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Radiative transfer (RT) simulation based on reconstructed 3-dimensional (3D) vegetation scenarios 
can promote the validation and development of various retrieval algorithms to monitor the growing 
states of vegetation in large-scale, multi-angular, and multi-sensor ways. The radiation transfer model 
intercomparison (RAMI) has made great contributions to providing abstract and actual 3D vegetation 
scenarios, and to the benchmarking of RT models under developed evaluation systems. To date, RAMI has 
been updated to the fifth phase (RAMI-V). In this study, we try to implement explicit conversion from all the 
RAMI-V scenes to generic structural models in the Wavefront OBJ format. These reconstructed scenes are 
applied in the LESS RT model to probe the ability of its RT solvers to simulate all sorts of remote sensing 
observations and radiative budget, including the bidirectional reflectance factor (BRF), albedo, fraction 
of photosynthetically active radiation absorbed by vegetation, and threshold hemispherical photograph 
(THP). BRF simulations fully explain angle effects as well as variation and robustness of the normalized 
difference vegetation index. Energy conservation is well validated between simulated absorption and 
albedo. The gap fraction derived from THP is analyzed in directional and total situations. In addition, this 
paper guides us how to simplify basic geometries and tune the illumination resolution (0.02 is optimal) 
to balance the simulation accuracy and efficiency. The generic structural models and reliable simulation 
results can be referenced by other RT models and retrieval algorithms.

Introduction

Radiative transfer (RT) models are useful to quantify the spread-
ing mechanism of electromagnetic radiation by describing inter-
actions between electromagnetic radiation and vegetation 
canopies [1]. They play an essential role in the interpretation of 
remote sensing (RS) observations [2], which has promoted the 
validation and development of various retrieval algorithms for 
key bio-geophysical properties of vegetation [3–5]. In addition, 
RT models are capable of guiding field experiments [6,7] and 
the design of remote sensors [8].

The primitively proposed 1-dimensional (1D) RT models 
(e.g., SAIL [9]) feature a few parameters and low computational 
cost. They simplify vegetation canopies as one or multiple hori-
zontal homogeneous layers (e.g., grasses), which cannot accu-
rately represent spatial heterogeneity of canopies. Therefore, 
geometric–optical (GO) models [10,11] were introduced to 
describe heterogeneity among the discrete crowns and clumping 
effects at various scales. Due to the assumption of single regular 
crown shape, it is difficult for GO models to consider structural 
differences between the crowns of mixed species (e.g., agro-forestry 

scenarios [12]). In order to break through the restrictions of 
1D RT models and GO models, 3-dimensional (3D) RT models 
were proposed with the computational performance gradu-
ally improved. Most 3D RT models are mainly developed based 
on radiosity (e.g., RGM [13] and RAPID [14]) or ray tracing 
(e.g., DART-Lux [15] and LESS [1]) methods. The path tracing 
technology is commonly used in those RT models based on ray 
tracing methods. Some path tracing modes, including the for-
ward path tracing (FPT) mode, the backward path tracing (BPT) 
mode, and the bidirectional path tracing (BDPT) mode, are 
selected to satisfy different simulation demands. The FPT mode, 
which is applied in Rayspread [16] and FLiES [17], produces 
light paths from the light source to the sensor. For accurate 
directional bidirectional reflectance factor (BRF) simulations, 
the photon spread method [18] is proposed by adding light 
paths contributing to particular view directions, and introduced 
by Rayspread later with a secondary ray mechanism. However, 
the FPT mode is not suitable for image simulations due to quan-
tities of invalid light paths. Depending on reversibility of light 
paths, the BPT mode is used by DIRSIG [19] and VBRT [20] to 
simulate images more efficiently by producing paths from the 
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sensor to the light source. In order to deal with simulations of 
all kinds of RS signals, LESS considers both FPT and BPT 
modes. In addition to FPT and BPT modes, the BDPT mode is 
adopted by DART-Lux to improve simulation efficiency com-
pared to standard DART, which employs the discrete ordinates 
method. The BDPT mode strengthens the connection between 
the light source and the sensor by linking the vertices of FPT 
paths to the vertices of BPT paths. The 3D RT models can take 
more detailed canopies into account with fewer assumptions. 
Thus, they are frequently used to produce datasets as a standard 
for validating other models [3,12,21] or retrieval algorithms of 
RS products [22–24].

Although there are so many advantages, a common chal-
lenge for all the 3D RT models is to digitalize those real scenes 
into the virtual world, especially for vegetation scenes. Most 
vegetation structures are varied and complex. It is very con-
venient to create fine but virtual plant models using L-systems 
[25] and other procedural generation software. Meanwhile, 
this method requires prior plant knowledge to control the 
generation of vivid plants. Another explicit tree modeling 
method reconstructs detailed architecture of wood and foliage 
from images [26] or terrestrial LiDAR (Light Detection And 
Ranging) point clouds [27]. Nevertheless, high-quality plant 
models are difficult to be directly used to build large-scale 
scenarios due to the heavy memory burden. The turbid 
medium method implicitly describes canopy structure in the 
form of voxels [28] or geometric primitives [29,30] with lim-
ited structural and radiometric properties. Combined with 
airborne LiDAR point clouds, the turbid medium method can 
be easily extended to larger scales [28]. Although the turbid 
medium method demands fewer computing resources, its RT 
accuracy cannot maintain good consistency with the explicit 
methods with respect to complex actual vegetation scenarios 
[31]. For the explicit modeling methods, the Wavefront OBJ 
(https://www.fileformat.info/format/wavefrontobj/egff.htm) 
is a popular plain text format, which can unambiguously 
describe the geometric structure with several groups of verti-
ces and faces. Therefore, the OBJ format is commonly sup-
ported by many 3D RT models.

To approximate structural realism, whether explicit or implicit 
modeling methods, they are inseparable from field measurements 
(e.g., LiDAR point clouds, spectra, tree positions, tree species, 
etc.), whereas field experiments are generally time-consuming 
and labor-intensive. Since the end of the last century, the radiation 
transfer model intercomparison (RAMI) exercises have been 
devoted to comparing and assessing all kinds of RT models, from 
the first to the fifth phase, under the same well-controlled cir-
cumstances. To be compatible with different RT models, RAMI 
phases provide both simple abstract canopies [2,32–34] and com-
plex actual plant stands [35]. Using these available scenarios, 
which constitute abundant and precious datasets (including struc-
ture, spectra, and reference simulations), can greatly relieve exper-
imental pressures. Hence, in recent decades, RAMI scenes and 
reference data have been used in many studies [36–42].

In fact, with regard to using RAMI scenes, the structural 
transformation becomes a stumbling block for the following 
reasons. First, the structure of RAMI scenes is abstractly 
described as specific shapes. The formats of these shapes are 
very clearly defined, but the ways to parse them are customized. 
Since various RT models employ different methods to build 
scenes, these shapes will be processed or simplified in different 
ways, which gives rise to structural discrepancies and, more 

seriously, yields deviations of simulations [33,43]. For example, 
the disc-shape leaves can be replaced by any-sided regular 
polygons in the explicit methods, while in the implicit meth-
ods, they can be described as a group of statistical parameters, 
such as the foliage area volume density and leaf angle distri-
bution. Second, the coordinate systems and structural defini-
tions of the individual tree components in each scene are 
slightly different. The origin of the RAMI coordinate system 
can be located at the center or left lower corner. As for struc-
tural definitions, the shape of a branch can be defined as tri-
angular facets or connected cylinders. These differences among 
the scenes make it difficult to batch transformation via pro-
grams. Third, as the structure of the tree models becomes more 
and more complex, the storage size increases the computa-
tional burden of simulations. For instance, a simple shoot is 
composed of hundreds of needles, which leads to huge memory 
usage when loading an entire coniferous tree.

With the advent of RAMI-V, the complexity and realism of 
the scenes have further increased, while more measurements 
have been asked for. The objective of this paper is to probe the 
performance of the LESS model (http://lessrt.org/), a newly 
proposed and well-validated 3D RT model, in simulating vari-
ous RS observations and radiative budget in the RAMI-V frame-
work, which we have achieved by finishing the following:

• � Transforming the structural definitions of all the RAMI-V 
scenes into the same specific coordinate system in the 
standard and general Wavefront OBJ format;

• � Simulating most of the measurements demanded by 
RAMI-V and completing their analysis; and

• � Quantifying the influence of the structural simplification 
and illumination resolution on simulations.

Materials and Methods

Components of RAMI-V scenes
Extended from the fourth phase of RAMI (RAMI-IV), the 
scenes provided by RAMI-V are also divided into 2 types, with 
30 abstract and 8 actual canopies in total. The former consists 
of 14 homogeneous and 16 heterogeneous scenes, while the 
latter are all heterogeneous.

Canopy structure
As shown in Table S1, the abstract scenes in Groups (a) to (d) 
are simply filled with disc-like leaves. They accumulated through 
the past RAMI phases. Even though the actual scenes in Group 
(e) have a realistic look, they are still virtual, per se, because the 
individual trees composing them were constructed by proce-
dural generation software (e.g., xfrog [44] and arbaro [45]) on 
the basis of in situ inventory data. The 2 scenes in Group (f) 
were newly proposed in RAMI-V. HET50 [46] described the 
architecture of broad-leaved overstory and grassy understory 
in detail, and the stands within it were virtually generated by 
OnyxTREE (www.onyxtree.com). Different from previously pub-
lished scenarios, HET51 [27] became the first one that directly used 
the terrestrial LiDAR point clouds to reconstruct all the trees 
with the help of the TreeQSM [47] and FaNNI [48] algorithms, 
which, to some extent, was also structurally closest to reality.

Although LESS provides both explicit (facet) and implicit 
(turbid medium) modeling methods, the explicit canopy 
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structure in the Wavefront OBJ format was used to maintain 
the simulation accuracy with fewer assumptions. Both abstract 
and actual scenes are made up of many basic geometries, 
including triangles, discs, cylinders, ellipsoids, and circular 
truncated cones. In order to adapt to computers, some geom-
etries have to be simplified. As illustrated in Fig. 1A, the disc, 
cylinder and circular truncated cone are replaced with a regular 
octagon, hexagonal prism, and hexagonal prismoid, whereas 
the ellipsoid is split into 2 hexagonal pyramids. It is notable 
that the surface area of all the simplified geometries is the same 
as that of the original geometries to keep the projected area 
basically unchanged [49]. As a result, their scale is unavoidably 
enlarged. Specifically, the cylinder and circular truncated cone 
consist of a lateral face and 2 base faces, but we only maintain 

the lateral area unchanged because the lateral face is more 
important than the base face for intercepting the sunlight.

The structure of an entire scene hinges both on the com-
ponents (e.g., leaf/shoot, stem, branch, twig, etc.) and on the 
positions of the individual trees. It can be reconstructed through 
3 stages of replication (Fig. 1). At the first stage, 3D transfor-
mation, including rotation, translation, and scaling, is applied 
to the simplified basic geometries, and then we can obtain 
various individual tree components (Fig. 1B), among which 
shoots and leaves are 2 kinds of foliage representation corre-
sponding to coniferous and broad-leaved trees. The goal of the 
next stage is to generate the full foliage of a tree using a shoot 
or leaf as a template. Unlike the basic geometries, the foliage 
templates are limited to being transformed rigidly due to the 

A Basic 
geometries

Simplification

Shoots Leaves Woods

Stage 1: rotation, translation, and scaling

Stage 2: rigid
transformation 

x (left)

z (backward)

y (up)

o (center)

Applying the OBJ 
coordinate system 

Stage 3: instancing

B Components

C Individual treesD An entire scene 
Fig. 1. The 3 stages of replication implementing reconstruction from (A) basic geometries to (D) an entire scene. The OBJ models in (A), (B), and (C) were visualized using 
CloudCompare (http://www.cloudcompare.org/). The entire scene in (D), including 3D viewing and 2D distribution with individual tress (circles in different colors), was 
displayed in LESS.
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allometry. Before the last stage, individual trees (Fig. 1C) 
should be located in the OBJ coordinate system, which was 
adopted by the model coordinate system (MCS) of LESS. It is 
convenient to transform the MCS of RAMI into the OBJ coor-
dinate system because both are right-handed systems. The 
“instance” technique utilized by LESS is able to copy all kinds 
of individual trees to the planting coordinate system (PCS) of 
LESS in a way, which supports rotation of 1 degree of freedom 
(DOF) and translation of 3 DOFs. Rather than load all the 
trees at one time, the “instance” technique can greatly lighten 
burden on storage and computation. Although the right-handed 
PCS of RAMI-V has 2 forms, with the origin at the center or 
lower left corner, according to the detailed information of each 
scene provided by the RAMI website, it is not hard to unify 
them to the left-handed PCS of LESS. By the way, the LESS 
GUI greatly helps in checking if the 2-dimensional (2D) dis-
tribution (Fig. 1D) of the individual trees corresponded to that 
displayed on the RAMI website.

Spectral characteristics
Various architectural components of vegetation scenes are 
bound to different spectral characteristics (e.g., reflectance and 
transmittance; Fig. 2). The transmittance of background and 
woody elements were defaulted to be zero. For those compo-
nents that featured Lambertian scattering properties, 2 faces 
had the same single reflectance. The semi-empirical RPV model 
[50] was introduced to represent the directional reflectance 
characteristics of different types of backgrounds, such as Group 
(b) in Table S1. There were 13 spectral bands from the visible 
to near-infrared (NIR) spectral domains selected to cover the 
bands designed for the 3 satellite instruments: Sentinel-3 OLCI, 
Terra MODIS, and Sentinel-2 MSI. The bands O03 (433.6 to 
452.3 nm), O06 (551 to 569.8 nm), O08 (655.9 to 674.6 nm), 
and O17 (851.2 to 880 nm) composed the intersection set of 
bands from these instruments. Naturally, they were chosen to 
serve as the blue, green, red, and NIR bands, respectively.

Illumination and observation
Two illumination conditions were adopted by RAMI-V in order 
to satisfy different measurements. One of them is direct light, 

which emulates clear days and depends on the specific sun 
geometry in the form of the sun azimuth angle (SAA) and sun 
zenith angle (SZA). For most measurements, all the abstract 
scenes share 21 sun geometries, while the sun geometries of 
the actual scenes differ in number and angle. Another illumi-
nation condition is diffuse light, which emulates cloudy days, 
and in LESS, it can be controlled by a group of proportions 
where a proportion of 1 means white sky, and 0 means black 
sky. The measurements defined by RAMI-V require various 
observation sensors and geometries formed by the view azi-
muth angle (VAA) and view zenith angle (VZA) to be as similar 
to the actual RS observations as possible. Take BRF as an exam-
ple, the BRFs in the principle plane and orthogonal plane are 
sampled at 2° VZA intervals. Specifically, as a new measure-
ment, satellite BRFs follow the observation time of the different 
satellite instruments, when both the sun and view geometries 
change synchronously.

Other RAMI scenes
Since the reference data of RAMI-V exercise have not been 
released, the past RAMI phases were also used to implement 
validation in the Validation with ROMC and Rayspread section. 
An abstract scene HET01_DIS_UNI and an actual scene HET07_
JPS_SUM (Table 1) were respectively selected from RAMI-3 
and RAMI-IV. The structural definitions of these 2 represent-
ative scenes are the same as those given by RAMI-V. Therefore, 
we employed the same method described in Fig. 1 to recon-
struct them. However, it is worthwhile to notice the differences 
in the coordinate system. The positive x-axis directs to the 
north in the past RAMI phases, while the positive y-axis directs 
to the north in RAMI-V. Subsequently, the VAA and SAA are 
both counted from the north in each RAMI phase, but vary 
counterclockwise in the past RAMI phases while clockwise in 
RAMI-V. In addition, the number of the bands and sun geom-
etries are also different from RAMI-3 to RAMI-V.

LESS RT model
As one of the 3D RT models, LESS was developed based on the 
ray tracing algorithm. LESS has been validated carefully by both 
the RAMI Online Model Checker (ROMC [51]) reference data 
and field measurements [1]. To date, LESS can simulate various 
RS observations and radiative budget, such as spectral images 
[28,36,52], BRFs [21,53], fluxes [7], the fraction of photosyn-
thetically active radiation (FAPR [54]) absorbed by vegetation, 
and multi-platform LiDAR point clouds.

LESS provides 2 modes to simulate various RT observations 
and radiative budget demanded in RAMI-V (Table 2), includ-
ing the FPT mode and BPT mode. The FPT mode can trace 
photons from the light sources to the sensors, which is conven-
ient to simulate the albedo, FPAR, and BRF in the entire scene, 
particularly where the view geometry changes frequently. The 
BPT mode traces photons from the sensors (pixels) to the light 
sources in reverse, which is better for simulating all kinds of 
RS images. As seen from Table 2, RAMI-V demands a number 
of measurements. The flexible and easy-to-use Python interface 
wrapped by LESS can help batch simulations.

FPT in simulating albedo, FPAR, and BRF
In the FPT mode, LESS employs the actual and virtual photons 
to solve different RT problems. The actual photon is produced 
from a light source in a specific incident direction with power 

Fig. 2. The spectral characteristics of each component in the scene HET07_JPS_SUM. 
The asterisk in the legend indicates the transmittance.
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P0(λ) in wavelength λ. During propagation, the photon will 
intersect with the landscape elements and be scattered (reflected 
and transmitted). After intersection of Q times, the power of 
the photon will become

where f(q, wi, wo, λ) is the bidirectional scattering distribution func-
tion (BSDF) at the qth intersection point, where the photon is 
scattered from incident direction wi to outgoing direction wo, and 
pq is an empirical parameter that determines the probability of 
reflection or transmission. When pq equals 0.5, half of the photons 
are reflected and the other half are transmitted, which is a trick 
that gives rise to qualitative (power) change rather than quantita-
tive (number) change. In other words, a photon should have been 
reflected and transmitted at the same time, and 2 new photons 
with less power are generated. However, to avoid an exponen-
tial increase in the photon number, LESS assumes that a photon 
will choose to be either reflected or transmitted every time, 
and employs Monte Carlo sampling to achieve the approximate 
effect.

LESS places a virtual hemisphere Ω above the scene to receive 
escaped photons, and the albedo can be easily computed using

where PQ ∈ Ω means the actual photons escape out of the virtual 
hemisphere, and Pscene(λ) is the power summary of all the actual 

photons that enter the scene from the top. When all the incident 
light is direct, the albedo corresponds to the measurement dhr. 
Conversely, when all the incident light is diffuse, the albedo 
corresponds to the measurement bhr.

FPAR is the ratio of the absorbed PAR (APAR) to the incident 
PAR, where APAR accumulates from the absorbed power 
PQ(λ) − PQ − 1(λ) for each intersection by being integrated from 
380 to 710 nm (PAR spectral region). FPAR can be shared by 
each canopy component as long as the classification label of 
each intersection point is recorded. Compared with the com-
putation of FPAR, the measurements fabs_fol and fabs_tot 
resulted from 5 individual PAR bands (O03, O04, O05, O08, 
and O10) rather than the continuous spectral region due to 
band limitation.

The virtual photon is excited by an actual photon and received 
by a specific virtual detector along a virtual direction. In other 
words, once the actual photon is not completely absorbed, a vir-
tual photon will be produced and sent to the virtual detector at 
every intersection point. Note that the virtual photons occluded 
by the landscape elements are invalid because they make no con-
tribution to the detector and their power will become zero. Given 
that the zenith angle of the jth detector is θj and the total power 
collected by the detector in a unit solid angle is Ij(λ), the direc-
tional BRF is derived from

Similar to FPAR, total BRF can be further divided by the clas-
sification label and scattering order. Take the measurements 

(1)PQ(�) = P0(�) ⋅

Q∏

q=1

[
�f
(
q,wi,wo,�

)
∕pq

]
,

(2)�(�) =

∑
PQ∈ΩP

Q(�)

Pscene(�)
, (3)BRF(�, �j) =

�Ij(�)

cos�j ⋅ Pscene(�)
.

Table 1. Description of the example scenes selected from the past RAMI phases. The SAAs were converted to the coordinate system adopted 
by RAMI-V. The nadir orthographical images were respectively recolored with the normalized radiance in the NIR band for HET01 and RGB 
channels (R = 661 nm, G = 551 nm, B = 442 nm) for HET07.

Scene ID Band SZA SAA Nadir orthographic image

HET01_DIS_UNI Red: 650 nm, NIR: 850 
nm

20°, 50° 0°

HET07_JPS_SUM B01 to B18: 442 nm to 
1,019 nm

36.6° 150.94°

D
ow

nloaded from
 https://spj.science.org on A

pril 27, 2023

https://doi.org/10.34133/remotesensing.0033


Zhou et al. 2023 | https://doi.org/10.34133/remotesensing.0033 6

brfpp and brfop, for example; their total quantities are distributed 
to the sub-components, including single scattering that occurred 
at the vegetation (co_sgl) or the background (uc_sgl) and multiple 
scattering (mlt). Regarding multiple scattering, the photons 
interacting twice or more with the landscape elements were 
considered in the computation of BRFs. As a consequence, the 
summary of BRFs from each sub-component should be equal 
to the total BRF, that is,

BPT in simulating BRF for MSI
Although FPT is good at simulating the BRFs over the entire 
scene under multiple view geometries, it is not suitable for the 
BRF simulation task for Sentinel-2 MSI (called brf_msi) because 
the observed target of brf_msi was not the entire scene but a 
part of the scene. It is confusing as to whether the reference 
plane (called the virtual plane in LESS) was still located above 
the scene like other BRF measurements. We believe that it is 
more reasonable that the field of view (FOV) of a satellite 
instrument is based on the ground rather than the top of the 
canopy. At least, the geographic position of the center of the 
observed target should remain unchanged. As seen from Fig. 
3, when the virtual plane is located at the top of the canopy, 2 

different regions, 1 (in blue) and 2 (in purple), are observed 
with the view geometry changing, which cannot promise 
positional consistency. Therefore, in order to finish this spe-
cial task, we switched to the BPT mode to simulate spectral 
images, and then calculated an average BRF of the clipped images 
as brf_msi depending on the view geometries. It is notable that 
OLCI and MODIS were barely influenced by the virtual plane 
due to the copies of the entire scene, where the light exceeding 
the scene from one side will enter the scene from the opposite 
side again.

In the BPT mode, the ray is sampled from each pixel and 
scattered by the landscape elements along an inverse trajectory. 
For the qth intersection point, suppose that the incoming and 
outgoing radiance in wavelength λ are Li(q, λ, wi) and Lo(q, λ, wo), 
respectively, where wi and wo are the corresponding incoming 
and outgoing directions. The rendering equation [55] below is 
used to establish a connection between Li(q, λ, wi) and Lo(q, λ, wo) 
if the emission is not considered:

where f(q, wi, wo, λ) represents BSDF and θi is the angle between 
wi and the normal at intersection point q. By doing recursion of 
Eq. 5 until the maximum scattering order is reached, we can 
obtain the radiance value of each pixel.

(4)
brfpp_total=brfpp_co_sgl+brfpp_uc_sgl+brfpp_mlt

brfop_total=brfop_co_sgl+brfop_uc_sgl+brfop_mlt
.

(5)Lo(q, �,wi)=∫4� f (q,wi,wo, �)Li(q, �,wi)
||cos�i

||dwi,

Table 2. Description of the RAMI-V measurements simulated by LESS.

Measurement Sub-measurement Definition Solver

bhr bhr White sky albedo FPT

dhr dhr Black sky albedo FPT

fabs fabs_fol FPAR absorbed by the foliage FPT

fabs_tot FPAR absorbed by the foliage  
and woody elements

brfazim brfazim BRF in an azimuthal ring FPT

brfpp brfpp_total Total BRF in the principle plane FPT

brfpp_co_sgl BRF in the principle plane for being singly 
scattered by the vegetation

brfpp_mlt BRF in the principle plane for being  
scattered twice or more

brfpp_uc_sgl BRF in the principle plane for being singly 
scattered by the background

brfop brfop_total Total BRF in the orthogonal plane FPT

brfop_co_sgl BRF in the orthogonal plane for being singly 
scattered by the vegetation

brfop_mlt BRF in the orthogonal plane for being  
scattered twice or more

brfop_uc_sgl BRF in the orthogonal plane for being singly 
scattered by the background

brf_sat brf_olci BRF for Sentinel-3 OLCI FPT

brf_modis BRF for Terra MODIS FPT

brf_msi BRF for Sentinel-2 MSI BPT

thp thp Threshold hemispherical photograph (THP) Ray intersection
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When simulating brf_msi in a fixed region, the correspond-
ing pixels contained in the simulated images under different 
observation conditions inevitably differed. As a consequence, 
the clip operation was applied to the original simulated image 
whose area was larger than 20 m × 20 m (Fig. 4). Given that a 
clipping mask was created with 4 corners, the initial coordinates 
(Fig. 4A) of any corner were (xmask, ymask). When the sensor 
orbited around the scene (Fig. 4B to D), the coordinates were 
updated with

where θs and φs are the zenith angle and azimuth angle of the 

sensor (their initial values are 0), 

[
cos�s − sin�s

sin�s cos�s

]

 is a rotation 

matrix, which means the image is rotated by angle φs counter-

clockwise, and 

[
1 0

0 cos�s

]

 means the y-axial size of one pixel 

is divided by cosθs because the larger θs is, the more objects can 
be observed.

THP and gap fraction
The original result of the measurement THP recorded the 
binary values (0/1), which identified sky visibility when looking 
up into 250,000 hemispherical directions from 9 given origins. 
Because THP was independent of the illumination conditions 
and spectra of architectural components, the computation of 
ray intersection was just enough. Although LESS did not embed 
the THP simulation function, thanks to the Python interface 
wrapped by LESS, it was still not hard to judge whether a ray 
sent from any position intersected with the landscape elements. 
Here, we attached more importance to how to exhibit the sim-
ulated results of THP. In fact, LESS had the ability to simulate 
multispectral digital hemispherical photographs, so a similar 
principle was applied to the exhibition of THP. Take equisolid 

angle (a.k.a. equal area) projection, for instance; Eq. 7 was 
used to project the hemispherical coordinates formed by 
the zenith angle θray and azimuth φray (note that the north is 
0) into the Cartesian coordinate system:

where uo and vo are the pixel coordinates relative to the origin 
(the center of the image), f is the focal length, and dx and dy 
are the physical size of the pixel.

In order to obtain the directional gap fraction from the THP 
simulations, we first partitioned the canopy into several layers 
by 5° according to the zenith angle. In each layer, the directional 
gap fraction can be computed by:

where Nlayer and Nsky are the numbers of rays that enter the layer 
and touch the sky, respectively. If we set one layer whose zenith 
angle ranges from 0° to 90°, Player turns into the total gap 
fraction.

Accuracy indicators
Three indicators were selected to assess the accuracy of the 
simulation results from different aspects. They are the coeffi-
cient of determination (R2), root mean square error (RMSE), 
and mean relative error (MRE), which can be used to evaluate 
the fitting accuracy, absolute accuracy, and relative accuracy, 
respectively. The larger R2 or the smaller RMSE and MRE indi-
cate the better agreement with the objective laws. Their com-
putation was implemented by the equation below:

(6)

[
x’
mask

y’
mask

]

=

[
1 0

0 cos�s

]

⋅

[
cos�s − sin�s

sin�s cos�s

]

⋅

[
xmask

ymask

]

,

(7)

r=2f sin

(
�ray

2

)

uo=
rsin�ray

dx

vo=
rcos�ray

dy

,

(8)Player =
Nsky

Nlayer

,

Top of canopy

Ground

Virtual
planeTop of canopy

Ground

Virtual
plane

Fig. 3. The different FOVs determined by the virtual plane at the top of canopy with the view geometry changing. Region 1 in blue is observed at nadir direction and region 2 
in purple is observed from the right side.
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where y is the simulated value, yP is the predicted value, yR is the 
reference value (e.g., the ROMC reference data, high-accuracy simu-
lated data), y is the mean, and n is the number of samples exclud-
ing those whose y values are zero in the MRE computation.

Results

BRF simulations
As RAMI-V involved numerous scenes and measurements, obvi-
ously, it is tedious to illustrate all the simulation results. Hence, in 
this section, the BRF and its related measurements were illustrated, 
including the BRF in the principal plane (brfpp), orthogonal plane 
(brfop), and azimuthal ring (brf_azim) as well as the BRF for the 
satellite instruments (brf_sat). In addition, 8 representative scenes 
were selected from different groups shown in Table S1, among 
which HOM29 and HET16 represent abstract scenes, HET07 is 
chosen as an example of coniferous forests, HET09 and HET15 
are combined to represent broad-leaved forests in different sea-
sons, HET14 is characterized by row structure, and the new actual 
scenes in RAMI-V are necessary to be included.

BRF in the principle plane and orthogonal plane
Figure 5 depicts examples of the brfpp and brfop simulations 
with specific sun geometries. The first and second rows of each 
scene show the proportions of 3 sub-components to total brfpp 
and brfop, respectively. The hot spot regions of most scenes are 
narrow and sharp, importantly, corresponding to the SZAs, 
except for HET09 and HET15, whose SZAs were set as even 
degrees whereas VZAs were all sampled at odd degrees. Let us 
pay more attention to brfpp_co_sgl, whose tendency basically 

agrees with brfpp_total in a large part of the scenes. Exceptionally, 
the brfpp_co_sgl area of HET15 and HET50 tends to shrink, 
and even the BRF values in the hot spot regions are not maxi-
mum. According to the simulated 4-component products 
shown in Fig. 6, it is not hard to find a reason that a larger area 
of illuminated vegetation can be observed at larger VZAs to 
explain these unusual cases. Compared with leaf-on HET09 
(Fig. 6A to C), the vertically elongated woody elements in 
HET15 (Fig. 6D to F) can be seen more in a large-angle view 
due to the loss of foliage. For HET50, its dominant vegetation 
is made up of grasses whose leaf angles obey the erectophile 
distribution [56] (Fig. 7) featuring similar interception regula-
tion to the woody elements.

The brfop curves in the middle panel show good symmetry 
except for HET14. This is because the observation direction is 
neither parallel nor perpendicular to the orientation of the 
plant rows in HET14 (imagine there is a VZA offset that makes 
the curve symmetrical). Although some of the brfop_total curves 
are bowl-shaped and some are bell-shaped, the brfop_uc_sgl 
curves are always bell-shaped (high in the middle and low on 
both sides). In most cases, the reflectance anisotropy of vege-
tation (brfop_co_sgl) is characterized by a bowl shape except 
that the shape of the brfop_co_sgl curve in HET51 is like a bell.

The bottom panel displays the BRF values of the total and 
sub-components at the hot spots in different bands. The first 
impression of these charts is that 2 peaks corresponding to 
green and NIR bands, as well as one obvious valley correspond-
ing to the red band, occur in the brfpp_total and brfpp_co_sgl 
simulations, which is dominated by the foliage spectra. HET15 
and HET50 are still exceptions, whose trends of brfpp_co_sgl 
depend on the non-foliage dominant vegetation: woody ele-
ments and grasses, respectively.

BRF in an azimuthal ring
The brf_azim simulations demanded a fixed VZA (equal to 
37°) and VAAs sampled at 2° intervals ranging from 0° to 358° 
or 1° to 359°. Figure 8 depicts several curves representing 
brf_azim simulations in the NIR (O17), red (O08), green 
(O06), and blue (O03) bands. Overall, the shapes of these 
4-band curves remain consistent with each other in every 
example scene. Moreover, the rank relationships of these curves 
between the 4 bands’ response to those charts are shown in the 
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Fig. 4. Clip operation on the simulated radiance images of the scene HET16_DIS_S2S for brf_msi. Under different observation and illumination conditions (B to D), the rotated 
masks (the pink diamonds) refer to the basically identical region in the initial state (A).
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HOM29_DIS_EM0 HET16_DIS_S2S HET07_JPS_SUM HET14_WCO_UND

HET09_JBS_SUM HET15_JBS_WIN HET50_SAV_PRE HET51_WWO_TLS

z59a146 z59a146 z41a147 z67a041

z56a153 z56a153 z37a089 z35a138

Fig. 5. The brfpp and brfop simulations in 8 representative scenes. For each scene, top to bottom displays the brfpp proportions of 3 sub-components, the brfop proportions 
of 3 sub-components, and the BRFs at hot spots in 13 bands. The area in different colors represents the proportions coming from the BRFs in the NIR band (O17). The label 
zXXaXXX means SZA = XX° and SAA = XXX°.
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bottom rows in Fig. 5. For example, in HET50, the brfpp_total 
values at hotspots are ranked in ascending order from the blue 
band to the NIR band, while the brf_azim values maintain this 
rank relationship (NIR > red > green > blue). The straight lines 
connecting hot spots (although the zenith angles differ) in each 
band indicate the bulges of these curves. It is not surprising 
that the markers of the sun are just right on the lines in most 
scenes, even though there is a slight bias in HET14. Inspired 
by RAMI-IV, Fig. 9 reveals some interesting phenomena in the 
row structure. Different from the experiments above, the SAA 
and SZA were forced to be 0° and 37°, respectively (Fig. 9A). 
Therefore, Fig. 9B depicts a true hot spot where the BRF value 
is maximum, the pixels in the 4-component product are all 
illuminated, and the normalized radiance image is the bright-
est. Since the plant rows in HET14 are north–south directional, 
apart from occlusion in the vegetation, a small area of the 

background near the ends of the rows is occluded looking from 
the opposite side in Fig. 9D. In contrast, when the observer stands 
on the west or east side in Fig. 9C, a larger area of the background 
on the side of the rows is occluded depending on the height of 
the rows; thus, the BRF value is smaller than that in Fig. 9D.

BRF for satellite instruments
This is a new simulation type in RAMI-V. Distinguished from 
the general BRF simulations mentioned above, the brf_sat simu-
lations were sampled with 4 parameters, where both the sun 
geometry and the view geometry vary. In order to better illus-
trate the simulations, the independent variable is replaced by 
the date referencing the RAMI website.

Figure 10A to C are designed to probe the differences in the 
brf_sat and normalized difference vegetation index (NDVI) 
varying with the latitude (only for abstract scenes). The NDVI was 

Illuminated background 

Illuminated vegetation

Shadowed background 

Shadowed vegetationHET15_JBS_WIN (SZA = 56 )

HET50_SAV_PRE (SZA=37 )

D 27% with VZA = 37
(hot spot)

E 85% with VZA = 57 F 89% with VZA = 75

A 77% with VZA = 56
(hot spot)

B 87% with VZA = 66 C 95% with VZA = 75

Fig. 6. The area ratio of the illuminated vegetation derived from 4-component products in HET15 (A to C) and HET50 (D to F) with the VZA increasing in back scattering directions.
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derived from [NDVI = (BRFO17 − BRFO08)/(BRFO17 + BRFO08)]. 
Due to Earth’s revolution around the Sun, the change in the SZA 
in the north (increase first and then decrease) is opposite to those 
in the south (decrease first and then increase) throughout the 
year. Therefore, it is obvious that the changes in brf_sat in the 

red band and NDVI are contrary between latitudes 30°N and 
30°S. In January, the SZAs in latitude 30°S reach the lowest level, 
and the corresponding BRFs in the red band are larger and 
NDVIs are smaller. In July, the case in latitude 30°S is the reverse. 
In a word, the BRF in the red band and NDVI are both greatly 
affected by the SZA.

Figure 11 is aimed at exploring the influence of the view 
geometry and leaf area index (LAI) on the NDVI given that the 
sun geometry basically varies slightly within a month. First, the 
NDVIs at various LAI levels are all more or less wavy (Fig. 11A), 
which can be attributed to the change in the view geometry. 
Then, the standard deviation decreases with the LAI increasing 
(Fig. 11B). That is, the NDVI in the sparse vegetated areas is 
more sensitive to the view geometry than that in the dense 
vegetated areas. Thus, we should pay more attention to the view 
geometry when using NDVI to retrieve vegetation parameters, 
especially for sparse vegetation.

Figure 12A to C are used to compare the changes in brf_sat 
and NDVI between 2 scenes (HET 15 and HET09) in different 
seasons, keeping the view and sun geometries the same. Overall, 
the BRF values in winter (leaf-off HET15) are larger than those 
in summer (leaf-on HET09) in the red band. It is confusing 
that this relationship still exists in the NIR band except for 
OLCI and MODIS in January, which is attributed to a high-
reflectivity snowy background in winter. Based on this, we 
wondered whether the NDVI, which indicates the growing state 
of vegetation, is affected by a snowy background. It turns out 

Components Area (m2)
Grass 10,430.13
Leaf 917.5866

Branch 1,052.302

Fig. 7. The total area of each structural component and the Gs (projection coefficients) 
derived from typical leaf angle distributions and the dominant grasses in HET50.

HOM29_DIS_EM0 HET16_DIS_S2S HET07_JPS_SUM HET14_WCO_UND

HET09_JBS_SUM HET15_JBS_WIN HET50_SAV_PRE HET51_WWO_TLS

NIR Red Green Blue Hot spot

Fig. 8. The brf_azim simulations in 8 representative scenes. The orange lines were drawn by connecting the maximums of brf_azim in each band. The orange markers represent 
the sun under the corresponding illumination conditions that are the same as those used in Fig. 5.
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that the NDVIs in summer are always far beyond those in win-
ter for whichever satellite instrument.

Energy conservation in absorption and albedo
According to energy conservation, the incident radiance energy 
is either absorbed by the landscape elements or scattered out of 
the scene. Albedo is a flux quantity explaining the scattered pro-
portion of the radiance energy. However, unlike the purist sce-
nario presented in RAMI-3 and RAMI-IV, which satisfied 
conservative scattering conditions (the reflectance of the back-
ground equaled 1), not only the vegetation but also the back-
ground contribute to the absorption in the RAMI-V scenes. Since 

the measurement fabs_tot can only explain the former part, it is 
difficult to validate energy conservation using only fabs_tot and 
albedo simulations in the true sense. A useful solution is to select 
some special scenarios to eliminate the effects on absorption 
caused by the background. These scenarios are under the condi-
tions that (a) the reflectance of the background in the PAR spec-
tral region is close to 1, or (b) the vegetation is so dense that the 
light can barely reach the background. The first condition is only 
used for those scenarios whose background is covered by snow, 
e.g., HET08_OPS_WIN and HET15_JBS_WIN. For the second 
condition, the nadir orthographic images shown in Table S1 help 
to visually judge whether the vegetation is dense enough. A large 

2019/01 2019/04 2019/07 2017/01 2017/12 2019/01 2019/04 2019/07

A Sentinel-3 OLCI B Terra MODIS C Sentinel-2 MSI 

Red

NIR

30 N

00 N

30 S

30 N

00 N

30 S

Fig. 10. The simulated brf_sat in the red (upper part of the top panel) and NIR (lower part of the top panel) bands as well as the NDVI (bottom) results for 3 satellite instruments 
(A to C) in different latitudes in HET16.

B VAA = 0 (hot spot)

Illuminated background 

Illuminated vegetation

Shadowed background

Shadowed vegetation

Normalized
radiance

0

1

C VAA = 90 D VAA = 180A brfazim with SAA = 0

B

C

D

Fig. 9. The explanation for the change in the brfazim simulation in HET16. Regarding plots (B) to (D), the first and second rows display simulated 4-component products and 
normalized radiance images (ranging from 0 to 1), respectively. The bands in plot (A) are the same as those in Figure 8. Note that the VZA and SZA are both 37°.
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part of the scenes is filtered except HOM26_DIS_EPD and 
HOM36_DIS_PED. Overall, Fig. 13A illustrates good consistency 
(R2 = 99%, interception = 0.99) between fab_tot plus albedo and 
1 in each PAR band under the 2 kinds of illumination conditions 
(direct or diffuse light). The slopes of Fig. 13D and E have greater 
biases against −1, and the R2 values of Fig. 13B and C are relatively 
smaller because of the imperfections of the selected scenes.

Gap fraction
The directional gap fraction and total gap fraction were derived 
from the THP simulations according to Eq. 8. In terms of the 
structure, the difference between the scenes HET09 and HET15 
only lies in whether the broad-leaved trees have foliage or not. 
Therefore, there is a big difference in LAI between HET09 and 
HET15 resulting from the season. Beer’s law [57] describes a func-
tional relationship between the gap fraction and LAI. Figure 14 
shows that the directional gap fraction in winter is larger than that 
in summer in almost every layer, which intuitively explains Beer’s 

law. RAMI-V defined the sample number of the THP simulation 
as 250,000. In fact, when the sample number reaches 150,000, the 
total gap fraction is stable enough (the standard deviation is very 
small in Fig. 15). In other words, the probability that the total gap 
fraction sampled singly with the amount of 150,000 is close to that 
sampled singly with the amount of 250,000 is quite large.

Simplification schemes of structure
The Canopy structure section lists some simplified basic geom-
etries applied to the LESS simulations. There is a question about 
how different simplification schemes will affect the simulation 
accuracy. Here, we will introduce 2 kinds of simplification 
schemes: the surface-area-unchanged (SAU) scheme and the 
radius-unchanged (RAU) scheme (Fig. 16). For instance, when 
a disc needs to be simplified as an X-sided regular polygon, the 
RAU scheme will adopt an inscribed polygon to ensure that 
the radius of this disc remains unchanged, while the SAU 
scheme will properly enlarge the radius until the surface area 
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Fig. 11. The changes in the NDVI (A and B) for MODIS in latitude 00°N in July in the abstract scenes at different LAI levels.

Sum.

Win.

2017/01 2017/04 2017/07 2017/02 2017/072017/01 2017/072017/03

A Sentinel-3 OLCI B Terra MODIS C Sentinel-2 MSI 

Red

NIR
Sum.
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Fig. 12. The simulated brf_sat in the red (upper part of the top panel) and NIR (lower part of the top panel) bands as well as NDVI (bottom) results for 3 satellite instruments 
(A to C) in the scenes HET09 and HET15, which represent forests in summer and winter, respectively.

D
ow

nloaded from
 https://spj.science.org on A

pril 27, 2023

https://doi.org/10.34133/remotesensing.0033


Zhou et al. 2023 | https://doi.org/10.34133/remotesensing.0033 14

of the polygon remains the same as that of the disc. Obviously, 
these 2 schemes are equivalent only if X is infinite.

Validation with ROMC and Rayspread
To validate 2 kinds of simplification schemes above, we used the 
ROMC reference data for RAMI-3 abstract scenes and com-
pared it with the RT model Rayspread for RAMI-IV actual 
scenes. The example scenes HET01_DIS_UNI and HET07_JPS_
SUM represent the abstract and actual scenes, respectively.

For HET01_DIS_UNI, the disc is the only 2-dimensional 
geometry. The simplification relies on the number of edges of 
the X-sided regular polygon. X was set to 4, 6, 8, 12, 16, and 20. 
The simulation results of brfpp_total with different Xs were 

compared with the ROMC reference data under the SAU and 
RAU schemes. As seen from Fig. 17, the SAU errors always 
remain at a lower level whatever X is, while the RAU errors 
almost decrease with X. In general, the SAU scheme can achieve 
good accuracies with smaller Xs, which saves storage size 
because the storage size of the OBJ file was proportional to X. 
In addition, when X is equal to or greater than 16, the errors in 
the red band become small and stable, even though errors in 
the NIR band is a little wavy within a narrow range. Therefore, 
we might as well take X = 16 as the reference when the official 
reference data are not available, such as RAMI-V. When X is greater 
than 8, the RAU scheme is even superior to the SAU scheme in 
the NIR band. However, their errors gradually get close to each 

Fig.  14.  The directional gap fraction and THPs in 2-season JBS scenes. The THPs 
projected using Eq. 7 are binary images, where the black and white pixels only mean 
an invisible and visible sky.

Fig. 15. The means (the solid lines) and standard deviations (the purple area) of the 
total gap fraction sampled 1,000 times at different sample numbers from the THP 
simulations in 2-season JBS scenes.

A Overall fit B HOM26_DIS_EPD C HOM36_DIS_PED

D HET08_OPS_WIN E HET15_JBS_WIN

Fig. 13. The relationship between fabs_tot and albedo (A to E). The albedos include white (bhr) and black (dhr) sky albedos in 5 individual PAR bands. The red solid lines in 
each plot are the reference lines, where fabs_tot plus albedo is equal to 1. The blue dashed lines in each plot were fitted by the samples selected from the corresponding scene.
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other after X = 12, which indicates that the ROMC reference 
data may deviate from the truth because it simply takes averages 
of the simulation results of some credible 3D Monte Carlo RT 
models.

The surface area is equally essential for the 3D geometries 
used in the actual scenes because there is a close relationship 
between the average projected area over all the possible view 
angles and the surface area for the convex bodies [49]. Meanwhile, 
the projected area plays a very important role in the retrieval 
of structural parameters, such as LAI. Therefore, there still 
exists a dilemma of choosing simplification schemes with 
respect to the actual scenes. Unfortunately, the ROMC has 
not provided the reference data for RAMI-IV actual scenes. 
Thus, we chose one of the credible 3D RT models, Rayspread, 
as the reference to compare the performance of 2 simplifica-
tion schemes on actual scenes. Rayspread employs construc-
tive solid geometries (CSG) techniques, which can reconstruct 
RAMI scenes without simplifications. Note that Rayspread 
and LESS both did simulations in the FPT mode, and the 
secondary ray mechanism in Rayspread was also used in 
LESS (called virtual photons). Table 3 illustrates that the SAU 
errors are far less than the RAU errors for any measurement. 

r1

r2
r1 = r2Original

Simplified RAU scheme

S1

S2 S1 = S2

Simplified SAU scheme

Fig. 16. Two different simplification schemes. The symbols r and S represent the radius 
and area of the corresponding geometries, respectively.

NIR NIR

Red Red

Fig. 17. The RMSEs and MREs of brfpp_total in the red and NIR bands among different Xs under all the illumination conditions with respect to HET01_DIS_UNI using the SAU 
and RAU schemes.
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The SAU scheme performs very well on the BRF and albedo 
simulations, which are very close to the Rayspread simula-
tions. Although 2 schemes both have biases against Rayspread 

for the absorption simulations, the SAU scheme produces 
more similar results to Rayspread due to consistency of the 
surface area.

Table 3. The RMSEs (×10−3) and MREs (%) of the typical measurements under all the illumination conditions with respect to HET07_JPS_
SUM using the SAU and RAU schemes. The brfpp_total example was drawn with SZA = 36.6° and band = B16 (895 nm).

Measurement
SAU RAU

Example
RMSE MRE RMSE MRE

brfpp_total 1.04 0.85 7.79 10.83

bhr 1.40 2.59 9.94 14.31

dhr 0.97 2.21 9.70 12.75

fabs_tot 9.31 1.44 42.02 8.24

fabs_fol 11.50 3.23 66.28 23.92
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Performance on RAMI-V scenes
The SAU scheme has been validated with ROMC and 
Rayspread for RAMI-3 and RAMI-IV scenes. Nevertheless, 
only 2 representative scenes were tested and the sun geometries 
in the past RAMI phases were not adequate. Here, we com-
pared the performance of 2 simplification schemes with 
more abstract and actual scenes from RAMI-V.

For the abstract scenes, HOM29_DIS_EM0 and HET16_
DIS_S2S were taken as examples. X was set to 4, 6, 8, 12, and 
16, and X = 16 was taken as the reference. The simulation 
results with different Xs under the SAU scheme are evaluated 
in Table 4. It is obvious that most errors (both RMSEs and 
MREs) decrease with X increasing, and reach the smallest 
when X is equal to 12. However, the errors are basically 
unchanged for HET01 in Fig. 17. This is because the more sun 
geometries defined in RAMI-V amplify the differences among 

Xs. Although some of the smallest RMSEs and MREs are not 
from the last column in Table 3, it is still reasonable because 
the errors are so small when X is greater than 6 that some 
random sampling errors are inevitable in the simulations. That 
is to say, the level of the simulation errors with different Xs is 
equivalent to those random sampling errors, thus, the simu-
lation accuracy is acceptable when X is greater than 6.

When we switched to the RAU scheme, X was still set to 4, 6, 
8, 12, and 16, respectively. The simulations with different Xs were 
quantitatively compared with those with X = 16. It can be obvi-
ously seen from Table 5 that the errors are dramatically large 
when X is small, and decrease quickly with X increasing. 
However, the RMSEs and MREs with X = 12 are still at least 10 
times greater than those under the SAU scheme, which is 
different from Fig. 17 where the RAU scheme performs better 
than the SAU scheme when X is large. Certainly, the accuracies 

Table 4. The RMSEs (×10−4) and MREs (%) of the typical measurements among different Xs (X = 16 is the reference) under all the illumina-
tion conditions using the SAU scheme. The asterisk indicates the smallest RMSE or MRE.

Scene Measurement

 
X = 4

 
X = 6

 
X = 8

 
X = 12

RMSE MRE RMSE MRE RMSE MRE RMSE MRE

HOM29 brfpp_total 5.07 0.14 2.18 0.05 1.59 0.03 1.32* 0.02*
bhr 0.88 0.03 0.47* 0.03* 1.28 0.04 0.98 0.05

dhr 1.72 0.08 1.46 0.04 1.11* 0.04 1.52 0.03*
fabs_tot 1.63 0.02 0.95 0.01 0.86 0.01 0.65* 0.00*

HET16 brfpp_total 21.59 0.24 0.94 0.02 0.92 0.02 0.79* 0.02*
bhr 0.98 0.03 0.47 0.03* 0.44 0.04 0.30* 0.03

dhr 8.25 0.14 0.94 0.03 0.71 0.03 0.62* 0.02*
fabs_tot 1.17 0.02 0.71 0.01 0.95 0.01 0.59* 0.01*

Table 5. The RMSEs (×10−4) and MREs (%) of typical measurements among different Xs under the same conditions as Table 4 but using the 
RAU scheme. The asterisk indicates the smallest RMSE or MRE.

Scene Measurement

 
X = 4

 
X = 6

 
X = 8

 
X = 12

RMSE MRE RMSE MRE RMSE MRE RMSE MRE

HOM29 brfpp_total 239.64 8.99 89.66 3.28 42.38 1.54 10.56* 0.39*
bhr 208.26 8.32 78.19 3.00 37.09 1.45 11.00* 0.37*
dhr 209.35 8.51 77.44 3.07 36.98 1.44 9.64* 0.37*

fabs_tot 848.95 11.61 312.26 4.26 148.69 2.03 37.72* 0.51*
HET16 brfpp_total 119.65 7.81 46.30 2.80 22.48 1.32 5.77* 0.33*

bhr 72.31 7.60 25.78 2.62 12.50 1.25 3.53* 0.34*
dhr 72.61 7.57 26.49 2.63 12.63 1.23 3.40* 0.31*

fabs_tot 437.63 10.92 147.40 3.69 67.81 1.70 16.64* 0.42*
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will be improved with X further increasing under the RAU scheme, 
but it needs to store bigger OBJ files and parse more triangles to 
construct the scenes, which will be bound to increase the com-
putational burden in LESS simulations. Therefore, comparing 
with the RAU scheme, the SAU scheme is recommended for the 
abstract scenes because it can effectively avoid adding complex 
geometries but still maintain the simulation accuracy.

RAMI-V has provided 8 actual scenes. If the structural defi-
nition only contains triangles, there is no structural difference 
between different simplification schemes; thus, the actual 
scenes HET14 and HET51 were filtered. Figure 18 illustrates 
the differences between the aforementioned 2 schemes for the 
remaining actual scenes taking the SAU scheme as the refer-
ence. Overall, HET07 is the most differential scene, in particu-
lar, for the measurements fabs_fol, fabs_tot, and thp, while the 
errors of measurement fabs_fol are dramatically large for 
HET07 and HET15. The fabs_fol and fabs_tot are quantities 

concerned with FPAR, and thp is quantified by directional gap 
fraction. They are all closely related to LAI [58,59], especially 
for HET15 (leaf-off), where LAI is replaced by plant area index 
(PAI). As illustrated in Table 6, the LAIs and PAIs derived from 
the SAU and RAU schemes differ the most in HET07; therefore, 
the measurements fabs_fol, fabs_tot, and thp are the worst. In 
addition, since LAI in HET15 is very small, the absolute differ-
ence is only approximately 0.01, whereas the relative difference 
is approximately 1/3, which gives rise to the large MRE of the 
measurement fabs_fol.

Illumination resolution
LESS defined the illumination resolution to determine the 
number of ray samples in the FPT mode. When it is set to k, 
a number of rays will be emitted at intervals of k meters. In 
other words, 1/k rays will be produced in a unit length. More 
ray samples mean more times of intersection computation, 
which finally results in low efficiency. Here, we selected 2 
representative scenes, HET16_DIS_S2S (Fig. 19A) and HET51_
WWO_TLS (Fig. 19B), to figure out how the illumination 
resolution affects the simulation accuracy and speed of the 
BRF, albedo, and absorption on earth. All the simulations 
were run on a workstation with Intel(R) Xeon(R) Silver 4110 
CPU @ 2.10 GHz 64.0 GB. Figure 19 depicts the changes in 
the time and accuracy following 1, 10, 25, 50, 100, and 200 
ray samples (k = 1, 0.1, 0.04, 0.02, 0.01, and 0.005, respec-
tively). The time cost polylines in the first column all illustrate 
a dramatic increase after 50 ray samples. It is interesting that 
some time cost polylines in Fig. 19B do not start from the 
origins because it took more time to load the more complex 
HET51 than the abstract HET16; therefore, the actual simu-
lation time was ignored. In most cases, the errors remain at 
a low level after 10 ray samples, stabilize after 25 ray samples, 
and approach zero after 50 ray samples. Even though the 
errors of the fabs_tot simulations in Fig. 19B are slightly wavy, 
the MREs and RMSEs are below 0.06% and 0.0006, respec-
tively. The scatter charts in the last column indicate that the 
simulation results for 50 ray samples (k = 0.02) are basically 
equal to those for 200 ray samples (k=0.005) no matter what 
the measurement is. To conclude, 50 ray samples is an optimal 
choice to perform accurate simulations in an acceptable time.

Table 6. The LAIs and PAIs under 2 different simplification 
schemes SAU and RAU in the representative actual scenes.

Scene LAI  
(SAU)

PAI  
(SAU)

LAI 
(RAU)

PAI 
(RAU)

HET07_
JPS_SUM

2.2839 3.3870 1.4375 2.4029

HET08_
OPS_WIN

0.6678 1.0553 0.4309 0.7710

HET09_
JBS_SUM

3.4552 5.1921 3.4527 5.0572

HET15_
JBS_WIN

0.0336 1.6894 0.0230 1.6275

HET16_
SRF_UND

3.2086 3.7832 3.2086 3.7410

HET50_
SAV_PRE

1.1348 1.2400 1.0378 1.1430

Fig. 18. The RMSEs and MREs between 2 schemes SAU and RAU under all the observation and illumination conditions with respect to each actual scene. The errors of THP 
simulations were computed with directional gap fraction defined in Eq. 8.
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A HET16_DIS_S2S 

B HET51_WWO_TLS

Fig. 19. The time consumption and errors of the brfpp_total (first row), bhr (second row), and fabs_tot (third row) simulations in 2 representative scenes. The sun geometries 
were fixed at z59a146 for HET16 (A) and z35a138 for HET51 (B), while all the bands and view geometries were considered. The first column displays the time for scene loading 
and simulating in total. The MREs and RMSEs in the second column were computed based on the simulation results for 200 ray samples. The color bars in the last column 
indicate the normalized density of the sample points, and the red lines are the 1:1 reference lines.
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Discussion

RAMI-V limitations
As an intercomparison activity, RAMI-V struggles for the unity 
of all kinds of concepts and definitions opening to the participants. 
Indeed, most concepts and definitions have been described in 
detail on the RAMI-V webpages; however, some are confusing.

For those 3D basic geometries that have both lateral faces and 
base faces, whether the base faces need to be removed is 
unknown. In fact, these kinds of geometries are used in the struc-
ture of branches, stems, and grasses, which, to some extent, affect 
area computation of the wooden elements and grasses. For the 
scene HET16_SRF_UND, the area difference between before and 
after removal of the base faces reaches 811 m2. Although the 
remaining base faces may alter scattering times, the simulation 
differences caused by it are basically negligible.

The foliage is transmissible in RAMI-V. Since the OBJ files 
are finally parsed into lots of triangles, the basic geometries 
used in the foliage cannot be identified as a whole in the trans-
mission. For the conifer trees, the foliage is composed of ellip-
soids; thus, the rays will transmit them twice. Because the 
transmittance is bound to OBJ triangles in LESS, if we directly 
input the foliage transmittance given by RAMI-V, the actual 
transmittance will decrease, which is bound to lead to simula-
tion differences. The useful solution is to input the square root 
of the transmittance and set the reflectance of the inner surface 
to zero [60]. Of course, we think by default that the transmit-
tance is bound to the whole ellipsoid due to practical spectral 
measurements, whereas in a simulation environment, the trans-
mittance bound to triangles is also reasonable as long as it is 
stated in advance.

For traditional BRF simulations, the reference plane is clearly 
defined on the top of the canopy and covers the entire scene. 
RAMI-V continues to use this definition for a brand new meas-
urement type brf_sat. However, the observed region of brf_sat for 
MSI is a central part of the entire scene, which is different from 
the observed regions of 2 other satellite instruments and traditional 
BRF simulations. As shown in Fig. 3, the reference plane defined 
on the top of the canopy will result in FOV difference in the case 
of brf_sat for MSI. RAMI-V did not seem to consider this problem. 
According to our understanding, the reference plane should be 
moved to the ground in order to maintain positional consistency. 
Once other RT models participating in RAMI-V continue to place 
the reference plane on the top of the canopy for brf_sat for MSI, 
the simulation results will become incomparable.

Since RAMI-V is an ongoing exercise, we cannot obtain the 
reference data from it; thus, we turned to the past RAMI phases. 
It is unfortunate that the description of the past RAMI phases 
is incomplete and confusing now. For example, on the page of 
the definition of brfazim in RAMI-IV, the illumination condi-
tions do not come from RAMI-IV but from RAMI-V, which 
easily misleads the users. More seriously, the ROMC reference 
data lack simulations on actual scenes, which is why we used 
the ROMC reference data and Rayspread to respectively validate 
the abstract and actual scenes in the Validation with ROMC and 
Rayspread section. In addition, the ROMC reference data are 
not available in the digital form; therefore, if the users want to 
use it, they can only digitalize it from the figures.

Conclusion
This paper first reconstructs all the RAMI-V scenes in the 
standard OBJ format with simplified basic geometries and then 

employs different solvers provided by the LESS RT model to 
deal with various simulations demanded by RAMI-V. Benefiting 
from the “instance” technique and Python interface utilized by 
LESS, several usage problems (e.g., abstract structural descrip-
tion, nonuniform coordinate systems, and complex tree mod-
els) of RAMI scenes are successfully solved. The simulation 
results are fully evaluated by revealing some radiative phenom-
ena, such as angle effects of BRF, energy conservation, and 
Beer’s law. In addition, the parametric sensitivity analysis is 
performed, from which we can draw some conclusions: (a) The 
surface-area-unchanged simplification scheme is well validated 
by the ROMC reference data and Rayspread for the abstract 
and actual scenes. This scheme not only efficiently produces 
negligible simulation errors with less computational resource 
usage, but also ensures the consistency of the projected area, 
which matters with respect to those simulations concerned with 
structural parameters. (b) The optimal illumination resolution 
is suggested to be 0.02, which can implement fast and accurate 
simulation at the same time. Finally, this paper generates the 
standard OBJ models and reliable simulation results (all avail-
able on the website http://lessrt.org/3dscenes/), which can be 
used to validate other RT models and all kinds of retrieval algo-
rithms in the future.
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