence measured upon a saturating light pulse after 10 min
dark adaptation.

Measurements were taken on attached leaves of intact plants at 9:00 a.m. and 12:00 a.m.
every day. For each measurement, the uppermost, fully expanded leaves were randomly
selected. The measurements were performed under weather conditions of almost no wind
and clear skies, and these leaves were maintained at their natural attitude. The specific
procedures for measuring leaf reflectance and PAM fluorescence parameters are as follows.

In the first step, for each leaf, maximum fluorescence upon a saturating light pulse
(F′m), instantaneous steady-state fluorescence (Ft) and PARPAM-2500 were assessed using
the PAM-2500. Then, a white panel (Spectralon; Labsphere, North Sutton, NH, USA) was
placed in parallel with the leaf surface. The spectrometer was used to measure the reflected
radiance of the white panel by positioning the fiber-optic probe towards the panel surface.
The reflected radiance was regarded as the incident radiance of the leaf. The PAR values
were also calculated by integrating the incident irradiance in the 500–700 nm range (named
PARQE). The next step was to record the reflected radiance of the leaf by placing the
fiber-optic probe toward the leaf.

Subsequently, we measured the maximum fluorescence, termed F′′E , of the previous leaf
once again after dark adaptation for 10 min using dark acclimation clips. In addition, the
maximum chlorophyll fluorescence in a dark-adapted state (Fm) was measured at midnight
that day (23:00 local time) using the Leaf-Clip Holder 2030-B of the PAM-2500. Since it is
difficult to track leaves measured in the day, we calculated the average Fm of 20 randomly
selected leaves as the Fm estimated value of the day. Moreover, due to differences in
geometry and measuring light settings between the dark- and light-acclimated leaf clips
(dark acclimation clip DLC-8 vs. light clip 2030-B of the PAM-2500), we multiplied a
conversion factor of 2.574 on the Fm collected by light-acclimated clip, which was obtained
through a separated cross-separated experiment calculating the ratio of Ft acquired by
those two leaf clips (see details in [42]). NPQ was estimated according to [43] by the
following equation:

NPQ =
Fm − F′m

F′m
(1)

To understand the complicated regulatory mechanism of NPQ, we disentangled
the energy-dependent quenching (qE) and non-energy-dependent quenching (non-qE)
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components of NPQ according to their relaxation kinetics [15,44]. We calculated those
based on the presentation elaborated in a previous study [20]:

qE =
F′′E − F′m

F′m
(2)

Non-qE is expressed as NPQ subtracting qE.
Fluorescence quantum yield (ΦF) is a key variable for representing the ability of plant

to emit fluorescence photons. The measurement of ΦF can be categorized into two methods:
active and passive, depending on the source of excitation light. The passive measurement
method calculates ΦF as the ratio of solar-induced chlorophyll fluorescence (SIF) derived
from vegetation spectra to the absorbed photosynthetically active radiation (APAR). The
active measurement method utilizes a fixed intensity modulated measurement light to
excite the steady-state chlorophyll fluorescence (Ft) and record the excited fluorescence.
Assuming an unchanged fraction of photosynthetically active radiation (fPAR) of leaves, Ft
is determined by fluorescence emission efficiency and is regarded as relative ΦF [45,46].
A previous study found that there is a strong positive correlation between Ft and ΦF [47].
Compared to the active measurement method, the passive measurement method is more
susceptible to errors caused by fluctuations in illumination during measurements and
limited spectral resolution of the spectrometer. We therefore employed Ft as a proxy for ΦF
in this study by fixing the measured light intensity of the PAM fluorometer and controlling
the relative angle and distance between its probe and the leaves.

To assess the ability of vegetation indices (VIs) in estimating NPQ, we calculated and
analyzed the following three VIs as potential candidates. The photochemical reflectance
index (PRI) was used to indicate the activity of the xanthophyll cycle [48]. The chlorophyll-
sensitive remote sensing VIs are closely related to vegetation photosynthesis, and thus
they exhibit an indirect correlation with NPQ. We have identified two chlorophyll-sensitive
indices, namely the inverted red-edge chlorophyll index (IRECI) [32] and the near-infrared
reflectance of vegetation (NIRv) [30], which have demonstrated superior performance dur-
ing our preliminary testing. These indices were computed using the following equations:

PRI =
ρ531 − ρ570

ρ531 + ρ570
(3)

IRECI =
ρ783 − ρ665

ρ705
ρ740

(4)

NIRv = NDVI·ρ800 (5)

where ρ is the reflectance, dimensionless, at the near band center measured by the spec-
trometer, and NDVI is the normalized difference vegetation index (NDVI = ρ800−ρ670

ρ800+ρ670
) [49].

2.2.2. Data Selection and Modeling

Quality filtering of the raw data was carried out to provide a high-quality leaf dataset.
Three main criteria were adopted in the quality filtering to ensure the reliability of the
data. First, the data were removed if the near-infrared apparent reflectance was larger
than 0.8, as a high near-infrared reflectance was generally obtained due to the temporary
mismatch between the irradiance and radiance measurements. Second, the peak in apparent
reflectance is also practical for data quality filtering. Due to the in-filling of fluorescence
emission, an obvious peak in apparent reflectance around the O2A absorption band could
be observed, which indicates that spectral data were reliable. Data without an obvious peak
were rejected. Finally, the statistical significance of the correlation between the PARPAM-2500
and PARQE values of all measurements was used as a criterion, which was evaluated with
a two-sided t test at a confidence level of 95%. We removed a few outliers caused by
fluctuating light or adjacent leaf shadows.
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With a strict quality control process as introduced above, 27 sets of leaf data were
selected. We categorized these leaves into two groups based on light intensity. Leaves
exposed to light intensities below 900 µmol m−2 s−1 were classified as the low-PAR group,
while others were classified as the high-PAR group.

To explore the ability of the leaf-level parameters (i.e., VIs, PAR and ΦF) to describe
NPQ for all leaf samples or for different PAR conditions, we built a concise model to estimate
NPQ using various measurement parameters through the multiple linear regression (MLR)
method. Multiple linear regression is a statistical approach that describes the associations
of several independent variables with one dependent variable and is used to conduct fitting
and modeling analysis of the selected parameters. To improve NPQ estimates, we added
and combined PAR, fluorescence parameters and vegetation indices (i.e., PRI, IRECI and
NIRv) to test the effect. The NPQ models were obtained as follows:

NPQ = β0 + β1·p1 + β2·p2 + . . . + βn·pn + ε (6)

where β represents the fitting coefficient; p represents various leaf-level parameters; and ε
is the modeling error. Standard statistics were used to compare the performance of different
models in predicting NPQ. A total of 31 combinations of leaf measurement parameters
were tested (Table 2). All data processing and statistical analyses were performed using
Python 3.9.

Table 2. Combinations of leaf measurement parameters in the NPQ model.

ID Number of Parameters Parameter(s) Used in the Model

1

1

PRI
2 IRECI
3 NIRv
4 PAR
5 ΦF

6

2

IRECI, NIRv
7 PRI, IRECI
8 PRI, NIRv
9 PAR, PRI
10 PAR, IRECI
11 PAR, NIRv
12 ΦF, PRI
13 ΦF, IRECI
14 ΦF, NIRv
15 ΦF, PAR

16

3

PRI, IRECI, NIRv
17 PAR, PRI, IRECI
18 PAR, PRI, NIRv
19 PAR, IRECI, NIRv
20 ΦF, IRECI, NIRv
21 ΦF, PRI, IRECI
22 ΦF, PRI, NIRv
23 ΦF, PAR, PRI
24 ΦF, PAR, IRECI
25 ΦF, PAR, NIRv

26

4

PAR, PRI, IRECI, NIRv
27 ΦF, PRI, IRECI, NIRv
28 ΦF, PAR, IRECI, NIRv
29 ΦF, PAR, PRI, IRECI
30 ΦF, PAR, PRI, NIRv

31 5 ΦF, PAR, PRI, IRECI, NIRv
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2.3. Statistical Analysis

The empirical model was evaluated using the coefficient of determination (R2) and
the root mean square error (RMSE), which provides a standard for evaluating the model.
The R2 values were used to indicate the proportion of variance in NPQ (including its
components) that can be predicted by remote sensing parameter(s).

R2 = 1− ∑i (yi_measure − yi_model)
2

∑i (yi_measure − y)2 (7)

where

y =
1
n

n

∑
i = 1

yi_measure (8)

The RMSE can be represented as follows:

RMSE =

√
∑n

i = 1(yi_measure − yi_model)
2

n
(9)

where yi_measure is the actual measured NPQ; yi_model is the NPQ predicted by the model;
and n is the total amount of data.

The Pearson correlation coefficient (r) describes the direction and strength of the linear
relationship, with a value between−1 and 1. We utilized r to depict the correlation between
NPQ and its two components (qE and non-qE), as well as the correlation between different
remote sensing parameters. The specific calculation formula is as follows:

r =
∑n

i = 1
(
Xi − X

)(
Yi −Y

)√
∑n

i = 1
(
Xi − X

)2
∑n

i = 1
(
Yi −Y

)2
(10)

where r is the Pearson correlation coefficient; Xi and Yi are the ith numbers in X and Y,
respectively; and X and Y are the means of X and Y, respectively.

3. Results
3.1. Relationship between NPQ, qE and Non-qE

In general, the magnitudes of NPQ increased with PAR, which ranged from
~500 µmol m−2 s−1 to 1300 µmol m−2 s−1. The qE and non-qE components in NPQ both
have obvious fluctuations with the change in light intensity (Figure 2). For different leaf
groups, the proportions of the qE and non-qE components in NPQ remained relatively
constant, with qE ranging from 59% to 62% and non qE ranging from 38% to 41% (Figure 3).
The majority of NPQ came from the qE component. However, the contributions of these
two components obviously varied under different illumination. The contribution of qE
was greater than that of non-qE for all leaves and high-PAR leaves group (Figure 3a,b). For
low-PAR leaves (Figure 3c), the contribution of qE to NPQ declined to 0.49, while that of
the non-qE component slightly declined to 0.51, indicating that NPQ was contributed by
both qE and non-qE components even though there was a greater proportion of the qE
component in NPQ. The correlation between the qE and non-qE components became rather
high under low-illumination conditions (r = 0.5), possibly suggesting the contribution
of qE had shifted from NPQ to non-qE. To sum up, illumination conditions received by
leaves is an important factor to determine magnitude and contribution ratio of two main
components in NPQ.
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3.2. Relationship between NPQ and Leaf Observation Parameters

The correlations between various vegetation parameters and NPQ (including qE and
non-qE components) for different illumination conditions were quantitatively analyzed,
as shown in Figures 4 and 5. We found that PAR could explain 52% variation in NPQ,
highlighting the crucial role of light levels in determining the extent of thermal energy
dissipation (Figure 4a). The correlation between PAR and the qE component was higher
than the correlation between PAR and the non-qE component (Figure 4b,c). Under high
illumination conditions, ΦF showed a strong correlation with NPQ (R2 = 0.75), with PRI
displaying moderate correlation (R2 = 0.23), while IRECI and NIRv showed negligible
correlations with NPQ (R2 = 0.04 and 0.02, respectively). We found that ΦF accounted for
61% of the variation in the qE component, however its ability to explain the variation in
the non-qE components was limited (R2 = 0.13). Although PRI also exhibited a stronger
association with the qE component compared to the non-qE component, its performance
was not as good as ΦF in explaining qE variability. Under low-illumination conditions,
IRECI and NIRv displayed the highest correlation with NPQ (R2 = 0.63 and 0.66, respec-
tively), followed by PRI (R2 = 0.34), while ΦF had the lowest correlation (R2 = 0.24). IRECI
and NIRv both showed a rather better relationship with the non-qE component than the
qE component, demonstrating that some of the NPQ variability assigned to the non-qE
component could be detected by IRECI or NIRv at low light levels. However, PRI was
not as effective as IRECI and NIRv in explaining the variability of the non-qE component
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in NPQ, despite it showing a better relationship with non-qE than qE components. In
summary, ΦF exhibits good performance in tracking the qE component variation in NPQ,
especially under high light levels. Both IRECI and NIRv demonstrate good performances
in tracking the non-qE component variation in NPQ, especially under low light levels.
In addition, PRI could partially track the variation in NPQ, but establishing a clear link
between PRI and the qE or non-qE components was difficult.
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We also quantified the interrelationships between these five leaf observation param-
eters (Figure 6). NIRv was strongly correlated with IRECI (r = 0.95), indicating these
two indices might possess similar biophysical implications despite their utilization of
different spectral bands. PAR exhibited strong negative correlations with PRI, IRECI and
NIRv. Among these parameters, ΦF demonstrated minimal redundancy with the other
parameters (|r| < 0.2).

3.3. Modeling NPQ with Vegetation Reflectance Indices, ΦF and PAR

We built empirical models to estimate NPQ using a linear regression method. The
overall accuracy in terms of the coefficient of determination (R2) for 31 NPQ models (Table 2)
obtained by a single parameter and combinations of the selected parameters is summarized
in Figure 7. The RMSE results are summarized in Figure S2. For leaves exposed to high
light levels (Figure 7b), we noticed that NPQ models containing ΦF all had good estimation
accuracy (with R2 > 0.74), indicating that ΦF played an important role in estimating NPQ.
The addition of other parameters in multi-parameter model did not obviously improve the
ability to estimate NPQ. In contrast, NPQ models without ΦF performed poorly with a
significantly low level of accuracy (R2 < 0.39). For leaves exposed to relatively low light
levels (Figure 7c), ΦF alone, it was difficult to explain the variation in NPQ with R2 = 0.24.
We found that the NPQ models that combined ΦF and at least one of IRECI and NIRv all
had great performance (R2 > 0.9). For the group containing all leaves (Figure 7a), we found
that ΦF alone could not adequately capture NPQ, and its accuracy was not as good as that of
one-parameter models built by the other four parameters (including PRI, IRECI, NIRv and
PAR, with R2 from 0.44 to 0.52). When integrating ΦF with some parameters (e.g., IRECI,
NIRv and PAR), the estimation abilities of those were better than any single-parameter
models (R2 > 0.76).
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Figure 5. Relationship between different parameters (PRI, IRECI, NIRv and ΦF) and NPQ, qE, and
non-qE. Dotted purple, red and black lines represent the linear regression lines for low-PAR leaves,
high-PAR leaves and all leaves, respectively, and purple circles and red triangles represent low-PAR
leaves and high-PAR leaves, respectively. Results for the relationship between NPQ and PRI (a),
IRECI (d), NIRv (g) and ΦF (j). Results for the relationship between qE and PRI (b), IRECI (e), NIRv
(h) and ΦF (k). Results for the relationship between non-qE and PRI (c), IRECI (f), NIRv (i) and ΦF
(l). “****,” “***,” “**” and “*” denote significant differences based on a standard ANOVA test with
p < 0.0001, p < 0.001, p < 0.01, p < 0.05, respectively. “ns” denotes not significant.
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The relative importance of each parameter in model 31 was calculated (Figure 8). Un-
der high-illumination conditions, the NPQ variability was mainly regulated by ΦF, while
the remaining parameters exerted minor influence on NPQ. Under low-illumination condi-
tions, the relative contribution of ΦF decreased to 23%; however, NIRv and IRECI became
important parameters for governing NPQ. These two parameters together explained over
50% of the variability in NPQ. When considering all leaves, ΦF had the highest relative
importance in explaining NPQ variability. It was followed by PAR. PRI had the lowest
relative importance in relation to NPQ.
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4. Discussion
4.1. Role of Leaf Parameters in Estimating NPQ

Our results indicate that the relative contribution of the qE and non-qE components
to NPQ varies with changes in incoming light intensity. Under high-light conditions, the
Pearson correlation coefficient between NPQ and qE was 0.80 (Figure 3b), which might
be because the formation of qE is closely related to light-driven electron transport [44].
In low-light conditions, the primary driver of NPQ variation shifts away from the qE
component. Instead, certain components within the non-qE component gradually gain
importance due to their ability to persist for extended periods, even under weak-light
conditions [50]. Some studies also found that the contribution of quantum yields of each
NPQ components varies with changes in light intensity [16,17]. Therefore, NPQ variation
is regulated by both qE and non-qE components under low illumination (Figure 3c). It
is worth noting that the estimation of NPQ in this study did not utilize the APAR as a
parameter. There are two primary reasons for this: firstly, this study adopted a combined
approach of PAR and vegetation index, which effectively accounts for variations in the
pigment pool; secondly, the measuring of leaf-level fPAR is challenging to accomplish
within a short timeframe.

The relationship between PRI and NPQ is complicated at the leaf scale, where their
correlation is influenced not only by PRI observation error but also by non-qE components
in NPQ, although several studies have built empirical regression relationships between
these two variables [16,17]. Previous studies have classified PRI as “facultative PRI” and
“constitutive PRI” according to its timescale response [27,51]. For leaves under high
illumination, PRI presented a stronger relationship with the qE component than the non-qE
component, which elucidated the finding of Sukhova and Sukhov [52], who showed the
connection between ∆PRI (modified formation) and the qE component. The probable
explanation is that facultative PRI exhibited a faster response to the variation in the qE
component due to the xanthophyll cycle on a short-term scale [27]. For leaves under low
illumination, PRI could partly explain non-qE component variation, but could hardly
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explain qE component variation. The possible reason is that constitutive PRI associated
with shifting carotenoid-to-chlorophyll pigment ratios could track the remaining non-qE
component well [27,28]. Hence, it is still difficult to establish a clear connection between
PRI and its two components. To some extent, estimating NPQ using PRI alone is unreliable.

NIRv utilizes NDVI bands and accounts for NIR band scattering, making it a proxy
for APAR due to its ability to reflect the capacity for light harvesting [53]. However, its
effectiveness as an indicator of NPQ at leaf scale has not yet been validated. In this study,
NIRv exhibited a strong correlation with the non-qE component variation in NPQ under
low-illumination conditions (Figure 5g–i). At leaf scale, the reflectance in the near-infrared
region is closely linked to their internal cellular structure, and a majority of light photons
are scattered with minimal absorption [54]. Therefore, we hypothesized that a potential
correlation exists between the NIR band and certain components in non-qE, which may be
attributed to the internal leaf scattering effect [55] or the influence of chloroplast movements
and distribution [56,57]. This association could result in a strong relationship between
NIRv and the non-qE component. Similar to the performance of NIRv, IRECI also exhibited
a stronger linear relationship with the non-qE component than the qE component under
low-light conditions, while their correlation weakened under high-light conditions. The
red-edge bands in IRECI could describe leaf organic ingredients such as pigment pool size
and nitrogen content [31,32,58]. It is possible that the size of the pigment pool remained
relatively stable throughout the observation period, resulting in no significant change in
the red-edge bands in IRECI. Therefore, IRECI is highly correlated with NIRv (r = 0.95),
indicating that they convey similar meaning and comparable information despite using
different spectral bands (Figure 6). One more thing to be noted was that both IRECI
and NIRv values would be compressed to the low-value area with an increase in light
intensity, illustrating that low values of these two indices could not distinguish high NPQ.
Overall, the utilization of NIRv and IRECI as parameters in NPQ estimation could improve
performance in low-light conditions and also simplify the estimation model by reducing
reliance on PAR inclusion.

We found that leaf-scale fluorescence quantum yield (ΦF) had a close relationship
with NPQ. In this study, ΦF was regarded as the relative ΦF under the assumption that the
leaf fPAR remains constant [29,45,59]. There was a strong negative correlation between ΦF
and NPQ for the high-PAR group, while ΦF demonstrated only a moderate relationship
with NPQ for the low-PAR group and all leaves group (Figure 5j–l). These results also agree
with earlier studies, which showed a negative relationship between ΦF and NPQ under
high-illumination conditions [20,40]. Under low-illumination conditions or severe stress,
the correlation between ΦF and NPQ becomes weak [23,40]. In addition, our results also
revealed a stronger correlation between ΦF and the qE component compared to ΦF and the
non-qE component for high-PAR leaves. Few studies explicitly identified which component
in NPQ was closely related to ΦF. Our findings seem to indirectly demonstrate that ΦF
has a strong correlation with variations in the qE component. Under high illumination,
NPQ is mainly determined by the qE component. Therefore, ΦF has significant potential
for estimating NPQ for leaves with high incoming intensity.

4.2. Performance of Multi-Parameter NPQ Models

We estimated NPQ and its components using simple single-parameter linear regres-
sion (Figures 4 and 5), showing that ΦF was better able to explain the variability in the qE
component, while IRECI and NIRv were able to explain the variability in the non-qE com-
ponent. We also noticed that the limitations of single vegetation parameters impeded the
precise capture of the dynamics of NPQ. Therefore, our study evaluated multiple-parameter
models coupling the complementarity contributions of different kinds of parameters to esti-
mate NPQ, which benefit from the integration of these observation parameters’ advantages.
Our results reveal that for high-PAR leaves, the proportion of the qE component in NPQ
increased, and ΦF had a strong electronic circulation relationship with qE (Figure 8). Thus,
all models that contained ΦF performed well in estimating NPQ (R2 > 0.74) (Figure 7b).
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Among all selected indices, IRECI and NIRv could better explain the non-qE variation,
which has usually been ignored in other studies. For low PAR leaves commonly dominated
by qE and non-qE components, IRECI or NIRv could account for over 60% of the variability
in NPQ, while ΦF alone explained only 24% of the variation in NPQ. If IRECI and NIRv
are combined with ΦF, the accuracy of NPQ estimation has a dramatically improved R2,
increasing to 0.9 (Figure 7c). In the analysis of relative importance, we found that IRECI
and NIRv were the most influential parameters in reflecting the variation of NPQ under
low-illumination conditions (Figure 8). Furthermore, the vegetation canopy comprises
sunlit and shaded leaves in actual observations by remote sensing methods. Generally,
sunlit leaves receive more direct radiation: shaded leaves receive diffuse radiation and
have low incoming intensity. Thus, we mixed all the leaves, making the situation closer to
reality. We found that coupling ΦF with one or more of the measurement parameters (e.g.,
IRECI, NIRv and PAR), the NPQ models displayed better estimation ability (R2 > 0.76) than
using each parameter alone (R2 < 0.5) (Figure 7a). The results of the relative importance
analysis revealed that the contribution of PAR was second only to ΦF in explaining the
variability in NPQ (Figure 8). This finding suggests that the light level to which the leaf is
exposed is a key parameter for estimating NPQ. As NPQ represents the process by which
absorbed light energy is dissipated as heat [15], it is logical that the light level plays a
significant role in determining the extent of this process. Therefore, accurate estimation
of NPQ requires considering the illumination conditions in which the leaf is situated. In
summary, our findings suggest that the multiparameter NPQ models, which incorporate
ΦF along with at least one of the parameters (PAR, IRECI, and NIRv), offer an accurate
alternative for estimating NPQ.

In this study, we have chosen to focus primarily on leaf-scale experiments due to
the convenience of NPQ measurements at this level and the challenges associated with
obtaining accurate NPQ data at the canopy scale. Our finding provides valuable insights
into the relationship between NPQ and remote sensing parameters, particularly by consid-
ering the two main components of NPQ (qE and non-qE components). We propose that
the integration of multiple remote sensing indices can enhance the precision of leaf-level
NPQ estimation. Our study provides a comprehensive understanding of the factors that
influence NPQ dynamics, enabling more precise and meaningful interpretations of remote
sensing signals in relation to NPQ. This lays the foundation for larger-scale estimation
of NPQ.

There are still some limitations in this study, and future work needs to address them.
Firstly, the amount of leaf samples in our dataset is relatively small. Subsequent studies
necessitate the collection of additional samples from various types of vegetation to ascertain
the generalizability of the conclusions. With a sufficient number of samples available,
advanced machine learning (ML) algorithms can be employed to effectively handle complex
relationships between NPQ and develop a more refined NPQ model. Secondly, another
limitation of this study is the limited coverage of environmental and stress conditions.
Therefore, it is necessary to conduct leaf-level NPQ experiments on different crop types
(such as wheat and maize) throughout a wider developmental period that includes stress
treatments in the subsequent research. Finally, there are many applications for NPQ
estimation at regional and global scales. For instance, one prominent possibility is that
utilizing large-scale NPQ remote sensing to monitor vegetation health could be the most
direct and effective when plants are exposed to environmental stress (e.g., water stress,
heat stress). Accurate quantification of NPQ could also potentially enhance the estimation
of gross primary productivity (GPP). If applying our method to remote sensing estimation
at the canopy level on even larger scales, it would be important to address the following
potential issues. (1) Variation in canopy structure affects the ability to estimate NPQ from
satellite or airborne remote sensing data. Canopy structural effects on scaling up NPQ-VIs
from leaf to canopy level need to be quantified and mitigated. (2) According to our findings,
ΦF plays a key role in estimating NPQ, but accurately retrieving SIF from satellite data
is challenging. We argue that the utilization of high-performance sensors, effective SIF
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retrieval approaches and consideration of actual atmospheric conditions are critical factors
to ensure obtaining reliable SIF signals. (3) When upscaling NPQ estimation from leaf to
canopy scale, it is inevitable to face certain common challenges in remote sensing, such as
directional effects and soil background effects. The systematic and quantitative assessment
of these effects on estimating NPQ is needed in future studies.

5. Conclusions

To date, remote sensing approaches to estimating NPQ, a key indicator for detecting
vegetation stress status, are still lacking. In this study, based on the spectra and PAM
fluorescence parameters of rice leaves, we investigated the feasibility of estimating NPQ
using photosynthesis-related parameters. These parameters could be observed by remote
sensing technology, including PRI, IRECI, NIRv, fluorescence quantum yield (ΦF) and PAR.
Our results identified that ΦF could capture qE variations well. IRECI and NIRv could
capture non-qE variation well. NPQ was predominantly regulated by qE components
under high light intensity, and it was jointly regulated by qE and non-qE components
under low light intensity. Hence, under high-illumination conditions, ΦF had excellent
performance in estimating NPQ. Under low-illumination conditions, coupling IRECI or
NIRv with ΦF would obviously improve the estimation of NPQ. For all leaves, our results
show that coupling ΦF with at least one of IRECI, NIRv and PAR had a more accurate
estimation of NPQ than using them alone. In summary, this study presents a promising
approach for estimating NPQ by combining multiple parameters, including chlorophyll
fluorescence quantum yield (ΦF), IRECI, NIRv and PAR. These findings provide valuable
support for the development of remote sensing methods aimed at NPQ estimation at
canopy and larger scales.
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measured by PAM-2500 and PARML−020P measured by the ML-020P quantum sensor interpolated
by the sensor measurement time. The correction formulas are PAR = 2.75·PARPAM−2500 + 133.81
and PAR = 3.75·PARPAM−2500 + 318.12 when PARPAM−2500 is lower than 310 and higher than 310,
respectively; Figure S2: NPQ model fitting accuracy in terms of RMSE for all leaves (a), high-PAR
leaves (b) and low-PAR leaves (c) by means of 31 combinations. The parameter(s) utilized in each
combination are represented by color blocks (yellow, PRI; purple, IRECI; blue, NIRv; orange, PAR;
green, ΦF).
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