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A B S T R A C T   

Light use efficiency (LUE) model was established to estimate gross primary production (GPP) for understanding 
the carbon-climate feedbacks of the terrestrial ecosystems. However, water constraints in LUE models can cause 
large uncertainties in GPP estimates, especially in semiarid grasslands where water is a key forcing factor for 
multiple ecosystem processes. Here, we proposed a novel LUE-Gradient Boosting Regression Trees (GBRT) model 
framework where water scalar is derived from five different water constraints for improving the estimates of 
grassland GPP over the conterminous United States (CONUS). The performance of LUE-GBRT and ten other GPP 
models [i.e., LUE-RF, LUE-ERT, GBRT, RF, ERT, LUE-fEF, LUE-fVPD, LUE-fLSWI, LUE-fSM, and LUE-fLST] was 
evaluated against data from eddy covariance (EC) observations at 25 measurement sites over the CONUS domain 
from 2000 to 2021. We found that LUE-GBRT improved grassland GPP estimates at all EC sites and yielded the 
highest Kling-Gupta efficiency (0.85) and the lowest root-mean-square error (1.4 g C m− 2 d− 1) when compared 
with the five individual GPP models. LUE-GBRT also showed a superior performance compared to LUE-RF and 
LUE-ERT. Compared with GBRT, the improvements were particularly from the responses to extreme surface 
conditions that were better characterized and estimated. An innovation of this method is that LUE-GBRT takes 
machine learning complementary to the physical-based LUE framework for an optimal junction between GPP 
physical process and model accuracy.   

1. Introduction 

Gross primary production (GPP) of terrestrial ecosystems, defined as 
the total amount of carbon dioxide (CO2) absorbed by plants over a 
period (e.g., hour, day, year) through photosynthesis, is the largest 
carbon flux in the terrestrial carbon cycle (Odum et al., 1958). GPP plays 
a key role in maintaining the carbon-climate balance in the regional or 
global scale (Karlson et al., 2004). Grassland is an important component 

of terrestrial biomes because they account for twenty percent of global 
carbon reserves (Adams et al., 1990). In particular, grassland is a major 
ecosystem type over most of the western conterminous United States 
(CONUS) (UCMP 2022). Accurate estimation of grassland GPP is 
essential for understanding and quantifying the carbon budgets and 
carbon-climate feedbacks of CONUS. 

Remote sensing technology has provided vegetation parameters with 
wide spatial coverage and regular temporal intervals (Norman et al., 
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1978; Townshend et al., 1985) for estimating regional grassland GPP. 
This is in contrast to complementary in situ eddy covariance (EC) ob
servations that are location specific GPP. Due to the sparse distribution 
of EC towers, accurate estimation of regional GPP over the CONUS is 
quite limited. At present, remotely sensed GPP models include empir
ical, process-based and light use efficiency (LUE) models. The empirical 
models include linear and nonlinear approaches that are developed 
based on the statistical relationship between terrestrial GPP and climate 
variables, as well as satellite vegetation indices (Beer et al. 2010; Chen 
2021). As classical nonlinear empirical approaches, machine learning 
(ML) methods have become important tools for GPP estimation (Chen 
2023; Jung et al., 2009; Tramontana et al. 2016; Xiao et al. 2010; Yang 
et al. 2007). Previous studies have reported that many ML methods use 
satellite and meteorological data as input features to estimate GPP (Bai 
et al., 2021; Filippi et al., 2014; Wei et al., 2017; Yang et al. 2007). 
However, the empirical models lack rigorous physical mechanisms for 
the photosynthetic processes (Anav et al. 2015; Chen 2021). 
Process-based GPP models generally include detailed physical mecha
nisms (Chen et al., 1999; Ryu et al. 2011; Verrelst et al., 2016; Zhang 
et al., 2019). However, process-based GPP models usually require many 
parameters that often lead to large errors in GPP estimates (Chen 2023; 
Zhang et al., 2016). 

Fortunately, the widely used satellite-based LUE models not only 
consider the response mechanism of photosynthetic efficiency to envi
ronmental conditions, but also have the potentials to simulate the 
temporal and spatial variation of plant growth at the regional scale with 
a few parameters, and even the global scale (Running et al., 2000). 
Water constraint is a main source of uncertainties for estimating the 
water-limited grassland GPP in the arid/semi-arid regions (Reichstein 
et al. 2002a). Previous studies found that the grassland GPP in the 
arid/semiarid regions was most sensitive to water stress (e.g., drought). 
Global GPP was reduced by 15% on average due to droughts as indicated 
by the soil moisture constraint, and the reduction in GPP was even 
higher by more than 50% in semiarid grasslands and savannahs (Stocker 
et al., 2019). Different LUE models have different metrics of water 
constraints for characterizing water stress for GPP estimates (Table 1). 
However, these models have different water constraints because water 
constraints of photosynthesis activity are influenced by many variables, 
including meteorological, soil moisture, vegetation water and surface 
energy variables. Various water constraints will cause large un
certainties in estimating grassland GPP and pose a serious obstacle to 
quantifying and understanding the global or regional carbon cycle (Beer 
et al. 2010). Clearly, it is required for improving the accuracy of grass
land GPP estimates that a LUE model with the efficient water constraint 
(Ws) combines all available Ws information from regional and global 
satellite, hydrological and meteorological data. 

Gradient Boosting Regression Trees (GBRT), a classical ML method, 
has provided an effective strategy to improve the model performance for 
estimating grassland GPP and LUE. For example, Bai et al. (2021) used 
GBRT approach method to quantify global GPP with different influ
encing factors and found GBRT performed best. However, this study 
estimated GPP directly from input variables and ignored the physical 
process of the LUE model driven by water constraints. We investigated 
the GBRT method for calculating Ws in the LUE model by combining 
satellite, meteorological and hydrological variables to estimate grass
land GPP. 

In this study, we developed a novel LUE-GBRT framework that 
coupled a LUE model with a ML-based Ws for estimating grassland GPP 
over the CONUS. Our objectives are to: (1) develop a novel LUE model 
by embedding a GBRT-based Ws for estimating grassland GPP; (2) assess 
the model performance of the LUE-GBRT based on ground measure
ments from 25 EC flux towers; and (3) implement the spatial distribution 
of grassland GPP using LUE-GBRT over the CONUS during 2019–2021. 

2. LUE-GBRT 

2.1. LUE-GBRT framework 

The LUE-GBRT framework contains two modules: a LUE host model 
and a GBRT-based Ws module embedded in the host model (Fig. 1). 

The LUE host model has six components: photosynthetically active 

Table 1 
Summary of GPP LUE models with various water constraints. Descriptions of the 
abbreviations are in Table S1.  

No. Model 
Name 

Equation Water 
constraints 

References 

1 GLO- 
PEM 

GPP = PAR× FPAR× εmax ×

fSHD × fSM × Ts 

fSHD, fSM (Prince and 
Goward 1995) 

2 3-PG GPP = PAR× FPAR× εmax ×

min(fSM , fVPD) × fSA × Ts 

fSM , fVPD (Landsberg 
and Waring 
1997) 

3 MOD17 GPP = PAR× FPAR× εmax ×

fVPD × fTmin 

fVPD (Running 
et al., 2004) 

4 VPM GPP = PAR× FPAR× εmax ×

fLSWI × fP × Ts 

fLSWI (Xiao et al., 
2004) 

5 CFLUX GPP = PAR× FPAR×

[(εmax − εcs) × fCI + εcs] ×

min(fSM, fVPD)× fSA × fTmin 

fSM , fVPD (Turner et al., 
2006) 

6 LUE- 
type 

GPP = εmax × APAR× fVPD ×

fSWC 

fVPD, fSWC (MÄKelÄ et al. 
2008) 

7 EC-LUE Version 1 : GPP = PAR×

FPAR× εmax × min(Ts, fEF)

Version 2 : GPP = PAR×

FPAR× εmax × fCO2 × min(Ts,

fVPD)

fEF , fVPD (Yuan et al. 
2007, 2010, 

2019) 

8 Horn’s 
model 

GPP = εmax × [p × Ts + (1 −

p) × fVPD] × APAR 
fVPD (Horn and 

Schulz 2011) 
9 TL-LUE GPP = (APARsu × εmsu +

APARsh × εmsh)× fVPD × Ts 

fVPD (He et al. 
2013) 

10 PCM GPP = PCmax × fEVI × fLSWI fLSWI (Gao et al. 
2014) 

11 TL-LUEn GPP = ((APARsu × εm ×

τ) /(APARsu × εm + τ) ×
LAIsu + (APARsh × εm ×

τ) /(APARsh × εm + τ) ×
LAIsh) × fVPD × Ts 

fVPD (Wu et al. 
2015) 

12 TEC GPP = PAR× FPAR× εmax ×

fE × Ts 

fE (Yan et al., 
2015) 

13 MVPM GPP = PAR× FPAR× εmax ×

min(fLSWI × fVPD,Ts)

fLSWI , fVPD (Zhang et al., 
2015a) 

14 CI-LUE GPP = PAR× FPAR×

[(εmax − εcs) × fCI + εcs ] ×

fVPD × Ts 

fVPD (Wang et al. 
2015) 

15 MuSyQ GPP = PAR× FPAR× εmax ×

fE × Ts 

fE (Cui et al., 
2016) 

16 CCW GPPor = PAR× FPAR×

εmax × fCI × min(fVPD,Ts)

GPPand = PAR× FPAR×

εmax × fCI × fVPD × Ts 

fVPD (Zhang et al., 
2016) 

17 TCF GPP = PAR× FPAR× εmax ×

fVPD × fSM × fFT × Ts 

fVPD, fSM (He et al., 
2016) 

18 DTEC GPP = (APARsu × εmsu +

APARsh × εmsh)× fE × Ts 

fE (Yan et al. 
2017) 

19 Wang’s 
model 

GPP = PAR× FPAR× εmax ×

fPM × fVPD × fSWC × (1 − μ ×

fCI)× Ts 

fVPD, fSWC (Wang et al., 
2018a) 

20 CI-EF GPP = PAR× FPAR× [εcs +

(εmax − εcs) × fCI ] × fEF × fTmin 

fEF (de Almeida 
et al. 2018) 

21 PRELES GPP = εmax × APAR× fL ×
Ts × fVPD × fSWC 

fVPD, fSWC (Kalliokoski 
et al., 2018) 

22 P-model 
V1.0 

GPP = PAR× FPAR× m′ ×
MC × Ts × fSM 

fSM (Stocker et al., 
2020) 

23 TL 
model 

GPP = (APARsu × εmsu +

APARsh × εmsh)× Ts × fVPD ×

fSM × fL 

fVPD, fSM (Bao et al., 
2022a) 

24 BL 
model 

GPP = APAR× εmax × Ts ×

fVPD × fSM × fL × fCI 

fVPD, fSM (Bao et al. 
2022b) 

25 CASA GPP = PAR× FPAR× εmax ×

Ts × fE 

fE (Potter et al., 
1993)  
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radiation (PAR, MJ m− 2 d− 1), fraction of PAR absorbed by the vegeta
tion (FPAR), maximum LUE (εmax, 2.14 g C m− 2 MJ− 1), air temperature 
constraint (Ts), Ws, and GPP (Myneni and Williams 1994; Yuan et al. 
2007): 

GPP = PAR × FPAR × εmax × Ts × Ws (1)  

FPAR = 1.24 × NDVI − 0.168 (2)  

Ts =
(Ta − Tmin)(Ta − Tmax)

(Ta − Tmin)(Ta − Tmax) −
(
Ta − Topt

)2 (3)  

where Ts varies between 0 and 1, as well as Ws. Topt, Tmax, and Tmin are 
the optimum (20.33 ◦C), maximum (40 ◦C), and minimum (0 ◦C) air 
temperatures for photosynthesis, respectively (Raich et al., 1991). 

2.2. Water constraints in the LUE model 

Considering that EF, VPD, LSWI, SM and LST all influence the water 
variations in grassland GPP, five water constraints (fEF, fVPD, fLSWI, fSM 
and fLST) were included to predict the Ws of the LUE models. fEF. fEF 
represents the surface dryness that Rn can be divided into sensible heat 
flux (H) and LE (Lewis 1995). fEF can be expressed as (Yuan et al. 2010): 

fEF =
LE
Rn

(0< fEF < 1) (4)  

fVPD refers to the atmospheric dryness above the canopy and indirectly 
characterizes the Ws of the LUE model for estimating grassland GPP 
(Yuan et al. 2019). 

fVPD =
VPD0

VPD + VPD0
(0< fVPD < 1) (5)  

where VPD0 was calibrated using GPP observations at EC towers and was 
optimized as 1.703 kPa. fLSWI can show the water content of soil and 
plants in liquid (Chen et al., 2005). It can be expressed as (Zhang et al., 
2021): 

fLSWI =
LSWI − LSWImin

LSWImax − LSWImin
(0< fLSWI < 1) (6)  

where LSWImin and LSWImax are the minimum and maximum LSWI 
values from the reflectance products corresponding to the flux sites 
during the growing seasons. fSM is the most direct tool to represent the 
control of soil on Ws from surface extractable water (Jin et al., 2011). It 
can be expressed as (Purdy et al., 2018): 

fSM =
SM − θWP

θFC − θWP
(0< fSM < 1) (7)  

where θWP and θFC are the volumetric soil water permanent wilting point 
(at soil water potential of 1500 kPa, m3 m− 3) and field capacity (at soil 
water potential of 33 kPa, m3 m− 3), respectively. θWP and θFC of each site 
were extracted from a global soil dataset for earth system modeling 
(~10 km × 10 km) (Shangguan and Dai 2014; Shangguan et al., 2014). 
We obtained θWP and θFC by averaging the values in the upper soil layers 
from 0 to 0.29 m (Zhang et al., 2015b). fLST combines NDVI and LST, 
which are related to the LE (Jiang and Islam 1999). 

fLST = k ×
NDVI
LST

+ b(0< fLST < 1) (8)  

where k and b are optimized as 121.36 and 0.34, respectively. 

2.3. Machine learning methods for Ws estimation 

Ws was estimated using ML methods by establishing the functional 
relationships between the inversion Ws and the corresponding five Ws 
equations (fEF, fVPD, fLSWI, fSM and fLST). In this study, we calculated the 
Ws by GBRT and compared it with random forests (RF) and extremely 
randomized trees (ERT). 

GBRT, a widely used ML algorithm (Friedman 2001), is an ensemble 
learning method which combines multiple trees to build a regression 
model. It is of competitive, highly stable, explainable routines for 
regression to mine redundant data (Fig. 2). 

Fig. 1. Model framework of Light Use Efficiency-Gradient 
Boosting Regression Trees (LUE-GBRT) by coupling various 
water constraints for gross primary production (GPP) esti
mates. PAR is the photosynthetically active radiation (MJ m− 2 

d− 1). FPAR is the fraction of PAR absorbed by the vegetation. 
NDVI is normalized difference vegetation index. εmax is 
maximum LUE. Ts is air temperature (Ta) constraint. Tmax, 
Tmin, and Topt are maximum, minimum, and optimum Ta ( ◦C), 
respectively. Ws is water constraint of LUE model. fEF, fVPD, 
fLSWI, fSM and fLST are Ws equations of evaporative fraction 
(EF), vapor pressure deficit (VPD, kPa), land surface water 
index (LSWI), soil moisture (SM, m3/m3) and land surface 
temperature (LST, K), respectively. LE is the latent heat flux, 
and Rn is net radiation (W/m2). VPD0 is the parameter of fVPD. 
LSWImin and LSWImax are the minimum and maximum LSWI, 
respectively. θFC and θWP are the field capacity and volumetric 
soil water permanent wilting point, respectively. k and b are 
the coefficients of fLST, respectively. The red arrow indicates 
that the inversion Ws derived from EC-based GPP is added in 
the GBRT model as the target variable, and the green arrow 
represents that Ws estimates derived from GBRT model are 
added in the host LUE model.   

Fig. 2. Diagram of the GBRT algorithm. The training samples are brought into 
regression trees [h(x; ai)] and calculated to obtain the results [fi(x)] through the 
weight regression. βi is the weight of the ith tree. F(x) is the sum of the weighted 
regression results. 
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GBRT can be described as: 

F(x) =
∑N

i=1
βih(x; ai) (9)  

where x refers to the argument, and ai represents the regressor of each 
regression tree. Every tree is defined as h(x; ai). βi refers to the weight of 
the ith tree, and N is the total number of regression trees. In GBRT model, 
the thin learner judges the errors in every node and uses the test function 
to separate the nodes. The GBRT model is able to reduce the biases and 
better than other tree-based algorithms for overfitting as well as cost 
calculation, because all the regression trees are mutually connected, and 
the major virtue lies in that the regression tree of the GBRT is fitted 
based on the surplus of the preceding tree (Friedman 2001). In addition, 
GBRT has the advantages of relating the capacity to solve the hetero
geneous distribution of data attributes and no limitations on any hy
pothesis of input variables. Regardless of its copositive algorithm, GBRT 
has better estimation ability and robustness than those of the single 
decision tree. 

Several machine learning methods are applied, including: 
RF is an integration of tree estimators where each tree is of a random 

vector sampled by itself distributing in the same way for all forest trees 
as similar with the GBRT algorithm (Breiman 2001). The tree of RF is 
calibrated in parallel while that of GBRT not. The single tree predictor in 
the entirety is produced by choosing arguments with the bootstrap 
method randomly (Chatterjee and Lahiri 2011). When coming into 
being decision trees may disintegrate predicted errors, the randomiza
tion appended to the forests. RF means can remove these errors (Xu 
et al. 2018). 

ERT is a supervised method of regression similar with the RF (Geurts 
et al., 2006). It is an ensemble ML method based on tree predictors and 
made up of stochastic properties and breaks choices while a tree node is 
separated. Under extreme conditions, the trees are established randomly 
in structure with independent results. From many regression trees, ERT 
obtains its results averaging the outputs. These trees are calibrated by 
dividing the origin dataset into subset and following simple rules from 
the parameter information (Geurts et al., 2006). 

2.4. Our experiments 

The LUE-GBRT is a LUE framework that integrates the multiple water 
constraints based on ML methods (Fig. 1). The experimental procedure 
contains four steps. Firstly, to build the LUE-GBRT, we selected PAR, 
NDVI, Ta, LE, Rn, VPD, SM, LSWI, LST, GPP observations and the cor
responding inversion daily Ws using the following Eq. (10) at the EC flux 
sites. 

Ws =
GPP

PAR × FPAR × εmax × Ts
(0<Ws < 1) (10) 

Secondly, we used all 25 EC flux sites to evaluate the LUE-ML models 
by leave-one-out cross-validation. The water constraints (fEF, fVPD, fLSWI, 
fSM and fLST) were indicated as the input features for the GBRT model, 
and two other machine learning methods (i.e., RF and ERT), and the 
inversion daily Ws was indicated as a target variable, which is referred to 
as Eq. (11): 

Ws ∼ ML(fEF, fVPD, fLSWI , fSM , fLST) (11) 

In addition, we simulate grassland GPP by pure ML methods to 
compare with the LUE-ML model: 

GPP ∼ ML(PAR,FPAR,Ts, fEF , fVPD, fLSWI , fSM , fLST) (12)  

where PAR, FPAR, Ts, fEF, fVPD, fLSWI, fSM and fLST were used as input 
variables, and the GPP observations were used as the target variable in 
Eq. (12). We built the GBRT, RF and ERT with sklearn modules of Python 
and used the GridSearchCV module to find the best parameters for each 

model. For models established with sklearn modules, the most vital 
parameters are n_estimator, max_depth and max_features, which affect 
the extent of overfitting. Typically, parameter max_features equal N or 
log2 N (N represents the number of input variables). The GridSearchCV 
module tunes the parameters by trying each possibility among all 
parameter combinations through loop traversal and then choosing the 
optimal ones. We evaluated the performance of ML model using leave- 
one-out cross-validation (Xiao et al. 2010), i.e., data from every site 
was applied for validation, after the remaining sites provided samples 
for the training of the ML models. Training and testing data were in
dependent. The leave-one-out cross-validation was conducted for all 
sites, respectively. The optimal model parameters with the highest 
correlation coefficient were chosen, and applied to estimate the Ws. 
Thirdly, we used PAR, FPAR, εmax, Ts and Ws estimates to simulate 
grassland GPP by the LUE model. Finally, we generated 8-day grassland 
GPP products with 1 km spatial resolution over the CONUS during 
2019–2021. 

2.5. Model evaluation 

2.5.1. Validation metrics 
To evaluate the capacity of different models, we used the Kling- 

Gupta efficiency (KGE), bias, root-mean-square error (RMSE) and coef
ficient of determination (R2). KGE, a comprehensive metric, couples the 
mean value ratio (γ), correlation (r), and relative variability ratio (α) 
(Gupta et al., 2009). Under the condition with no estimation errors, the 
ideal values are r=α=γ=1. Therefore, the best value of KGE is 1. 

2.5.2. ML model interpretability analysis 
SHAP (SHapley Additive exPlanations) (Lipovetsky and Conklin 

2001) values are applied to predict the contribution of each constraint to 
LUE-GBRT. The Shapley interaction index derived from game theory 
turns into SHAP values (Fujimoto et al., 2006), which interpret estimates 
as total of actual contribution values of each argument (Lundberg et al., 
2018). The feature j of a sample (xi) is xij. The estimate of the model for xi 
is yi, and the model baseline estimates (i.e., the average value of the 
dependent variables of the whole samples) is y0. It can be expressed as: 

yi = y0 + f (xi1) + f (xi2) + ...+ f
(
xij
)

(13)  

where f(xij) is the Shapley value of xij. The calculation of SHAP value is 
processed by Python. 

3. Data and variables derivation 

3.1. Data at EC flux tower sites 

We used meteorological and eddy covariance (EC) data of 25 
grassland sites collected from AmeriFlux (https://ameriflux.lbl.gov) and 
FLUXNET (https://fluxnet.org)(Table 2, Fig. 3). The data in 17 Ameri
Flux sites included half-hourly or hourly net ecosystem exchange (NEE), 
soil temperature (Tsoil) and water content (SWC), resulting in a total of 
129 site-years of measurements. If more than a quarter of the data were 
missing on a specific day, the value of that day was considered missing. 
We estimated daily EC-based GPP using Tsoil, SWC and NEE according to 
the approach of Reichstein et al. (2003). Ecosystem respiration (Re) was 
related to Tsoil and SWC through the regression model described by 
Reichstein et al. (2002b). We used Tsoil and SWC data to estimate Re, and 
then obtained GPP according to GPP = Re-NEE. We directly used daily 
GPP data from eight FLUXNET grassland sites with a total of 46 
site-years of measurements. Each site of AmeriFlux and FLUXNET 
included at least sequential one year data. 

3.2. Satellite and reanalysis datasets 

We used the 8-day 500 m surface reflectance product (MOD09A1) of 
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Moderate Resolution Imaging Spectroradiometer (MODIS) (https://app 
eears.earthdatacloud.nasa.gov). We extracted the 8-day values corre
sponding to the EC sites for NDVI and LSWI. We linearly interpolated 
daily values from the 8-day composite values, and resampled the image 
data of NDVI and LSWI from 500 m to 1 km spatial resolution using a 
simple average method. We also directly used the land cover data 
(MCD12Q1) with a 500 m spatial resolution to extract the grassland over 
the CONUS. 

We used the SM product V07.1 from European Space Agency (ESA) 
Climate Change Initiative (CCI) website (https://www.esa-soilmoistur 
e-cci.org) (Dorigo et al. 2017; Gruber et al., 2019). The daily values 
were extracted from the pixels of SM product corresponding to the EC 
sites. The daily SM was downscaled from 25 km to 1 km in bilinear 
interpolation. 

We also used Tmax ( ◦C), Tmin ( ◦C), daily actual vapor pressure (e, 
pa), daytime incident shortwave radiation (Rs, W/m2), and the duration 

of the daylight period (dayl, s/day) from Daily Surface Weather and 
Climatological Summaries Version 4 (DAYMET V4, https://daac.ornl. 
gov) with a 1 km spatial resolution (Thornton et al., 2020). The daily 
values were extracted from the pixels covering the EC sites. 

Considering that there was no satellite-derived all-sky hourly LST 
product available over the CONUS, we employed all-sky instantaneous 
LST product from the North American Land Data Assimilation System 
(NLDAS) (Xia et al. 2012). We used the 21:00 (UTC) instantaneous LST 
(NLDAS NOAH0125_H002) product with a 0.125◦ spatial resolution 
from the NLDAS Noah model (https://disk.gsfc.nasa.gov). The instan
taneous values were extracted at the pixels where the EC sites are 
located. We downscaled the LST product to 0.01◦ in bilinear 
interpolation. 

Table 2 
Summary of 25 AmeriFlux and FLUXNET grassland EC sites over the CONUS, including the site code, name, latitude (◦N), longitude (◦W), mean annual temperature 
(MAT, ◦C), mean annual precipitation (MAP, mm), elevation (m), climate type, start year, end year and references. * Climate Type is the Köppen-Geiger class (Beck 
et al., 2020). Cfb: Temperate, no dry season, warm summer; Csb: Temperate, dry summer, warm summer; Cfa: Temperate, no dry season, hot summer; Dfa: Cold, no dry 
season, hot summer; Dsa: Dry continental, hot summer; Dsb: Cold, dry summer, warm summer; Csa: Temperate, dry summer, hot summer; Bsk: Arid, steppe, cold; Bwh: 
Arid, desert, hot.  

Site 
Code 

Site Name Latitude (◦N), 
longitude (◦W) 

MAT ( 
◦C) 

MAP 
(mm) 

Elevation 
(m) 

Climate 
Type* 

Start 
year 

End 
year 

Project References 

US- 
A32 

ARM-SGP Medford hay pasture 36.82, 97.82 33.90 889 335 Cfa 2015 2017 AmeriFlux (Dave et al., 
2018) 

US- 
AR1 

ARM USDA UNL OSU Woodward 
Switchgrass 1 

36.43, 99.42 – – 611 Dsa 2009 2012 FLUXNET (Dave et al., 
2019a) 

US- 
AR2 

ARM USDA UNL OSU Woodward 
Switchgrass 2 

36.64, 99.60 – – 646 Dsa 2009 2012 FLUXNET (Dave et al., 
2019b) 

US- 
ARb 

ARM Southern Great Plains burn 
site-Lamont 

35.550, 98.040 – – 424 Cfa 2005 2006 FLUXNET (Margaret 2019a) 

US- 
ARc 

ARM Southern Great Plains 
control site-Lamont 

35.547, 98.040 – – 424 Cfa 2005 2006 FLUXNET (Margaret 2019b) 

US- 
Aud 

Audubon Research Ranch 31.59, 110.51 14.85 438 1469 Bsk 2002 2011 AmeriFlux (Tilden 2016a) 

US- 
CaV 

Canaan Valley 39.06, 79.42 7.97 1317 994 Cfb 2004 2010 AmeriFlux (Tilden 2016b) 

US- 
Cop 

Corral Pocket 38.09, 109.39 – – 1520 – 2001 2007 AmeriFlux (David 2019) 

US-Dia Diablo 37.68, 121.53 15.60 265 323 Csa 2010 2012 AmeriFlux (Sonia 2016) 
US- 

Fwf 
Flagstaff-Wildfire 35.45, 111.77 8.40 557 2270 Csb 2005 2010 AmeriFlux (Sabina and 

Thomas 2019) 
US- 

Goo 
Goodwin Creek 34.25, 89.87 15.89 1426 87 Cfa 2002 2006 FLUXNET (Tilden 2019) 

US-IB2 Fermi National Accelerator 
Laboratory- Batavia (Prairie site) 

41.84, 88.24 9.04 930 227 Dfa 2004 2014 FLUXNET (Roser 2019) 

US- 
KFS 

Kansas Field Station 39.06, 95.19 12.00 1014 310 Cfa 2007 2019 AmeriFlux (Nathaniel 
2020a) 

US- 
KLS 

Kansas Land Institute 38.77, 97.57 12.00 812 373 Cfa 2012 2019 AmeriFlux (Nathaniel 2021) 

US- 
Kon 

Konza Prairie LTER (KNZ) 39.08, 96.56 12.77 867 417 Cfa 2008 2019 AmeriFlux (Nathaniel 
2020b) 

US- 
KUT 

KUOM Turfgrass Field 44.99, 93.19 7.90 777 301 Dfa 2005 2009 AmeriFlux (Joe 2016) 

US- 
LS1 

San Pedro River Lewis 
Springs Sacaton Grassland 

31.56, 110.14 17.00 288 1230 Bwh 2003 2007 AmeriFlux (Russell 2020) 

US- 
Ro4 

Rosemount Prairie 44.68, 93.07 6.40 879 274 Dfa 2014 2021 AmeriFlux (John and Tim 
2022) 

US- 
SdH 

Nebraska SandHills Dry Valley 42.07, 101.41 – – 1081 Dsb 2004 2009 AmeriFlux (Dave and Tim 
2016) 

US- 
Snd 

Sherman Island 38.037, 121.754 15.60 358 − 5 Csa 2007 2014 AmeriFlux (Matteo et al., 
2016) 

US- 
Sne 

Sherman Island Restored Wetland 38.037 ,121.755 16.09 311 − 5 Csa 2016 2020 AmeriFlux (Robert et al., 
2021) 

US-Snf Sherman Barn 38.04, 121.73 – – − 4 Csa 2018 2019 AmeriFlux (Kuno et al., 
2020) 

US- 
SRG 

Santa Rita Grassland 31.79, 110.83 17.00 420 1291 Bsk 2008 2014 FLUXNET (Russell 2023a) 

US- 
Var 

Vaira Ranch-Ione 38.41, 120.95 15.80 559 129 Csa 2000 2020 AmeriFlux (Ma et al., 2022) 

US- 
Wkg 

Walnut Gulch Kendall Grasslands 31.74, 109.94 15.64 407 1531 Bsk 2004 2014 FLUXNET (Russell 2023b)  
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3.3. Variable derivation 

Because the ratio of the PAR and total incident solar energy is 
approximately 0.48 (Frouin and Pinker 1995), the PAR was calculated as 
follows: 

PAR = 0.48 × Rs × dayl × 10− 6 (14) 

We used the method proposed by Liang (2001) to calculate the al
bedo (θ), and Rn was calculated by the method developed by Jiang et al. 
(2015). 

θ = 0.160 × θ1 + 0.291 × θ2 + 0.243 × θ3 + 0.116 × θ4 + 0.112 × θ5

+ 0.081 × θ7 − 0.0015 (15)  

Rn =Rs ×(1 − θ)

×(0.5515+0.0027×Tmin+0.0015×DT+0.1321×NDVI+0.1652×RH)

− 10.7575
(16)  

where θ1–5,7 refers to the MODIS reflectance from bands 1–5, and 7. DT 
and RH are the diurnal temperature range ( ◦C) and air relative hu
midity, respectively. 

We also used the modified satellite-based Priestley-Taylor algorithm 
(MS-PT) to estimate daily LE (Yao et al. 2013). MS-PT is a DT range 
modification of the PT-JPL LE model (Fisher et al., 2008). LE includes 
canopy transpiration (LEcan), canopy interception evaporation (LEican), 
saturated wet (LEws) and unsaturated soil evaporation (LEs). It can be 
expressed as: 

LE = LEs + LEcan + LEican + LEws (17)  

LEs = (1 − fwet)fSMa
Δ

Δ + γ
(Rnsoil − G) (18)  

LEcan = (1 − fwet)fvcTsa
Δ

Δ + γ
Rnvc (19)  

LEican = fweta
Δ

Δ + γ
Rnvc (20)  

LEwsoil = fweta
Δ

Δ + γ
(Rnsoil − G) (21)  

where a is the Priestly Taylor coefficient and γ is the psychrometric 
constant. △ is the slope of the saturation e versus Ta. fwet is the relative 
land wetness. DTmax describes the maximum DT. G, Rnvc, and Rnsoil are 
the soil heat flux, vegetation and soil Rn, respectively. fvc refers to the 
plant cover fraction. 

4. Results 

4.1. Evaluation of five individual Ws-based LUE models 

To evaluate the simulation performance of the five individual Ws- 
based LUE model, we detected the response of inversion Ws to six factors 
(EF, VPD, LSWI, SM, NDVI and LST) (Fig. 4). For all grassland sites, EF 
showed the highest R2 (0.70) positively related with the inversion Ws, 
followed by NDVI and LSWI with R2 of 0.65 and 0.61, respectively. SM 
also has positive correlation with R2 of 0.34. In addition, the inversion 
Ws shows negative correlations with VPD (R2 = 0.43) and LST (R2 =

0.22), respectively. The results indicate that these variables can better 
characterize the Ws. Deriving from these six factors, the daily GPP es
timates of the five individual Ws-based LUE models were directly 
compared with the corresponding ground measurements at 25 EC flux 
tower sites. LUE-fEF estimated GPP is the closest to the observations 
among all models (Fig. 5), implying that LUE-fEF outperforms the other 
individual Ws-based models with a KGE of 0.44, R2 of 0.52, bias of 1.3 g 
C m− 2 d− 1 and RMSE of 3.8 g C m− 2 d− 1. The KGE of LUE-fLST is the 
lowest at 0.15, and the KGEs of the three other individual Ws-based 
models vary from 0.18 to 0.24. The LUE-fVPD yields the largest bias of 
3.9 g C m− 2 d− 1. Other three models yield biases of 3.3 g C m− 2 d− 1 for 
LUE-fLSWI, 2.8 g C m− 2 d− 1 for LUE-fSM, and 3.1 g C m− 2 d− 1 for LUE-fLST. 

Fig. 3. Study domain. (a) The spatial distribution of grasslands, other land cover types and 25 grassland EC sites over the CONUS; (b) and (c) are the regional 
magnifications of the places where the EC sites are dense. 
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Fig. 4. Scatterplots of inversion Ws and six factors (EF, VPD, LSWI, SM, NDVI and LST). Red lines are the fitted functional curves of inversion Ws to each factor.  

Fig. 5. Scatterplots of daily EC-based and predicted GPP for five individual LUE model (LUE-fEF, LUE-fVPD, LUE-fLSWI, LUE-fSM and LUE-fLST). The color bar represents 
the density of the scatter increasing from blue to red in range of 0–1. 
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4.2. Evaluation of LUE-GBRT 

The comparison between ground-measured and estimated daily GPP 
based on leave-one-out cross-validation at all 25 grassland EC sites 
demonstrates that the estimated daily GPP from LUE-ML is much closer 
to the EC observations than those of the five individual Ws-based LUE 
models (Figs. 5 and 6). The KGEs of the estimated versus observed daily 
GPP for LUE-ML models are all much higher than those of any individual 
LUE model. The biases of the estimated versus observed daily GPP for 
LUE-GBRT, LUE-RF, and LUE-ERT are approximately 0 g C m− 2 d− 1, 
which are lower than those of any individual LUE model. The LUE-GBRT 
has the highest R2 (0.88) and KGE (0.85), and the lowest bias and RMSE 
are 0 and 1.4 g C m− 2 d− 1 for the leave-one-out cross-validation, 
respectively. For daily estimates and observed GPP from the two LUE- 
ML models (LUE-RF and LUE-ERT), the leave-one-out cross-validations 
have a similar R2 (0.75), RMSE (2.0 g C m− 2 d− 1) and bias (0 g C m− 2 

d− 1). The KGE of LUE-RF (0.78) is slightly higher than that of LUE-ERT 
(0.77). The results from the cross-validation indicate that the LUE-GBRT 
model is stable and has the potential to simulate grassland GPP over the 
CONUS. 

Our evaluation parameter (KGE) between the observed and esti
mated GPP among LUE-GBRT and the other 10 GPP models at all 25 EC 
sites indicate that the LUE-GBRT model outperforms the other models, 
with the highest KGE ranging from 0.28 to 0.90 at all sites (Fig. 7). At the 
US-ARc site, the LUE-GBRT model performs best (KGE = 0.90). Espe
cially for the US-A32 site, all GPP models illustrate relatively lower 
performance with KGE (0.01–0.28). In contrast, LUE-GBRT for the US- 
A32 site has an accuracy of GPP estimates with the highest KGE of 
0.28. To further investigate the capacity to simulate GPP, the site-based 
evaluations indicate that although current GPP estimates from LUE- 
GBRT model may exhibit biases (Fig. 8), LUE-GBRT estimates appear 
more accurate on seasonal GPP variations at all sites. 

4.3. Mapping of grassland GPP over the CONUS 

The amount of grassland GPP increases from spring (MAM) to sum
mer (JJA), and then decreases from the summer (JJA) to winter (DJF). In 
summer (JJA), the mean GPP is 3.34 g C m− 2 d− 1 (Fig. 9). It is much 
higher than that of spring (MAM, 1.55 g C m− 2 d− 1), fall (SON, 1.43 g C 
m− 2 d− 1), and winter (DJF, 0.31 g C m− 2 d− 1). For all seasons, the 
grassland GPP increases from west to east. The multiyear (2019–2021) 
mean GPP from LUE-GBRT, GBRT, LUE-fEF, LUE-fVPD, LUE-fLSWI, LUE- 
fSM, and LUE-fLST present consistent spatial patterns over the CONUS 
(Fig. 10). The annual grassland GPP derived from the all seven models 
presents obvious increases from the west to the east. Higher GPP was 
found in central CONUS. Regardless, the seven GPP estimates show 
discrepancies and high uncertainties (Fig. 10). The domain-average 
multiyear mean GPP of the seven models ranges from 1.66 to 3.52 g C 
m− 2 d− 1. The mean estimate of the grassland GPP from LUE-GBRT is 

1.66 g C m− 2 d− 1. LUE-fEF GPP is the closest estimate to LUE-GBRT GPP, 
with an annual average GPP of 1.83 g C m− 2 d− 1. For the LUE-fVPD, GPP 
estimates are higher than those from other GPP models, with an annual 
GPP of 3.52 g C m− 2 d− 1. 

5. Discussion 

5.1. Performance of LUE-GBRT 

5.1.1. Capacity for LUE-GBRT to simulate GPP 
Water constraints have affected grassland GPP estimates greatly. By 

integrating multiple water constraints including fEF, fVPD, fLSWI, fSM, and 
fLST, LUE-GBRT not only yields more accurate and robust grassland GPP 
estimates with a higher KGE (0.85) than the five individual Ws-based 
LUE models for all sites (Figs. 5 and 6), but also preserves physical un
derstanding within the LUE model for estimating GPP. These evaluation 
results at the site scale showed that LUE-GBRT model provides more 
reliable support for grassland GPP estimates while capturing the sea
sonal variations effectively. This was mainly because LUE-GBRT model 
integrated all kinds of water constraints, which better reflecting the 
effect of water constraints to grassland GPP estimates. 

LUE-GBRT model is coupled with multiple water constraints to 
improve the accuracy of GPP estimates. At all 25 EC sites, the five 
physical models overestimated the grassland GPP slightly based on the 
LUE model with a single Ws. Meanwhile, LUE-GBRT better fits the 
variation in GPP observations by coupling different kinds of water 
constraints. It presents a superior simulation capacity for capturing 
temporal features of GPP variations at the site scale. In addition, the 
annual GPP of LUE-GBRT presents the consistent spatial variation with 
that of five individual models, which was described by the results of the 
previous report (Boyte et al., 2017). Substantial previous studies have 
reported that LUE models had integrated two or more water constraints. 
For example, Terrestrial Carbon Flux model (TCF) includes VPD and SM 
to cover the water constraints (He et al., 2016). Joiner and Yoshida 
(2020) used VPD and SM as the input features of ML method to partic
ipate in the prediction of the realized LUE. These LUE models integrating 
multiple water constraints appeared a better performance than the 
models that only considered a single Ws, which is consistent with our 
results. GPP estimates of LUE-GBRT are the multiplication of the 
absorbed PAR and actual LUE. The actual LUE is downregulated from 
εmax by environmental conditions, including GBRT-based Ws coupling 
various water constraints. Therefore, LUE-GBRT, as a hybrid model, not 
only makes use of the accuracy advantage of ML, but also preserves the 
physical foundations of the LUE model. 

5.1.2. Comparison with pure GBRT 
To compare LUE-GBRT and ML approaches, we estimated GPP using 

the GBRT, as well as RF and ERT model at all 25 sites. The GPP estimates 
from GBRT, RF, and ERT against EC observations at all sites by leave- 

Fig. 6. Scatterplots of EC-based and predicted GPP estimates from three ML-based LUE models (LUE-GBRT, LUE-RF and LUE-ERT) based on the leave-one-out cross- 
validation. The color bar represents the density of the scatter increasing from blue to red in range of 0–1. 
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one-out cross-validation showed that GBRT yields approximately similar 
accuracy with the bias of 0 g C m− 2 d− 1, RMSE of 1.4 g C m− 2 d− 1, R2 of 
0.88, and KGE of 0.84 among the ML models (Fig. 11). The accuracy of 
ERT is slightly lower than that of the other two models. In comparison 
with GBRT at site scale, the LUE-GBRT has similar accuracy with a KGE 
of 0.85, an R2 of 0.88, an RMSE of 1.4 g C m− 2 d− 1 and a bias of 0 g C m− 2 

d− 1 (Fig. 6). 
To test the stability and inspect the predictive capacity of extreme 

events for LUE-ML coupling models, we also compared the accuracy of 
LUE-GBRT and GBRT in extreme case of low NDVI (Fig. 12). Although 
LUE-GBRT has an overall similar accuracy with GBRT, in the extreme 
cases at the low NDVI level (0 < NDVI < 0.3), the LUE-GBRT model 
outperformed the traditional ML method (i.e., GBRT) under that 
extreme condition (Fig. 12). For vegetation-sparse cases (0 < NDVI <
0.3), the KGE of GBRT is 0.55, while that of LUE-GBRT is 0.71. The LUE- 
GBRT increases R2 of GBRT from 0.61 to 0.81, and decreases the RMSE 
from 0.7 to 0.5 g C m− 2 d− 1. The results indicate that LUE-GBRT yields 
better performance than GBRT, emphasizing the capacity of the LUE- 
GBRT model in simulating GPP in a particular extreme case. In sum, 
LUE-GBRT not only integrates multiple water constraints but also im
proves our understanding of GBRT-based Ws in the LUE framework. 

We also investigate the spatial difference between the grassland GPP 
from LUE-GBRT and GBRT (Fig. 13). With sparse vegetation, the dif
ference is larger. Previous studies reported that the pure GBRT method 
overestimated global grassland GPP with a bias of 0.59 g C m− 2 d− 1 (Bai 
et al., 2021), which is consistent with our results (Fig. 13). This may be 
attributed to the GBRT structure. Our LUE-GBRT may have better per
formance on the spatial distribution of grassland GPP over the CONUS. 

5.1.3. Impact of input variables on LUE-GBRT 
The five water constraints (i.e., fEF, fVPD, fLSWI, fSM and fLST) have 

different contributions to the LUE-GRBT model determined by SHAP 
values (Fig. 14). Both fEF and fLSWI are important factors for LUE-GBRT. 
This may be due to the fact that actual LUE is less sensitive to atmo
spheric water deficit (e.g., VPD) and soil water indicators (e.g., SM) than 
to plant water indicators (e.g., EF and LSWI) (Zhang et al., 2015b). fEF is 
estimated using the ratio of actual LE to Rn because the energy assigned 
to evaporation leads to a stronger water stress (Chen et al. 2014). The 
temporal variations of water stress can be captured by LSWI at seasonal 
scale (Xiao et al., 2004). Additionally, previous studies found that EF, 
SM and VPD, respectively, explained 36%, 6%, and 20% of LUE monthly 

variations (Zhang et al., 2015b), which demonstrated that water con
straints related to photosynthesis are complicated (Churkina et al., 
1999). Therefore, these water constraints contribute to the LUE-GBRT 
GPP estimates. 

Because fLST appears the least important constraint factor in the LUE- 
GBRT model, can we remove it from LUE-GBRT? Fig. 15 shows the 
validation of LUE-GBRT GPP estimates coupling four water constraints 
(fEF, fVPD, fSM and fLSWI) against EC GPP at all 25 sites using leave-one- 
out cross-validation. By comparing the performance of LUE-GRBT 
through the five factors (fEF, fVPD, fSM, fLSWI and fLST) (Fig. 6), the R2 

decreases from 0.88 to 0.70, RMSE increases from 1.4 to 2.2 g C m− 2 

d− 1, and KGE decreases from 0.85 to 0.76. Overall, although the 
contribution of fLST to GPP estimates from LUE-GBRT is relatively small, 
fLST cannot be ignored because of its significant contributions in 
improving model accuracy. This may be explained by the fact that NDVI 
and LST are relevant to the ground surface resistance to LE (Jiang and 
Islam 1999), which are closely related to photosynthesis. 

5.2. Uncertainties 

LUE-GBRT has advantages on GPP estimation, amid some un
certainties due to model structure, data source and scale mismatches. 
LUE models abide by LUE logics (Eq. (1)) but have different kinds of 
structures affecting model performance (Yuan et al. 2014). For example, 
the LUE component in VPM was the multiplication of εmax and envi
ronmental constraints (Xiao et al., 2004), while that of EC-LUE was 
minimum value of Ts and Ws (Yuan et al. 2007). In addition, we used the 
inversion Ws as the target variable of GBRT to estimate Ws in the LUE 
model (Eq. (1)). The structure of the LUE model could influence the 
calculation of Ws derived from EC-based GPP. In addition, ML models 
rely more on the in situ parameter and EC GPP estimates, which results in 
overfitting and introduces uncertainties (Yang et al. 2007). 

Complex input data sources will introduce uncertainties in LUE- 
GBRT for GPP estimates. The input datasets in LUE-GBRT include 
MODIS reflectance, CCI SM, Daymet meteorological reanalysis data, and 
NLDAS LST data. The accuracies of input datasets could cause large 
uncertainties (RMSE = 1.6 g C m− 2 d− 1) in GPP estimates (Heinsch et al. 
2006). Because there are no long-term, all-weather, high-resolution 
satellite SM and LST productions over the CONUS available, we only 
used the bilinear interpolation to downscale the SM and LST, which will 
lead to large uncertainties in GPP estimates. In addition, validation data 

Fig. 7. Diagram of the evaluation parameter (KGE) comparison among 11 GPP models (LUE-GBRT, LUE-RF, LUE-ERT, GBRT, RF, ERT, LUE-fEF, LUE-fVPD, LUE-fLSWI, 
LUE-fSM, and LUE-fLST) at all 25 EC sites. The color bar represents the values of KGE in range of 0–1, and the numbers are the values of KGE. 
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can also lead to some uncertainties. Although EC observations have been 
broadly accepted as good references for validating GPP estimates, EC 
GPP also has uncertainties because it is derived from NEE values by 
nighttime partitioning and gap-filling, which can take 10–30% errors 
into model accuracy (Reichstein et al. 2005). 

The spatial scale mismatch of different datasets is another source of 
uncertainties in GPP estimation. First, the coarse (e.g., NLDAS LST/CCI 
SM, 12.5/25 km) and moderate spatial resolution remotely sensed and 
meteorological reanalysis data (e.g., MODIS reflectance/DAYMET data, 
500 m/1 km) have an obvious scale mismatch. Second, the EC 

Fig. 8. Temporal variations in estimated and EC GPP from 25 EC sites. The solid lines and black dots represent the GPP estimates of 11 models (LUE-GBRT, LUE-RF, 
LUE-ERT, GBRT, RF, ERT, LUE-fEF, LUE-fVPD, LUE-fLSWI, LUE-fSM, and LUE-fLST) and EC GPP observations, respectively. 
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measurements represent a flux as integration over the EC footprint with 
a longitudinal length in the scale range from 100 to 2000 m (Baldocchi 
et al. 2001; Chu et al. 2021; Turner et al. 2003). Third, the scale 
mismatch also exists between the EC observations and gridded data, 
which could introduce large uncertainties for estimating GPP. 

5.3. Merits and limitations of the LUE-GBRT 

Compared to the conventional GPP models, LUE-GBRT has two 
merits. Compared with individual Ws-based LUE models, LUE-GBRT 
inherits the generalization ability of ML methods to improve the per
formance of LUE models and has higher accuracy than individual 
physical LUE models. Additionally, LUE-GBRT model can improve the 
accuracy of GPP estimates by coupling different water constraints. This 
may be attributed to the fact that no indicator is found to explain all the 
water constraints as much as expected. Compared with ML methods, 
LUE-GBRT carry a strong physical process on photosynthesis, and 

outperforms ML method for sparse vegetation. ML methods upscale the 
EC measurements from site to regional/global scales directly, whereas 
LUE-GBRT contains a LUE framework that considers GPP as the multi
plication of the absorbed PAR and actual LUE. Actual LUE is referred as 
the efficiency of fixing carbon from absorbed light energy through 
photosynthesis (Monteith 1972). Our strategy is based on a promising 
path through coupling the physical constraints and ML methods to es
timate GPP. 

Nonetheless, LUE-GBRT also has distinct limitations. First, LUE- 
GBRT framework needs a large number of representative training 
dataset to estimate Ws in the LUE model. If the samples are not sufficient 
for a region, LUE-GBRT could result in large biases in GPP estimates. In 
addition, the quality of samples could affect the accuracy of LUE-GBRT. 
Second, the assumption of constant εmax may not be very accurate 
because of the temporal and spatial variability of grassland εmax 
(Running et al., 2004). Third, LUE-GBRT includes five different Ws 
which might contain similar information and are highly correlated. For 

Fig. 8. (continued). 

Fig. 9. Seasonal spatial patterns of grassland GPP means for LUE-GBRT over the CONUS during 2019–2021. MAM (March, April, and May) represents spring; JJA 
(June, July, and August) represents summer; SON (September, October, and November) represents fall; DJF (December, January, and February) represents winter. 
The color bar represents the values of GPP estimates increasing from red to green. 
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example, both LSWI and EF reflect leaf water status (Zhang et al., 
2015b). We will explore their differences and select the optimal Ws in 
the near future. Fourth, because of excluding the saturation of canopy 
photosynthesis under high incident PAR as suggested by Ibrom et al. 
(2008), our coupling model might ignore the effect of light saturation 
from hourly to daily scale and overestimate GPP estimates under clear 
sky. Finally, we did not distinguish the direct and diffuse radiation in 
LUE-GBRT. Previous studies found that direct radiation causes a lower 
LUE than diffuse radiation, which could influence the accuracy of εmax 
(Wang et al., 2018b). 

6. Conclusions 

Satellite, hydrological and meteorological data need to be applied to 
estimate GPP in LUE model through integrating the Ws by GBRT, whose 
target variable (i.e., inversion Ws) is derived from EC-based GPP. It 
means this approach can not only be used at point scale, but also for 
regional simulation. Therefore, we proposed a novel LUE-GBRT frame
work by coupling a LUE model with an ML-based Ws for estimating 
grassland GPP over the CONUS. At the site level, LUE-GBRT was supe
rior to all individual Ws-based LUE models, and accurately captured the 
temporal variations in grassland GPP. LUE-GBRT also performed better 
than GBRT in the extreme case at sparse vegetation levels. At regional 
scale, LUE-GBRT also captured the spatial variation of grassland GPP 
over the CONUS consistent with other models, where GPP estimates 
increased from the west to the east. We advocate that LUE-GBRT makes 
ML complementary to the physical-based LUE framework to choose a 
more suitable junction between GPP physical process and model 
accuracy. 

Fig. 10. Maps of average annual grassland GPP during 2019–2021 in the 
CONUS for LUE-GBRT, GBRT and five individual models (LUE-fEF, LUE-fVPD, 
LUE-fLSWI, LUE-fSM, and LUE-fLST). The color bar represents the values of GPP 
estimates increasing from red to green. 

Fig. 11. Scatterplots of daily EC-based and predicted GPP for three pure ML models (GBRT, RF, and ERT) at 25 EC sites using leave-one-out cross-validation. The 
color bar represents the density of the scatter increasing from blue to red in range of 0–1. 

Fig. 12. Scatterplots of daily GPP observations and estimates for LUE-GBRT and pure GBRT in the extreme case of 0 < NDVI < 0.3 at 25 EC sites. The color bar 
represents the density of the scatter increasing from blue to red in range of 0–1. 
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