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A B S T R A C T   

Knowledge of irrigation location and extent is essential for irrigation-water use estimation and water resource 
management. However, it remains a great challenge to map irrigated areas at large spatial scales due to the great 
variation in climate, geography, and agricultural practices, as well as the lack of sufficient ground truth data. 
This study proposed a novel approach to develop the first 250-m irrigated cropland map in mainland China 
(CIrrMap250) by integrating remote sensing, irrigation suitability, and irrigated area statistics. We assessed the 
performance of CIrrMap250 and compared it with three irrigation maps (i.e., EVI-map, NDVI-map, GI-map) 
generated using the threshold-based classification method and four other existing maps, including GMIA2005 
(Siebert et al., 2005), GIAM2000 (Thenkabail et al., 2009), Zhu-map (Zhu et al., 2014), and Meier-map (Meier 
et al., 2018). Results indicate that CIrrMap250 and all other maps capture well the intensively irrigated areas 
such as the North China Plain and Northwest China, as well as many large-scale irrigation districts. However, all 
maps except CIrrMap250 tend to underestimate irrigated cropland in river valleys while overestimating irrigated 
cropland in the mountainous areas, as illustrated by the field-surveyed irrigation districts, due to the neglect of 
the mixed grid effects. Compared to other irrigation maps, CIrrMap250 exhibits a better agreement with the 
reference points, achieving improvements in Kappa coefficient and overall accuracy by 8% up to about 2 times. 
The irrigated area estimates of CIrrMap250 are very close to the statistical data due to their usage in generating 
the training pool. Further analysis indicates CIrrMap250 has a greater proportion of irrigated cropland at lower 
elevations, on smaller slopes, and near water bodies than the other maps. There is large uncertainty in irrigation 
ratio estimates due to the varying cropland area from multiple sources. This study demonstrates the effectiveness 
of the new irrigation mapping method and highlights the great potential of combining irrigation suitability with 
remote sensing and statistical data to improve the accuracy of large-scale irrigated cropland mapping.   

1. Introduction 

Irrigation greatly enhances agricultural yields and plays a critical 
role in safeguarding food security (Wang et al., 2021). Irrigated agri-
culture contributes to ~ 40 % of global food production in just 20 % of 
cropland, but accounts for ~ 70 % global freshwater withdrawals and 
90 % of consumptive water use (Siebert and Döll, 2010; Wada et al., 
2013). Irrigation is expected to expand in the future due to climate 
change, growing food demand, and agricultural intensification (Deines 

et al., 2017). Extensive irrigation has caused dramatic changes in water 
cycles, putting unprecedented pressure on sustainable freshwater use 
(McDermid et al., 2021). Reconciling irrigation benefits with water 
stress and environmental impacts remains a grand challenge for man-
agers and policy makers in the twenty-first century (Salmon et al., 2015; 
Rosa et al., 2020). 

Irrigation-water withdrawal is mostly driven by irrigated area (Puy 
et al., 2021). Knowledge of irrigation distribution is a first step towards 
irrigation water estimation and water resource management (Portmann 
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et al., 2010; Xie and Lark, 2021). However, irrigation location and 
extent are poorly understood, especially at national to global scales, due 
to the hidden nature of irrigation signals and the limited ground truth 
data available for training classification algorithms (Ozdogan and Gut-
man, 2008; Liu et al., 2018; Xie et al., 2021). Insufficient information on 
irrigation distribution is unfavorable for sustainable water use and 
management (Nagaraj et al., 2021) and will introduce large un-
certainties and biases in the modeling of surface and hydrologic pro-
cesses, land–atmosphere interactions, and crop growth. 

Satellite remote sensing provides unprecedented opportunities to 
detect and map irrigated areas at multiple spatial scales. Various 
methods have been proposed to identify irrigated areas using remote 
sensing data, which can be classified into two categories, namely optical 
and near-infrared methods and microwave-based methods (Massari 
et al., 2021). Visual interpretation is perhaps the most primitive method 
that use optical and near-infrared signatures to detect irrigated area, but 
is a cost and time intensive procedure (Karthikeyan et al., 2020). Besides 
the spectral signatures, many vegetation indices such as the normalized 
difference vegetation index (NDVI) (Rouse et al., 1974), normalized 
difference water index (NDWI) (Gao, 1996), and green index (GI) 
(Gitelson, 2005) have been used to map irrigated areas, the rationale 
behind which is that irrigation reduces crop water stresses and increase 
productivity, resulting in higher greenness and water content of irri-
gated crops than rainfed crops (Nagaraj et al., 2021). These vegetation 
indices are often used with classification algorithms trained with 
ground-truth data, such as decision trees (Ozdogan and Gutman, 2008; 
Ambika et al., 2016b), support vector machine (Sharma et al., 2021), 
and random forest (Peña-Arancibia et al., 2014; Deines et al., 2017), to 
distinguish between irrigated and rainfed croplands. In some exceptions, 
the vegetation indices are compared to the target spectra of ground 
samples (Lu et al., 2021), adjacent forest pixels (Xiang et al., 2019), and 
time-series precipitation to detect irrigation signals (Chen et al., 2018). 
In recent years, the microwave-based irrigation mapping with satellite 
soil moisture products has also attracted attention (Dari et al., 2021). 
The rationale behind the microwave-based approach is that irrigation 
increases soil moisture and causes changes in soil moisture and radar 
backscatter signals. Thus, microwave information is usually compared 
with simulations under “natural” conditions to detected irrigated areas 
(Kumar et al., 2015; Zaussinger et al., 2019; Zohaib et al., 2019) or used 
with the classification algorithms trained with ground truth data (Gao 
et al., 2018; Pageot et al., 2020; Bazzi et al., 2021). 

Remote sensing-based irrigated cropland extraction methods have 
shown high accuracy and reliability in small-scale areas (e.g., water-
sheds and irrigation districts). Nevertheless, it is still a great challenge to 
map irrigated area at large spatial scales (e.g., national and global 
scales) due to the wide variation in climate, geography and agricultural 
practices (Salmon et al., 2015), as well as the lack of adequate ground 
truth data (Ozdogan et al., 2010; Xie and Lark, 2021). There have been 
several attempts to map the global irrigated area. Siebert et al. (2005) 
generated the global map of irrigated areas (GMIA) by combining na-
tional and subnational statistics with geospatial information on irriga-
tion location and extent. Thenkabail et al. (2009) derived the global 
irrigated area map (GIAM) from remote sensing using the spectral 
matching technique and decision tree algorithm. Later, Salmon et al. 
(2015) fused remote sensing classification results with agricultural in-
ventory data to generate a map of global rainfed, irrigated, and paddy 
croplands (GRIPC). Meier et al. (2018) merged the downscaled GMIA 
map with the remote sensing-derived irrigation map to generate a new 
global high-resolution irrigation map. In addition, several national 
irrigation maps have been produced in recent years, such as the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agri-
culture Dataset (MIrAD-US) (Pervez and Brown, 2010), Landsat-based 
Irrigation Dataset across the conterminous United States (LANID-US) 
(Xie et al., 2019; Xie and Lark, 2021), and remotely sensed high reso-
lution irrigated area map in India (Ambika et al., 2016b). Typically, 
national irrigation maps are more accurate than global maps due to the 

availability of more ground data, higher spatial resolution, and reliable 
auxiliary information. China is a large agricultural country with the 
largest irrigated area (65.87 million ha) in the world, followed by India 
(62.00 million ha) and the United States (26.71 million ha) (IDCD, 
2018). However, to our knowledge, few studies have mapped irrigated 
areas throughout China (Xiang et al., 2020; Zhu et al., 2021; Zhang et al., 
2022), and the spatial resolution of irrigation map is far below that of 
other countries (e.g. the United States and India). This limits the accu-
racy of irrigation-water use estimates in China and significantly affects 
irrigation-related ecological, hydrological, and climatic studies. 

To address the above gaps, this study proposes a novel approach to 
develop the first 250-m irrigated cropland map in mainland China 
(CIrrMap250) for the year 2000 by integrating remote sensing, irriga-
tion suitability, and irrigated area statistics. The major difference be-
tween our approach and other existing methods lies in the incorporation 
irrigation suitability into the mapping process. Our objectives of are 
threefold: (1) to test the effectiveness of the new irrigation mapping 
method; (ii) to compare the performance of CIrrMap250 with three 
irrigation maps generated using the traditional threshold-based method 
and four other existing maps (Siebert et al., 2005; Thenkabail et al., 
2009; Zhu et al., 2014; Meier et al., 2018); and (iii) to reveal the spatial 
distribution features of irrigated cropland in mainland China. 

2. Study area 

China lies between 15◦-50◦N and 65◦-135◦E and covers an area of 
approximately 9.6 million square kilometers. This study was carried out 
in mainland China (Fig. 1), which is characterized by a wide range of 
elevations, from 176 m below sea level at Ayding Lake in the Turpan 
depression of Xinjiang to 8,794 m above sea level on the Qinghai Tibetan 
Plateau. According to the Köppen-Geiger climate classification (Biggs 
et al., 2006), southeastern China has a warm temperate climate; 
northwestern China has an arid climate; northeastern and parts of cen-
tral China have a cold climate; and the high-altitude Qinghai Tibetan 
Plateau has a polar and cold climate. Cropland is extensively distributed 
across mainland China, with a greater concentration in the eastern, 
northeastern, and central regions than in the arid northwestern region, 
particularly the North China Plain, Northeast China Plain, Guanzhong 
Plain, Sichuan Basin, and Middle and Lower Yangtze River Plain. As 
shown in Fig. 1b, the study area is divided into 3,652 mapping units. 
There are 686 reference points covering mainland China, which are used 
to evaluate the accuracy of the irrigation maps. 

3. Materials and methods 

The workflow of the study is summarized in Fig. 2. We first collected 
and processed three types of data, including satellite data, irrigated area 
statistics, and auxiliary data. Then, we combined the satellite-derived 
vegetation indices (NDVI, EVI and GI) with irrigated area statistics 
from 3,625 administrative units to drive three irrigation maps (i.e., 
NDVI-map, EVI-map, and GI-map) using the threshold-based classifica-
tion method (Pervez and Brown, 2010). Afterward, we produced 
another irrigated cropland map (i.e., CIrrMap250) using the newly 
proposed semiautomatic classification approach. The new approach 
consists of three major steps, including irrigation suitability analysis, 
training pool generation based on suitability-adjusted vegetation indices 
and irrigated area statistics, and machine learning-based classification 
of irrigated and rainfed cropland. Lastly, we evaluated the accuracy of 
CIrrMap250, NDVI-map, EVI-map, GI-map, and four other existing maps 
(i.e., GMIA2005, GIAM2000 Zhu-map, and Meier-map) from three 
different perspectives, including the distribution of irrigated croplands, 
agreement with reference points, and consistency with irrigated area 
statistics. 
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3.1. Datasets and processing 

3.1.1. Satellite data 
The MODIS vegetation indices (MOD13Q1) Version 6 data including 

two vegetation layers, i.e., NDVI and enhanced vegetation index (EVI) 

(Huete et al., 1997), were used in the study. As shown in Table 1, NDVI 
and EVI are 16-day composite products with a spatial resolution of 250 
m. Meanwhile, the 500-m and 8-day surface spectral reflectance of band 
04 provided by MOD09A1 was resampled to 250 m through nearest 
neighbor interpolation (Debeurs and Townsend, 2008). It was used to 

Fig. 1. Overview of the study area. a, Spatial distribution of croplands and validation points used for accuracy assessment. b, Topography and mapping units across 
mainland China. Digital Elevation Model (DEM) with a spatial resolution of 90 m was obtained from the Shuttle Radar Topography Mission (SRTM). c, Köppen-Geiger 
climate classification in mainland China. 

Fig. 2. Workflow of the study. The number and gray boxes indicate the major steps involved in this study. White boxes are the input data sets or variables; the green 
boxes are the three major data sources used for irrigated cropland mapping; the yellow boxes are the analysis methods or tools and the red boxes are the irrigation 
maps generated in the study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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derive another vegetation index (i.e., GI) along with the 250-m and 8- 
day surface reflectance of band 01 provided by MOD09Q1. All MODIS 
data were quality filtered using quality and usefulness indicators, and 
only those cloud and snow/ice free pixels with decreasing to highest 
quality were considered to be reliable (Hilker et al., 2012). Unreliable 
pixels were reconstructed using a simple nearest neighbor interpolation 
method. We calculated the maximum, minimum, range, median values 
of vegetation indices for each crop grid. Note that the maximum and 
minimum values were calculated at the 95th and 10th percentile, 
respectively, to exclude the unidentified cloudy and poor-quality values 
(Xie and Lark, 2021). To better account for crop and climate gradients, 
we further derived a set of neighborhood normalized vegetation indices 
(NNDVI, NEVI, NGI) (Deines et al., 2019) by dividing the annual peak 
vegetation index of a target pixel to the median value of its neighbor-
hood pixels within a 25 km radius circular kernel. 

3.1.2. Irrigated area statistics 
The irrigated area statistics were compiled through a top-down and 

bottom-up approach. The county-level and city-level irrigated area were 
first collected from the Provincial Statistical Yearbook, the Rural Sta-
tistical Yearbook, and the China Statistical Yearbook for Regional 
Economy (National Bureau of Statistics of China, 2001b). In China, 
municipal administration (city) consists of districts and counties, and 
here we referred to them all as counties. Counties without any irrigated 
area were merged into their nearest neighbors. We aggregated the irri-
gated areas at the county level to the city level and compared them with 
the city-level statistics for consistency checks. Where inconsistencies 
existed, we further collected irrigation-water use data from the provin-
cial water resource bulletin, and irrigation areas with a high correlation 
to irrigation-water use were considered reliable for subsequent analysis. 
The city-level irrigated areas were finally aggregated to the provincial 
level and compared them with the values reported by the China Water 
Statistical Yearbook (CWSY) (China Ministry of Water Resources, 2001). 
We put higher confidence in the CWSY data because it is published by 
the Chinese Ministry of Water Resources and edited by water practi-
tioners and researchers throughout China. As shown in Supplementary 
Fig. S1, the city-aggregated irrigated areas are very close to the CWSY 
statistics with a coefficient of determination (R2) of 0.99. For provinces 
where inconsistencies exist, we adjusted the county-level irrigated area 
using Eq. (1). 

IrrAreai,j =
IrrAreaCWSY ,j

IrrAreaagg,j
× IrrOrgini,j (1) 

where IrrAreai,j and IrrOrgini,j are the adjusted irrigated area and the 
original irrigated area in county i of province j, respectively; 
IrrAreaCWSY,j and IrrAreaagg,j are the CWSY-reported irrigated area and 
the city-aggregated irrigated area of province j, respectively. County- 
level irrigated area statistics are available for>80 % of provinces in 
mainland China (Supplementary Fig. S2), and we totally have 3,652 
mapping units with irrigated area statistics (Fig. 1b). Note that Xinjiang, 

Heilongjiang and Fujian provinces have some irrigated croplands 
managed by the Production and Construction Corps, which we merged 
into the cities where they are located by population size following the 
method of Zhu et al. (2014). 

3.1.3. Auxiliary data 
Various auxiliary data were used in this study, including climatic and 

environmental variables, land use and land cover, and administrative 
boundaries. Climate data, including precipitation, temperature, pres-
sure, wind speed and downward solar radiation, were extracted from the 
China Meteorological Forcing Dataset (He and Yang, 2016; He et al., 
2020). These data were used in conjunction with the MCD43A3 albedo 
product to estimate potential evapotranspiration (PET) using the 
Priestley-Taylor method (Priestley and Taylor, 1972), as well as the 
aridity index defined as the ratio of precipitation to PET. Environmental 
data include elevation, slope, soil type, and distance to water bodies. 
The elevation data was taken from the Shuttle Radar Topography 
Mission digital elevation model (i.e., SRTM DEM); and the slope map 
was generated from the SRTM DEM data using the slope function in 
ArcGIS software. Distance to water bodies was calculated from the 
spatial distribution data of water bodies, including rivers, lakes, reser-
voirs, canals, and ponds, using the Euclidean distance tool in ArcGIS 
software. The 2000 land use/cover (LULC) map with a spatial resolution 
of 30 m was sourced from the Land Use Status Remote Sensing Moni-
toring Database of China (Xu et al., 2018). The map includes six major 
LULC types, namely, cropland, forest, grassland, water body, urban land, 
and unused land. The spatial distribution and proportion of each land 
use/cover type at 250 m resolution was estimated from the original 30- 
m LULC map. All data used in this study were obtained partly from the 
National Tibetan Plateau (https://data.tpdc.ac.cn/zh-hans/) and partly 
from the Resource and Environment Science and Data Center (http 
s://www.resdc.cn/Default.aspx). 

3.2. Threshold-based classification method 

Threshold-based classification is a simple yet robust, easy-to- 
implement approach for creating irrigation maps that assumes the ex-
istence of thresholds for certain indices that can differentiate between 
irrigated and rainfed cropland. These indices can be the annual peak 
vegetation index (Pervez and Brown, 2010), the irrigation potential 
index (Zhu et al., 2014), or the LSWI difference index (Xiang et al., 
2020); and the thresholds can be calibrated based on irrigated area 
statistics, ground truth data, or experience from previous studies (Pervez 
and Brown, 2010; Shahriar Pervez et al., 2014; Meier et al., 2018). Here, 
following Pervez and Brown (2010), we classified irrigated and rainfed 
cropland using the thresholds of annual peak vegetation indices (NDVI, 
EVI, and GI). Specifically, for each mapping unit of mainland China, we 
first sorted the annual peak vegetation indices of all croplands in 
descending order and estimated the cumulative irrigated area sequen-
tially. The accumulated area was then compared with the statistical 
irrigated area; and the value of vegetation index for the grid where the 
cumulative irrigated area was close to the statistical data was deter-
mined as the threshold. We lastly classify the cropland into “irrigated” 
and “rainfed” by comparing annual peak vegetation index with the 
determined threshold, as in Eq. (2). 

croplandi,j =

{
irrigatedi,j PVI ≥ threshold
rainfedi,j PVI < threshold (2) 

where PVI are the annual peak vegetation index of the crop grid i in 
the mapping unit j over mainland China. Classification results using 
NDVI, EVI and GI were referred to as NDVI-map, EVI-map, and GI-map, 
respectively, hereafter. The annual minimum, median, and range of 
NDVI, EVI, and GVI were also tested, but showed obviously lower per-
formance than the annual peak values in mapping irrigated cropland. 

Table 1 
Summary of the MODIS-derived vegetation indices used in this study.  

Vegetation 
indices 

Formula MODIS 
bands 

Resolution 

NDVI (NIR - Red) / (NIR + Red) Bands 01, 
02 

250 m/16 
day 

EVI 2.5*(NIR-Red) / (NIR +
6*Red–7.5*Blue + 1) 

Bands 01, 
02, 03 

250 m/16 
day 

GI NIR/Green Bands 01, 
04 

250 m/8day 

NNDVI Max annual NDVI / median 
neighborhood value 

– 250 m/ 
annually 

NEVI, NGI Similar to the calculation 
method of NNDVI 

– 250 m/ 
annually 

Red: band 01, Blue: band 03, near-infrared (NIR): band 02, Green: band 04. 
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3.3. Semiautomatic classification approach 

3.3.1. Irrigation suitability analysis 
Irrigation suitability analysis has been widely used to assess potential 

land suitable for irrigation (Chen et al., 2010; Worqlul et al., 2015; 
Worqlul et al., 2017; Li and Chen, 2020), but has not received much 
attention in the irrigation mapping. In this study, we used the multi- 
indicator evaluation (MCE) technique to assess the irrigation suit-
ability of croplands in mainland China. Our study considered elevation, 
slope, distance to water bodies (DistToWater), and drought index, as 
these natural and geographic conditions have proven to be important 
factors controlling the spatial distribution of irrigated cropland in China 
(Liu et al., 2022). Based on our experience and field work, as well as the 
findings of previous studies, we hypothesize that croplands with smaller 
DistToWater, lower elevation and slope, and higher aridity index have 
greater irrigation suitability and potential. It is easy to understand that 
the closer to water bodies, the greater the possibility of irrigation, since 
closer proximity to water bodies means easier access to irrigation water. 
Some previous studies have even selected the irrigation reference points 
by choosing croplands close to water bodies (Dong et al., 2009; Zhang 
et al., 2022). The higher the elevation, the more difficult it is to access 
water resources, leading to a lower likelihood of irrigation (Cuo et al., 
2013). For example, in our field work, we found that in the high- 
elevation areas of the Loess Plateau, residents have access to domestic 
water only through deep wells, while crop growth is completely 
dependent on rainfall. Meanwhile, agricultural productivity is low at 
high altitudes in China due to lack of irrigation and higher trans-
portation and labor costs (Li et al., 2015). In addition, it was found that 
paddy fields, which are usually equipped for irrigation, tend to be 
clustered in the lowlands of China compared to drylands (Liu et al., 
2005). Areas with greater slopes have poor water holding capacity and 
are unfavorable for irrigation facilities (Akıncı et al., 2013; Worqlul 
et al., 2017; Mandal et al., 2018). Generally, areas with slopes exceeding 
8 % are considered infeasible for any surface irrigation system (Shahriar 
Pervez et al., 2014; Ambika et al., 2016a). Therefore, it is widely 
believed that the gentler the slope, the more likely is the existence of 
irrigated cropland (Yin et al., 2020; Ishikawa and Yamazaki, 2021). 
Croplands with higher aridity indices (i.e., less precipitation but higher 
PET) are also more likely to be irrigated due to the greater demand for 
irrigation water (Xu et al., 2018; Yin et al., 2020). 

Elevation, slope, DistToWater, and aridity index were first reclassi-
fied into different suitability types, as shown in Supplementary 
Table S1. The elevations of the crop grids were reclassified into four 
types using the dividing points of 100, 300, 500 m above the lowest 
elevation of the mapping unit. There are also four suitability types for 
both Slope and DistToWater. The dividing points for slopes are 2 %, 4 %, 
and 8 %, while dividing points for DistToWater are 1,000, 10,000, and 
20,000 m. Using the dividing points, aridity indices were reclassified 
into ten suitability types. Afterwards, the above reclassified factors were 
assigned with different suitability values, with higher values given to 
areas with lower elevation, smaller slope and DistToWater, and higher 
aridity index. Lastly, we estimated the overall irrigation suitability of the 
croplands by combining the suitability values of elevation, slope, Dis-
tToWater, and aridity index, as in Eq. (3). 

Si,j,k =
1
4
w1,kSElevi,j +

1
4

w2,kSSlopei,j +
1
4
w3,kSDWi,j +

1
10

w4,kSAridi,j (3) 

where Si,j,k is the irrigation suitability for cropland i in mapping unit j 
of province k; w is the weight of the influencing factors; SElev, SSlope, 
SDW, and SArid are the suitability values of elevation, slope, DistTo-
Water, and aridity index, respectively. The weight setting is critical for 
irrigation suability analysis. In this study, weights were set in each 
province using the trial-and-error method based on the irrigated crop-
land distribution in the intermediate maps (See next section). According 
to our field work and experience, appropriate weights should be given so 
that distribution of irrigated cropland have the following key 

characteristics: (i) irrigated croplands are mostly distributed near water 
bodies, at lower elevations, and on smaller slopes; (ii) irrigated crop-
lands in plain areas are relatively evenly distributed; (iii) irrigated 
croplands are generally continuously distributed due to the influence of 
water facilities; and (iv) irrigated croplands in non-plain regions are 
mainly distributed in river valleys. 

3.3.2. Generating training pool 
Inspired by the work of Xie et al. (2019), we designed a threshold- 

calibrated method to automatically generate the training pool (i.e., 
potential training data) for each mapping unit of mainland China. We 
first proposed a new irrigation suitability-adjusted vegetation index 
(SVI)with the assumption that irrigated cropland is not only greener, but 
also more suitable for irrigation than rainfed cropland. The SVI is 
defined in Eq. (4). 

SVI = S × PVI (4) 

where S is the irrigation suability; and PVI is the annual peak vege-
tation index. The suitability-adjusted NDVI, EVI and GI were named as 
SNDVI, SEVI and SGI. Three intermediate irrigation maps were then 
generated based on SNDVI, SEVI, and SGI using the threshold-based 
classification method (Section 3.2). Note that the annual peak NNDVI, 
NEVI, and NGI were used in North China plain, considering that crop 
gradient is not negligible, but the gradients in elevation, slope and 
aridity index are small and groundwater is widely used for irrigation. 
Furthermore, cropland is discontinuously distributed in many parts of 
mainland China, and many croplands are mixed with other land use/ 
cover types within the 250-m grids. The PVI of the cropland-urban/ 
water mixed grids would be underestimated compared to the pure 
cropland pixels, while the cropland-forest/grassland mixed grids would 
be overestimated. We recalculated the PVI for the mixed pixels with the 
cropland proportion less than 90 % from the nearest pure cropland pixel. 
In the case of few pure cropland pixels over mountainous areas, the PVI 
values of mixed pixels were adjusted by the proportion of croplands, 
considering that irrigation is more likely to occur on continuously 
distributed croplands. Lastly, the intermediate irrigation maps were 
overlaid, and pixels that were simultaneously identified as irrigated or 
rainfed cropland by these maps were used as the training pool for further 
classification. 

3.3.3. Classification using random forest 
We used the Random Forest (RF) (Breiman, 2001) to classify irri-

gated and rain-fed cropland using the random samples from the training 
pool. For each mapping unit of mainland China, we randomly sample 
200 rainfed cropland grids and 200 irrigated cropland grids following 
Xie et al. (2019) to balance the need for adequate samples and compu-
tational efficiency. The sample size was increased to 4,000 (i.e., 2,000 
each for irrigated and rainfed cropland) for the mapping units only with 
city-level irrigated area statistics. Sensitive analyses indicated the use of 
different sets of training samples has minimal effect on the classification 
accuracy (Supplementary Fig. S3). We implemented the RF algorithm 
using the MATLAB TreeBagger function, and the hyperparameters 
(Table 2) were determined through a trial-and-error procedure (Zhang 
et al., 2021). The selected predictors include vegetation indices (i.e., 
SEVI, NEVI, SNDVI, NNDVI, SGI and NGI), climatic variables (i.e., pre-
cipitation, temperature, wind speed, solar radiation, and aridity index), 
and environmental variables (i.e., latitude, longitude, crop intensity, 

Table 2 
Calibrated hyperparameters of the RF algorithm.  

Hyperparameters Descriptions values 

Ntree Number of trees 100 
MinObs Minimum number of observations per node 10 
Nsplit Number of variables randomly sampled at each 

decision split 
7  
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elevation, DistToWater, slope, and soil type). The RF-based classifica-
tion of irrigated and rainfed cropland was carried out separately in each 
mapping unit. After classification, we applied a spatial filter (i.e., 7 × 7 
window) to remove isolated pixels (less than5% of the window area) and 
detect the missed irrigated croplands (>95 % of the window area), 
resulting in the final irrigated cropland map in mainland China with a 
spatial resolution of 250 m (i.e., CIrrMap250). We also tested two 
additional commonly used machine learning algorithms (i.e., artificial 
neural network (Gardner and Dorling, 1998) and extreme learning 
machine (Huang et al., 2012)) for classification of irrigated and rainfed 
croplands, but they showed lower accuracy than RF (Supplementary 
Fig. S4). 

3.4. Accuracy assessment 

The accuracy of CIrrMap250 were assessed from three different as-
pects. First, the spatial distribution of irrigated cropland in CIrrMap250 
was compared with EVI-map, NDVI-map, and GI-map and four other 
existing maps including GMIA 2005 (Siebert et al., 2005), GIAM2000 
(Thenkabail et al., 2009), Zhu-map (Zhu et al., 2014), and Meier-map 
(Meier et al., 2018). The performance of these maps was evaluated by 
analyzing their ability in detecting intensively irrigated areas and large- 
scale irrigation districts of mainland China, as well as two field-surveyed 
irrigation districts. Second, we further conducted a point-scale evalua-
tion of CIrrMap250 and other irrigation maps using 686 reference points 
(Fig. 1). Most of the reference points (~90 %) were sourced from Zhu 
et al. (2014), which were partly collected from the crop growth and soil 
moisture dataset provided by the China Meteorological Data Sharing 
Service System (https://data.cma.cn/) and partly obtained using Google 
Earth and irrigation information on large irrigated districts provided by 
the China Irrigation and Drainage Development Center (https://www. 
jsgg.com.cn/ciddc/Index.asp). The remaining 10 % of reference points 
were derived through our field work and visual interpretation of Google 
satellite maps. As listed in Table 3, the performance metrics including 
Kappa coefficient, overall accuracy, and producer’s accuracy were used 
for quantitative assessments. Finally, we compared the irrigated area 
statistics with the estimates from CIrrMap250, Zhu-map, GMIA2005, 
and Meier-map at different spatial scales. 

4. Results and discussion 

4.1. Spatial distribution of irrigated cropland in CIrrMap250 

Fig. 3 depicts the spatial distribution of irrigated and rainfed crop-
land in CIrrMap250. We can see that irrigated croplands are mainly 
distributed in the North China Plain and Northwest China. Meanwhile, 
many large-scale irrigation districts such as Hetao, Qingtongxia, Fenhe, 
Baojixia, Dujiangyan, Zhanghe, and Pishihang also have intensively 
irrigated croplands. At the provincial level, Shandong holds the largest 
irrigated area (4,940 Kha), followed by Henan (4,834 Kha), Hebei 
(4,566 Kha), Jiangsu (3,999 Kha), Anhui (3,236 Kha), and Xinjiang 
(3,172 Kha). The provinces including Tibet, Qinghai, Tianjin, Beijing, 
Shanghai, and Hainan have relatively smaller areas of irrigated 

croplands than other provinces in mainland China. At the basin scale, 
the Yangtze River basin has the largest irrigated area (14,939 Kha), 
followed by the Huai River basin (10,622 Kha), Hai River basin (7,400 
Kha). The Southwest River basin has the lowest irrigated cropland area 
among the nine river basins in mainland China. 

4.2. Comparison of irrigated cropland distribution 

Fig. 4 compares the distribution of irrigated croplands in different 
irrigation maps. Intensively irrigated areas such as the North China 
Plain, Northwest China, and large-scale irrigation districts are overall 
well captured by all the maps. The spatial pattern of irrigated croplands 
in EVI-map, NDVI-map, GI-map is similar to CIrrMap250 due to the 
consistent constraints of irrigated area statistics on the mapping results. 
However, a closer look reveals that the distribution of irrigated cropland 
in the EVI/NDVI/GI-map is more uniform and extensive in the southern 
and central regions of mainland China than in CIrrMap250. There are 
notable differences between CIrrMap250 and the four existing maps at 
both regional and local scales. Compared with other irrigation maps, 
irrigated cropland in Zhu-map is less distributed in central and south-
eastern Chongqing, northeastern Heilongjiang, and the Baojixia irriga-
tion district, but more distributed in northern Hebei province. 
GIAM2000 has more irrigated areas in the North China Plain, Northeast 
China Plain, and Sichuan and Guangxi provinces, but obviously less 
irrigated area in provinces such as Tibet, Qinghai, Gansu, and Guang-
dong. GAIM2005 does not provide much details on the distribution of 
irrigated cropland due to the coarse spatial resolution. Irrigated crop-
land in GAIM2005 appears to be more distributed in northeastern China, 
southern Sichuan Province, and northern Shaanxi than the other irri-
gation maps, but less distributed in Jiangxi, Jiangsu, Sichuan, and 
Hubei. 

The two panels inserted in each subplot of Fig. 4 show the distribu-
tion of irrigated cropland in two field-surveyed irrigation districts, i.e., 
the Jinghe Irrigation District (upper panel) and the Xuhuiqu Irrigation 
District (lower panel). Both Jinghe and Xuhuiqu irrigation districts are 
located in river valleys where irrigated cropland is concentrated. CIrr-
Map250 captures well the concentration of irrigated cropland in these 
two irrigation districts. However, all other maps tend to underestimate 
irrigated cropland in the Jinghe and Xuhuiqu irrigation districts while 
overestimating irrigated cropland in the surrounding mountainous 
areas. The similar results can be extensively observed if we enlarge EVI- 
map, NDVI-map, GI-map, Zhu-map, GIAM2000, GMIA2005, and Meier- 
map. 

4.3. Point-scale accuracy evaluation 

Fig. 5 summarizes the point-scale accuracy of the different irrigation 
maps. GAIM2005 is not evaluated here because of its coarse spatial 
resolution. We can see that CIrrMap250 attains a Kappa coefficient of 
0.58 in mainland China, obviously higher than EVI-map (0.47), NDVI- 
map (0.44) and GI-map (0.46), as well as the other three existing 
maps (0.20 ~ 0.28). The improvement in Kappa coefficient ranges from 
23 % to about 2 times for CIrrMap250 compared to other irrigation 
maps. The overall accuracy of CIrrMap250 is 0.79, while it ranges from 
0.60 to 0.73 for the other maps. The overall accuracy of CIrrMap250 
improves from 8 % to 32 % compared to other maps. The producer’s 
accuracy of irrigated samples is 0.75 in CIrrMap250, apparently higher 
than the other maps ranging from 0.40 to 0.64. The producer’s accuracy 
of non-irrigated samples in CIrrMap250 is higher than higher than that 
of Zhu-map and Meier-map, but lower than EVI-map, NDVI-map, GI- 
map, and GIAM2000. The overall accuracy of all maps tends to be 
lower in arid and semi-arid areas than in humid and semi-humid areas. 
This is because non-irrigated cropland is more difficult to identify in arid 
and semi-arid areas, as indicated by the lower producer’s accuracy of 
non-irrigation, although the contrary is the case for irrigated cropland. 
Regardless, the results indicate that CIrrMap250 has a higher accuracy 

Table 3 
Definitions of the performance metrics.  

Metrics Formula Variables 

Overall 
accuracy 

∑n
i=1Pii

N 
n is the number of classes; Pii is the 
number of pixels on row i and column 
i in the confusion matrix, which 
represent the total number of pixels 
correctly classified; N is total number 
of pixels used for accuracy 
evaluation; Pi+ and P+i are the total 
number of pixels on row i and column 
i, respectively. 

Kappa 
coefficient 

N
∑n

i=1Pii −
∑n

i=1Pi+ × P+i

N2 −
∑n

i=1Pi+ × P+i 

Producer’s 
accuracy 

Pii

P+i  
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than the other irrigation maps. 

4.4. Comparison of irrigated area estimates with statistics 

Fig. 6 compares the irrigated area estimates of CIrrMap250, Zhu- 
map, GMIA2005, and Meier-map with the statistical data for the 3,652 
mapping units of mainland China. GIAM2000 is not analyzed here due 
to the lack of pixel-level irrigation percentages. The irrigated area of 
CIrrMap250 shows a good agreement with the statistics, with the coef-
ficient of determination (R2) of 0.99, mainly due to the usage of irrigated 
area statistics in the generation of the training pool. The irrigated area of 
Zhu-map matches well with the provincial statistics, but the agreement 
is relatively low at the mapping unit level. This is because less than 50 % 

of the provinces in Zhu-map includes county-level irrigated area statis-
tics (Zhu et al., 2014). For example, as shown in Fig. 8b, the irrigated 
areas in two mapping units of Heilongjiang Province are clearly over-
estimated because only the total irrigated area statistics in that province 
were used in the mapping process. The estimated irrigated area from 
GMIA2005 is generally consistent with the statistics, as the statistics 
were also used to generate GMIA2005, although not in as much detail as 
the data in our study. Among the four irrigation maps, Meier-map has 
the lowest agreement between the irrigated area estimates and the sta-
tistics because it combined statistical irrigated area with other remote 
sensing-detected irrigated area during the mapping process (Meier et al., 
2018). 

Fig. 3. Spatial distribution of irrigated and rainfed cropland in CIrrMap250. Blue words indicate some large-scale irrigation districts in mainland China. Area of 
irrigated croplands in different provinces and basins are summarized in panels b and c, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 4. Comparison of the spatial distribution of irrigated cropland in CIrrMap250 with other irrigation maps. a, CIrrMap250; b, EVI-map; c, NDVI-map; d, GI-map; e, 
Zhu-map; f, GIAM2000; g, GIMA2005; h, Meier-map. Inserted panels show the irrigated cropland distribution in two field-surveyed irrigation districts located in 
Gansu and Shaanxi provinces, respectively. 
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5. Discussion 

5.1. Irrigated cropland in different geographical feature ranges 

We further calculated the proportion of irrigated cropland for seven 
irrigation maps at different elevations, slopes, and distances from water 
bodies. The North China Plain was excluded from the analysis due to its 
small elevation and slope gradients and the relatively consistent pattern 
of irrigated cropland in these maps. As shown in Fig. 7, CIrrMap250 
has>70 % of irrigated cropland that is distributed in areas with eleva-
tion less than 500 m, slope less than 4◦, and distance less than 3,000 m 
from water bodies. In comparison to other maps, more irrigated crop-
land in CIrrMap250 is located at lower elevations, on smaller slopes, and 
closer to water bodies. This is easy to understand because we incorpo-
rated irrigation suitability estimates based on elevation, slope, distance 
to water bodies, and aridity index into the irrigation mapping frame-
work. As described in Section 3.3.1, areas with low elevation, gentle 
slope, small distance to water bodies are more favorable for irrigation. 
From this perspective, the spatial distribution seems to be more 
reasonable in CIrrMap250 than in other maps. Nevertheless, China has 
quite specific agriculture (e.g., terraces and smallholder cropping sys-
tems) that requires reliable reference irrigation maps to robustly assess 
the above results, especially at the regional scale. The fact that the other 
maps have more irrigated cropland at higher elevations, larger slopes, 
and farther away from water bodies than CIrrMap250 can be explained 
by their neglect of the mixed grid effects. China has many scattered, 
small-scale croplands that are mixed with forests/grasslands in moun-
tainous areas. Vegetation in mixed cropland-forest/grassland areas may 
be “greener” than croplands located in river valleys, and they can easily 
be detected as irrigated cropland if the vegetation index is mainly 
considered for extracting irrigated area, as illustrated by the two field- 
surveyed irrigated districts. 

5.2. Large uncertainty in irrigation ratio estimates 

The sources of cropland area in China can be divided into four cat-
egories, including remote sensing, the National Bureau of Statistics of 
China (NBSC), the Ministry of Natural Resources of the People’s Re-
public of China (MNRPRC), and the National Land Survey. The National 
Land Survey of China was conducted three times in 1984–1987, 
2007–2009, and 2017–2019; while no data was available around 2000. 
We estimated irrigation ratio, i.e., the ratio of irrigated cropland area to 
total cropland area, for difference provinces in mainland China based on 
the cropland area from remote sensing (Xu et al., 2018), NBSC (National 
Bureau of Statistics of China, 2001a), and MNRPRC (Ministry of Land 
and Resources of the People’s Republic of China, 2001). As shown in 
Fig. 8, irrigation ratio varies significantly among the 31 provinces, with 
higher values in Beijing, Shanghai, Jiangsu, and Xinjiang, while lower 
values in Heilongjiang, Yunnan, and Guizhou. Irrigation ratio also ex-
hibits a large difference for the same region. For instance, it ranges from 
0.54 to 0.93 in Xinjiang using cropland area from different sources. 
Irrigation ratio estimates based on the remote sensing-estimated crop-
land area are lower than the estimates based on the NBSC-reported 
cropland area and MNRPRC-reported cropland area. This is because, 
as shown in Fig. 8, the cropland acreages reported by NBSC and 
MNRPRC are obviously smaller than those estimated by remote sensing, 
although they exhibit a higher correlation (R2 > 0.85). In this study, it is 
challenging to assess which sources of cropland area are reliable. 
Nevertheless, previous study indicates that remote sensing tends to 
overestimate cropland area due to the widespread presence of non- 
cropland within the map grid and the classification accuracy problems 
(Guo, 2006). On the other hand, NBSC tends to underestimate the 
cropland area due to administrative and technical reasons (Xu et al., 
2014). Overall, irrigation ratio estimates have large uncertainties due to 
the varying cropland area from multiple sources. 

Fig. 5. Comparison of the Kappa coefficient (a), overall accuracy (b), and producer’s accuracy (c, d) achieved by different irrigation maps. Results are shown for 
mainland China and its two subregions, i.e., the arid and semi-arid region (aridity index ≤ 0.5) and humid and semi-humid region (aridity index > 0.5). 
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5.3. Limitations and prospects 

We admit that this study has some limitations and uncertainties that 
deserve further investigations in the future. To begin with, the proposed 
irrigation mapping method depends heavily on irrigated area statistics. 
Although the statistical irrigated areas were collected and reconstructed 
with an unprecedented level of detail in our study, they inevitably have 
some uncertainties and inconsistences (Ajaz et al., 2019). Furthermore, 
the statistics represent the effective irrigated area, i.e., the area equipped 
for irrigation, rather than the actual irrigated area, which may lead to 
biased results. In fact, the China Water Statistical Yearbook (CWSY) 
(China Ministry of Water Resources, 2001) have also reported the actual 
irrigated area at the provincial level, which is closely matched to the 
effective irrigated area with a coefficient of determination of 0.99 
(Supplementary Fig. S5). However, actual irrigated area at the city/ 
county level is not available, which limits its use to constrain the irri-
gated cropland distribution in spatial detail. We further conducted an 
experiment to assign the actual provincial irrigated area to the county 
level based on the statistical effective irrigated area and recreated the 
irrigated cropland map using the method proposed in this study. We 
found that the spatial pattern of irrigated croplands in the new map was 
very similar to CIrrMap250 (Supplementary Fig. S6), but showed no 
improvement in accuracy. 

Second, this study incorporates irrigation suitability into the irri-
gated cropland mapping framework, which greatly improves the per-
formance of irrigation map. However, the irrigation suitability analysis 
is somewhat subjective due to the requirement of weight setting. If 
sufficient ground truth data are available in the future, they can be 

divided into two parts, one for automatic weight calibration and one for 
performance evaluation. Meanwhile, due to the large number of map-
ping units (>3500), the irrigation suitability analysis was performed 
only at the provincial level, which may affect the accuracy of the irri-
gation map, especially in provinces with high topographic and climatic 
gradients, such as Gansu and Heilongjiang provinces. In addition, ter-
races are widely distributed in China, accounting for 26 % of the 
country’s cropland area (Cao et al., 2021), and about 30 % of them are 
located in areas with slopes higher than 8◦ (Supplementary Fig. S7). 
There may be many irrigable terraces in high-slope areas, thus our 
assumption that gentle-slope cropland is more likely to be irrigated than 
steep-slope cropland may not hold true, adding some uncertainties to 
our results. Nevertheless, irrigation suitability is determined not only by 
slope but also by three other factors (i.e., elevation, DistToWater, and 
drought index), and meanwhile, for provinces with concentrated dis-
tribution of terraces, the weight of slope (less than0.16) was signifi-
cantly lower than other factors in the irrigation suitability analysis, 
suggesting that our results may not be significantly influenced. 

Lastly, this study only mapped irrigated cropland in mainland China 
for a specific year (i.e., 2000) to verify the reliability of the newly pro-
posed mapping method, as done in many other studies (Ozdogan and 
Gutman, 2008; Xiang et al., 2019; Xie et al., 2019; Zhu et al., 2021; 
Zhang et al., 2022). The number of reference points is relatively small 
and some of them may not be representative of the actual situation in 
2000, which may bring uncertainty to our results. The lack of sufficient 
ground truth data would be addressed in the future by conducting more 
field work and by collaborating with more researchers in the field of 
irrigated cropland mapping and with the Ministry of Natural Resources 

Fig. 6. Comparison of the irrigated area estimates against the statistics for 3,652 mapping units of mainland China. a, CIrrMap250; b, Zhu-map; c, GMIA2005; d, 
Meier-map. The inserted gray panels show the results at the provincial level. 
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of the People’s Republic of China (https://www.mnr.gov.cn/), which 
has much reliable survey data. In the next step, we will apply our new 
method to generate time-continuous maps of irrigated cropland from 
2000 to the present and collect more reference points and survey data 
spanning multiple years to robustly evaluate the performance of our new 
mapping method and the accuracy of irrigation maps. 

6. Conclusions 

This study proposed a novel approach to develop the first 250-m 
irrigated cropland map in mainland China (CIrrMap250) for the year 
2000 by integrating remote sensing, irrigation suitability, and irrigated 
area statistics. The novelty of the new approach lies in the incorporation 
of irrigation suitability into the irrigation mapping process. The new 
method consists of three major steps, including irrigation suitability 
analysis, training pool generation based on suitability-adjusted vegeta-
tion indices and irrigated area statistics, and machine learning-based 
classification of irrigated and rainfed cropland. We evaluated the per-
formance of CIrrMap250 and compared it with three irrigation maps (i. 
e., EVI-map, NDVI-map, and GI-map) generated using the threshold- 
based classification method, as well as four other existing maps 
including GMIA2005 (Siebert et al., 2005), GIAM2000 (Thenkabail 
et al., 2009), Zhu-map (Zhu et al., 2014), and Meier-map (Meier et al., 
2018). The accuracy of the irrigation maps was assessed from three 
different aspects, including the distribution of irrigated croplands, 
agreement with reference points, and consistency with irrigated area 
statistics. 

Results indicate that the irrigated croplands are mainly distributed in 

the North China Plain, Northwest China, and some large-scale irrigation 
districts. Shandong province holds the largest irrigated area, followed by 
Henan, Hebei, Jiangsu, Anhui, and Xinjiang, while at the basin scale, the 
Yangtze River basin has the largest irrigated area, followed by the Huai 
River basin, Hai River basin, and Yellow River basin. Intensively irri-
gated areas are overall well captured by CIrrMap250 and all the other 
maps. CIrrMap250 has a similar irrigation distribution pattern to EVI- 
map, NDVI-map, due to the consistent constraints of irrigated area sta-
tistics on the mapping results. However, there are notable differences 
between CIrrMap250 and the four existing maps at both regional and 
local scales. All maps except CIrrMap250 tend to underestimate irri-
gated cropland in river valleys and overestimate irrigated cropland in 
the mountainous areas, as evidenced by the field-surveyed irrigation 
districts, mainly because of their neglect of the mixed grid effects. 
CIrrMap250 has a higher point-scale accuracy than the other maps. 
CIrrMap250 achieves an improvement in Kappa coefficient by 23 % to 
about 2 times and an improvement in overall accuracy by 8 % to 32 %, in 
comparison to other irrigation maps. Additionally, the irrigated area of 
CIrrMap250 shows a good agreement with the statistics, mainly due to 
the utilization of irrigated area statistics in the generation of the training 
pool. 

The irrigation mapping method can be easily applied to other regions 
of the world, and the new irrigated cropland map has great potential to 
support agriculture, climate, and environment research as well as water 
resource management in mainland China. Nevertheless, we admit that 
this study has some limitations and uncertainties, such as the heavy 
dependence on irrigated area statistics and the subjectivity of irrigation 
suitability analysis, which deserve further investigations in the future. In 

Fig. 7. Proportion of irrigated croplands over different ranges of elevation (a), slope (b), and distance to water bodies (c) in the seven irrigation maps.  
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the next step, we will attempt to generate time-continuous maps of 
irrigated cropland from 2000 to the present and collect more reference 
points and survey data to robustly evaluate the performance of our new 
mapping method and the accuracy of irrigation maps. 

7. Data and code availability 

CIrrMap250 can be accessed at: https://doi.org/10.6084/m9.figsh 
are.17056442.v2. All codes for this study are freely available at via: 
https://github.com/HydroRS/CIrrMap. 
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