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A B S T R A C T   

The PROSAIL model is widely used to retrieve vegetation parameters from remote sensing data in agriculture 
regions. Soil reflectance is a key input to the PROSAIL model, but its influence on vegetation parameters retrieval 
accuracy of crops is rarely discussed. Therefore, this study investigated the influence of different soil reflectance 
schemes on leaf area index (LAI) and fractional vegetation cover (FVC) retrieval accuracy based on the PROSAIL 
model in an agriculture region. Firstly, three sources of soil reflectance including ICRAF-ISRIC soil spectral li-
brary (SR_SSL), general spectral vectors model (SR_GSV), and ASD spectroradiometer measurement (SR_ASD) 
and two reflectance extraction schemes were used to generate input soil reflectance for the PROSAIL model to 
simulate canopy reflectance. Then, the LAI and FVC retrieval models were developed using the random forest 
algorithm and validated using field survey data. Determination coefficient (R2), Root Mean Square Error (RMSE) 
and normalized RMSE (NRMSE) were used to evaluate the accuracy of LAI and FVC retrieval. Under the direct 
extraction scheme, the LAI retrieval based on SR_ASD (R2 

= 0.78, RMSE = 0.613, NRMSE = 0.269) achieved 
better performance than SR_GSV (R2 = 0.73, RMSE = 0.671, NRMSE = 0.294) and SR_SSL (R2 = 0.71, RMSE =
0.762, NRMSE = 0.334), whereas the performances of FVC retrieval were comparable for SR_ASD (R2 = 0.91, 
RMSE = 0.084, NRMSE = 0.136), SR_GSV (R2 

= 0.90, RMSE = 0.086, NRMSE = 0.139) and SR_SSL (R2 
= 0.89, 

RMSE = 0.091, NRMSE = 0.147). The influence of soil reflectance on LAI retrieval is larger than that of FVC in 
this study. Furthermore, soil reflectance was more important for canopies characterized by low LAI and FVC. In 
addition, the combination of SR_SSL and multiplication coefficients scheme could be conveniently used for large 
areas vegetation parameters retrieval. While SR_GSV and SR_ASD with direct extraction scheme was suitable for 
small areas with field survey data and more homogeneous region.   

1. Introduction 

Leaf area index (LAI) and fractional vegetation cover (FVC) are two 
essential vegetation parameters for describing structural property and 
growth status of land surface vegetation, which are important indicators 
for net primary production, water and nutrient use, carbon storage 
estimation, ecosystem health evaluation and agricultural monitoring 
(Bréda 2008; Jiang and Fang, 2019; Xia et al., 2021; Wang et al., 2018; 
Younes et al., 2019; Xie et al., 2019; Marandi et al., 2022). Therefore, 
accurate estimation of LAI and FVC for large areas is of great importance 
for related research, such as crop yield estimation, earth system science 
and sustainable development. Remote sensing techniques are effective 

for estimating vegetation parameters over large areas. Numerous ap-
proaches have been developed to estimate LAI and FVC from remote 
sensing data, such as the widely used method of integrating the PROSAIL 
radiative transfer model and machine learning techniques, particularly 
for crop canopy parameter estimation (Baret et al., 2007; Baret et al., 
2013; Jia et al., 2016; Tao et al., 2021; Liu et al., 2021; Verrelst et al., 
2016). 

The PROSAIL model is composed of the leaf optical properties model 
PROSPECT and canopy bidirectional reflectance model SAIL, in which 
the leaf reflectance, leaf transmittance (both provided by PROSPECT) 
and soil reflectance (provided by the user) are three wavelength- 
dependent input variables (Jacquemoud et al., 2009). Many studies 
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have shown that soil reflectance is a major source of uncertainty for 
vegetation biophysical parameters retrieval using radiative transfer 
model (Darvishzadeh et al., 2008a; Vamborg et al., 2011). The variation 
of soil background has influence on LAI estimation using vegetation 
indices method and FVC estimation using the dimidiate pixel model at 
lower canopy cover, and root mean square error caused by soil reflec-
tance in FVC estimation can reach 0.08 (Fu et al., 2013; Ding et al., 
2016). 

Usually, the soil reflectance used in PROSAIL model to simulate top- 
of-canopy reflectance can be obtained by various methods, such as 
radiative transfer model, empirical method, existing soil spectral library 
and field measured soil reflectance (Price 1990; Hapke 1993; Weiss 
et al., 2000; Jiang and Fang, 2019; Ding et al., 2022). Soil radiative 
transfer models often require multiple complex physical parameters and 
are rarely used in practice. Empirical methods often use a single typical 
spectral shape and brightness coefficient to characterize the soil reflec-
tance, which makes it difficult to characterize the reflectance of different 
soils. For instance, the dry soil and wet soil spectra used in the PROSAIL 
model are linearly mixed using brightness coefficients to represent 
different soil conditions (Jacquemoud et al., 2009). Consequently, some 
large area vegetation parameter retrieval studies have employed mul-
tiple typical soil spectra, such as the CYCLOPES global LAI, fAPAR and 
FVC products algorithm and MODIS LAI product algorithm adopt 5 soil 
spectral samples from France and 25 soil spectral samples from the 
United States, respectively (Zhang et al., 2021; Knyazikhin et al., 1998). 
The ICRAF-ISRIC soil spectral library includes 4438 soil samples from 58 
countries in Africa, Asia, Europe, North America and South America 
(Zhang et al., 2020; Garrity and Bindraban, 2004), and thus has the 
potential to better represent heterogeneous soil conditions in radiative 
transfer models with the aim of improving the retrieval accuracy of 
vegetation parameters from remote sensing data on the global scale. 
Therefore, many studies explored different numbers of typical soil 
spectra from the ICRAF-ISRIC soil spectral library to build simulated 
datasets using the PROSAIL model (Jia et al., 2016; Wang et al., 2018). 
However, the soil reflectance screened from the spectral library does not 
effectively represent the soil spectrum of a specific local area, and there 

may be some uncertainty in the retrieval of vegetation parameters. 
Spectral vectors models can simulate hyperspectral soil reflectance for 
the specified study area based on multi-spectral remote sensing data and 
global soil spectral characteristics. The representative general spectral 
vectors (GSV) model is developed based on the global dry and wet soil 
reflectance database, which can effectively simulate the soil reflectance 
for various soil conditions (Jiang and Fang, 2019). The key issues of the 
GSV model are the selection of bare soil pixels and the need for multi-
spectral data of sufficient spectral resolution allowing the accurate 
modelling of hyperspectral soil reflectance data. Field measurement of 
soil spectrum can ensure the accuracy of soil information, but it is time- 
consuming and laborious to collect soil spectrum in a large area. 

In summary, all methods to obtain accurate, applicable and repre-
sentative soil spectral information have advantages and disadvantages, 
and therefore can lead to the error of vegetation parameters retrieval 
using the PROSAIL model. However, few studies have assessed the in-
fluence of soil reflectance on vegetation parameters retrieval from 
remote sensing data. Therefore, this study aims to investigate the in-
fluence of different soil reflectance schemes on the retrieval accuracy of 
LAI and FVC based on the PROSAIL model in the agriculture region. 

2. Materials and methods 

2.1. Study area and field experiments 

The study area is located in Hengshui (115◦10′E ~ 116◦34′E, 
37◦03′N ~ 38◦23′N), Hebei Province of China (Fig. 1). The study area is 
an alluvial plain with an elevation range of 12 to 30 m above sea level. 
The dominant land cover types in the study area are cropland and res-
idential areas. Cropland is mainly characterized by the rotation of winter 
wheat and corn cultivation. The soil type in the study area is dominated 
by tawny soils, with soil textures dominated by neutral or slightly 
alkaline viscous clay. 

The field experiments were conducted from March 29 to August 26, 
2017 during the major crop growing season. Detailed information of the 
five experiments were provided in Table 1. Winter wheat was grown in 

Fig. 1. The study area and field survey sites.  
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the study area during the first and second experiments, which was from 
March 29 to May 6. For the next three experiments, which were con-
ducted from July 5 to August 29, corn was grown in this period. During 
the five experimental investigations, the soil volume water contents 
were varied from 5.6% to 74.8%. Field crop parameters including LAI 
and FVC were collected. LAI was measured using the LAI-2200 canopy 
analyzer, while FVC was calculated using pictures taken perpendicular 
to the ground. Moreover, soil reflectance spectrum in the crop filed was 
measured using ASD spectrometer in the first and second experiments. 
Fig. 2 shows the typical soil spectra measured at one sampling site. 
About 20 sampling sites with dimensions of 100 m × 100 m were chosen 
for each field experiment. Each sampling sites was placed in the midst of 
a field of crops that had a generally homogeneous crop state. Each 
sampling site contains five small sampling points with a size of 30 m ×
30 m. The LAI and FVC of each site were represented by the average 
values of the five sample points. 

2.2. Data and data preprocessing 

Four wide field view (WFV) cameras with 16 m spatial resolution are 
onboard the Chinese GaoFen-1 (GF-1) satellite, which have a combined 
swath of 830 km. The spectral parameters of GF-1 WFV sensors are given 
in Table 2. Fig. 3 shows the spectral response functions of the four WFV 
sensors in the four bands. The four sensors WFV1, WFV2, WFV3 and 
WFV4 of GF-1 have the same spectra band range but have slightly 
different spectral responses. In this study, six GF-1 WFV data (Table 3) 
covering the study area and the experimental period were obtained to 
retrieve vegetation parameters. The preprocessing of GF-1 WFV data 
included orthorectification and spatial registration to a global reference 
system (combined UTM projection and WGS84 ellipsoid), radiometric 
calibration and atmospheric correction. For the atmospheric correction, 
the FLAASH model was used as the port of the image processing software 

ENVI. 
The Sentinel-2 satellite carries a multispectral imager (MSI), which 

provides 13 spectral bands with pixel sizes ranging from 10 to 60 m. Two 
Sentinel-2 images covering the study area on April 18 and April 28, 2017 
were used to simulate the soil hyperspectral reflectance based on the 
GSV model. Atmospheric correction and resampling processing of 
Sentinel-2 image were performed using Sen2cor and SNAP software. Ten 
band reflectance including blue, green, red, red edge1, red edge2, red 
edge3, NIR, narrow NIR, SWIR1, and SWIR2 were used to simulate soil 
hyperspectral reflectance based on the GSV model. 

The flowchart of this study is shown in Fig. 4. Firstly, three sources of 
soil reflectance were used as inputs to the PROSAIL model, in addition to 
two soil spectral extraction schemes were employed to select suitable 
representative soil spectral curves. Second, the PROSAIL model was 
used to the simulate canopy reflectance, and then the LAI and FVC 
estimation models were constructed using the random forest method 
based on the simulation datasets. Finally, the accuracy of the retrieved 
LAI and FVC was validated using the ground measured data. 

2.3. Extraction of representative soil spectra 

Three sources of soil reflectance were used in this study. The first soil 
reflectance source was the ICRAF-ISRIC soil spectral library (SR_SSL) 
with band range from 380 nm to 2500 nm and spectra interval of 10 nm. 
The second source was soil reflectance simulated by GSV model 
(SR_GSV) based on Sentinel-2 data. SR_GSV requires manually selecting 
soil pixels from the multi-spectral remote sensing data and then simu-
lating corresponding hyperspectral soil reflectance using GSV model. 
Therefore, in order to eliminate the effects of vegetation, soil pixels 
should be selected from remote sensing data without vegetation 
coverage, preferably before crop planting or when bare soil pixels are 
present in the study area. When simulating the hyperspectral soil 
reflectance with GSV model, the accuracy of using the ten bands of 
Sentinel-2 was found to be much better than using the four bands of GF- 
1. Therefore, 409 soil pixels’ multispectral reflectance extracted from 
the two Sentinel-2 images covering the study area are used to model the 
soil reflectance in this study. The third one was from 389 field mea-
surements using ASD spectroradiometer (SR_ASD) in the study area from 
March 29 to April 1 and May 4 to 7, 2017, and soil spectral range was 
from 350 to 2500 nm with 1 nm interval. The SR_ASD contains the dry 
and wet soil reflectance in the study area. The raw ASD soil spectra were 
processed using a Gaussian smoothing method, as they fluctuated due to 
the impact of the monitoring devices and environmental factors. 

To extract representative soil reflectance from the three sources of 
soil reflectance, the following processing was performed. First, the 
spectral functions of the GF-1 WFV sensor were used to calculate the 
reflectivity in the green, red, and NIR bands for each soil spectrum in the 
ICRAF-ISRIC, GSV model, and ASD measurements, respectively. Second, 
each 3-band soil spectrum was normalized by dividing the mean soil 
reflectance over the three bands, and then two extraction schemes were 
used to select representative soil reflectance. 

For the first scheme (scheme 1), K-means method was conducted for 
the normalized spectral dataset to directly obtain 20 representative 3- 
band soil spectra. A widely used empirical method for modeling soil 
reflectance assumed that soil reflectance was proportional to a given 
spectral shape (Jiang and Fang, 2019), and multiple soil reflectance 
spectra could be obtained by multiplying the given typical soil spectra 

Table 1 
The information of field experiments in Hengshui study area.  

Experiment 
number 

Start time End time Number 
of sites 

Measured 
parameters 

Crop 
type 

1 2017–03- 
29 

2017–04- 
01 

21 LAI, FVC, soil 
spectra 

Wheat 

2 2017–05- 
04 

2017–05- 
06 

22 LAI, FVC, soil 
spectra 

Wheat 

3 2017–07- 
05 

2017–07- 
08 

23 LAI, FVC Corn 

4 2017–07- 
29 

2017–08- 
01 

22 LAI, FVC Corn 

5 2017–08- 
26 

2017–08- 
29 

22 LAI, FVC Corn  

Fig. 2. The typical soil spectra measured by the ASD spectrometer at one 
sampling site. 

Table 2 
The spectral parameters of GF-1 WFV sensor.  

Band name Center wavelength Wavelength range 

Blue 485 nm 450 ~ 520 nm 
Green 550 nm 520 ~ 590 nm 
Red 660 nm 630 ~ 690 nm 
Near infrared (NIR) 830 nm 770 ~ 890 nm  
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by the brightness coefficient (Baret et al., 2007; Qian and Liu, 2020). 
Therefore, the second scheme (scheme 2) of this study attempted to 
generate representative soil spectra based on brightness coefficient. For 
the scheme 2, the normalized spectral datasets were subjected to K- 
means to produce 5 groups of typical 3-band spectra, which were then 
multiplied by three brightness coefficients including 0.4, 1.2, and 1.6 to 
generate 20 representative soil reflectance data. The brightness coeffi-
cient could be considered as a way to adjust the overall brightness or 
intensity of the reflectance spectrum. By introducing the brightness 
coefficient, the magnitude of the input soil reflectance could be adjusted. 

Based on scheme 1 and scheme 2, 20 representative soil reflectance 
with different overall magnitudes and different spectral shapes in green, 
red and NIR bands were generated from the three sources of soil 
reflectance, respectively. The spectral range was set to 400–1040 nm, 
which covers the spectral response functions of the GF-1 WFV sensors. It 

could be seen that the range of soil reflectance curves extracted from 
SR_SSL was larger than that from SR_GSV and SR_ASD, and the variation 
trend of SR_SSL was also different from SR_GSV and SR_ASD (Fig. 5). In 
addition, the soil reflectance curves extracted from SR_GSV and SR_ASD 
had similar trends. 

2.4. Development of the LAI and FVC estimation models 

The PROSAIL model (PROSAIL_D version) was used to generate the 
canopy reflectance simulation datasets with various vegetation param-
eters. The input parameters of PROSAIL model with a reasonable range 
to cover different land cover conditions were shown in Table 4. The 
input soil reflectance was extracted from SR_SSL, SR_GSV and SR_ASD 
using scheme 1 and scheme 2, respectively. 

FVC was not an input parameter of the PROSAIL model, but the 
relationship between FVC and input parameters LAI and average leaf 
angle (ALA) could be established by the classical gap fraction. The 
relationship among FVC, LAI and ALA was expressed in the PROSAIL 
model with the following formulae (Nilson, 1971): 

P0(θ) = e− λ0
G(θ,θ1)

cosθ ×LAI (1)  

FVC = 1 − P0(0) (2) 

where P0(θ) was the gap fraction, θ was observation direction, θ1 was 
the ALA, G (θ, θ1) was the orthogonal projection of a unit leaf area along 
direction θ. The parameter λ0 was the leaf dispersion and was set to 1 (a 

Fig. 3. The GF-1 WFV spectral response functions: WFV1 (a), WFV2 (b), WFV3 (c), WFV4 (d).  

Table 3 
The information of the acquired GF-1 WFV data.  

Image date Longitude and latitude of the scene center Sensor 

2017–04-01 E115.9◦, N38.9◦ WFV3 
2017–04-01 E115.4◦, N37.3◦ WFV3 
2017–05-07 E116.5◦, N38.0◦ WFV1 
2017–07-08 E116.0◦, N37.6◦ WFV2 
2017–08-10 E116.0◦, N37.6◦ WFV2 
2017–08-30 E115.3◦, N38.0◦ WFV1  
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random dispersion of foliage). According to the definition of FVC, FVC 
was calculated when θ was equal to 0 (Wang et al., 2018; Liu et al., 
2021). According to formula (1) and (2), the association between FVC 

and PROSAIL model was established, and then the FVC could be 
calculated in the PROSAIL model simulation. 

The canopy reflectance simulation using the PROSAIL model is as 

Fig. 4. The flowchart of this study.  

Fig. 5. Twenty representative soil reflectance curves for SR_SSL, SR_GSV and SR_ASD based on two extraction schemes for GF-1 WFV1 sensor (above is scheme 1, 
below is scheme 2). 
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follows. First, reflectance and transmittance in the leaf layer are simu-
lated the PROSPECT model. The parameters of PROSPECT model 
included leaf chlorophyll content (Cab), carotenoid content (Car), leaf 
water content (Cw), leaf dry matter content (Cm), and leaf structure (N). 
Then, the SAIL model was used to simulate the interaction of light with 
the vegetation canopy. The SAIL model takes into account the optical 
properties of the leaves calculated by the PROSPECT model, as well as 
other canopy parameters such as LAI, ALA, and the soil reflectance. 
Next, the PROSAIL model is integrated with the results from the 
PROSPECT and SAIL models to produce the canopy reflectance from 400 
to 1040 nm. Finally, the spectral response functions of GF-1 WFV were 
introduced to calculate the final band reflectance of GF-1 WFV1, WFV2, 
and WFV3. 

Soil reflectance data from the three sources including ASD, GSV, and 
SSL, and two extraction schemes were used to generate the simulations 
for the three GF-1 WFV sensors. Furthermore, in order to accurately 
compare the performance of different soil reflectance and construct the 
PROSAIL training samples, the simulations had the same input param-
eter settings except for the soil reflectance for each training sample. The 
number for each variable in Table 4 was 10,000. Finally, 18 simulated 
datasets, each containing 200,000 items, were generated based on soil 
reflectance from the three sources and two extraction schemes and three 
WFV sensors. The 18 datasets had the same leaf parameters, canopy 
structure parameters and observed geometry parameters. Six different 
types of input soil reflectance could be produced by the three sources of 
soil reflectance and two extraction schemes for each WFV sensor. 

Random forest regression (RFR) is a supervised learning algorithm 
that used ensemble learning method for regression (Doktor et al. 2014). 
In this study, the RFR method was used to construct the LAI and FVC 
estimation models with PROSAIL simulation datasets. Each simulation 
dataset was divided into two parts, with 80% of the data used for 
training data and the remaining 20% for validation. Green, red and NIR 
band reflectance were used as the input variables and LAI or FVC as 
output variables. In order to compare the LAI and FVC retrieval accuracy 
using SR_SSL, SR_GSV and SR_ASD, the LAI and FVC retrieval were 
validated based on the simulated data and field measured data with root 
mean square error (RMSE), normalized root mean square error (NRMSE) 
and coefficient of determination (R2) as indicators. The calculation of 
RMSE and NRMSE is shown in formula (3) and formula (4). Except for 
the soil reflectance, the other parameter settings were fixed for gener-
ating samples of each model. Each simulation dataset used the same 
ordinal number to extract the training data. Therefore, the difference in 
accuracy of these models is mainly attributed to the difference in soil 
reflectance, although the RFR algorithm may have some minor effect. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i
(Pi − Oi)

2

N

√
√
√
√
√

(3)  

NRMSE =
RMSE

O
(4) 

where Pi and Oi are the prediction and observation, respectively, N is 
the number of observations, and —O is the mean of the observations 
(Hupet et al., 2002; Dimitriadou and Nikolakopoulos, 2022). 

3. Results 

3.1. LAI and FVC estimation model validation based on the simulated 
data 

Based on the simulated data, LAI and FVC estimation models were 
validated. Table 5 shows the R2, RMSE, and NRMSE of LAI and FVC 
retrieval for different soil reflectance and extraction schemes based on 
the simulated dataset of WFV1 sensor. Overall, the differences between 
the LAI and FVC estimation models under the two extraction schemes 
were not significant. The estimation accuracy of LAI and FVC under 
scheme 1 is slightly worse than that under scheme 2. For LAI, the dif-
ferences of NRMSE and RMSE of the two schemes under SR_ASD soil 
source were 0.021 and 0.057, respectively, which were larger than 
another two soil reflectance sources. For FVC, there was a slight dif-
ference between the two schemes with NRMSE less than 0.006 under the 
same soil reflectance source. The different performance of the two 
schemes could be explained by the different distributions and intensities 
of the selected soil spectra. By comparing the NRMSE values of the LAI 
and FVC estimation models, it can be found that the error of the LAI 
estimation model is obviously larger than that of the FVC estimation 
model. In addition, from the differences in the NRMSE values of LAI and 
FVC estimates for different sources of soil reflectance, the input different 
soil reflectance does not significantly affect on the estimation model 
accuracy. 

Based on the soil reflectance extracted by scheme 1, the accuracy of 
LAI and FVC estimation model under different sensors and different 
sources of soil reflectance was discussed. The LAI validation results 
based on the simulated data were shown in Fig. 6. It could be seen that 
the accuracies of LAI estimation for the WFV1, WFV2, and WFV3 sensors 
were very similar when using the same input soil reflectance. This is 
because the three GF-1 WFV sensors have similar configurations with 
only minor differences in the spectral response function. Furthermore, 
the LAI validation accuracies for the same sensor with different sources 
of input soil reflectance were slightly different, but not significantly. The 
maximum differences of RMSE and R2 were 0.074 and 0.035, respec-
tively. In addition, it could be seen that the LAI estimation uncertainty 
becomes higher as the LAI value increases, which could be caused by the 
saturation of red reflectance at moderate-to-high vegetation density. 
Fig. 7 showed the FVC validation results using the simulated data, which 
indicated the satisfactory performances with R2 ≥ 0.963 and RMSE ≤
0.05 for all different kinds of soil reflectance and different GF-1 sensors. 
For different sensors, similar to Fig. 6, the FVC validation accuracies 

Table 4 
Parameter setting of the PROSAIL model.  

Model Variables Variables definition Unit Range Distribution Mean Std. 

PROSPECT Cab Chlorophyll a + b concentration μg/cm2 20–90 gaussian 45 30 
Cm leaf dry matter content g/cm2 0.003–0.011 gaussian 0.005 0.005 
Car leaf carotenoids content μg/cm2 4.4 – – – 
Cw leaf water content cm 0.005–0.015 uniform – – 
Cbrown Brown pigments content – 0–2 gaussian 0.0 0.3 
Cant leaf anthocyanin content μg/cm2 0 – – – 
N leaf structure parameter – 1.25–2.2 uniform 1.5 0.3 

SAIL LAI leaf area index – 0–12 gaussian 2 2.0 
ALA average leaf angle deg 30–70 uniform – – 
Hot hot spot parameter – 0.1–0.5 gaussian 0.2 0.5 
SZA sun zenith angle deg 35 – – – 
VZA view zenith angle deg 0 – – – 
RELAZ relative azimuth angle deg 0 – – –  
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Table 5 
R2, RMSE and NRMSE of LAI and FVC retrieval for different soil reflectance and extraction schemes (based on WFV1 sensor simulated dataset).  

Parameters Soil sources Scheme 1 Scheme 2 

R2 RMSE NRMSE R2 RMSE NRMSE 

LAI SR_SSL  0.781  0.885  0.304  0.825  0.920  0.316 
SR_GSV  0.779  0.896  0.308  0.825  0.914  0.314 
SR_ASD  0.747  0.949  0.325  0.790  1.006  0.346 

FVC SR_SSL  0.966  0.047  0.067  0.971  0.044  0.063 
SR_GSV  0.969  0.046  0.066  0.973  0.042  0.060 
SR_ASD  0.965  0.048  0.069  0.968  0.046  0.066  

Fig. 6. LAI estimates validation based on the simulated data (under scheme 1).  
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were very close with the same kind of input soil reflectance. For different 
input soil reflectance, it could be found that the difference in FVC 
validation accuracy was almost negligible with the maximum RMSE of 
0.004. By comparing LAI and FVC estimation models, it could be 

observed that the accuracy of FVC estimation model was much higher 
than that of LAI. 

Fig. 7. FVC estimates validation based on the simulated data (under scheme 1).  

Table 6 
R2, RMSE and RMSE of LAI and FVC retrieval for different soil reflectance and extraction schemes (based on WFV1 sensor).  

Parameters Soil sources Scheme 1 Scheme 2 

R2 RMSE NRMSE R2 RMSE NRMSE 

LAI SR_SSL  0.71  0.762  0.334  0.72  0.764  0.335 
SR_GSV  0.73  0.671  0.294  0.72  0.732  0.321 
SR_ASD  0.78  0.613  0.269  0.75  0.699  0.307 

FVC SR_SSL  0.89  0.091  0.147  0.89  0.090  0.146 
SR_GSV  0.90  0.086  0.139  0.89  0.090  0.146 
SR_ASD  0.91  0.084  0.136  0.90  0.086  0.137  
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3.2. Validations based on the ground measured data 

Based on the remote sensing data reflectance, the LAI and FVC were 
retrieved by the LAI and FVC estimation models, respectively. Table 6 
shows the R2, RMSE, and NRMSE of LAI and FVC retrieval under 
different soil reflectance and extraction schemes based on the ground 
measured data. The soil reflectance extracted from SR_ASD by scheme 1 
achieved the best performance for LAI and FVC estimates. It was notable 
that the LAI and FVC accuracies were significantly better under scheme 
1, when the soil reflectance source was SR_GSV or SR_ASD, as compared 
to scheme 2. Compared with scheme 2, scheme 1 could reduce the RMSE 
of LAI by 0.061 and 0.086, and the RMSE of FVC by 0.004 and 0.002, 
using SR_GSV and SR_ASD, respectively. However, for SR_SLL, both 
scheme 1 and scheme 2 exhibit comparable LAI and FVC retrieval ac-
curacies. This could be explained that when the study area was small, 
the representative soil reflectance curves (scheme 1) extracted directly 
from a certain number of measured or simulated soil reflectance were 
closer to the real situation. While in scheme 2, the extracted soil 
reflectance needs to be multiplied by the coefficients, whose values 
would affect the accuracy of LAI and FVC retrieval. Under the same 
extraction scheme, SR_ASD performs best and SR_SLL performs worst 
among the three sources of soil reflectance. Under scheme 1, the 
retrieval accuracy of LAI and FVC based on the soil reflectance from 
different sources is more different. In either case, the NRMSE of LAI is 
higher than that of FVC, which is consistent with the simulation data 
validation results. Additionally, the difference in NRMSE of LAI is 
greater than that of FVC under varied soil reflectance. The maximum 
NRMSE difference of the LAI under scheme 1 for various sources of soil 
reflectance was 0.065, whereas the maximum NRMSE difference of the 
FVC under scheme 1 for various sources of soil reflectance was 0.011. 
This indicates that LAI is more sensitive to soil reflectance than FVC. 

Based on scheme 1, the performances of the three soil reflectance 
sources were discussed (Fig. 8). The PROSAIL with SR_ASD as input soil 

reflectance had achieved the best LAI and FVC retrieval accuracies, 
followed by SR_GSV, and SR_SSL performed worst. Compared to SR_SSL, 
using SR_ASD and SR_GSV could significantly improve the accuracy of 
LAI retrieval, with a RMSE reduction of 0.149 and 0.091, respectively. 
For FVC, using SR_ASD and SR_GSV reduces the RMSE by 0.005 and 
0.007, respectively, with little improvement in the accuracy. Therefore, 
the three different sources of soil reflectance had less effect on the FVC 
retrieval accuracy than on the LAI. To adequately assess the perfor-
mance, the NRMSE and mean absolute error (MAE) for different ranges 
of LAI and FVC were calculated based on the ground measured data 
(Table 7). Regardless of the soil reflectance source, the NRMSE of LAI 
and FVC with low values were significantly larger than that of LAI/FVC 
with high values. In the low and high LAI categories, the maximum 
NRMSEs difference between the three soil reflectance sources were 

Fig. 8. LAI and FVC validation based on the ground measured data (under scheme 1).  

Table 7 
NRMSE and MAE of LAI and FVC retrieval at different LAI and FVC ranges (based 
on scheme 1).  

LAI and FVC Categories Soil reflectance sources NRMSE MAE 

Low LAI (0–3) SR_SSL  0.436  0.549 
SR_GSV  0.332  0.467 
SR_ASD  0.354  0.489 

High LAI (>3) SR_SSL  0.283  0.858 
SR_GSV  0.254  0.832 
SR_ASD  0.237  0.817 

Low FVC (0–0.4) SR_SSL  0.265  0.050 
SR_GSV  0.231  0.047 
SR_ASD  0.254  0.043 

Medium FVC (0.4–0.8) SR_SSL  0.172  0.086 
SR_GSV  0.159  0.081 
SR_ASD  0.168  0.085 

High FVC (0.8–1) SR_SSL  0.107  0.070 
SR_GSV  0.105  0.066 
SR_ASD  0.097  0.065  
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0.104 and 0.046, respectively. As for the three FVC categories (low, 
medium, and high), the maximum differences in NRMSEs among the 
three categories were 0.034, 0.013, and 0.01, respectively. Furthermore, 
the MAEs of the three soil reflectance sources also showed greater dif-
ferences in the low LAI/FVC categories. In the low and high LAI cate-
gories, the maximum MAEs difference between the three soil reflectance 
sources were 0.082 and 0.041, respectively. As for the three FVC cate-
gories, the maximum differences in MAEs among the three categories 
were 0.007, 0.005, and 0.005, respectively. Therefore, it could be 
indicated that the difference in LAI/FVC retrieval accuracy caused by 
different soil reflectance decreased with the increase of vegetation 
coverage. 

4. Discussion 

4.1. Soil reflectance influence on the LAI and FVC estimation 

The validation results based on the simulated data show that the 
accuracies of LAI and FVC estimation models are different for different 
soil reflectance inputs. This is because the vegetation-to-soil reflectance 
ratio changes when the soil reflectance varies. This leads to a change in 
the vegetation reflectance value at different soil reflectance, which af-
fects the output of the LAI and FVC estimation models. In addition, 
differing spectral response functions with the same PROSAIL model 
parameter settings result in varying reflectance of computed band 
reflectance, which also causes variations between the LAI and FVC 
estimation models. The results are consistent with the previous studies, 
such as Ding et al. (2017) find the FVC estimation models based on 
different vegetation indices have different sensitivity to soil background. 
The sensitivity of some FVC estimation models increases with soil 
reflectance, while the sensitivity of other FVC estimation models de-
creases with soil reflectance. A recent research by Gao et al. (2022) 
suggests the significant impact of background reflectance variability on 
the spectral response of agronomic variables, which can result in in-
consistencies of the vegetation-LAI relationship. The simulation data 
validation results show that the estimation models corresponding to 
SR_SSL and SR_GSV had better FVC estimation accuracy under scheme 2, 
while the estimation accuracy under SR_ASD is the worst. However, with 
ground measured data validation, SR_ASD achieves the best validation 
results under scheme 1. This is because the estimation performance 
based on ground measured data is affected by both the parameter setting 
of the PROSAIL model and the accuracy of the estimated model. If the 
estimation model is not well suited to the characteristics of the measured 
data, even if it performs well on simulated data, it may still achieve poor 
performance with the measured data. In summary, the accuracy of 
vegetation parameters retrieval in practical applications is related to the 
parameters setting of PROSAIL model and the sensitivity of the vege-
tation parameters to the band reflectance. The soil reflectance can 
significantly impact the simulation of canopy reflectance, leading to 
potential inaccuracies in the retrieval of vegetation parameters. 

The validation results based on ground data show that soil reflec-
tance has a greater impact on LAI and FVC retrieval accuracy when 
vegetation coverage is low. When the vegetation density is high, the 
influence of soil reflectance on LAI retrieval is obviously reduced. This 
conclusion aligns with previous research that soil background influences 
on canopy reflectance would approach a maximum level at low vege-
tation densities, and when canopy coverage is close to 75%, soil back-
ground still has a certain influence on the greenness measures (Huete 
et al., 1985). According to research conducted by Prudnikova et al. 
(2019), the regions of 350–500 nm and 620–690 nm exhibit the most 
notable soil background effect, and the impact of soil reflectance on 
canopy reflectance varies with the developmental stages of wheat. The 
influence of soil reflectance on the reflectance of different bands of 
canopy is different, which leads to the different degree of influence of 
soil reflectance on the retrieval of different vegetation parameters. The 
research also highlights that LAI retrieval exhibits higher sensitivity 

towards soil reflectance than FVC retrieval, as shown by the validation 
based both on the simulated data and ground data. Red band reflectance 
decreases with increasing LAI, whereas near-infrared band reflectance 
increases (Huete, 1989). When LAI > 4, the reflectance of red band 
reaches saturation and no longer decreases with the increase of LAI 
(Darvishzadeh et al., 2008b). As the vegetation density increases, the 
LAI increases correspondingly, whereas the FVC initially increases 
before plateauing at its maximum value of 1. Therefore, it can be 
inferred that the overall accuracy of LAI retrieval will decrease more due 
to the influence of soil reflectance. Observable from Fig. 6 and Fig. 7 is 
the comparatively lower accuracy of the LAI estimation model 
compared to that of the FVC, thus resulting in an increased sensitivity of 
the LAI to changes in reflectance. It can be indicated that soil reflectance 
exerts more influence on LAI retrieval. 

4.2. Applicability of different soil reflectance sources and extraction 
schemes 

The suitability and extraction schemes of the three soil reflectance 
sources need to be considered in combination. The SR_SSL source 
comprises soil reflectance data of varied soil types and conditions 
globally, rendering it ideal for vegetation parameter retrieval on a large 
scale. Directly extracting soil reflectance from SSL to input PROSAIL 
model may lead to obvious vegetation parameter retrieval errors. When 
SR_SSL is chosen as the input soil reflectance, scheme 2 is more suitable 
to extract representative soil spectra. It is necessary to combine prior 
knowledge to select the typical soil spectra consistent with the study 
area. Then, more representative soil spectra can be obtained by multi-
plication with appropriate brightness coefficients, so as to improve the 
localization and achieve superior retrieval performance. 

For the SR_GSV source, the simulation accuracy of hyperspectral soil 
reflectance will be more accurate as the number of multi-spectral bands 
increases. This reinforces the potential of SR_GSV to achieve optimal 
performance for vegetation parameter estimation within a specific area, 
primarily in the presence of the requisite number of multi-spectral bands 
in remote sensing data, as well as an adequate selection of soil pixels that 
cover the diverse soil conditions in the study area. When the reflectance 
of the selected image soil pixels is sufficiently representative, scheme 1 
can select the effective input soil reflectance for the PROSAIL model. 
However, when there are few image soil pixels, the simulated soil 
spectra cannot represent the whole study area. Therefore, it is necessary 
to expand the simulated soil spectra through scheme 2. 

SR_ASD is highly preferred for retrieval of vegetation parameters in 
very small areas, because it is the true soil reflectance measured in the 
study area. Nonetheless, conducting soil reflectance measurements in 
the study area necessitates extensive field experiments that involve a 
significant expenditure of time and labor. Consequently, SR_ASD is 
shown to be the more optimal choice for carrying out vegetation 
parameter retrieval in smaller experimental areas. Since SR_GSV and 
SR_ASD are close to the true soil reflectance, a better parameter retrieval 
accuracy can be achieved by directly selecting the representative soil 
reflectance. For these two sources of soil reflectance, generating repre-
sentative soil spectra by multiplying brightness coefficients may reduce 
the accuracy of soil reflectance. However, in cases where the measured 
soil spectral data is insufficient to reflect the soil reflectance of the study 
area, it becomes imperative to acquire more soil spectra through 
brightness coefficients. 

4.3. Potential and limitations 

Monitoring crop growth, predicting yield, and managing production 
all benefit from the retrieval of crop indicators with remote sensing data. 
Given that the PROSAIL model is frequently used for crop parameter 
retrieval and soil reflectance is one of its primary inputs, its impact on 
parameter retrieval accuracy cannot be ignored. This study demon-
strates that under various soil reflectance sources and representative soil 
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reflectance extraction schemes, the retrieval accuracy of vegetation 
parameters varies. The sensitivity of various crop parameters to soil 
reflectance is different. LAI is substantially more impacted by soil 
reflectance than FVC. For crop parameter retrieval to be more precise, 
the proper soil reflectance input is crucial. Especially for parameters 
such as LAI that are sensitive to soil reflectance, when vegetation density 
is low, the retrieval accuracy is greatly affected by soil reflectance. This 
study further analyzes the applicability of different soil reflectance 
sources and extraction schemes and offers recommendations for input 
soil reflectance at various regional scales. 

The influence of soil reflectance on canopy reflectance varies with 
soil type, soil moisture, soil organic matter content and soil roughness 
(Huete et al., 1985; Prudnikova et al., 2019). In this study, the differ-
ences of soil with different properties were qualitatively considered 
when collecting soil spectra. The soil type in this study area is single, and 
soil brightness, soil humidity and soil of different growth periods were 
considered during the experimental measurement. In addition, hun-
dreds of pixels containing different soil brightness or moisture were 
selected in the screening of soil pixels. The ICRAF-ISRIC soil spectrum 
library contains soil spectra of different soil types, textures, moisture, 
and roughness. In order to extract the representative soil spectra, K- 
means method was used to extract the soil spectra with large differences. 
This study only considers the soil reflectance of different properties 
qualitatively, and further research can quantitatively analyze the in-
fluence of soil properties on the retrieval of vegetation parameters. The 
soil type in this study area is single, so the further research can validate 
the vegetation parameter retrieval accuracy under different soil types. In 
addition, the influence of soil reflectance on the canopy reflectance of 
various crops may different due to the varying structural features and 
planting structures. Only two crops are taken into account in this study, 
and additional research can examine how other crops’ parameter in-
versions affect soil reflectance. 

5. Conclusions 

The influence of different soil reflectance sources and extraction 
schemes on the retrieval of vegetation LAI and FVC from PROSAIL 
model was investigated in the agriculture region. It was found that the 
influence of soil reflectance on LAI retrieval was larger than that of FVC, 
and the SR_ASD achieved the best LAI retrieval accuracy, followed by 
SR_GSV and SR_SSL. Compared with the multiplication coefficient 
scheme, directly extracting representative soil reflectance from SR_GSV 
and SR_ASD could obtaining better LAI and FVC retrieval accuracies for 
small study areas. For SR_SSL, the LAI and FVC retrieval accuracy of 
direct extraction scheme and multiplication coefficient scheme had no 
significant difference. Comparing LAI/FVC performance in different 
ranges, it was indicated that soil reflectance was more important in low 
LAI/FVC cases. In addition, considering the applicability of the three soil 
reflectance sources, SR_SSL was more suitable for global or large area 
vegetation parameters estimation, SR_GSV was a good choice when the 
study area was small and homogeneous, and the bare soil pixels were 
easily selected from the multi-spectral remote sensing data, and SR_ASD 
was more preferred for very small area with homogeneous soil 
conditions. 
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