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Abstract— The leaf area index (LAI) is a key structural
parameter of vegetation canopies. Accordingly, several moderate-
resolution global LAI products have been produced and widely
used in the field of remote sensing. However, the accuracy of
the current moderate-resolution global LAI products cannot
satisfy the requirements recommended by the LAI application
communities, especially in heterogeneous areas composed of
mixed land cover types. In this study, we propose a mixed-
pixel correction (MPC) method to improve the accuracy of
LAI retrievals over heterogeneous areas by considering the
influence of heterogeneity caused by the mixture of different
biome types with the help of high-resolution land cover maps.
The DART-simulated LAI, the aggregated Landsat LAI, and
the site-based high-resolution LAI reference maps are used to
evaluate the performance of the MPC method. The results
indicate that the MPC method can reduce the influences of
spatial heterogeneity and biome misclassification to obtain the
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LAI with much better accuracy than the Moderate Resolution
Imaging Spectroradiometer (MODIS) main algorithm, given that
the high-resolution land cover map is accurate. The root mean
square error (RMSE) (bias) decreases from 0.749 (0.486) to 0.414
(0.087), while the R2 increases from 0.084 to 0.524, and the
proportion of pixels that fulfill the uncertainty requirement of
the GCOS increases from 38.2% to 84.6% for the results of
site-based high-resolution LAI reference maps. Spatially explicit
information about vegetation fractional cover can further reduce
uncertainties induced by variations in canopy density for the
results of DART simulated data. The proposed method shows
potential for improving global moderate-resolution LAI products.

Index Terms— Biome misclassification, land cover mixture, leaf
area index (LAI), Moderate Resolution Imaging Spectroradiome-
ter (MODIS).

I. INTRODUCTION

THE leaf area index (LAI), which is defined as one-half of
the total green leaf area per unit horizontal ground surface

area [1], is a key structural parameter of the vegetation canopy
[2], [3]. Accordingly, the LAI is listed as an essential climate
variable (ECV) by the Global Climate Observing System
(GCOS) [4] and in the monitoring of progress toward the
Aichi Biodiversity Targets [5]. It has been widely used in the
study of global climate change [6], the estimation of fractional
vegetation cover (FVC) [7] and global primary productivity
(GPP) [8], the monitoring of vegetation growth [9], and
the modeling of mass, energy, and momentum exchanges
between the biosphere and the atmosphere [10], [11], [12],
[13], [14], [15].

Several global LAI products have been produced from
the surface reflectance data observed by moderate-resolution
sensors, such as the Moderate Resolution Imaging Spectro-
radiometer (MODIS) [16], [17], [18], the Advanced Very
High Resolution Radiometer (AVHRR) [18], [19], the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) [20], the
VEGETATION [21], [22], PROBA-V, [23], [24], and the
Medium-Resolution Imaging Spectrometer (MERIS) [25].
These products have been extensively validated in various
studies based on field measurements and upscaled high-
resolution LAI reference maps [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39]. The root mean
square error (RMSE) between major moderate-resolution LAI
products and the reference data ranged from 0.19 to 2.41,
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and its median value was 0.88 [40]. However, the accuracy
of the current moderate-resolution global LAI products does
not satisfy the requirements recommended by LAI application
communities, such as the GCOS [<max(0.5, 20%)] [4], espe-
cially in heterogeneous areas composed of different land cover
types [41].

Uncertainties in the retrieval algorithm and input land cover
maps are two key factors that influence the accuracy of LAI
retrievals [42]. In heterogeneous areas composed of differ-
ent land cover types, the application of retrieval algorithms
proposed for homogeneous surfaces introduces a strong scale
effect in LAI estimation since the assumption of homogeneous
surfaces is no longer valid [43]. In addition, the mixture of
different land cover types increases the possibility of biome
misclassification for coarse-resolution pixels. Therefore, the
influence of mixed land cover types and biome misclassifi-
cation should be analyzed and corrected to obtain a more
accurate LAI.

Several studies have shown that mixed land cover types
and biome misclassification generally lead to large errors
in the generation of moderate-resolution LAI products [41],
[44], [45], [46], [47]. The relative scaling effects of the
LAI caused by spatial heterogeneity may be up to 50% for
mixed pixels [48]. Tian et al. [44] found that the LAI retrieval
errors of heterogeneous pixels were negatively correlated
with the proportions of the dominant biome types, and large
LAI retrieval errors could be found for nonforest-dominated
pixels mixed with forests, and vice versa. Fang et al. [47]
analyzed the LAI uncertainties induced by biome misclassi-
fication and concluded that the misclassification of savannas
as broadleaf crops led to a considerably overestimated LAI
with the largest bias of 0.84 m2/m2 (100.0%). In addition,
mixtures of different vegetation types are ubiquitous at low-
and moderate-resolution scales. According to statistics based
on the 30-m Global Land Cover Dataset (GlobalLand30) of
the global land area [49], the proportion of pixels with a
mixture of different land cover types can exceed 65% at the
1-km scale [50]. Therefore, the accuracy of the retrieved LAI
will be greatly improved if the effects of mixed land cover
types and biome misclassification are considered and corrected
for the retrieval of global moderate-resolution LAI products
[43], [51].

The high-resolution LAI products derived based on higher
resolution reflectance data (e.g., Landsat and SPOT) and/or
field measurements can reduce scale differences caused by
spatial heterogeneity. Thus, upscaled high-resolution LAI
reference maps are widely used in the validation of coarse-
resolution LAI products [40]. Reduce the effects of spa-
tial heterogeneity by upscaling the high-resolution LAI
products to the desired moderate-resolution scale when
high-resolution reflectance data are available in the cal-
culation of moderate-resolution LAI and may be a sim-
ple solution. However, due to the long revisit frequency
(e.g., 16 days for the Landsat-8 sensor), in most cases, matched
high-resolution reflectance data cannot be found in the cal-
culation of the moderate-resolution LAI product because the
input moderate-resolution data have a much shorter revisit

frequency (e.g., every one to two days for the MODIS
sensor).

Several efforts have been made to reduce the effect of mixed
land cover types on the retrieval of LAI products. Jin et al.
[46] developed a spatial scaling algorithm to improve the
accuracy of LAI retrievals at the 960-m scale based on an
empirical linear relationship between the correction factor and
the proportion of the dominant biome type. However, only
three land cover types (i.e., conifers, mixed forests, and open
lands) were used in the algorithm, and an empirical method
may not be applicable on a global scale. Wu et al. [43] devel-
oped a joint algorithm to reduce the effect of heterogeneity
caused by both density variation in vegetation cover and a
mixture of different biome types. The algorithm was improved
by Yin et al. [51] to further consider the mixture of vegetation
and nonvegetation. These algorithms were validated using a
simulated image constructed from a classification map [43]
and a Landsat5/TM image that covered the study area in the
middle reach of the Heihe River Basin in Northwest China
[51]. The results indicated that the proposed algorithms greatly
reduced the retrieval errors caused by the scaling effects.
However, the LAI retrieval method used in the evaluation of
the proposed algorithms was a simple transfer relationship
between the normalized difference vegetation index (NDVI)
and LAI. These algorithms may not be appropriate for the
retrieval model with strong nonlinearity (e.g., the main algo-
rithm of the MODIS LAI product) since they neglect the
third-order and higher Taylor expansion terms [43]. Zeng et al.
[52] proposed the Radiative Transfer Model for Patchy Eco-
tones (RTEC), which can accurately simulate the directional
reflectance of mixed pixels over heterogeneous areas and, thus,
can be used to retrieve LAI products with improved accuracy
over heterogeneous areas. However, because the RTEC model
is computationally time-consuming, it is difficult to apply this
model to retrieve moderate-resolution LAI products at the
global scale [52]. Xu et al. [41] corrected the effect of land–
water mixtures by considering the negative deviation of the
reflectance induced by water. This method can significantly
improve the accuracy of LAI retrievals from land–water mixed
pixels and has the potential to improve the quality of global
LAI products. Through the use of a high-resolution land
cover map to reduce the errors of land–water mixed pixels,
Xu et al. [41] provided a new idea to reduce the errors of
land cover mixtures for LAI retrievals. However, to date,
no available method has been developed that can reduce the
effects of mixed land cover types with different vegetation
biome types and biome misclassification on the retrieval of
global moderate-resolution LAI products.

In this study, we propose a mixed-pixel correction (MPC)
method to improve the accuracy of LAI retrievals over hetero-
geneous areas composed of a mixture of different vegetation
biome types based on an MPC factor (MPCF). In the method,
the influence of heterogeneity caused by the mixture of differ-
ent biome types is considered, with the help of high-resolution
land cover maps. The MPC method is used to correct the
LAI retrieved by the main algorithm of the MODIS LAI
product [16] to evaluate its performance. Scenes simulated by
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the discrete anisotropic radiative transfer (DART) model, the
aggregated 30-m Landsat LAI, and site-based high-resolution
LAI reference maps are used to assess the accuracy of the
proposed MPC method.

II. FRAMEWORK OF THE MPC METHOD

For a mixed pixel composed of n subpixels, the application
of LAI retrieval algorithms proposed for homogeneous sur-
faces introduces large uncertainties because the single biome
type used in the operational algorithms of moderate-resolution
LAI products cannot effectively capture the vegetation bio-
chemical and structural characteristics of the mixed pixel
(e.g., clumping effect and leaf angular distribution). In this
article, we propose a correction factor, referred to as MPCF,
to capture such derivation caused by the mixture of different
biome types. The MPCF of a mixed pixel is defined as the ratio
of the mixed-pixel LAI estimated based on the LAI retrieval
models proposed for a certain homogeneous biome type a
(Lmodel_a) to the real LAI of the mixed pixel (Lm) calculated
by the arithmetic average of the subpixel LAI

MPCF = Lmodel_a

Lm
= Lmodel_a

1
n

∑n
i=1 Li

(1)

where Li is the LAI of subpixel i . Lm represents the real
LAI of the mixed pixel, which is the arithmetic average of
subpixel LAI, and n is the number of subpixels. Lmodel_a is
the model-inversed LAI when the mixed-pixel reflectance is
treated as the reflectance of the canopy covered by biome type
a. It is a usual way to estimate the mixed-pixel LAI by treating
the mixed pixel reflectance as the reflectance of the canopy
covered by the biome type a in the algorithms of present LAI
products. MPCF represents the mixing effect of the biome-type
mixture in this pure-vegetation-assumption inversion. If the
pixel is pure and homogenous, then MPCF = 1. If the pixel
is mixed with forests and herbaceous plants, and its LAI is
inversed using the biome type of forests, then MPCF > 1
since the inversed forest LAI is usually greater than the
inversed herbaceous LAI when the input reflectance and angu-
lar information are the same. In contrast, if the LAI of forest-
herbaceous mixed pixels is inversed using the biome type of
herbaceous, then MPCF < 1. Based on the definition of MPCF,
the LAI inversion of a mixed pixel can be translated into
the inversion of a specific pure vegetation type (e.g., biome
type a).

Li can be expressed as follows according to the modified
Beer’s law [53]:

Li = −cos θ ln Pi (θ)

Gi (θ)�i
(2)

where θ is the view zenith angle. Pi (θ) and �i are the
gap proportion and the clumping index (CI) of subpixel i ,
respectively. Gi(θ) is the foliage projection coefficient that
characterizes the foliage angular distribution of subpixel i .
Then, (1) becomes

MPCF = Lmodel_a
1
n

∑n
i=1 Li

= − cos θ ln Pmodel_a(θ)
Gmodel_a(θ)�model_a

− 1
n

∑n
i=1

cos θ ln Pi (θ)
Gi (θ)�i

= ln Pmodel_a(θ)
1
n

∑n
i=1

ln Pi (θ)
Gi (θ)

Gmodel_a(θ)
· �i
�model_a

(3)

where �model_a, Gmodel_a(θ), and Pmodel_a(θ) are the CI, the
foliage projection coefficient, and the gap proportion estimated
with the moderate-resolution mixed-pixel reflectance by an
LAI retrieval model under the assumption that the whole
pixel is covered by biome type a. From (3), the MPCF is
related to the clumping effect, leaf angular distribution and
gap proportion of the subpixels.

Generally, the CI values of the same biome type are usually
assumed to be invariant in the application of CI to the LAI
retrieval algorithm [54]. Based on this, we assume that the CI
value of biome type bio_i (bio_i is the corresponding biome
type of subpixel i) used in an LAI retrieval model (�model_bio_i )
can well capture the clumping effect of subpixels of biome
type bio_i , meaning that �model_bio_i is the same as the CI
values of subpixels of biome type bio_i (i.e., �model_bio_i =
�i). Then, �i /�model_a can be expressed as follows according
to the modified Beer’s law [53]:

�i

�model_a
= �model_bio_i

�model_a
=

− cos θ ln Pmodel_bio_i (θ)

Gmodel_bio_i(θ)Lmodel_bio_i

− cos θ ln Pmodel_a(θ)

Gmodel_a(θ)Lmodel_a

= Gmodel_a(θ)

Gmodel_bio_i(θ)

Lmodel_a

Lmodel_bio_i

ln Pmodel_bio_i (θ)

ln Pmodel_a(θ)
(4)

where �model_bio_i , Gmodel_bio_i (θ), Pmodel_bio_i (θ), and
Lmodel_bio_i are the CI, the foliage projection coefficient,
gap proportion, and LAI, respectively, estimated with the
moderate-resolution mixed-pixel reflectance by an LAI
retrieval model under the assumption that the whole pixel
is covered by biome type bio_i . Furthermore, the leaf angle
distribution of the same biome type is usually assumed to
be invariant in the LAI retrieval model [17]. Based on this,
we assume that the foliage projection coefficient of biome
type bio_i used in an LAI retrieval model [Gmodel_bio_i(θ)] is
the same as the foliage projection coefficient of subpixels of
biome type bio_i [i.e., Gmodel_bio_i(θ) = Gi(θ)]; then, (3) can
be simplified as

MPCF = ln Pmodel_a(θ)
1
n

∑n
i=1

ln Pi (θ)
Gi (θ)

Gmodel_a(θ)

Gmodel_a(θ)

Gmodel_bio_i (θ)

Lmodel_a
Lmodel_bio_i

ln Pmodel_bio_i (θ)

ln Pmodel_a(θ)

= Lmodel_a
1
n

∑n
i=1

ln Pi (θ)
ln Pmodel_bio_i (θ)

Lmodel_bio_i
. (5)

Thus, Lm in (1) can be expressed as

Lm = Lmodel_a

MPCF
= Lmodel_a

Lmodel_a
1
n

∑n
i=1

ln Pi (θ)

ln Pmodel_bio_i (θ)
Lmodel_bio_i

= 1

n

n∑

i=1

ln Pi (θ)

ln Pmodel_bio_i (θ)
Lmodel_bio_i (6)

where Pi (θ) in (6) can be calculated based on a high-resolution
FVC product using the following equation:

Pi (θ) = 1 − FVCi (θ) (7)

where FVCi (θ) is the FVC of subpixel i .
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Fig. 1. Framework of the MPC method.

In the retrieval of global moderate-resolution LAI products,
it is difficult to obtain high-resolution gap proportions or FVC
information at the global scale. Therefore, we further simplify
(6) to address such a situation. Since the growth status of
the same biome type is usually similar within a moderate-
resolution pixel, we assume that the gap proportions of biome
type bio_i used in an LAI retrieval model [Pmodel_bio_i (θ)]
are similar to the gap proportion of subpixels of biome type
bio_i [i.e., Pmodel_bio_i (θ) ≈ Pi (θ)] when the MPC method is
applied for retrieving the global LAI product. Then, (6) can
be simplified as

Lm = 1

n

n∑

i=1

Lmodel_bio_i =
nb∑

bio_i=1

ωi Lmodel_bio_i (8)

where nb is the number of biome types in the mixed pixel.
ωi is the area fraction of bio_i in the mixed pixel. The
high-resolution global land cover map is the only additional
information required in the correction of the current moderate-
resolution global LAI product when using (8). Based on the
definition of the MPCF, the equation for retrieving Lm can be
converted from “the arithmetic average of the subpixel LAI
(i.e., Li )” to the “weighted average of Lmodel_bio_i .” It is much
more straightforward to estimate Lmodel_bio_i than Li in the
retrieval of Lm .

Fig. 1 shows the flowchart of the MPC method, including
two main steps: 1) pixel-level LAI (Lmodel_a and Lmodel_bio_i)
retrieval and 2) LAI correction. First, the biome combination
within a moderate-resolution pixel is summarized based on the
high-resolution data. Then, Lmodel_bio_i and Pmodel_bio_i (θ) can
be calculated based on the LAI retrieval algorithm using the
reflectance data provided by the moderate-resolution surface
reflectance products and the biome types provided by the
high-resolution land cover maps within a moderate-resolution

pixel. When high-resolution gap proportion information is
available, Lm can be calculated using (6). Pi (θ) in (6) can
be calculated based on the high-resolution FVC products
using (7). When high-resolution gap information is not avail-
able, Lm can be calculated using (8). Finally, Lmodel_a cal-
culated based on the moderate-resolution surface reflectance
products and land cover maps is compared with the LAI cor-
rected by the MPC method (Lm) to evaluate the performance
of the MPC method.

In this article, to evaluate its performance, the MPC method
is used to correct the LAI retrieved by the main algorithm of
the MODIS LAI product [16], which is formulated based on
a 3-D radiative transfer (3DRT) model [17]. Scenes simulated
by the DART model are used to assess the performance of
the proposed MPC method when gap proportion information
is available (i.e., (6) is used in the MPC method). In com-
parison, the aggregated 30-m Landsat LAI and site-based
high-resolution LAI reference maps are used to assess the
performance of the proposed MPC method when no high-
resolution gap proportion information is available (i.e., (8) is
used in the MPC method).

III. DATA AND METHOD

A. DART Simulation Data

DART, a 3DRT model developed at the Center for the Study
of the Biosphere from Space (CESBIO) since 1993 [55], [56],
is one of the most comprehensive radiative transfer models.
It can be used to simulate the radiation budget and remotely
sensed images of natural vegetation and artificial surfaces with
topography and atmospheric effects. This model has been
widely used in various remote sensing applications, such as
the retrieval of remote sensing images [57], [58] and the study
of the relationships between vegetation structures and satellite
images [59]. The accuracy of the DART model in simulating
the directional reflectance of the vegetation canopy has been
extensively assessed with ground/airborne measurements [60]
and model intercomparisons in the radiation transfer model
intercomparison (RAMI) project [61]. Thus, we selected the
DART model to simulate various scenes mixed with different
biome types to evaluate the performance of the MPC method.

In this study, scenes of forest-grass, forest-crop, and
crop-grass ecotones and scenes covered by the same biome
type and LAI but with different distributions of vegetation
cover were simulated using the DART model. The size of each
scene was set to 100 m × 100 m, composed of 100 subpixels
(10 m × 10 m) with no topography. The LAI values of
deciduous broadleaf forests (DBFs), grasses, and crops in the
simulated transition zones were set based on the following
three principles.

1) The LAI retrieved by the MODIS main algorithm was
valid (not a filled value) and exhibited little difference from the
DART-simulated LAI when the scene was covered by one veg-
etation type and the vegetation was relatively homogeneously
distributed in the scene to reduce the influence of the retrieval
algorithm on the MPC method since the MPC method was not
designed to correct the uncertainties caused by the retrieval
algorithm.
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Fig. 2. Scenes of forest-grass transition zones simulated by the DART model with (Left) 20%, (Middle) 50%, and (Right) 80% DBFs.

Fig. 3. Scenes covered by DBFs had the same LAI but different distributions of vegetation cover. The LAI value of the DBF in each entire scene was 3.0.
The LAI values of the DBF in the left half of each scene were [from (Left) to (Right)] 3.0, 4.2, and 5.4, and the LAI values of the DBF in the right half of
each scene were 3.0, 1.8, and 0.6.

2) The LAI of DBFs should be larger than that of
grasses since such mixed scenes are more widely distributed
worldwide.

3) The LAI of crops represented an early growth stage to
highlight a relatively strong feature of row sowing crops to
ensure that crop features were explicitly distinct from grass
features. The LAI value of crops in the early growth stage
partly refers to the LAI (0.95 for scenes with 0.8 m distance
between rows) in [62].

Finally, the LAI values of DBFs, grasses, and crops in
the simulated transition zones were set to 3.0, 2.0, and 1.2,
respectively. The DBFs were simulated by the “Earth scene:
Trees” module in the DART model. The trees had the same
height and shape with an ellipsoidal crown shape. The tree
leaves were assigned a spectrum of type “leaf_deciduous”
from the DART database, with a spherical leaf angle dis-
tribution. The grasses were simulated by the “Earth scene:
Plots” module in the DART model. The leaves of grasses
were assigned a spectrum of type “grass_rye” from the DART
database, with an erectophile leaf angle distribution. The crops
were simulated by the “Earth scene: 3D imported object”
module based on the 3-D object of maize in the DART
model. The leaves of crops were assigned a spectrum of type
”maize” from the DART database with an erectophile leaf
angle distribution.

The proportions of DBFs, grasses, and crops varied from
0% to 100% with an increment of 10% in these simulated
transition zones. Fig. 2 shows the scenes of forest-grass
transition zones with 20%, 50%, and 80% DBFs. For the
scenes covered by the same biome type, the LAI values of
the entire scenes were fixed at 3.0, 2.0, and 1.2 for the scenes

covered by DBFs, grasses, and crops, respectively. To increase
the heterogeneity of a scene, the LAI in half of the scene was
increased, and the LAI in the other half of the scene was
decreased. Fig. 3 shows the scenes covered by the DBF with
the same LAI but different distributions of vegetation cover.
Ultimately, 44 groups of scenes were generated based on the
DART model.

B. Land Cover Maps

1) Finer Resolution Observation and Monitoring of the
Global Land Cover Dataset: In this study, the 2015 Finer
Resolution Observation and Monitoring of Global Land Cover
(FROM-GLC) map [63], [64], [65] with a resolution of 30 m
was used to provide the high-resolution land cover information
employed to evaluate the MPC method based on the high-
resolution LAI maps retrieved from the Landsat-8 reflectance
products. FROM-GLC includes ten classes and 26 subclasses
with an overall accuracy of >71%. The classification scheme
of FROM-GLC is reclassified into the MODIS LAI/fraction of
photosynthetically active radiation (FPAR) biome classifica-
tion scheme described by Myneni et al. [16]. The relationship
between the FROM-GLC classification scheme and the LAI
biome classification scheme is shown in Table I. The former
scheme does not contain a class corresponding to savannas in
the latter scheme, probably because savannas are, by defini-
tion, a mixed class of forests, shrubs, and grasses and, thus,
can be classified as forests, shrubs, or grasses on the 30-m
scale.

2) MODIS Land Cover Type Product: The MODIS land
cover type product (MCD12Q1) was derived based on a
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TABLE I

RELATIONSHIP BETWEEN THE FROM-GLC CLASSIFICATION SCHEME
AND THE LAI BIOME CLASSIFICATION SCHEME

supervised decision tree classification method from MODIS
observations spanning an entire year [66]. The MCD12Q1
product includes five land cover classification schemes.
Among them, the LAI/FPAR biome classification scheme
described by Myneni et al. [16] is used to provide moderate-
resolution biome type information for an evaluation of the
MPC method based on the aggregated 30-m Landsat LAI and
site-based high-resolution LAI reference maps.

C. Landsat-8 Reflectance Products

The Landsat-8 reflectance products used in this study
were downloaded from the website of the United States
Geological Survey (USGS) Earth Resources Observation
and Science (EROS) Center (https://espa.cr.usgs.gov/). The
reflectance products were atmospherically corrected using the
Second Simulation of a Satellite Signal in the Solar Spectrum
(6S) tools [67].

In this study, Landsat-8 reflectance products and their cor-
responding view and illumination angles were used to produce
high-resolution LAI data with the help of the reclassified
FROM-GLC dataset based on the MODIS main algorithm.
Two tiles (tiles 130-044 on May 3 and tiles 121-029 on
July 7) of Landsat-8 reflectance data with less than 10% cloud
cover in 2015 were utilized in this study. Tile 130-044 is
in southwest China. The statistics based on the FROM-GLC
maps at the MODIS pixel scale show that tile 130-044 is a
forest-dominated tile covered by 22% pure evergreen broadleaf

forest (EBF), 39% forest-shrub-grass-crop transition zones,
23% forest-shrub-grass transition zones, 11% forest-grass tran-
sition zones, 3% forest-shrub transition zones, and 2% forest-
grass-crop transition zones. Tile 121-029 is in northeastern
China. It is a grass-dominated tile covered by 24% pure
grasslands, 26% grass-forest-crop transition zones, 25% grass-
crop transition zones, 20% grass-forest transition zones, 3%
grass-forest-shrub-crop transition zones, 1% grass-shrub-crop
transition zones, and 1% grass-forest-shrub transition zones.

D. Field-Measured LAI and Site-Based LAI Reference Maps
From the VALERI Database

To validate the accuracy of the MPC method, we col-
lected the LAI at 14 sites measured in the Validation
of Land European Remote Sensing Instruments (VALERI)
project (http://w3.avignon.inra.fr/valeri). Detailed information
on these 14 sites is shown in Table II. The LAI data were
processed from hemispherical images of each elementary
sampling unit (ESU) using CAN-EYE software. Each site
contained between 30 and 100 ESUs. High-resolution LAI
reference maps with a spatial resolution of 20 m were gener-
ated based on a transfer function derived from high-resolution
SPOT/Landsat reflectance products, land cover maps, and LAI
field measurements. These reference maps have been widely
used in various studies to validate LAI products [27], [28],
[29], [34], [36], [37], [38], [39].

E. Evaluation Strategy of the MPC Method

To assess the performance of the MPC method, the LAI
retrieved by the MODIS main algorithm (termed the MOD
LAI) was compared with the LAI retrieved after the cor-
rection of the MPC method based on the DART-simulated
LAI, aggregated Landsat LAI, and site-based high-resolution
LAI reference maps. The LAI retrieved by the MPC method
using (6) with the FVC information is referred to as the
MPC_F LAI. The LAI retrieved by the MPC method using (8)
without the FVC information is referred to as the MPC LAI.
The details are shown in the following.

1) Assessment of the MPC Method Based on DART Sim-
ulations: The LAI values of the scenes set in the DART
model were regarded as the reference LAI values to assess
the performance of the MPC method.

For the scenes with transition zones, the two biome types
in the scenes were used separately as the input biome types
in the MODIS main algorithm to generate two groups of LAI
values based on the DART-simulated angular reflectance in
the red and near-infrared bands. Then, these groups of LAI
values were corrected by the MPC method based on the biome
type and gap proportion of the 10 × 10 subpixels in the
scene. The results obtained by the MODIS main algorithm
using the dominant biome type were used to evaluate the
performance of the MPC method for mixed land cover types,
whereas the results retrieved by the MODIS main algorithm
using the nondominant biome type were used to evaluate the
performance of the MPC method for biome misclassification.

For the scenes covered by a single biome type but with
different distributions of vegetation cover, the MOD LAI
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TABLE II

CHARACTERISTICS OF THE 14 VALERI VALIDATION SITES. “DATE OF MODIS PRODUCT” REPRESENTS THE OBSERVATION DATES OF THE MOD09GA
AND/OR MYD09GA PRODUCTS USED IN THE LAI RETRIEVAL BASED ON THE MODIS MAIN ALGORITHM AND THE MPC METHOD

values were compared with the MPC LAI values to evaluate
the performance of the MPC method in reducing the effect
of the density variation of vegetation cover. The standard
deviation (SD) of FVC was used as a quantitative indicator
to capture the intensity of the heterogeneity level. The larger
the SD of FVC is, the stronger the heterogeneity.

2) Evaluation of the MPC Method Based on the Aggregated
Landsat LAI: The high-resolution LAI maps retrieved from the
Landsat-8 reflectance products and FROM-GLC data based on
the MODIS main algorithm were regarded as the reference
LAI values to evaluate the performance of the MPC method.
The Landsat-8 reflectance products and FROM-GLC data
were projected onto the sinusoidal projection used in the
MCD12Q1 product to reduce the errors caused by resampling.
The moderate-resolution LAI values were generated using
the MODIS main algorithm based on the moderate-resolution
land cover data obtained from the MCD12Q1 product and
the aggregated Landsat-8 reflectance data using the arithmetic
average method. Then, the generated LAI values were cor-
rected by the MPC method with the help of the FROM-
GLC data. Finally, the moderate-resolution MOD LAI or MPC
LAI values were compared with the arithmetic average of the
Landsat LAI under different dominant vegetation type percent-
ages (DVTPs) [68] to explore the influences of mixed land
cover types and biome misclassification on the LAI retrievals.

The DVTP used in this article was defined as the proportion
of the dominant vegetation type in a moderate-resolution
pixel [68].

3) Validation of the MPC Method Based on Site-Based
LAI Reference Maps: Site-based high-resolution LAI maps
aggregated at the MODIS pixel scale were compared with
the moderate-resolution MOD LAI or MPC LAI values to
evaluate the performance of the MPC method. First, the
daily moderate-resolution LAI values at the validation sites
were retrieved by the MODIS main algorithm based on the
MCD12Q1 product and MODIS daily reflectance data listed
in Table II. Then, the LAI retrievals were corrected by the
MPC method based on the high-resolution land cover maps
used in the generation of high-resolution LAI reference maps
provided by the corresponding VALERI sites. The daily MOD
LAI and MPC LAI were composited into the eight-day LAI
using a compositing algorithm based on the maximum FPAR
[16]. High-quality eight-day composited MOD LAI and MPC
LAI retrievals, which were not contaminated by clouds, cloud
shadows, or snow, were then compared with the aggregated
LAI reference maps. Note that, since the MPC method was
proposed to improve the accuracy of LAI retrievals for mixed
pixels, the results were used only when DVTP < 0.9 to ensure
pixel heterogeneity [51]. Finally, a total of 874 available pixels
were used to validate the MPC method.
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Fig. 4. Comparison of the LAI values retrieved using the MODIS main algorithm (MOD LAI) with the LAI values corrected by the MPC method based
on the DART-simulated LAI for (a) forest-grass, (b) forest-crop, and (c) crop-grass transition zone scenes. The biome type in the bracket represents the input
moderate-resolution biome type in the MODIS main algorithm. The LAI retrieved by the MPC method using (6) with the FVC information is referred to as
MPC_F LAI. The LAI retrieved by the MPC method using (8) without the FVC information is referred to as MPC LAI.

4) Influence of Mixed Land Cover Types at the Global
Scale Based on the FROM-GLC Dataset: The 30-m FROM-
GLC dataset was compared with the MCD12Q1 product in
2015 to show the need to consider land cover mixtures on
LAI retrievals at the global scale. First, the FROM-GLC
classification scheme was reclassified into the LAI biome clas-
sification scheme used in the MCD12Q1 product based on the
relationship shown in Table I. Then, the FROM-GLC dataset
was projected to the sinusoidal projection of the MCD12Q1
product to reduce the sampling errors. One MODIS pixel
contained 15 × 15 converted FROM-GLC pixels. Finally, the
global spatial distribution of the number of vegetation biome
types on the MODIS pixel scale (∼500 m) was summarized
based on the 30-m FROM-GLC maps in 2015 to explore the
necessity of the MPC method.

IV. RESULTS

A. Assessment of the MPC Method Based on DART
Simulations

1) Results of Scenes Mixed With Different Biome Types:
Fig. 4 compares the LAI retrieved using the MODIS main
algorithm with the LAI corrected by the MPC method based
on the DART-simulated LAI for scenes of forest-grass, forest-
crop, and crop-grass transition zones. As shown in Fig. 4,
when the dominant biome type was used as the input biome
type in the MODIS main algorithm and DVTP ≥ 90%, the
MOD LAI was similar to both the DART-simulated LAI and
the LAI retrieved by the MPC method. In contrast, as shown
in Fig. 4(a) and (b), when the dominant biome type was
used as the input biome type in the MODIS main algorithm
and DVTP < 90%, the MODIS main algorithm overestimated
the DART-simulated LAI for forest (DBF)-dominated scenes
mixed with herbaceous vegetation (grasses or crops), and
the magnitude of overestimation increased with decreasing
DVTP. In comparison, the MODIS main algorithm underes-
timated the DART-simulated LAI for herbaceous vegetation-
dominated scenes mixed with forests, and the magnitude of
underestimation similarly increased with decreasing DVTP.
The MPC method can reduce the influence of such mixed land

cover types to obtain a more accurate LAI than that obtained
by the MODIS main algorithm. For scenes of crop-grass
transition zones, the MPC LAI results were also slightly more
in accordance with the DART-simulated LAI than were the
MOD LAI.

The FVCs for scenes covered by homogenous DBF, grass,
and crop were 0.5529, 0.5532, and 0.4716, respectively. For
scenes of forest-grass transition zones [see Fig. 4(a)], the
MPC_F LAI was very similar to the MPC LAI, probably
because the SD of FVC (i.e., the degree of spatial heterogene-
ity) of these scenes was very small. For scenes of forest-crop
and crop-grass transition zones [see Fig. 4(b) and (c)], the
MPC_F LAI was closer to the DART LAI with slightly
larger LAI values than the MPC LAI. The difference between
MPC_F and MPC LAI increased with increasing spatial
heterogeneity.

As shown in (8), the MPC LAI values are determined
mainly by the input high-resolution land cover maps and are
not sensitive to the input moderate-resolution biome type.
Note that the MPC method still slightly underestimated the
DART-simulated LAI for the crop-dominated scenes, prob-
ably because the MODIS main algorithm underestimated
the DART-simulated LAI when the scene was covered by
homogenous pure crops. The MPC method cannot correct
uncertainties caused by the retrieval algorithm since it was
developed primarily to reduce the effects of mixed land cover
types and biome misclassification.

When the nondominant biome type was used as the input
biome type in the MODIS main algorithm, large errors were
found for all transition zone scenes (see Fig. 4), especially
for the forest-grass transition zone scenes. The MOD LAI
retrievals were overestimated when the biome type of herba-
ceous vegetation was misclassified into the biome type of
forests or when the biome type of crops was misclassified
into the biome type of grasses. The MOD LAI retrievals
were underestimated when the biome type of forests was
misclassified into the biome type of herbaceous vegetation or
when the biome type of grasses was misclassified into the
biome type of crops. In comparison, the MPC method can
reduce the errors caused by biome misclassification to obtain
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Fig. 5. Variations in MOD LAI, MPC LAI, MPC_F LAI, and DART-simulated LAI with an increase in the SD of the FVC for scenes covered by a single
biome type with different degrees of spatial heterogeneity. The biome type in the bracket represents the input moderate-resolution biome type in the MODIS
main algorithm.

a more accurate LAI, given that the high-resolution land cover
map was accurate.

In summary, the MPC method can reduce the effects of
mixed land cover types and biome misclassification in the
retrieval of moderate-resolution LAI.

2) Results of Scenes Covered by a Single Biome Type With
Different Degrees of Spatial Heterogeneity: In this section, the
MOD LAI retrievals are compared with the LAI retrieved by
the MPC method based on DART-simulated scenes covered
by a single biome type with different degrees of spatial
heterogeneity (see Fig. 5). As shown in Fig. 5, the MOD LAI
decreases with an increase in the SD of the FVC for scenes
covered by a single biome type. This result is consistent with
the results proposed by Yin et al. [51]. The MPC LAI values
without considering the FVC information are the same as the
MOD LAI. In comparison, the MPC method can reduce the
influence of heterogeneity caused by the density variation of
vegetation cover to obtain a more stable LAI (i.e., MPC_F
LAI) with the help of high-resolution FVC information of
the scene. In addition, the MPC_F LAI values are similar
to the MOD LAI retrievals when the scenes are relatively
homogenous. Thus, the accuracy of the MPC_F LAI depends
largely on the accuracy of the MOD LAI for homogenous
scenes since the MPC method cannot correct the uncertainties
caused by the retrieval algorithm.

B. Evaluation of the MPC Method Based on the Aggregated
Landsat LAI

1) Performance of the MPC Method for Mixed Land Cover
Types: Fig. 6 shows scatterplots that compare the aggregated
30-m Landsat LAI with the MOD and MPC LAI retrievals
for forest-dominated tile 130-044 on May 3, 2015, and grass-
dominated tile 121-029 on July 7, 2015. The dominant land
cover types and corresponding DVTPs at the MODIS pixel
scale are calculated based on the 30-m FROM-GLC maps. The
dominant land cover types for the pixels shown in Fig. 6 are
the same as the land cover types in the MCD12Q1 product
and are used as the input biome types in the MODIS main
algorithm and the MPC method. Of the pixels shown in
Fig. 6(a) and (b), 94.4% are dominated by EBF, and of the
pixels shown in Fig. 6(c) and (d), 98.7% are dominated by
grasslands.

As shown in Fig. 6, the MOD LAI retrievals are similar to
the MPC LAI retrievals for the relatively homogenous pixels
(DVTP ≥ 0.9). For heterogeneous pixels mixed with different
biome types (DVTP < 0.9), the MODIS main algorithm over-
estimates the aggregated Landsat LAI for forest-dominated
pixels [see Fig. 6(b)], especially for forest-dominated pixels
mixed with a large proportion of herbaceous vegetation. The
LAI overestimation can reach a maximum of 2.673 (69.8%)
for a pixel covered by 50.2% forests, 42.2% grasslands, and
7.6% shrubs (termed Pixel A in the remainder of this article).
In contrast, the MODIS main algorithm underestimates the
aggregated Landsat LAI for the grass-dominated pixels mixed
with a large proportion of forests and slightly overestimates the
aggregated Landsat LAI for the grass-dominated pixels mixed
with croplands [see Fig. 6(d)]. The LAI underestimation can
reach a maximum of 1.313 (53.3%) for a pixel covered by
56.9% grasslands and 43.1% forests (termed Pixel B in the
remainder of this article). The MPC method can reduce the
effect of mixed land cover types to obtain a more accurate LAI
with a much smaller RMSE and higher R2 than the MODIS
main algorithm. The RMSE (its relative value) decreases by
0.198 (49.0%) for the forest-dominated tile [see Fig. 6(b)] and
by 0.121 (63.0%) for the grass-dominated tile [see Fig. 6(d)].
The absolute errors [relative errors (REs)] of the MPC LAI
are reduced to 0.384 (10.0%) for Pixel A and to 0.221 (9.0%)
for Pixel B.

The RMSE and RE between the MOD or MPC LAI
retrievals and the aggregated Landsat LAI under differ-
ent DVTPs are also calculated for the EBF-dominated and
grass-dominated pixels (see Fig. 7). The RMSE of the MOD
LAI increases rapidly with decreasing DVTP due to the
enhancement of the land cover mixing effect, which is con-
sistent with the results proposed by Tian et al. [44]. In com-
parison, the MPC method can reduce the effect of mixed land
cover types, thereby achieving more accurate LAI retrievals
with much smaller RMSE and RE values.

In summary, the MPC method can still reduce the influence
of mixed land cover types to obtain a more accurate LAI than
that of the MODIS main algorithm when no high-resolution
gap proportion information is available.

2) Performance of the MPC Method for Biome Misclassifi-
cation: Fig. 8 shows scatterplots that compare the aggregated
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Fig. 6. Comparison of the aggregated Landsat LAI with the MOD (blue dots) and MPC (red dots) LAI for forest-dominated tile 130-044 (a) and (b) on
May 3, 2015, and grass-dominated tile 121-029 (c) and (d) on July 7, 2015, when the dominant biome types of pixels calculated based on the FROM-GLC
data are the same as the biome types in the MCD12Q1 product. The blue and red lines are the regression lines of MOD and MPC LAI, respectively. The black
line is the 1:1 line (i.e., y = x). (a) DVTP ≥ 0.9 (forest-dominated). (b) DVTP < 0.9 (forest-dominated). (c) DVTP ≥ 0.9 (grass-dominated). (d) DVTP <
0.9 (grass-dominated).

Fig. 7. Variations in the RMSE and RE between the MOD or MPC LAI retrievals and the aggregated Landsat LAI with decreasing DVTP for [(Left)
130-044] forest-dominated tile and [(Right) 121-029] grass-dominated tile.

30-m Landsat LAI with the MOD and MPC LAI retrievals for
the forest-dominated tile and the grass-dominated tile when

the dominant biome types summarized from the FROM-GLC
maps were different from the biome types in the MCD12Q1
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Fig. 8. Comparison of the aggregated Landsat LAI with the estimated LAI for forest-dominated tile 130-044 (a) on May 3, 2015, and grass-dominated tile
121-029 (b) on July 7, 2015, when the dominant biome types summarized from the FROM-GLC maps were different from the biome types in the MCD12Q1
product. (a) Forest-dominated. (b) Grass-dominated.

Fig. 9. Plots for (a) comparison of the site-based aggregated LAI reference maps with the MOD and MPC LAI retrievals for 14 validation sites and
(b) variations in the RMSE and RE between the MOD or MPC LAI retrievals and the aggregated LAI reference maps in different DVTP intervals.

product (i.e., when the nondominant biome types were used as
the input moderate-resolution biome types in the MODIS main
algorithm and the MPC method). As shown in Fig. 8, the MOD
LAI deviated from the aggregated Landsat LAI when incorrect
land cover types were used as the input biome types. The
MODIS main algorithm underestimated the Landsat LAI when
the forest-dominated pixels were misclassified into the biome
types of grasslands, croplands, and savannas [see Fig. 8(a)].
In contrast, for the grass-dominated pixels, the MODIS main
algorithm overestimated the Landsat LAI when those pixels
were misclassified as savannas or forests and underestimated
the Landsat LAI when those pixels were misclassified as
croplands [see Fig. 8(b)]. In comparison, the MPC method
can reduce the effect of biome misclassification to obtain a
more accurate LAI with a much smaller RMSE and bias and
a much higher R2.

C. Validation of the MPC Method Based on Site-Based LAI
Reference Maps

Fig. 9 shows the validation results from comparing the
MOD LAI and MPC LAI with the site-based high-resolution
LAI reference maps. Overall, the MOD LAI retrievals were
underestimated compared with the aggregated reference LAI
map except for the results marked by the red ellipse in
Fig. 9(a), which corresponds to a grass-dominated site named
Le_Larzac. The MODIS main algorithm overestimated the
aggregated reference LAI at Le_Larzac, probably because the
biome type used in the MODIS main algorithm was misclas-
sified as savannas instead of grasslands, thus resulting in a
great overestimation, which is in accordance with the finding
of Fang et al. [47], which was that the “misclassification of
savannas as any of the herbaceous types overestimates the
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Fig. 10. Global spatial distribution of the number of vegetation biome types at the MODIS pixel (∼500 m) scale calculated based on the 30-m FROM-GLC
maps in 2015.

LAI.” In comparison, the MPC method can reduce the effects
of mixed land cover types and biome misclassification to
obtain a more accurate LAI than the MODIS main algorithm.
The RMSE (bias) decreased from 0.749 (0.486) to 0.414
(0.087), while the R2 increased from 0.084 to 0.524, and the
proportion of pixels that fulfilled the uncertainty requirement
of the GCOS [<max(0.5, 20%)] increased from 38.2% to
84.6%. We further assessed the performance of the MPC
method in different DVTP intervals, where each interval
contained at least 23 available pixels. As shown in Fig. 9(b),
the MPC LAI retrievals were much more consistent with the
aggregated reference LAI than were the MOD LAI retrievals
in all of the DVTP intervals.

D. Influence of Mixed Land Cover Types at the Global Scale
Based on the FROM-GLC Dataset

Fig. 10 shows the global spatial distribution of the num-
ber of vegetation biome types at the MODIS pixel scale
(∼500 m) calculated based on the 30-m FROM-GLC maps
in 2015. Multibiome mixed pixels are widely distributed
worldwide. The proportion of multibiome mixed pixels for
each biome was calculated based on the MCD12Q1 product
[see Fig. 11(a)]. Pixels mixed with at least two biome types
accounted for 75.5% of all vegetation-covered pixels. The
biome type of savannas had the largest proportion of multi-
biome mixed pixels (95.0%) among all biome types, probably
because, by definition, savannas are a mixed biome type
in the LAI classification scheme (vegetation with 10%–60%
tree cover). In contrast, the proportion of multibiome mixed
pixels still reached 41.3% for the biome type of EBF, which
had the smallest proportion of multibiome mixed pixels.
Fig. 11(b) shows that the DVTP for 58.9% of vegetation-
covered pixels was less than 0.9. Thus, as discussed in

Sections IV-A and IV-B, the heterogeneity of these pixels
should be considered and reduced. In addition, nearly 27.5%
of vegetation-covered pixels had very strong heterogeneity
(DVTP < 0.6) which would result in large errors if no
correction for mixed land cover types was applied. Such
a large proportion of multibiome mixed pixels with strong
heterogeneity highlights the need to consider the effect of
mixed land cover types in the generation of global LAI
products.

As shown in Fig. 11(c), there were more pixels worldwide
composed of two mixed biome types than there were pixels
consisting of any other number of biome types. We gener-
ated histograms for different biome type combinations [see
Fig. 11(d)] and found that scenes of forest-grass transition
zones were the most widely distributed among the pixels
composed of two mixed biome types. As discussed in Sec-
tions IV-A and IV-B, the estimated LAI values in scenes
of forest-grass transition zones are underestimated for pixels
classified as grasslands and overestimated for pixels classified
as forests without correcting for mixed land cover types.
Therefore, it is essential to reduce the effect of mixed land
cover types to obtain a more accurate LAI in the retrieval of
moderate-resolution LAI products.

V. DISCUSSION

A. Influence of the Land Cover Maps on the MPC Method

As indicated in (6) and (8), the MPC LAI is not
affected by the input moderate-resolution land cover product
in the MODIS main algorithm and is instead determined
by the high-resolution land cover data. When the input
high-resolution land cover maps are accurate, the MPC method
performs well in correcting the influence of biome misclassi-
fication (see Figs. 4 and 8). On the other hand, errors in these
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Fig. 11. (a) Proportion of multibiome mixed pixels for each biome type in the MCD12Q1 product. Histograms of (b) number (pink columns) and proportion
(blue line) of pixels under different DVTPs, (c) number of pixels containing each number of vegetation biome types, and (d) biome type combinations
for the global vegetation-covered moderate-resolution pixels calculated based on the FROM-GLC maps. The pixel proportion (blue line) is the ratio of the
corresponding pixel number to the number of global vegetation pixels. GL, SH, CR, SA, EB, DB, EN, and DN represent the grassland, shrubland, cropland,
savanna, evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest, and deciduous needleleaf forest biome types, respectively. All the
biome types of forests (EB, DB, EN, and DN) are regarded as one biome type in the statistics of biome type combinations and are collectively referred to
as F.

high-resolution land cover maps will completely transfer to
the MPC LAI. Therefore, the accuracy of the high-resolution
land cover maps has a great impact on the accuracy of the
MPC LAI.

The eight vegetation types described in the LAI/FPAR
biome classification scheme are used as the input biome
types in the derivation of the 3DRT model. The CI value
and the foliage projection coefficient of each biome type set
in the 3DRT model are derived based on the principle that
these parameters can well describe the clumping effect and
leaf angle distribution in most cases when the pixels are
relatively homogeneous. Therefore, the error caused by the
assumption of an invariant CI value and foliage projection
coefficient within the same biome type is relatively small
when the high-resolution subpixels of the corresponding biome
type described in the high-resolution land cover maps are
homogenous. The error may be further reduced if a more
detailed vegetation classification scheme (e.g., the classifi-
cation scheme of FROM-GLC) is used in the derivation of
the 3DRT model because the difference in CI values or

foliage projection coefficients within the same biome type will
decrease as the number of classified vegetation types increases.

B. Influence of High-Resolution Gap Proportion Information
on the MPC Method

Spatial heterogeneity within pixels generally manifests in
two ways: mixtures of different land cover types and density
variations in vegetation cover [68], [69].

The gap proportion within the same biome type in a
moderate-resolution pixel is assumed to be invariant when the
MPC method is applied to correct the operational algorithms
of global moderate-resolution LAI products. This assumption
ignores the influence of heterogeneity caused by the density
variation of vegetation cover. Therefore, the LAI after the
correction of the MPC method may still underestimate the
mixed-pixel LAI for pixels featuring a strong density variation
in vegetation cover. Nevertheless, the results in Sections IV-B
and IV-C demonstrate the accuracy of the MPC method even
if the density variation of vegetation cover in a mixed pixel is
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ignored, possibly because the number of pixels with a strong
density variation of vegetation cover does not account for a
large proportion of the mixed pixels corrected by the MPC
method. The MPC method can still reduce the influences of
mixed land cover types and biome misclassification based on
high-resolution land cover maps to obtain more accurate LAI
retrievals even if no high-resolution FVC data are available.
Therefore, (8) can be used as a reasonable substitute instead
of (6) when applying the MPC method to produce global
moderate-resolution LAI products.

As indicated in Section IV-A, when high-resolution land
cover maps and corresponding gap proportion information are
available, the MPC method can reduce the influences of the
spatial heterogeneity caused by both mixed land cover types
and density variations in vegetation cover to retrieve the LAI
with improved accuracy. Therefore, (6) can be applied to
correct regional moderate-resolution LAI products in regional
studies when high-resolution gap proportion information is
available.

C. Applicability of the MPC Method

1) Applicability of the MPC Method to Global LAI Prod-
ucts: There are two ways to apply the MPC method to global
MODIS LAI products. One is to directly generate the global
LAI products (i.e., Lm) based on the MODIS LAI retrieval
algorithm and (8). The other is to correct the already produced
MODIS LAI product using the MPCF. When the global LAI
product is directly generated using the MPC method, the
high-resolution land cover maps (e.g., FROM-GLC maps) can
be projected to the sinusoidal projection of the MCD12Q1
product and provide information on the biome combination
and proportion of each biome type within a MODIS pixel.
Then, Lmodel_bio_i in (8) can be calculated based on the MODIS
operational algorithm. Finally, the MPC method can be used
to produce the global LAI product using (8).

When the MODIS LAI product has already been generated,
the MPCF can be calculated from one of the high-quality
MODIS reflectance data within a small period (e.g., four or
eight days) and the high-resolution land cover maps using
(5). Then, the MPCF can be used to correct the MODIS LAI
product using (6). The computing time to correct the existing
MODIS LAI product is only 1/16 of the computing time (when
the period is eight days) to reproduce the corresponding LAI
product using the MPC method.

In addition, according to the theory of the MPC method,
the MPC method can also be used to correct other moderate-
and low-resolution LAI products once the land cover types are
used as the input parameters in the operational algorithm of
the corresponding LAI products.

The performance of the MODIS LAI algorithm at VAERI
sites may be worse than previously reported (such as the study
by Yan et al. [70]). This is likely because the validation data
selected in this manuscript are more heterogeneous than those
used in previous studies. In the selection of the validation
site in this article, the validation results are only used when
DVTP<0.9 to ensure pixel heterogeneity since the MPC
method is proposed to improve the accuracy of LAI retrievals

for mixed pixels. In contrast, the sites with strong hetero-
geneity were screened out in the selection of validation sites
in the study by Yan et al. [70]. The MODIS LAI algorithm
performs worse in regions with strong heterogeneity than in
homogeneous regions, as reported in previous studies [41],
[44], [45], [46], [47].

Since the modified Beer’s law used in the derivation of the
MPC method assumes leaves with 100% absorption, which is
almost valid in the visible domain but not in the near-infrared
domain, the MPC method should meet the requirements of the
modified Beer’s law when it is applied to produce global LAI
products. Since the gap proportion information in (6) can be
calculated in the visible band based on the 3DRT model, and
LAI is a band-independent vegetation structure parameter that
can be measured by optical instruments (e.g., TRAC) using
canopy gap information [71], the derived equations of the
MPC method [i.e., (6) and (8)] can meet the requirements
of modified Beer’s law when the MPC method is applied to
produce MODIS LAI products. The proposed MPC method
may not be applicable when the gap proportion information
of the visible band cannot be calculated by the LAI inversion
model. In future studies, we will focus on investigating a
semiphysical canopy model that is also feasible in the near-
infrared domain to improve the applicable range of the MPC
method.

2) Applicability of the MPC Method in Terms of Spatial
Heterogeneity and Computational Efficiency: For a mixed
pixel composed of nb biome types, the computing time of LAI
retrievals using the MPC method is positively correlated with
the number of biome types in the mixed pixel (approximately
nb times the computing time of LAI retrievals using the
MODIS operational algorithm). Thus, the computing time
of LAI retrievals using the MPC method is approximately
2.78 times that of the MODIS operational algorithm.

As shown in Figs. 6 and 7, the MOD LAI retrievals were
similar to the MPC LAI retrievals for the relatively homoge-
nous pixels (DVTP ≥ 0.9). Those relatively homogenous
pixels were also regarded as “pure” pixels in the study by
Yin et al. [51]. Therefore, using the MODIS main algorithm
instead of the MPC method to directly retrieve the LAI of
those pixels (DVTP ≥ 0.9) may be an effective method to
reduce the computing time in the generation of global LAI
products. Thus, the computing time was reduced to 1.63 times
that of the MODIS operational algorithm. If the MPC method
is used to correct the existing four-day MODIS LAI products
based on the MPCF, the computing time can be further reduced
to 0.20 times that of the MODIS operational algorithm.
The MPC method is also feasible in terms of computational
efficiency compared with the operational algorithms of the
current moderate-resolution LAI products.

VI. CONCLUSION

Spatial heterogeneity in moderate-resolution pixels leads
to large errors in the retrieval of moderate-resolution LAI
products. In this study, the MPC method was proposed to
reduce the influences of spatial heterogeneity to improve the
accuracy of LAI retrievals over heterogeneous areas with a
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mixture of different biome types. The DART-simulated LAI,
the aggregated Landsat LAI, and site-based high-resolution
LAI reference maps were used to evaluate the performance of
the proposed MPC method. The results indicate the following.

1) The MOD LAI was overestimated for forest-dominated
pixels mixed with a large proportion of herbaceous vegetation
and underestimated for herbaceous vegetation-dominated pix-
els mixed with a large proportion of forest. The MPC method
can reduce the effect of mixed land cover types to improve the
accuracy of LAI retrievals, especially for forest-grass transition
zones.

2) The MOD LAI retrievals deviated from the reference LAI
values when incorrect land cover types were used as the input
biome types. The MPC method can reduce the influence of
biome misclassification to obtain a more accurate LAI, given
that the high-resolution land cover map is accurate.

3) The heterogeneity caused by the density variation in
vegetation cover resulted in the underestimation of MOD
LAI retrievals. The magnitude of underestimation increased
with increasing heterogeneity. The MPC method can correct
such underestimation when the gap proportion information of
the high-resolution subpixels is available in the retrieval of
moderate-resolution LAI products.

4) The RMSE (bias) decreased from 0.749 (0.486) to 0.414
(0.087), while the R2 increased from 0.084 to 0.524, and the
proportion of pixels that fulfill the uncertainty requirement of
the GCOS [<max(0.5, 20%)] increased from 38.2% to 84.6%
for the results of site-based high-resolution LAI reference
maps. The MPC method shows potential for improving the
accuracy of global moderate-resolution LAI products over
heterogeneous areas.

In this article, the MPC method was applied to correct the
LAI estimated by the MODIS main algorithm as an example to
explore the possibility of its application to the current global
LAI product. However, it is still difficult to reduce the het-
erogeneity caused by the density variation in vegetation cover
at the global scale due to the lack of global high-resolution
gap proportion information. In future work, we will focus on
producing global high-resolution FVC products to fill the data
gap for the global high-resolution gap proportion information
to further improve the accuracy of moderate-resolution LAI
products over heterogeneous areas.
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