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ABSTRACT
The all-wave net radiation (Rn) at the land surface represents surface
radiation budget and plays an important role in the Earth’s energy and
water cycles. Many studies have been conducted to estimate from
satellite top-of-atmosphere (TOA) data using various methods,
particularly the application of machine learning (ML) and deep learning
(DL). However, few studies have been conducted to provide a
comprehensive evaluation about various ML and DL methods in
retrieving. Based on extensive in situ measurements distributed at mid-
low latitudes, the corresponding Moderate Resolution Imaging
Spectroradiometer (MODIS) TOA observations, and the daily from the
fifth generation of European Centre for Medium-Range Weather
Forecasts Reanalysis 5 (ERA5) used as a priori knowledge, this study
assessed nine models for daily estimation, including six classic ML
methods (random forest -RF, adaptive boosting - Adaboost, extreme
gradient boosting -XGBoost, multilayer perceptron -MLP, radial basis
function neural network -RBF, and support vector machine -SVM) and
three DL methods (multilayer perceptron neural network with stacked
autoencoders -SAE, deep belief network -DBN and residual neural
network -ResNet). The validation results showed that the three DL
methods were generally better than the six ML methods except
XGBoost, although they all performed poorly in certain conditions such
as winter days, rugged terrain, and high elevation. ResNet had the most
robust performance across different land cover types, elevations,
seasons, and latitude zones, but it has disadvantages in practice
because of its highly configurable implementation environment and
low computational efficiency. The estimated daily values from all nine
models were more accurate than the corresponding Global LAnd
Surface Satellite (GLASS) product.
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1. Introduction

Surface all-wave net radiation (Rn), which characterizes the available radiative energy budget at the
Earth’s surface, drives most biological and physical processes, such as heating the soil and air, eva-
potranspiration (ET), photosynthesis and so on (Jiang et al. 2014). Therefore, Rn plays an essential
role in energy redistribution and the global hydrological and carbon cycle (Alados et al. 2003;
Verma et al. 2016). Rn is mathematically expressed as the difference between the surface incoming
and outgoing shortwave and longwave radiation (Bisht et al. 2005):

Rn = Rns + Rnl (1)

Rns = R�
s − R�

s = (1− a)R�
s (1a)

Rnl = R�
l − R�

l (1b)

where Rns and Rnl are the surface net shortwave radiation (Wm−2, downwards is defined as positive)
and net longwave radiation (Wm−2), respectively; R�

s , R
�
s , R

�
l , and R�

l are the surface downwards
shortwave radiation (Wm−2), upwards shortwave radiation (Wm−2), downwards longwave radi-
ation (Wm−2) and upwards longwave radiation (Wm−2), respectively; a is the surface shortwave
broadband albedo; and R�

s is calculated by a× R�
s .

Rn or its four radiative components could be directly measured at the site, but these measure-
ments only determine the Rn at individual points (da Silva et al. 2015) and are sparsely distributed
(Bisht and Bras 2010; Chen et al. 2020; Xu, Liang, and Jiang 2022). Hence, because of the unique
advantages such as spatiotemporal continuous and global coverage, satellite data is widely used
to generated Rn products ranging from regional to global scales, especially the data from Moderate
Resolution Imaging Spectroradiometer (MODIS), which onboard the Terra and Aqua satellites
(Bisht et al. 2005; Wang et al. 2015a). Generally, the algorithms for estimating the Rn from satellite
observations can be roughly divided into two categories (Liang et al. 2010): one calculates radiative
quantities from the high-level satellite products of related surface or atmospheric variables (e.g.
aerosols, clouds, and atmospheric temperature and humidity profiles) (Carmona, Rivas, and Case-
lles 2015; Verma et al. 2016), and the other estimates radiation directly from satellite top-of-atmos-
phere (TOA) observations (called a satellite TOA data-driven algorithm), in which the extensive
radiation either simulating from the radiative transfer models (Kim and Liang 2010; Wang et al.
2015b) or collecting from comprehensive ground measurements (Chen et al. 2020; Li et al. 2021)
were linked with various statistical models without taking the complicated physical mechanism
of an atmospheric radiative transmission into account. The format of the second type of algorithm
is simple, and its inputs are easily obtained; hence, it has become increasingly popular in recent
years. Wang et al. (2015a) proposed a MODIS TOA data-driven algorithm to estimate Rn based
on simulations from MODTRAN5, and the results were validated to achieve higher accuracy
than that of other component-based method. However, aware of the limitations in the model simu-
lations and linear statistical method, Chen et al. (2020) developed a new model to estimate the all-
sky daily Rn from the MODIS TOA observations at high latitudes according to a similar framework
but based on the ground measurements and with a novel artificial neural network tuned by a genetic
algorithm. Afterwards, Li et al. (2021) applied a similar idea to estimate the Rn at a relatively high
spatial resolution (1 km) at mid-low latitudes from MODIS TOA data by using the random forest
(RF) method. In addition, the authors introduced the daily Rn from the fifth generation of the Euro-
pean Center for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) (Hersbach et al. 2020) rea-
nalysis data as a priori knowledge to address the issue of few information provided by the available
MODIS TOA observation in this study. The validation results were satisfactory and superior to
three existing good performing Rn products, including the MODIS Rn product from the Global
LAnd Surface Satellite (GLASS) products suite (referred to as GLASS-MODIS hereinafter) (Liang
et al. 2021), the Edition 4A of Synoptic TOA and surface fluxes and clouds from the Clouds and
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the Earth’s Radiant Energy System (CERES SYN1deg_Ed4A), referred to as CERES4A hereinafter
(Kratz et al. 2020) and FLUXCOM_RS. Similarly, (Xu, Liang, and Jiang 2022) generated a global Rn

product from 1981 to 2019 based on Advanced Very High Resolution (AVHRR) TOA observations
but using a deep learning (DL) method named the residual convolutional neural network (RCNN);
the authors concluded that this method performed better than the Rn from second generation of
Modern-Era Retrospective Analysis for Research and Applications (MERRA2), GLASS-MODIS,
and CERES4A. Therefore, these studies indicate that the advantages of the satellite TOA data-dri-
ven algorithm in Rn estimation is outstanding but the performance of this kind of algorithm highly
depends on the representativeness and comprehensiveness of the samples used for modeling and
the regression abilities of the statistical method, whose influences on algorithm performance
were less discussed comparing to samples.

With the development of data-driven methods, an increasing number of ML methods,
especially DL methods, including the convolutional neural network (CNN), deep belief network
(DBN) (Hinton, Osindero, and Teh 2006), tacked automatic encoding machine (SAE) (Zhang
et al. 2020), and long short-term memory network (LSTM) (Hochreiter and Schmidhuber
1997), have been widely used in parameter estimations with satellite data, such as the estimation
of atmospheric aerosol (Chen et al. 2020), land surface temperature (Tan et al. 2019), air temp-
erature (Shen et al. 2020), soil moisture (Ge et al. 2018), real-time precipitation (Xue et al. 2021),
cyanobacteria (Pyo et al. 2019) and PM2.5 concentrations (Zhang et al. 2020). Because of the
strong adaptive regression ability to learn the relationships of data patterns automatically with-
out specifying a special relationship between the independent and dependent variables in
advance of these ML/DL methods (Wu and Ying 2019), these studies all achieved very good
results, although the performance of various ML and DL methods is different. Hence, several
studies have been conducted to evaluate the performance of various ML and DL methods in var-
ious parameter estimations from satellite data (Ağbulut, Gürel, and Biçen 2021; Fan et al. 2021).
For example, Wei et al. (2019) and Wang et al. (2019) evaluated the performance of four ML
methods in estimating R�

s and Rns directly from AVHRR and Landsat Thematic Mapper
(TM)/Enhanced Thematic Mapper Plus (ETM+) TOA data, respectively. Besides, Carter and
Liang (2019) evaluated as many as ten ML methods for estimating terrestrial evapotranspiration
(ET) from remotely sensed data. Their studies indicate that the different ML methods do not
show a consistent accuracy when estimating the different surface or atmospheric parameters.
Hence, similar evaluation work needs to be fully conducted for Rn estimations.

The major objective of this study is to objectively evaluate the performance of the nine ML
methods, including the six classical ML methods and the three DL methods, in Rn estimations at
mid-low latitudes from MODIS TOA observations from 2000 to 2017 by referring to the similar
framework of our previous work (Li et al. 2021). The organization of this paper is as follows: Section
2 briefly introduces the nine ML methods used in this study. Section 3 presents the employed data
and the Rn estimation models. The evaluation results of these models and the analysis are given in
Section 4. Sections 5 and 6 outlay discussions and conclusions.

2. Review of the nine ML methods

In this study, nine ML methods were evaluated, including six classic ML methods and three DL
methods. Specifically, the six ML methods include three tree methods, namely, random forest
(RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost); two artificial neural
networks, namely, multilayer perceptron neural network (MLP) and radial basis function neural
network (RBF); one kernel method, namely, support vector machine (SVM); and three DL
methods, namely, multilayer perceptron neural network with stacked autoencoders (SAE), deep
belief network (DBN), and residual neural network (ResNet). A brief introduction of the nine
methods is given below.
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2.1. Six classical ML methods

2.1.1. Decision tree methods
The decision tree method is a typical nonparametric supervision method (Brown et al. 2020), which
can be defined as a procedure that splits the input data into smaller and smaller subsets recursively
(Jafarzadeh et al. 2021). According to the different processing methods of training samples, ensem-
ble decision tree methods can be divided into bagging and boosting families, although both aim to
integrate weak learners to form strong learners (Jafarzadeh et al. 2021). Bagging algorithms, such as
RF (Breiman 1996), whose weak learners are independent of each other, aim to decrease variance.
For boosting algorithms, each weak learner is designed to improve the previous prediction result by
decreasing the residual of the previous learner (Wang et al. 2019); examples include AdaBoost
(Freund and Schapire 1997), gradient boosting decision tree (GBDT) (Min et al. 2020) and XGBoost
(Fan et al. 2018), which are mainly used to seek a lower bias.

2.1.1.1. Random forest (RF). The RF algorithm, presented by Breiman (1996), is a powerful ensem-
ble method consisting of multiple decision trees for classification and regression problems (Feng
et al. 2020). Each tree continues to be split according to the minimized Gini index until it reaches
the user’s preset values (Hou et al. 2020). The most essential hyperparameters include N-estimators,
Max-depth, Min-samples-split, and Min-samples-leaf. The N-estimators parameter is the tree num-
bers of the forest, and overfitting or underfitting may occur when the n-estimators are larger or
smaller than the optimal number (Ibrahim and Khatib 2017; Hou et al. 2020). The Max-depth con-
trols the max depth of each decision tree. In addition, the Min-samples-split and Min-samples-leaf
needed to be tuned, although it was found that these two hyperparameters had less impact on the
performance of the RF model when N-estimators and Max-depth were determined. RF is good at
dealing with nonlinear fitting and can effectively avoid overfitting (Amit and Geman 1997; Dietter-
ich 2000). During the training process, approximately one-third of the training samples that are not
used in the bootstrap process are known as out-of-bag data (OOB) (Breiman 1996; Hou et al. 2020),
whose residual mean square (RMS) is used to evaluate the prediction accuracy (Gislason, Bene-
diktsson, and Sveinsson 2006). For regression problems, the RF averages all the predictors of all
the regression trees. Note that the RF method was carried out using the scikit-learn toolbox in
this study (Pedregosa et al. 2011), and the structure of the RF is displayed in Figure 1.

2.1.1.2. Adaptive boosting (AdaBoost). The AdaBoost algorithm, proposed by Freund and Schapire
(1997), is a powerful nonlinear ensemble tool. Compared with the bagging algorithm, in which the
training samples are obtained independently relative to the previous step, the training samples of
AdaBoost are obtained sequentially in the adaptive boosting ensemble algorithm (Thongkam,
Xu, and Zhang 2008; Guo et al. 2012; Hassan et al. 2017). Specifically, the AdaBoost iterative algor-
ithm includes three steps: (1) Initialize the weight distribution of the training samples. For example,
if there are N samples, each training sample is initially assigned the same weight as 1/N. (2) Train
the weak learner. For example, in a specific classification task during the training process, if a train-
ing sample has been accurately classified, its weight will be reduced in the construction of the next
training set. Conversely, its weight will increase. Then, the sample set with updated weights is used
to train the next classifier, and the whole training process continues iteratively. (3) Last, all the trai-
ner weak classifiers are combined into strong classifiers. The weights of the weak classifiers with
small classification error rates are increased to make them play a more decisive role in the final
classification function; otherwise, they decrease. In other words, the weak classifiers with low
error rates have relatively large weights in the final classifier; otherwise, they are small. In addition
to the four hyperparameters, N-estimators, Max-depth, Min-samples-split and Min-samples-leaf,
which have the same meaning as RF, two more essential hyperparameters, the Learning rate and
Loss function, need to be determined in AdaBoost. The Learning rate represents the convergence
rate of the gradient direction, and the Loss function stands for the error processing methods of the
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samples in the weak classifiers, which include the ‘linear’, ‘square’ and ‘exponential’. In the study,
the AdaBoost module was carried out using the scikit-learn toolbox (Pedregosa et al. 2011).

2.1.1.3. Extreme gradient boosting (XGBoost). The XGBoost algorithm is a relatively new machine
learning ensemble algorithm proposed by Chen and Guestrin (2016), which is a novel implemen-
tation model based on the GBDT and RF models. Specifically, compared with an ordinary GBDT, it
explicitly adds the complexity of the tree model to the optimization objective as a regular term. In
addition, it draws on the idea of RF and uses feature sampling to prevent overfitting. During the
training process, parallel calculations are automatically executed for the functions in the XGBoost
model (Fan et al. 2019). The general function for the prediction at step t is presented as:

f (t)i =
∑t

k=1

fk(xi) = f (t−1)
i + fi(xi) (3)

where ft(xi) is the learner at step t, f (t)i and f (t−1)
i are the predictions at steps t and t-1, and xi is the

input variable. The most influential hyperparameters in XGBoost modeling of a single weak learner
are ‘Booster’, ‘Subsample’ and ‘Learning rate’, except for the four hyperparameters mentioned
above that are common to a single decision tree, such as N-estimators, Max-depth, Min-
samples-split and Min-samples-leaf. Specifically, ‘Booster’ has two options, namely, ‘gbtree’ and
‘gblinear’, which represent tree-based and linear models, respectively. ‘Subsample’ represents the
proportion of samples used for training and can help prevent overfitting, and the Learning rate
has the same meaning as in AdaBoost. In this study, the xgboost package in the Python platform
was used to conduct the XGBoost-based net radiation estimation.

Figure 1. Structure of the random forest (RF) method.
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2.1.2. Artificial neural networks (ANN)
An artificial neural network (ANN) is a type of computing system inspired by the biological neural
network. It consists of a layered arrangement of individual computation units called artificial neur-
ons (Ferreira et al. 2011; Wu and Ying 2019). A standard ANN model usually consists of an input
layer, one or more hidden layers, and an output layer. The inputs are fed through the hidden layer
and are connected to the output layer through a series of weight combinations (Brown et al. 2020).
The outputs of the output layer make a comparison to the desired outputs and update the weights
through an error back propagation (LeCun, Bengio, and Hinton 2015).

2.1.2.1. Multilayer perceptron neural network (MLP).MLP is perhaps the most widespread type of
feedforward network for solving classification and regression problems in many fields (Bishop 1995;
Behrang et al. 2010). Back-propagation (BP) is the core algorithm of multilayer feedforward neural
networks (Wang and Xu 2005). Figure 2 shows a typical neural network consisting of three layers,
an input layer, a hidden layer and an output layer. Many studies have shown that one hidden layer is
sufficient to solve most problems (Mas and Flores 2008; Xu et al. 2021), so this study applies a typi-
cal three-layer neural network to estimate Rn. In addition, hyperparameters such as the number of
neurons in the hidden layer, activation function and batch size have significant effects on the per-
formance of an MLP. Specifically, an overly low number of neurons in the hidden layer usually
makes the network perform underfitting, while an overly high number may result in overfitting
(Yeom et al. 2019). Activation functions are used to enhance the nonlinear expression ability of
neural networks, and the commonly used nonlinear activation functions include the hyperbolic tan-
gent function (Tanh) (Zhang, Gao, and Song 2016a), sigmoid function (Tsai et al. 2015) and rec-
tified linear units (ReLU) (Wang, Zeng, and Lin 2021). However, when the collected dataset is
large, the MLP needs to be trained in batches, and the Batch size refers to the number of samples
for one training process, which affects the optimization effect and training speed of the trained
model. In this study, the deep learning application programmer interface (API) of ‘Keras’ in the
Python platform was used to conduct an MLP-based net radiation estimation.

2.1.2.2. Radial basis function neural network (RBF). The RBF network is a popular type of network
that is widely applied to pattern classification problems (Bishop 1995), and the structure of the RBF
is displayed in Figure 3. The radial basis function is a real value function whose value depends only
on the distance from the origin, and any activation function that satisfies this characteristic is called
the radial basis function, the most commonly used is the Gaussian kernel function, which is also
called the RBF kernel. The main difference between the RBF and MLP networks is the activation
function of the hidden layer. Specifically, the RBF makes the output of its network related to the
partial modulation parameters, which means that the farther the input of the neuron is from the

Figure 2. Structure of the multilayer perceptron neural network (MLP) method.
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center of the radial basis function, the lower the degree of activation of the neuron. When training
the RBF model, two essential hyperparameters need to be determined, namely of the Neurons of the
hidden layer and Gamma. The former represents the number of centers of the hidden layer basis
function, which is usually determined by the K-means method (Yuchechen et al. 2020), while
the latter is used to control the scope of influence of the RBF kernel. In general, with an increase
in the number of neurons in the hidden layer, the performance of the RBF improves but the training
time also increases dramatically, and there may be an overfitting phenomenon. During prediction,
the output of the RBF network is based on a linear combination between the inputs of the RBF and
neuron parameters (Kisi et al. 2020).

2.1.3. Kernel methods - support vector machine (SVM)
SVM is a statistical learning theory based on structural risk minimization developed by Vapnik
(Sain 1996), which is widely used due to its powerful nonlinear regression capability (Mountrakis,
Im, and Ogole 2011; Fan et al. 2019). Support vector regression (SVR), the regression version of
SVM, is well suited for modeling small samples owing to its powerful predictability (Mountrakis,
Im, and Ogole 2011). The SVR model predicts the regression values through various kernel func-
tions that implicitly convert the original low-dimensional input data into a high-dimensional fea-
ture space for linear segmentation (Fan et al. 2018). Compared with an artificial neural network,
which easily converges to a local optimum (Chen, Li, and Wu 2013), the SVM gives a unique sol-
ution resulting from the convex nature of the optimality problem (Fan et al. 2018). Moreover, by
introducing regularization parameters, SVM can effectively overcome the overfitting problem.
Therefore, the SVM can better solve the problems of small samples, nonlinearity and high dimen-
sionality and is often used for identification and prediction. However, it should be noted that SVM
is more suitable for small samples due to its high computational complexity (Feng et al. 2020), so
there is research value in exploring the performance of SVM in large samples. The kernel function is
an essential hyperparameter that affects the performance of SVM, which is used to compute the
inner product after converting to higher dimensional space, and if the RBF kernel is used, the
Gamma must be determined, which has the same meaning as does in the RBF model. In this
study, the ‘SVR’ package in the Python platform on the scikit-learn platform was used to conduct
SVM-based net radiation estimations (Pedregosa et al. 2011).

2.2. Three DL methods

Deep learning (DL) methods generally represent neural networks with large-sizes and deep layers
(Yuan et al. 2020) compared with the traditional machine learning methods above; they help

Figure 3. Structure of the radial basis function neural network (RBF) method.
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capture the potential relationship between multiple variables and dependent variables owing to
multilayer learning (Bengio, Courville, and Vincent 2013; LeCun, Bengio, and Hinton 2015).

2.2.1. Multilayer perceptron neural network with stacked autoencoders (SAE)
An autoencoder is a type of neural network with a symmetrical structure from encoding to decod-
ing layers with the same numbers of input and output dimensions in an unsupervised or supervised
manner (Wang and Liu 2018; Zhang et al. 2020). The encoder layers, as shown in Figure 4, can
adaptively learn the abstract features of input data and then represent the complex data in an
efficient manner by minimizing the errors between the outputs of the decoder layer and the inputs
of the encoder layer. These properties make the autoencoder not only suitable for large samples of
data but also effectively reduce the design costs and improve the traditional poor generalizations.
Therefore, using the autoencoder algorithm in a deep neural network can efficiently extract the
implicit features and yield better estimation results based on an MLP connected behind the auto-
encoder module. Specifically, the accuracy performance of the SAEmodel is significantly affected by
the construction of the encoder/decoder, neurons of the hidden layer, activation function and Batch
size, which will be determined in Section 4.1.

2.2.2. Deep belief network (DBN)
The DBN is one of the most popular deep learning models (Hinton, Osindero, and Teh 2006; Li
et al. 2017; Zang et al. 2020) and was proposed by Hinton, Osindero, and Teh (2006). As a Bayesian
probabilistic generation model, DBN is generally composed of multiple restricted Boltzmann
machine (RBM) layers and a BP layer. Figure 5 shows the structure of the DBNwith two RBM layers
and one BP layer as an example. The RBM is an energy-based model that can avoid local optima
problems and vanishing gradients by pretraining the weights of the dense layers (Hinton, Osindero,
and Teh 2006). Specifically, the significance of training an RBM is adjusting the parameters of the
model to fit the given input data by a contrastive divergence (CD) and ultimately making the prob-
ability distribution of the visible units consistent with the input data (Shen et al. 2020; Wang et al.
2020). An RBM contains a visible layer and a hidden layer, where the hidden layer of the prior RBM
is the visible layer of the next RBM (Shen et al. 2018), and the BP layer is usually utilized for a

Figure 4. Structure of the stacked autoencoders (SAE) method.
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classification or regression, and has the same functions as the MLP module in SAE. Specifically, in
addition to the Batch size and Activation function, three important hyperparameters need to be
determined for the DBN, namely, the construction of the RBM layers and hidden layers and the
learning rate of the RBM layer in the training process.

2.2.3. Residual neural network (ResNet)
Inspired by the very powerful nonlinear representation ability of CNNs, DL algorithms have seen a
dramatic rise in popularity for remote-sensing image analysis over the past few years (Zhang,
Zhang, and Du 2016b; Kussul et al. 2017; Wu et al. 2019; Yuan et al. 2020). CNNs are biologically
inspired variants of multilayer perceptrons that can hierarchically extract powerful low-level and
high-level features (LeCun, Bengio, and Hinton 2015; Jiang et al. 2019). A standard CNN is mainly
composed of an input layer, a convolutional layer, a pooling layer, a fully connected layer, and an
output layer. It should be noted that several convolutional layers and pooled layers can be alter-
nately arranged to form multiple CNNs (Tan et al. 2019). The convolution layer is used to extract
local features using local connections and a sharing of the weights (LeCun, Bengio, and Hinton
2015; Aghdam and Heravi 2017), and the pooling layer is used to reduce the number of training
parameters in the deep neural network. The feature map is produced by sharing the kernel weights
and biases within the receptive field through a sliding convolutional kernel across the entire input
imagery. The fully connected layer is used to integrate the local features extracted by the previous
convolution layer (Wang et al. 2020). Two convolutional layers are usually connected by a non-
linear layer, which is actually an elementwise operation applying a nonlinear activation function
to each value in the feature maps (Jiang et al. 2019). The ReLU (Nair and Hinton 2010; Krizhevsky,
Sutskever, and Hinton 2012; Romanuke 2017), which makes the nonpositive values zero and keeps
the positive values unchanged, is used in the proposed ResNet model, as it is effective in alleviating
the notorious vanishing gradient problem and speeding up the learning process. In addition, a batch
normalization layer is usually needed between the convolutional layers and the nonlinear layer to
speed up the training of the convolutional neural network and reduce the sensitivity to network
initialization (Ioffe and Szegedy 2015).

However, deep neural networks are often difficult to train well because CNNs usually face the
obstacles of performance degradation problems and vanishing or exploding gradients. Thus, the
residual learning technique proposed by He in 2016 (He et al. 2016) has been introduced in
deep CNNs to solve these problems. The original directly fitted a desired underlying mapping
H(x) for each few stacked layers; nevertheless, the stacked nonlinear layers in the residual modules
fit a residual mapping F(x) = H(x)− x and output function F(x)+ x with a shortcut connection
from the inputs, as shown in Figure 6. With the help of a residual learning algorithm, deep

Figure 5. Structure of the deep belief network (DBN) method.

1792 S. LI ET AL.



CNNs are easier to optimize and give better results (Lim et al. 2017). In this study, the Python deep
learning API of ‘Keras’ was used to conduct ResNet-based net radiation estimations.

3. Data and methodology

3.1. Data and pre-processing

Three types of datasets are used in this study as in our previous study (Li et al. 2021), including the
TOA band observations from MODIS, daily Rn from ERA5 reanalysis data, and ground daily Rn

measurements collected from more than 300 globally distributed sites at mid-low latitudes. In
addition, the GLASS-MODIS Rn product was used for intercomparison. For a more comprehensive
evaluation, the daily Rn measurements from seven sites located in the rugged terrain area in China
were collected and used for further validation.

3.1.1. Ground measurements
3.1.1.1. From 340 sites at the flat surface. Comprehensive daily Rn measurements from 2000 to 2017
from 340 sites distributed at mid-low latitudes (60

◦
S – 60

◦
N) in thirteen measuring networks were

collected for modeling and validation (see Table 1), and these sites were all at relatively flat surfaces
(Li et al. 2021). Figure 7 presents the spatial distribution of these sites located in various climate
zones defined by the Köppen–Geiger climate classification (Peel, Finlayson, and McMahon 2007)
and the quantitative distribution of the various land cover types and climate zones to which they
belong. Statistically, the 340 sites were under fourteen land cover types defined by the International
Geosphere-Biosphere Program (IGBP) (Loveland and Belward 1997), including croplands < CRO>,
grasslands < GRA>, deciduous broadleaf < DBF>, urban and built up < URB>, mixed forests <
MF>, open shrublands < OSH>, evergreen broadleaf < EBF>, deciduous needleleaf < DNF>, perma-
nent wetlands <WET>, evergreen needleleaf < ENF>, barren sparse vegetation < BSV>, woody
savannas <WSA>, savannas < SAV>, and closed shrublands < CSH>, and their elevations ranged
from −7 m to 4698 m above sea level. Therefore, the ground measurements collected in this
study were comprehensive because they are located across the global mid-low latitudes and rep-
resent a variety of climate types, land cover types and elevation ranges.

To ensure the quality of the site measurements, only the measurements labeled as high quality by
their releasers were used. Since the observation frequency of each measurement network is differ-
ent, the daily Rn values were calculated only when there was at least one valid observation within
half an hour in one day (Jiang et al. 2014; Li et al. 2021). After matching with the corresponding
MODIS TOA observations, a total of 664,974 daily Rn samples were collected, which were further
divided into training and independent validation datasets. To ensure a reasonable and similar dis-
tribution of these two datasets, 80% of the measurements at each site were randomly selected for
training (488,390 samples in total), and the remaining 20% were selected for validation (176,584
samples in total).

Figure 6. Structure of residual block.
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3.1.1.2. From 7 sites in the rugged terrain area. According to previous studies (Yan et al. 2018; Yan
et al. 2020), the influence of the topography on radiative component estimations is significant
because of shadows and multiscattering. Therefore, the ground measurements from seven sites
located at the Moon Mountain of the Saihanba Forest Park (42◦23’N, 117◦24’E) in Chengde city,
northeast China (Yan et al. 2018; Yan et al. 2020), were collected from August 2018 to May 2020
to explore how these machine learning models work in a rugged terrain area. Table 2 provides
detailed information of the seven sites, and Figure 8 shows their topography distribution, which

Table 1. Information about the thirteen measuring networks.

Abbreviation
No. of
sites Time Span Instrument

Temporal
resolution Reference

ARM1 33 2001–
2017

Kipp&Zonen Pyrgeometer 1 min (Phillips et al. 2017)

AsiaFlux 26 2001–
2015

Kipp&Zonen, CM-6F 30 min (Shi and Liang 2013)

BSRN2 7 2001–
2017

Eppley, PIR/Kipp&Zonen
CG4

1 or 3min (Zo et al. 2017)

CEOP3 8 2008–
2009

Eppley PIR, CG4 30 min (Yao et al. 2014)

CEOP_Int 5 2002–
2019

QMN101 30 min \

CERN4 1 2007–
2014

– 30min (Fu et al. 2010)

ChinaFlux 3 2003–
2016

– 30min \

GAME.ANN 2 2001–
2003

EKO MS0202F 30 min \

HiWATER 16 2012–
2012

CNR-4 10 min (Shaomin et al. 2012)

LaThuile5 227 2001–
2017

Kipp&ZonenCNR-1,etc 30 min (Ornl 2015)

LBA-ECO6 4 2001–
2006

REBS Q*7.1 1 h (Tóta et al. 2008)

SAFARI7 1 2001–
2017

Kipp&Zonen Pyrgeometer 30 min (Swap et al. 2003)

SURFRAD 7 2001–
2017

Eppley, PIR 3 min (Augustine, DeLuisi, and Long
2000)

1ARM: Atmospheric Radiation Measurement (Phillips et al. 2017), 2BSRN: Baseline Surface Radiation Network (Zo et al. 2017),
3CEOP: Coordinated Enhanced Observation Network of China (Yao et al. 2014), 4CERN: Chinese ecosystem research network
(Fu et al. 2010), 5LaThuile: Global Fluxnet (LaThuile dataset) (Ornl 2015), 6LBA-ECO (Large Scale Biosphere-Atmosphere Exper-
iment) (Tóta et al. 2008), 7SAFARI: Southern African Regional Science Initiative Project (Swap et al. 2003).

Figure 7. (a) Geographical distribution of the 340 sites in 13 measurement networks and the climate zones these sites belong to,
(b) the proportion of fourteen site land cover types, and (c) the proportion of the five climate types of the 340 sites.
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was acquired from the DEM data provided by the National Aeronautics and Space Administration
(NASA) Shuttle Radar Topographic Mission (SRTM). The elevation of the 7 sites ranges from
∼1700m to ∼ 1800m with GRA land cover but these sites were located at various slopes and aspects.
The CNR4 net radiometers applied for measuring at the 7 sites were set parallel to the inclined wes-
tern or southern surfaces for measuring more reasonably at rugged terrain areas. More detailed
information can be found in Yan et al. (2018). The original measurements were at a frequency
of 1 min, and they were processed into daily averages like those from the 340 sites. After matching
with the MODIS TOA observations, 2,982 samples were obtained for validation.

3.1.2. Remotely sensed datasets
3.1.2.1. MODIS products. The MODIS sensors are aboard the Terra and Aqua satellites operated by
NASA, providing the MOD and MYD series products, with a 10:30 equatorial crossing time and
13:30 equatorial crossing time during the daytime, respectively (Wu and Ying 2019). Both the
Terra and Aqua satellites provide the opportunity to observe the entire Earth’s surface every one
or two days for 36 spectral bands in wavelengths from 0.405–14.385 µm. As in the study of Li
et al. (2021), the MOD and MYD series products, including the TOA reflectance and irradiance
from MOD/MYD021KM and the corresponding geometric information from MOD/MYD03,
were used in this study, and the detailed information is given in Table 3. All MODIS products
were extracted according to the site locations and quality control as specified by Li et al. (2021).

3.1.2.2. GLASS-MODIS daily Rn product. Similar to the GLASS-MODIS daytime Rn product (Jiang
et al. 2016), the GLASS-MODIS daily Rn product at 0.05° since 2000 was also mainly generated
based on the close relationship between R�

s and Rn with other ancillary information over the global
regions where R�

s was available covering almost all areas at mid-low latitudes. After validating
against comprehensive in situ measurements all over the globe, the performance of GLASS-
MODIS daily Rn was superior to the other products, with an overall validation root-mean-square
error (RMSE) of 26.18 Wm−2 (Jiang et al. 2016). Guo et al. (2020) applied the GLASS-MODIS
daily Rn for ET estimation and achieved a better accuracy than using the daily Rn from the
MERRA2 reanalysis product. In this study, GLASS-MODIS daily Rn were extracted according to
site locations and measuring times of the validation samples for model evaluations.

3.1.3. Daily Rn from the ERA5 reanalysis product
As the newest generation of reanalysis products updated from ERA-interim (Dee et al. 2011; Hers-
bach et al. 2020), ERA5 provides high-quality global land surface, oceanic and atmospheric reana-
lysis datasets at an hourly resolution with a spatial resolution of 25 km (Hersbach et al. 2020). Its
radiative components are generated based on radiative transfer models (RTMs), and the validation
results indicated that the radiative components from ERA5 performed better than ERA-Interim and
MERRA2 (Martens et al. 2020; Sianturi and Marjuki Kwarti 2020). The ERA5 daily average Rn was
calculated by aggregating the hourly Rn values calculated by adding the four hourly radiative com-
ponents. Similar to Li et al. (2021), the ERA5 daily Rn extracted according to samples was also

Table 2. The detailed information about the seven mountainous stations in Chengde city in China.

Station Latitude(◦) Longitude(◦) Elevation(m) Slope(◦) Aspect(◦) IGBP

1 42.397 117.399 1848.551 9 85 GRA
2 42.397 117.398 1848.427 19 269 GRA
3 42.393 117.397 1852.700 26 196 GRA
4 42.393 117.395 1810.066 22 285 GRA
5 42.394 117.392 1700.166 2 47 GRA
6 42.396 117.390 1756.811 29 189 GRA
7 42.387 117.400 1838.169 30 138 GRA
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introduced as a physical constraint into the Rn estimation model based on MODIS TOA obser-
vations to improve the estimation accuracy at mid-low latitudes.

3.2. Methodology

According to Li et al. (2021), the accuracy of the estimated daily Rn at mid-low latitudes directly
from the MODIS TOA observations would be improved significantly by incorporating the ERA5
daily Rn, which could provide additional information that the limited available MODIS TOA
data cannot provide in this region. The daily Rn at mid-low latitudes is estimated as follows:

Rn = f (TOAref , TOArad, SZA, VZA, RAA, height, dr, w, Rn ERA5) (2)

dr = 1 + 0.033∗cos 2pdoy
365

( )
(2a)

where TOAref and TOArad are the MODIS TOA reflectance data (bands 1-5, 7, 19) and radiance
data (bands 21, 24, 25, 27-36) from MOD/MYD02 1 km during daytime. SZA, VZA, RAA and
height are the solar zenith angle (°), sensor azimuth (°), relative azimuth (the absolute value of
solar azimuth minus sensor azimuth) (°) and height (meter) obtained from MOD/MYD03.
Rn ERA5 is the daily Rn from ERA5 and dr is the inverse relative distance from the Earth to the
Sun calculated by Eq. (2a). w is the latitude (°) of the sites and doy is the day of the year. The
final daily Rn was the average of all the estimated values in one day, the number of which was deter-
mined by the overpass times of MODIS during the daytime. In this study, the nine evaluated ML
methods were employed by this equation one by one, and all the models were implemented with a
Microsoft Windows 10 system on a Inter Core 3.20 GHz PC with 32 GB memory. Section 4.1 pre-
sents the tuning process of each of the nine models.

Figure 8. (a) Geographical location and (b) the corresponding DEM distribution of the 7 sites (dark spots) at Chengde mountai-
nous area.

Table 3. The MODIS products used in this study.

MODIS
Product

Temporal
Resolution

Spatial
Resolution Variables Used

MOD/MYD02 5 min 1 km 1 km_RefSB,1 km_Emissive
MOD/MYD03 5 min 1 km SolarZenith(SZA),SolarAzimuth(SAA), SensorZenith(VZA),SensorAzimuth

(VAA), Height
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Afterwards, the performance of the nine models was evaluated by validating against the ground
measurements and making comparisons with the GLASS-MODIS daily Rn. Four commonly used
statistical indices were employed to represent accuracy, the determination coefficient (R2), root
mean square error (RMSE), bias, and relative root mean square error (rRSME), and are given as
follows:

R2 = 1−
∑n

i=1 (ei − oi)
2∑n

i=1 (oi − �o)2
(3a)

RMSE =
�����������������
1
n

∑n
i=1

(oi − ei)
2

√
(3b)

Bias = 1
n

∑n
i=1

(ei − oi) (3c)

rRMSE = RMSE
mean(X)

(3d)

where ei is the estimated daily Rn, oi is the ground measurement, and X represents all the site obser-
vations. The rRMSE was used to eliminate the influence on the validation accuracy caused by the
unbalanced sample sizes of various types.

Finally, the influencing factors (i.e. land cover, elevation, topography and sample size), the map-
ping ability, and the efficiency and requirements for the operating environment or hardware of the
nine models were further analysed and discussed.

4. Results and analysis

4.1. Tuning of the nine ML models

To obtain the best models, the hyperparameters of each model described in Section 2 were tuned.
The detailed information is as follows.

4.1.1. ML methods
4.1.1.1. Tree methods. Three tree methods (RF, AdaBoost, and XGBoost) were applied in the pre-
sent study. As mentioned in Section 2, four hyperparameters, including ‘N-estimators’, ‘Max-
depth’, ‘Min-samples-split’ and ‘Min-samples-leaf’, all need to be tuned for RF, AdaBoost, and
XGBoost modeling. In addition, two more hyperparameters, ‘Learning rate’ and ‘Loss’, are needed
for AdaBoost, whereas three hyperparameters, ‘Booster’, ‘Subsample’ and ‘Learning rate’, are
needed for XGBoost. After multiple experiments, the threshold settings for all the hyperparameters
of the three tree methods are shown in Table 4. The threshold values of all the hyperparameters
were set as [minimum value, by step, maximum value] except the ‘Learning rate’, ‘Loss’ and ‘Boos-
ter’. For instance, the values for the ‘N-estimators’ were defined as [30, 10, 100], which means that
the value of the ‘N-estimator’ for the three tree methods ranged from 30∼100, and the values 30, 40,
50, 60, 70, 80, 90 and 100 by steps of 10 were traversed to determine this hyperparameter. Based on
the same training and validation samples, the best combination of hyperparameters for the three
tree models were determined and given in parentheses or highlighted in red in Table 4. Note
that some hyperparameters have little effect on the three models, such as ‘Min-samples-split’ and
‘Min-samples-leaf’.

4.1.1.2. ANN. A three-layer network architecture was applied for the MLP and RBF models
(Broomhead and Lowe 1988), which means that the two models both contained one input layer,
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one hidden layer and one output layer. In addition to the number of neurons in the hidden layer
being the common hyperparameter to be set in the two models, the other hyperparameters need to
be determined separately for the two methods, such as the hyperparmeters ‘Activation function’
and the ‘Batch size’ for MLP and ‘Gamma’ for RBF (see Table 5). Moreover, the widely used
Adam optimizer is applied in MLP modeling for iterative training to optimize the weights and
biases in the hidden layer to reduce the optimization cost (Kingma and Ba 2014), and the RBF ker-
nel is used in the RBF model.

4.1.1.3. SVM. The common kernel functions used in the SVM model include linear, polynomial,
RBF and sigmoid, and the RBF kernel was applied because it performs better than other kernel
functions in regression cases after multiple experiments. Similar to the RBF model, Gamma is
the most important hyperparameter to be set. The detailed hyperparameters settings are shown
in Table 6.

4.1.2. DL methods
4.1.2.1. SAE. There are four hyperparameters to be determined in SAE, and the most essential are
the number of neurons and network layers structure in the encoder/decoder layer and the hidden
layer in MLP, and the other two are the ‘Activation function’ and ‘Batch size’. To reduce the tuning
cost, a single layer was used for both the encoding/decoder layer and the hidden layer in the MLP.
Table 7 lists the settings of these hyperparameters and the determined hyperparameters.

4.1.2.2. DBN. A previous study indicated that a one-layer RBM was enough to achieve satisfactory
accuracy (Wang et al. 2020). Hence, one RBM and one hidden layer were applied in the DBN mod-
eling. Table 8 gives detailed information about the hyperparameter settings in the DBN. Note that
the iterative training times for the RBM and hidden layer also affect the final accuracy of the DBN,
with the accuracy and training cost increasing when the training times increase. To trade off the
training cost and accuracy performance, the iterative times for the RBM layer and hidden layer
were finally set as 100 and 1200 times in the present study.

4.1.2.3. ResNet. Figure 9 shows a schematic diagram of the proposed ResNet model, which uses the
study of Jiang et al. (2019) as a reference. It shows that the input to ResNet is an image block with a
format of height × width × channels, in which the channels were set to 20 according to the numbers
of bands in Eq. (2), and then, the two sequential convolution layers were set to 32 kernels with a 3 ×
3 size, and a max-pooling layer was set to a stride of 2 with a 2 × 2 kernel size, which were applied to
downsample the input image block. After that, the downsampling feature maps entered into the
residual learning blocks equipped with 64 and 128 kernels with a 3 × 3 size, respectively, and the
learning process for each residual module was repeated three times. Last, the flattened spatial pat-
tern combined with the auxiliary information at the center pixel entered into the MLP module
equipped with two hidden layers with 128 and 64 neurons.

Table 4. Hyperparameters setting for determining the optimal RF, AdaBoost and XGBoost models. The value in parentheses or
highlighted by red was the determined value for each of the hyperparameters for the optimal three models.

Hyperparameters Tree Model
RF AdaBoost XGBoost

N-estimators [30, 10, 100] (50) [30, 10, 100] (50) [30, 10, 100] (60)
Max-depth [5, 1, 14] (11) [5, 1, 14] (9) [5, 1, 14] (6)
Min-samples-split [3, 1, 8] (6) [3, 1, 8] (6) [3, 1, 8] (5)
Min-samples-leaf [3, 1, 8] (5) [3, 1, 8] (4) [3, 1, 8] (4)
Learning rate \ {0.001,0.01,0.1}(0.1) [0.05, 0.05, 0.55] (0.3)
Loss function \ linear/square/exponential \
Subsample \ \ [0.6, 0.1, 1] (1)
Booster \ \ gbtree/gblinear
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According to previous studies, the window size of the input image block could reflect the influ-
ence of the spatial scale on an Rn at a central pixel (Jiang et al. 2020), and the spatial scale is related
to the heterogeneity of the underlying surface and the temporal resolution of the samples (Li et al.
2005; Wang et al. 2015a; Huang et al. 2016), which means that the optimal input window size would
become larger if the underlying surface become more homogeneous and the sampling frequency
became longer. Hence, in ResNet modeling, the most appropriate window size for the input
image block should be determined first to achieve the best performance. As suggested by Wang
et al. (2015b), the largest window size of the input image block should be less than 50×50 km2,
and the size of 41×41 km2 was set as the threshold in this study by considering the sites used.
Then, the optimal window size could be determined by the highest validation accuracy when the
size increased from 3×3–41×41 km2 at an interval of 2 by using the same training samples. Figure
10 shows the variations in the validated RMSE values with the different input window sizes. The
results indicated that the RMSE value gradually decreased with the increasing input window size
of the MODIS images and stabilized when the window size was larger than 33×33 km2. Finally,
the window size was determined to be 39×39 km2 in our ResNet model as the RMSE value reached
the minimum (19.40 Wm−2).

In summary, it is crucial to determine the most appropriate combination of hyperparameters to
obtain an optimal ML model. Among the nine methods, the hyperparameters that need to be set in
the SVMmethod are the fewest. Moreover, when determining the best model the issue of overfitting
in ML modeling is also to be considered in addition to the minimum validation accuracy. To do
this, the ML models were trained repeatedly with different combinations of hyperparameters
until the difference in RMSE values from the training and validation was small (≤ 1 Wm−2 in
this study). Overall, tuning an ML method is a subjective process, and the obtained model is highly
dependent on the samples, the experience of operators and the modeling platform.

4.2. Nine model performance intercomparisons

4.2.1. Overall validation accuracy at the site scale
The daily Rn estimates from the nine determined ML models were directly validated against the
independent ground measurements (No. of samples = 176,584 samples), and the results are
given in Table 9.

Generally, the three DL models (SAE, DBN and ResNet) performed better than most of the clas-
sic ML models with the best and second performing ResNet and SAE models, which yielded RMSEs
of 19.40 and 20.16 Wm−2, biases of 0.14 and 0.77 Wm−2, and R2 values of 0.92 and 0.91, respect-
ively, and the DBN model performed the worst among the three DL models but still yielded a rela-
tively small RMSE of 21.72 Wm−2 and a high R2 of 0.89. Among the six classical ML models, the

Table 5. The same as Table 4 but for the MLP and RBF models.

Hyperparameters

Values

MLP RBF

Neurons of the hidden layer [5, 5, 100] (65) [100, 100, 800] (800)
Activation function Relu/Tanh/Sigmoid \
Kernel \ RBF
Batch size {32,64,128,256,512,1024} (512) \
Gamma \ {0.0001,0.001,0.01,0.1} (0.001)

Table 6. The same as Table 4 but for the SVM model.

Hyperparameters values

Kernel linear/polynomial/RBF/sigmoid
Gamma (only for RBF) {0.00001,0.0001,0.001,0.01,0.1} (0.0001)
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XGBoost model performed the best and was similar to the SAE model, with an RMSE of 20.25
Wm−2, a bias of 0.06 Wm−2, and an R2 of 0.91; the MLP model yielded an RMSE of 21.37
Wm−2, a bias of 0.97 Wm−2 and an R2 of 0.90. The other four ML models (RF, AdaBoost, RBF,
and SVM) performed similarly, with RMSE values ranging from 22∼23 Wm−2, and the perform-
ance of the RF model was coincident with the study of Li et al. (2021). Moreover, the three tree
models (RF, AdaBoost and XGBoost) yielded minimal bias values between 0.06∼0.09 Wm−2

among the nine models, which might be because of their ensemble learning characteristics. Overall,
the performance of the nine ML methods in Rn estimation was satisfactory.

4.2.2. Model performance under various conditions
For a more comprehensive assessment, the validation accuracy in the daily Rn estimation from the
nine ML models under various conditions regarding the land cover types, elevation zones, seasons
and latitude zones were further examined.

As described in Section 3.1.1, the independent validation samples were from fourteen land cover
types; hence, the validation accuracy represented by RMSE and rRMSE for each land cover were
compared and are shown in Figure 11. As Figure 11a shows, the ResNet model (black line with
dots) performed the best for daily Rn estimations for all land cover types, with RMSE values ranging
from 11∼26Wm−2. The validation results were shown in the innermost layer, which means that the
RMSE values were almost the smallest for each of the land cover types. The SAE model (red line
with dots) and XGBoost model (dark green line with dots) followed with similar performances,
with RMSE values ranging from 12∼28 Wm−2 and 13∼28 Wm−2, respectively. Other ML models,
such as MLP, RBF, SVM, AdaBoost and DBN, performed worse but similarly, with RMSE values
ranging from 13∼33 Wm−2, and the results were in accordance with the results in Section 4.2.1.
Combined with the results in Figure 11b, which eliminated the influence of different sample
sizes, the nine ML models performed better when the land surface was covered with sparse veg-
etation, such as BSV and URB, followed by OSH and CSH, while almost all the models performed
poorly for SAV and some forest types, including MF, DBF, ENF and DNF, and the discrepancy in
model performance was the largest for DNF, with rRMSE values ranging from 0.28∼0.39 (RMSE
values ranging from 20.4∼28.7 Wm−2). It was assumed that the poor performance for SAV,
DNF and ENF for the nine ML methods might be caused by the small size of the training samples
as compared to the other land cover types (such as 767 for SAV and 2,085 for DNF). In addition, it
is also reported that the estimated accuracy of the other parameters (i.e. ET and Rns) was also poor
in dense forest types such as ENF and DNF (Yao et al. 2015; Wang et al. 2019), possibly due to their
special growth environment.

Figure 12a-b shows the validated RMSE and rRMSE of the nine ML models for eight elevation
zones (<200 m, 200–400 m, 400–600 m, 600–800 m, 800–1000 m, 1000-1500 m, 1500-2000m and >

Table 7. The same as Table 4 but for the SAE model.

Hyperparameters values

Neurons of the encoder layer [5, 5, 90] (60)
Neurons of the hidden layer [5, 5, 90] (80)
Activation function Relu/Tanh/Sigmoid
Batch size {64,128,256,512,1024,2048} (256)

Table 8. The same as Table 4 but for the DBN model.

Hyperparameters values

Neurons of the hidden layer {16,32,64,128,256} (256)
Learning rate of RBM {0.001,0.01,0.1} (0.1)
Activation function Relu/Tanh/Sigmoid
Batch size {64,128,256,512,1024,2048} (256)
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2000m), respectively. The results indicate that the performance of the nine ML models was rela-
tively robust but was generally getting worse as the elevation increased, with their RMSE values
increasing from ∼20 Wm−2 for elevations smaller than 800 m to 20∼30 Wm−2 for other elevation
zones (Figure 12a), and the worst performance for these models was shown at the 800–1000 m and
>2000m elevation zones. As before, the ResNet model still performed the best across all the
elevation zones, followed by the SAE and XGBoost models, and the AdaBoost and SVM models
performed the worst.

The model performance in the four seasons and in different latitudes is shown in Figures 13
and 14, respectively. The four seasons in the Northern Hemisphere were defined as spring from
March to May, summer from June to August, autumn from September to November, and winter

Figure 9. Structure of the residual neural network (Jiang et al. 2019).

Figure 10. The variations in the validated accuracy (represented by RMSE) in the daily Rn estimations from the ResNet model
when the inputted window size of MODIS images ranging from 3×3 km2 to 41×41 km2 with the stride of 2.

Table 9. Validation accuracy of the nine ML models against the independent validation ground measurements.

Models RMSE (Wm−2) bias (Wm−2) R2

Classical ML methods RF 22.81 0.09 0.88
AdaBoost 23.08 0.08 0.88
XGBoost 20.25 0.06 0.91
MLP 21.37 0.97 0.90
RBF 22.34 −0.12 0.89
SVM 22.73 −0.40 0.88

DL methods SAE 20.16 0.77 0.91
DBN 21.72 0.57 0.89
ResNet 19.40 0.14 0.92
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from December to February in the following year. From the two figures, the uncertainty in the
daily Rn estimated by all the ML models was relatively larger in the winter season and at mid-
high latitudes, with rRMSE values of 0.86∼1 for winter days and 0.25∼0.37 for latitudes higher
than 40°; however, the validated RMSE values under the two conditions were not large, with
values of 14.3∼17 Wm−2 and 19.8∼23.8 Wm−2, respectively, which was assumed to be due to
the influence of snow/ice and clouds, the accuracy of the ERA5 daily Rn, and the number of
samples used for training. Similar to other results, the ResNet model still performed the best,
followed by the SAE and XGBoost models.

Overall, similar to the overall validation accuracy, among the nine models, ResNet performed the
most robustly and the best across almost all the land cover types, elevation ranges, seasons and lati-
tude zones, followed by SAE and XGBoost. However, nearly all the models performed unsatisfac-
torily at some land cover types (e.g. SAV, ENF, DNF), some elevation zones (800–1000 m, >
2000m), winter days, and mid-high latitudes owing to the limited number of available training
samples, poor accuracy of the ERA5 Rn and so on (Wang et al. 2019).

Figure 11. The performance of the nine ML models in daily Rn estimation at fourteen land cover types represented by (a) RMSE
(Wm−2) and (b) rRMSE.

Figure 12. The same as Figure 11 but for various elevation zones.
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4.2.3. Model implementation cost
In addition to the estimation accuracy, one of the issues that concern users the most is the resources
needed for model implementations in practice, particularly the requirements on the hardware and
the model’s running efficiency. In this study, it was found that the time needed for Rn predictions of
all the nine ML models was within seconds except for the ResNet model but it was still less than half
an hour. Hence, the time needed for model training and the memory required for the running of the
nine models were recorded and are presented in Figure 15.

Among the nineMLmodels, the implementation cost for the ResNet model was the highest, with
the most training time (∼24.83 h, 89,389 s) spent and the largest memory (∼5 GB, 5,280 MB)
needed. For the other eight models, the time needed for model training differed greatly, with the
top three being the SVM (72,723 s, ∼ 20.20 h), the DBN (67,725 s, ∼18.81 h), and the RBF
(24,042 s, ∼ 6.67 h), and the least time needed was the XGBoost (28 s). The computer memory
needed was similar for these models, ranging from approximately 800–1,200 MB except for the
DBN, which had the least memory requirements of 160 MB. Relatively speaking, the

Figure 13. The same as Figure 11 but for the four seasons in the Northern Hemisphere.

Figure 14. The same as Figure 11 but for the different latitude zones in the Northern Hemisphere, where 10°, 20°, 30°, 40°, 50°
and 60° represent the validation accuracy at 10° intervals, for example, 40° represents the range from 30° to 40°.
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implementation costs for the three tree methods (RF, AdaBoost and XGBoost) were the smallest,
which is one of the most important reasons why the tree methods are so popular. Moreover,
SVM is not suitable for large samples (Mountrakis, Im, and Ogole 2011) because it took more
than 3 h for training when only 50% of the total training samples were used, which is due to the
complex mapping process in SVM of the high dimensional space (Mountrakis, Im, and Ogole
2011). Therefore, the results demonstrate that the implementation costs for the DL methods are
not always expensive except for ResNet, and a trade-off must be made between the running
costs and model performance when selecting ML methods.

Based on the above results, it could be concluded that most DL models performed better than
most traditional ML models in Rn estimation, especially the ResNet model, and were followed by
the SAE. However, the performance of XGBoost and MLP in the classic ML methods was also
not disappointing, while RF, AdaBoost, RBF and SVM had general performances. However, the
implementation cost required for the ResNet model was the highest, and some methods (e.g.
SVM and RBF) worked poorly with large sample sizes.

4.3. Inter-comparison with GLASS-MODIS Rn of the three outperformed models

The performance of three outperformed models, including the two DL methods, ResNet and SAE,
and the one tree method, XGBoost, was further compared with the daily Rn from the GLASS-
MODIS product. which was thought to be much better than other existing Rn products, including
CERES4A (Li et al. 2021).

Figure 15. The computational cost of the nine models represented by (a) the time spent for training and (b) the memory needed
for model running.
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4.3.1. At the site scale
With the same validation samples, the validated accuracy of GLASS-MODIS Rn yielded an R2 of
0.87, RMSE of 24.42 Wm−2 and bias of −1.69 Wm−2. Combined with the results in Table 9, the
outputs of the ResNet, SAE and XGBoost models were more accurate than those of GLASS-
MODIS, with smaller RMSE values (19.40/20.16/20.25 Wm−2), biases (0.14/0.77/0.06 Wm−2)
and larger R2 values (0.92/0.91/0.91). The statistics of their validation accuracy in RMSE and
bias in Figure 16 further illustrated the superiority of the three models, especially the ResNet
model; hence, more comparisons between the daily Rn from GLASS-MODIS and the ResNet
model were conducted, and the results are shown in Figures 17 and 18.

Figure 17 shows the monthly validation accuracy in Rn represented by RMSE (Figure 17a) and
rRMSE (Figure 17b) from 2000 to 2017 in the Northern Hemisphere. It shows that the estimated Rn

from the ResNet model was more accurate at each of the twelve months than that of GLASS-
MODIS, with smaller RMSE values ranging from 10∼26 Wm−2 (14∼34 Wm−2 for GLASS-
MODIS) but the two both performed poorly in the cold months, which was coincident with the
previous results, and this needs to be improved in the future.

To illustrate the ability to capture the temporal variations of Rn, the long time series daily Rn

estimated from the ResNet model, GLASS-MODIS, and the ground measurements were intercom-
pared at three randomly selected SURFRAD sites (SF_DRA <36.63°N, 116.02°W, BSV>, SF_GCM
<34.25°N, 89.87°W, GRA>, and SF_SXF <43.73°N, 96.62°W, OSH>) and are shown in Figure 18. It
can be seen that the two daily Rn estimations varied similarly to the in situ Rn measurements (block
dots) very well, but the variations in Rn from the ResNet model (red line) were closer to the in situ
one, especially at high values with a smaller overall validated RMSE (9.8∼13.6 Wm−2) and bias
(0.1∼3.5 Wm−2) values than those from GLASS-MODIS (blue line). However, both of them had
the tendency to overestimate the Rn at very low values (∼ 0 Wm−2).

4.3.2. Mapping
The XGBoost, SAE, and ResNet models were applied to map the daily Rn over the continental Uni-
ted States on a randomly selected day on the 213nd day of 2017, and the results are presented in
Figure 19. For reference, the GLASS-MODIS daily Rn on the same day for this region is also pre-
sented (Figure 19d). Overall, the spatial distributions of the estimated daily Rn from the three
models (Figure 19a – c) were similar to each other and to that of GLASS-MODIS (Figure 19d).
Among the three ML models, the mapping results from the SAE performed the best in regards
to the spatial continuity and the production efficiency, while various issues appeared in the results
of the other two models. Specifically, for the result of the XGBoost model (Figure 19a), some
mosaics parallel to the latitude near 40

◦
N and 45

◦
N (black rectangle) were shown, which was specu-

lated to be caused by taking the latitude of 40
◦
N and 45

◦
N as one of the judgement conditions,

Figure 16. The boxplot of the validation accuracy in daily Rn from the GLASS-MODIS product and the ResNet, the SAE, and the
XGBoost model represented by (a) bias (Wm−2) and (b) RMSE (Wm−2).
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which were defined automatically in the formation of the decision trees in XGBoost, whereas for the
results of the ResNet model (Figure 19c), the mosaics corresponding to the swath of the MODIS
image appeared, which was possibly due to the window size (39×39 km2) of the inputted active

Figure 17. The performance of ResNet model and GLASS-MODIS product over twelve months in the North Hemisphere: (a) RMSE
and (b) rRMSE.

Figure 18. Time series of the estimated daily Rn from ResNet model (red line), GLASS-MODIS (blue line), and in-situ measure-
ments (black dots) at three sites: (a) SF_DRA (36.63°N, 116.02°W, BSV); (b) SF_GCM (34.25°N, 89.87°W, GRA); and (c) SF_SXF
(43.73°N, 96.62°W, OSH).
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image block defined in this study, causing the calculations at the edges of the image to be invalid. In
addition, the relatively large window size also made the mapped Rn too smooth to provide more
details compared to the others. Regarding the running time for the mapping over the continental
United States for one day, it took approximately 3 days for the ResNet model and only a few hours
(< 3 h) for the other two models. Hence, a reasonable trade-off between the accuracy and the run-
ning efficiency must be carefully considered when conducting global applications (Pyo et al. 2019;
Jiang et al. 2020).

In summary, the DL methods, ResNet and SAE, outperformed most of the evaluated ML
methods and the GLASS-MODIS product in daily Rn estimations with a higher validation accuracy
and a more robust performance under various conditions but the SAE had outstanding advantages
if used for global mapping relative to ResNet because of its implementation efficiency and spatial
continuity. However, the quality and quantity of the samples are still most essential to all the
data-driven methods.

5. Discussion

Two more issues about the performance of the nine ML models in Rn calculations need to be
thoroughly discussed, including the influence of the sample size on DL methods and how these
models work in predictions, especially in rugged terrain.

One of the issues that the users are most concerned about is the influence of the samples for
model training on the performance of the DL methods, especially the influence of the sample
size (Yuan et al. 2020). Hence, the validation accuracy against the same independent validation
samples (No. of samples = 176,584) of the four well-performing ML models for Rn estimation,
including two the DL methods (ResNet and SAE) and the two classic ML methods (XGBoost
and MLP), were examined with different sizes of training samples. For better illustration, the

Figure 19. The spatial distribution of the daily Rn on the 213th day of 2017 over the Continental United States from (a) the
XGBoost model, (b) the SAE model, (c) the ResNet model and (d) the GLASS-MODIS product. The black boxes in (a) and (c) indicate
the mosaics.
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Kneed method (Satopaa et al. 2011) was applied to the four models to detect the inflection points
indicating the distinct changes in the overall variations in the validated RMSE when the samples for
model training increased with random selections from 10% to 100% of the overall training samples
(No, of samples = 488,390) at an interval of 10%.

As Figure 20 shows, the validation accuracy for all four models generally improved with decreas-
ing RMSE values when the training samples increased, especially for the ResNet (red dotted line)
and SAE models (blue dotted line). This indicates that the performance of the two ML methods
remained stable with a nearly unchanged RMSE when the employed training samples were greater
than approximately 293,000 (60% of the total sample size). The performance of the two DLmethods
improved all the time even when all the training samples were used, especially the ResNet model,
where the RMSE value decreased to 19.4 Wm−2 but its implementation time cost for training
increased significantly from 7 to 26 h. Combining the infection points detected for ResNet (red
bar) and SAE (blue bar), a larger sample size was required for the DL methods, especially for
ResNet, and at least 200,000 and 250,000 samples were required for the ResNet and SAE model
training, respectively. However, it was still difficult to determine the best sample size for ResNet,
as the validated RMSE was still decreasing when all the samples (∼500,000) were used. Therefore,
by combining the model performance in Rn estimations, the SAE and XGBoost methods are also
good choices in addition to ResNet in practical use.

Additionally, the prediction ability of these nine ML methods in daily Rn estimation was
explored. The samples from 2000 to 2020 from SURFRAD with a total number of 17,962 were
used for validation, in which the samples from 2000–2017 were used for validation and those
from 2018–2020 were used for validating predictions. Figure 20 presents the above two results in
blue bars and magenta bars for the nine ML models. Overall, the validation accuracy of the predic-
tions from the nine models using the SURFRAD measurements is slightly worse than those from
2000 to 2017, with the RMSE values and the magnitude of bias increasing by 1∼6.1 Wm−2 and
3.5∼5 Wm−2, respectively. The results were still better than those for GLASS-MODIS, with
RMSE values of 19.4 and 20.7 Wm−2 and bias values of 1.4 and 6.5 Wm−2 for 2000–2017 and
2018–2020, respectively. The short time expansion ability of the nine ML models was acceptable;
hence, the nine models were used for prediction in rugged terrains. The validation results were
also added in Figure 21 in green bars for all the models by using the samples from Chengde
(described in Section 3.1.1). For rugged terrains, the estimation accuracy of the nine ML methods
was heavily weakened as their RMSE values increased to 36∼42 Wm−2, the magnitude of the biases
was reduced by 14∼25 Wm−2, the R2 values decreased by 0.22∼0.27, and all the models had the
tendency to underestimate the daily Rn (negative bias). Relatively speaking, the two DL methods
(DBN and ResNet) and RBF performed slightly better than the others. The data-driven methods

Figure 20. The variations in the validated accuracy (in RMSE, left y-axis) of the ResNet, XGBoost, SAE and MLP model for Rn
estimation and the implementation times (in hours, right y-axis) for the ResNet with the increased training samples. The red
and blue bars represent the inflection points of the validated RMSE of the ResNet and SAE models, respectively.
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always describe the characteristics of major samples, which is why these models performed worse in
some special cases (e.g. rugged terrain). Therefore, to improve the rugged Rn estimation accuracy,
including more rugged terrain samples for use in for model training would be one of the solutions.
In addition, the low accuracy of the rugged terrain ERA5 Rn (Figure 21), which was taken as a con-
straint in modeling, should also be considered; therefore, further experiments have been conducted
by removing the ERA5 Rn in these nine models, but the estimation accuracy improved minimally.
Hence, it indicated that the other constraints with higher spatial resolutions and accuracies and the
parameters related to terrain both needed to be taken into account in the data-driven models for Rn

estimations in rugged terrain.

6. Conclusions

To evaluate the performance of various ML methods in Rn estimations, nine ML methods, includ-
ing six classic ML methods (i.e. three tree methods, namely, RF, AdaBoost and XGBoost, two

Figure 21. Validation accuracy of the nine ML models, GLASS-MODIS and ERA5 against the measurement from SURFRAD from
2000 to 2017 (blue) and 2018–2020 (magenta), and from Chengde at rugged terrain from 2018 to 2020 (green) in (a) RMSE
(Wm−2), (b) bias (Wm−2) and (c) R2.
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artificial neural network methods, namely, MLP and RBF, and one kernel method, namely, SVM)
and three deep learning methods, namely, SAE, DBN and ResNet, were developed for estimating
the daily Rn at mid-low latitudes using the in situ measurements collected from 340 globally distrib-
uted sites at mid-low latitudes, MODIS TOA observations, and ERA5 Rn. Then, the Rn estimates
from the nine ML models were validated directly at the site’s scale against the same independent
validation samples, and their accuracies were further examined under various conditions in
terms of land cover types, elevation zones, seasons and latitudes. Finally, the estimates from the out-
performed models were compared with those from the GLASS-MODIS product. The validation
intercomparison results demonstrated that the three DL models, especially the ResNet and SAE
models, generally outperformed all the other ML models with higher overall validation accuracies,
and the XGBoost model performed the best among the six classic ML models. Specifically, the
ResNet model performed the best among the nine models, yielding an overall validated RSME of
19.40 Wm−2 and a bias of 0.14 Wm−2, followed by the SAE and XGBoost models, which yielded
validated RMSE values of 20.16 and 20.25 Wm−2 and biases of 0.77 and 0.06 Wm−2, respectively.
In addition, the estimation accuracy of the other models was also acceptable, with RMSE values ran-
ging from 21∼23 Wm−2. Furthermore, the performance of the nine models across various con-
ditions showed that the ResNet model was also the best, with the most robust performance and
the highest accuracy. In addition, the accuracy of Rn from ResNet, SAE, and XGBoost was better
than that of the GLASS-MODIS Rn, whose validated RMSE was 24.42 Wm−2 and with a bias of
−1.69 Wm−2. However, there were some cases under which nearly all the evaluated ML models
performed unsatisfactory, such as the land cover for SAV and DNF, the elevation zones in
800∼1000 m and higher than 2000m, winter days, mid-high latitudes, and the rugged terrain.
Hence, more effort should be made in the future to improve the daily Rn estimation accuracy
under specific cases by increasing the modeling sample size or revising the introduced modeling
parameters.

Although DL methods achieved better estimation accuracies than the classic ML methods, these
nine methods have their own advantages and disadvantages. For example, the DL methods rep-
resented by the ResNet and SAE models are greatly affected by the sample size, which should be
large enough (> ∼200,000 and ∼250,000, respectively) to ensure the model performance but
XGBoost could perform comparatively only with a much smaller sample size. Regarding the best
performing ResNet, it will be difficult to apply this model for global mapping or other practical
uses because of its large sample size requirements, unreasonable input window size and high
implementation cost. The three tree models evaluated in this study are actually the most feasible
for practical use because of their low training cost and high running efficiency. However, their accu-
racy was not that outstanding but it was found that discontinuous values usually appeared when
using the tree methods for spatial mapping, possibly due to the discrete variables in the model
inputs. For the other three classic ML or DL methods (RBF, SVM and DBN), their performance
was relatively worse in Rn estimations, with lower estimation accuracies and medium running
efficiencies. Therefore, in terms of accuracy, running cost and mapping performance, SAE may
be the best method for Rn estimation, although its accuracy performance is not as high as ResNet.

Overall, this study comprehensively evaluated the performance of nine ML methods in estimat-
ing the land surface Rn, which could provide a good reference for other researchers. However, many
novel network design methods were not considered in the present work, such as LSTM (Ghimire
2019), spatiotemporal weighted neural networks (Li et al. 2020), and generative adversarial net-
works (GANs) (Hayatbini et al. 2019); hence, additional work needs to be conducted in the future.
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