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Abstract: Multi-angle optical reflectance measurements such as those from the NASA moderate
resolution imaging spectroradiometer (MODIS) are sensitive to forest 3D structures, potentially
serving as a useful proxy to estimate forest structural variables such as aboveground biomass
(AGB)—a potential theoretically recognized but rarely explored. In this paper, we examined the
effectiveness of the reconstructed MODIS typical-angle reflectances—reflectances observed from
the hotspot, darkspot, and nadir directions—for estimating forest AGB from both theoretical and
practical perspectives. To gain theoretical insights, we first tested the sensitivities of typical-angle
reflectances to forest AGB through simulations using the 4-scale bidirectional reflectance distribution
function (BRDF) model. We then built statistical models to fit the relationship between MODIS
multi-angle observations and field-measured deciduous-broadleaf/mixed-temperate forest AGB at
five sites in the eastern USA, assisted by a semivariogram analysis to determine the effect of pixel
heterogeneity on the MODIS–AGB relationship. We also determined the effects of terrain and season
on the predictive relationships. Our results indicated that multi-angle reflectances with fewer visible
shadows yielded better AGB estimates (hotspot: R2 = 0.63, RMSE = 54.28 Mg/ha; nadir: R2 = 0.55,
RMSE = 59.95 Mg/ha; darkspot: R2 = 0.46, RMSE = 65.66 Mg/ha) after filtering out the effects of
complex terrain and pixel heterogeneity; the MODIS typical-angle reflectances in the NIR band were
the most sensitive to forest AGB. We also found strong sensitivities of estimated accuracies to MODIS
image acquisition dates or season. Overall, our results suggest that the current practice of leveraging
only single-angle MODIS data can be a suboptimal strategy for AGB estimation. We advocate the
use of MODIS multi-angle reflectances for optical remote sensing of forest AGB or potentially other
ecological applications requiring forest structure information.

Keywords: MODIS; typical-angle reflectances; BRDF; BRDF shape indicators; aboveground biomass;
kernel-driven BRDF model; forest

1. Introduction

Forest aboveground biomass (AGB) is a key vegetation feature for quantifying ter-
restrial carbon dynamics, and has been widely used for explaining climate change, and
describing habitats and biodiversity [1–3]. Continuous forest AGB maps are effective means
to monitor vegetation dynamics across a large scale, such as a mainland or global scale [4].
The ecosystem community has suggested that continuous AGB maps with sufficient accu-
racy are desirable, which if deployed can avoid representation issues that often arise when
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using discontinuous field-based observations [5]. With the development of remote sensing
technology, a variety of obtained remote sensing data provided opportunities for mapping
large-scale forest AGB, such as optical remote sensing data, radio detection and ranging
(radar) data, and light detection and ranging (lidar) data.

Radar and lidar, as active remote sensing, have been widely used for large-scale forest
AGB estimation because of their ability to penetrate the canopy. In terms of radar, the
most frequently used strategies for estimating forest AGB are based on the backscatter
values and interferometry technique [6]. For example, radar backscatters in the P and
L bands are strongly correlated with AGB and have been successfully used to estimate
forest AGB [7–9]; adding C-band HV or HH polarization data to the regression equations
significantly improved the performance of forest AGB estimation [10,11]. Spaceborne
lidar is also a suitable means for large-scale forest AGB estimation—using spaceborne
lidar observation combined with continuous remote sensing data, such as radar and
multispectral data, for mapping forest AGB [12–15]. Recently, some researchers have started
to test the performance of combining the newly developed space-borne lidar system (i.e.,
global ecosystem dynamics investigation) with InSAR observations to map forest AGB [16].

Although lidar and radar instruments are promising approaches for forest AGB
estimation—data alone or combined with other ancillary data for AGB estimation, these
active instruments are limited in temporal and geographic coverage—a problem that cannot
be solved in the short term. Multi-angle remote sensing with long temporal and global
scales coverage provides an alternative for forest AGB estimation because the multi-angular
remotely sensed signals are theoretically sensitive to vegetation structures [17–20]. Multi-
angle remote sensing refers to the observation of surface reflectance from multiple view
angles together with an account of the solar position as well; this kind of technology
provides an opportunity to measure the anisotropic reflectance of the land surface. The
observed anisotropic reflectances, especially from the typical viewing directions of hotspot
(observation with no visible shadows), darkspot (observation with a maximum of visible
shadows), and nadir, contain important information about the forest structure for driving
the physical models. These physical-based canopy geometric-optical models were devel-
oped to estimate the bidirectional reflectance distribution function (BRDF) analytically
or empirically [21–23], as a function of the canopy shape and size, canopy density, tree
height, and spatial distribution of trees. Therefore, it can reasonably be assumed that
these multi-angle anisotropic reflectances have the ability to retrieve forest structures, such
as biomass.

Until now, multi-angle reflectances obtained from airborne and spaceborne sensors
have been widely used for forestry applications, such as leaf area index (LAI), clumping
index (CI), and canopy height mapping [24–26]. Due to canopy height, LAI, and CI, these
canopy structure parameters are related to AGB estimation in some respect [27–29]. Accord-
ingly, some researchers have attempted to use BRDF anisotropic information to estimate
forest AGB by using multi-angle surface reflectance data from a multi-angle imaging spec-
tro radiometer (MISR), successfully mapping forest AGB for the United States [30]. The
moderate resolution imaging spectroradiometer (MODIS), one of the important compo-
nents of the global optical multi-angle observation system, provides massive multi-angle
observation information on global-scale long-term series; it should be a good choice for
independently, or as auxiliary data combined with radar or lidar observation, mapping
forest AGB. Some researchers attempt to use vegetation indices derived from MODIS, such
as a normalized difference vegetation index (NDVI), an enhanced vegetation index (EVI),
a soil-adjusted vegetation index (SAVI), or an optimized soil-adjusted vegetation index
(OSAVI) to estimate AGB [31,32]; among these indices, the NDVI usually has the best
performance [33]. However, some researchers considered that indices such as the NDVI
produced less spectral information; they therefore introduced more bands of MODIS spec-
tral information to improve the accuracy of the AGB inversion [34]. As research progressed,
landcover types and meteorological data were used as auxiliary variables to combine the
MODIS vegetation indices to model AGB [35,36]. It should be noted that all the above
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methods based on MODIS observations for estimating the AGB focus on the nadir spectral
information. The multiangle anisotropic information (e.g., hotspot and darkspot direc-
tions anisotropic reflectance), which contains important data about the forest structure
information, has rarely been explored for forest AGB estimation.

In this study, we designed an experiment that exploits the MODIS multi-angle re-
flectances observed from hotspot, nadir, and darkspot directions for forest AGB estimation.
Specifically, we first used the 4-scale model simulations and performed a global sensitivity
analysis based on the extended Fourier amplitude sensitivity test (EFAST) to understand
the sensitivity of the multi-angle reflectances to the variation of forest AGB in theory. We
subsequently took the field-based forest AGB data at the hectare scale as the true biomass
value for MODIS pixels. We used a semivariance function to analyze the heterogeneity
of MODIS pixels, which in turn helps to determine whether the field-based biomass data
can represent the true biomass value of MODIS pixels. A hotspot-revised kernel-driven
BRDF model was used to reconstruct the MODIS multi-angle reflectances; the model was
operated based on a version 6.1 MCD43A1 MODIS parameter product as input. According
to the reconstructed multi-angle reflectances and BRDF shape indicators constructed based
on these reflectances, we applied a linear regression strategy to examine the relationship
between BRDF information and forest AGB. Furthermore, we analyzed the influence of
factors such as terrain slope and tree-cover percentage on this relationship. Finally, we
discussed the seasonal effects on the BRDF, while these effects on the relationship between
the multi-angle reflectances and forest AGB were also discussed.

2. Materials
2.1. Study Area

Our study areas are located on the eastern coast of the United States and include a
total of 55 field-measurement sites distributed in five forests (Figure 1), namely Howland
Forest (lat: 42.20◦, lon: −68.73◦), Penobscot Forest (lat: 44.87◦, lon: −68.65◦), Bartlett
Forest (lat: 44.04◦, lon: −71.16◦), Hubbard Brook Forest (lat: 43.56◦, lon: −71.45◦), and
Harvard Forest (lat: 42.53◦, lon: −72.17◦) [37]. Howland Forest is located in central Maine
and was designated as a research forest in 1986. The forest stands located in the boreal-
northern hardwood transitional zone; the dominant species were red spruce (Picea rubens),
eastern hemlock (Tsuga canadensis), balsam fir (Abies balsamea), white pine (Pinus strobus),
and northern white cedar (Thuja occidentalis). The terrain at this site was flat to gently
rolling with a maximum elevation of less than 68 m. Penobscot Forest is also located in
Maine, across the Penobscot River from Orono and the University of Maine. State Highway
178 parallels the eastern bank of the river and provides access to the forest. The dominant
forest type is mixed northern conifers, and the average growing season is 156 days. Bartlett
Forest was established in 1931 as a research site within the U.S. Forest Service, which was
located at White Mountain National Forest in New Hampshire—it extends from the village
of Bartlett in the Saco River valley at 210 m to about 915 m at its upper reaches. The primary
forest cover of this site is the sugar maple-beech-yellow birch association. Hubbard Brook
Forest lies in the southern part of the White Mountain National Forest in central New
Hampshire; forest types are mainly deciduous northern hardwoods, such as sugar maple
(Acer saccharum), beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). Harvard
Forest is an ecological research site owned and managed by Harvard University and located
in Petersham, Massachusetts. The forest stands are located in the hardwoods-white pine-
hemlock transition zone; forest types mainly include red oak (Quercus rubra), white birch
(B. papyrifera), white pine (Pinus strobus), and beech (Fagus grandifolia). Field measurement
plots in this forest are located at the Prospect Hill tract; the terrain is relatively complex.
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and NIR bands based on a hotspot-revised kernel-driven BRDF model. Compared to the 
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versus-scan angle (RVS) method was employed to minimize optical crosstalk in the Terra 
MODIS infrared (IR) bands. In addition, the Terra MODIS forward look-up table (LUT) 
was updated for the 2012–2017 period. 

The MODIS MCD43A1 Version 6.1 product includes a quality assessment parameter 
to help users to perform quality filtering. We only used the data flagged as high-quality 
for our research, that is, where the “QA” flag was equal to 0. Due to cloud contamination, 
high-quality data were unavailable at a given time. Here, we followed a strategy that fills 
in these missing data with high-quality full inversion data (QA = 0) from a month close to 
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Figure 1. The study sites are distributed in the Howland Forest (lat: 42.20◦, lon: −68.73◦), Penobscot
Forest (lat: 44.87◦, lon: −68.65◦), Bartlett Forest (lat: 44.04◦, lon: −71.16◦), Hubbard Brook Forest (lat:
43.56◦, lon: −71.45◦), and Harvard Forest (lat: 42.53◦, lon: −72.17◦); all are located in the US; the base
map is provided by MODIS land cover product MCD12Q1.

2.2. MODIS MCD43A1 BRDF Product

The MODIS MCD43A1 Version 6.1 daily BRDF/Albedo model parameters dataset
was produced using 16 days of Terra and Aqua MODIS data at 500 m resolution, which
provided the three model weighting parameters (isotropic, volumetric, and geometric) for
the kernel-driven BRDF model [38]. Here, we used these three model weighting parameters
to reconstruct the reflectances in the hotspot, nadir, and darkspot directions in the red
and NIR bands based on a hotspot-revised kernel-driven BRDF model. Compared to
the previous version of the MODIS products, the version 6.1 product was improved in
several aspects through various calibration changes. In particular, a new version of the
response-versus-scan angle (RVS) method was employed to minimize optical crosstalk in
the Terra MODIS infrared (IR) bands. In addition, the Terra MODIS forward look-up table
(LUT) was updated for the 2012–2017 period.

The MODIS MCD43A1 Version 6.1 product includes a quality assessment parameter
to help users to perform quality filtering. We only used the data flagged as high-quality
for our research, that is, where the “QA” flag was equal to 0. Due to cloud contamination,
high-quality data were unavailable at a given time. Here, we followed a strategy that fills
in these missing data with high-quality full inversion data (QA = 0) from a month close
to the field-measurement time. The time range of the used MODIS data was from June to
August and was located in the growing season. Due to the fact that the structure of the
forest does not change much in a month, our strategy will in theory have limited impact on
study results.
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2.3. MODIS MOD44B Vegetation Continuous Field (VCF) Data

The MOD44B vegetation continuous fields (VCF) annual product layers include per-
centage tree cover, percentage non-tree cover, and percentage non-vegetation, providing a
continuous, quantitative representation of land surface cover at 250 m resolution in bands
1 and 2 [39]. Here, we used the layers of percentage tree cover from the year 2009, which
were time-matched with field measurements, to characterize the forest coverage situation of
the corresponding MODIS pixel. The purpose of characterizing the forest cover information
at the pixel level is to analyze the influence of forest coverage on variations in surface
BRDFs, which, in turn, helps us to understand its effect on forest AGB estimation based on
BRDF data.

2.4. MODIS Land Cover Data

The MODIS land cover type (MCD12Q1) Version 6 data product provides global land
cover types at annual intervals with 500 m pixel resolution [40]. We used the International
Geosphere-Biosphere Programme (IGBP) classification system of the MODIS MCD12Q1
product to filter out the non-tree-covered study sites and help to analyze the influence
of forest types on the BRDF surface-reflectance patterns, which further analyzes if these
influences will pass to forest biomass estimation. The acquired time of the used MCD12Q1
data (i.e., year) was consistent with field-based data.

2.5. SRTM Data

The shuttle radar topography mission (SRTM) collected elevation data on a near-
global scale to generate the most complete high-resolution digital topographic database
on Earth [41]. Previous studies have shown that BRDF effects would be weak when
topographic effects were significant [42–44]. Therefore, using BRDF information to estimate
forest structure in complex terrain areas, such as study areas with a large slope, will have
certain limitations. Here, we used SRTM 1 Arc-Second Global elevation data to calculate
the slope information of the MODIS pixel, which in turn was used to analyze whether
terrain effects influence using BRDF observations to estimate forest biomass.

2.6. Landsat Surface Reflectance Data

The Landsat clear sky surface reflectance data describe the percentage information
about the incoming solar radiation reflected from the Earth’s surface [45,46]. These data
contain information describing the differences in the material on the Earth’s surface; thus,
they have been widely used as a reference to conduct pixel heterogeneity analysis [47,48].
In this study, we used the field-measured forest biomass as the true value for the MODIS
pixel; the problem here is therefore whether the data observed on the ground can represent
the real situation of the MODIS pixel. For homogeneous pixels, the ground observations
can represent the real situation of the pixel scale to a large extent. To ensure that the ground
observation data we used can reasonably indicate the real situation of the MODIS pixel
scale, we used the 30 m clear sky Landsat surface reflectance data, which had the same
acquired time as field measurements, as input to the semivariogram function to perform
the pixel heterogeneity analysis.

2.7. Field-Based Forest Biomass Data

The field-based forest AGB data used in this study were provided by the North Ameri-
can Carbon Program (NACP). The NACP is a multi-disciplinary research program designed
to obtain a scientific understanding of North America’s carbon sources and sinks [49]. The
forest AGB datasets in this study were collected in 2009 from Bartlett Experimental For-
est, Harvard Forest, Howland Research Forest, Hubbard Brook Experimental Forest, and
Penobscot Experimental Forest, including 55 field measurement sites (partial collection
data shown in Appendix A Table A1). At each site, live trees and standing dead trees with a
diameter at breast height (DBH) greater than or equal to 10 cm within a 50 m by 200 m plot
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were counted to calculate the AGB. The AGB for each stem was calculated in megagrams
(Mg) using the general equations from Young et al. (1980) [50].

3. Models and Methods

We used two strategies to assess the ability of the MODIS reflectances observed from
the hotspot, nadir, and darkspot directions on forest AGB estimation. Firstly, we used the
simulations from the 4-scale model and based on the EFAST global sensitivity analysis
method to explore the relationship between multi-angle reflectances and forest AGB. Then,
according to the field-measured forest AGB data, we used the regression method to analyze
the correlation between MODIS multi-angle reflectances and the forest AGB; the MODIS
multi-angle reflectances were reconstructed based on a hotspot-revised kernel-driven BRDF
model. The performance of the BRDF shape indicators constructed from these multi-angle
reflectances in the forest AGB estimation was also analyzed. Furthermore, we analyzed
the influence of complex terrain and pixel heterogeneity on their relationship. Finally, we
analyzed the seasonal effects of MODIS data on the estimation of the forest AGB. The
details of the models and methods used in this study are as follows.

3.1. Models
3.1.1. The RTCLSR Kernel-Based BRDF Model

We employed a hotspot-revised kernel-based BRDF model, named RTCLSR [51], to
reconstruct MODIS multi-angle reflectances. The kernel-based BRDF model usually consists
of three components: isotropic scattering, volumetric scattering, and geometric-optical
surface scattering [52,53]. The equation is shown as follows:

R(θ, ϑ, ϕ, Λ) = fiso(Λ) + fvol(Λ)Kvol(θ, ϑ, ϕ) + fgeo(Λ)Kgeo(θ, ϑ, ϕ) (1)

where R(θ, ϑ, ϕ, Λ) is the BRDF in waveband Λ; fiso, fvol , and fgeo are the weight parameters
that determine the shape of the BRDF, that is, the proportion of the above three parts of scat-
tering; Kgeo and Kvol are geometric-optical and volume-scattering functions, respectively; all
are dependent on the geometric configurations, including the view zenith (ϑ), illumination
zenith (θ), and relative azimuth (ϕ). These geometric configurations can be used to define
the concerned sun-sensor geometries, such as the hotspot (ϑ = 35◦, θ = 35◦, ϕ = 0◦), nadir
(ϑ = 35◦, θ = 0◦, ϕ = 0◦) and darkspot (ϑ = 35◦, θ = 35◦, ϕ = 180◦).

For the RTCLSR model, Kgeo adopts a kernel function derived from a sparsely vege-
tated canopy surface, named the LiSparseReciprocal kernel (KLSR) [23], which is shown
as follows:

KLiSparseR = O
(
θ′, ϑ′, ϕ

)
− sec θ′ − sec ϑ′ +

1
2
(
1 + cos ξ ′

)
sec ϑ′ sec θ′ (2)

where O represents the overlap area between the view and solar shadows, and ξ is the
phase angle between the incident and observe direction. In terms of Kvol, a hotspot-
revised volume-scattering kernel named the RossThickChen kernel (KRTC) was adopted; its
mathematical function was as follows:

KRTC =

(
π
2 − ξ

)
cos ξ + sin ξ

cos θv + cos θs
×
(

1 + C1e−
ξ

C2

)
− π

4
(3)

This function was developed from the RossThick kernel, which introduced a hotspot

factor, 1 + C1e−
ξ

C2 , compared with its original term. C1 and C2 are two adjustable parame-
ters related to the height and width of the hotspot effect. Here, the suitable input values of
C1 and C2 for red and NIR bands reference previous studies [25,54].

Subsequently, the reconstructed multi-angle reflectances were used to calculate the
MODIS BRDF shape indicators, which were further used for forest AGB estimation. Here,
five kinds of BRDF shape indicators were selected for our study (Table 1), which have been
successfully used for retrieving CI [55], LAI [56], and landcover types [57].
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Table 1. Formulating MODIS BRDF shape indicators based on the multi-angle reflectances observed
from the hotspot, nadir, and darkspot directions of the red and NIR bands.

Names Abbr. Formulas Application Areas

Normalized difference between
hotspot and darkspot index NDHD NDHD =

HotspotNIR/red − DarkspotNIR/red
HotspotNIR/red + DarkspotNIR/red

Clumping index

Hotspot darkspot index HDS HDS =
Hotspotred − Darkspotred

Darkspotred
Clumping index

Anisotropic factor ANIX ANIX =
HotspotNIR/red

DarkspotNIR/red
Landcover types

Normalized difference
anisotropic index NDAX NDAX = ANIXred − ANIXNIR

ANIXred+ANIXNIR
Landcover types

Hotspot darkspot NDVI NDVI-HD NDVI_HD =
HotspotNIR − Darkspotred
HotspotNIR + Darkspotred

Leaf area index

Hotspot incorporated NDVI NDVI-HS NDVI_HS = NDVI_HD× (1− Hotspotred) Leaf area index

3.1.2. 4-Scale Model

The 4-scale model is a geometric optical (GO) BRDF model, that is widely used to
simulate the multi-angle reflectances of vegetation surfaces observed from remote sensing
sensors [21]. We used the 4-scale model to perform the simulation of measuring the BRDF
behavior of forest canopies; the output will be used as input for the EFAST method to assess
the effectiveness of the BRDF on forest biomass estimation from a theoretical perspective.
There are four types of input data that need to be inserted to realize the simulation of the
four-scale model at the stand scale, crown scale, branch scale, and leaf scale, such as site
parameters, forest canopy parameters, optical parameters for canopy and background,
and observation geometry parameters (Table 2). The setting of these input parameters in
our study references our study areas’ field measurements and previous studies [21,55],
which can make these input parameters reasonable and suitable for our study areas to a
certain extent.

Table 2. Input parameters for 4-scale model, including parameters value and ranges.

Input Parameter Symbol Unit Values and Ranges

Site parameters
Stand density SD Trees/ha 500–5000

Canopy parameters
Leaf area index LAI m2 0–8
Clumping index CI dimensionless 0.33–1
Canopy height HC m 5–60
Crown based height HB m 1–10
Crown radius RC m 0.5–5
Newman clustering NC dimensionless 1–6

Optical property parameters
Leaf reflectance in red REDT dimensionless 0.08
Leaf reflectance in NIR NIRT dimensionless 0.6
Leaf transitivity in red REDTT dimensionless 0.05
Leaf transitivity in NIR NIRTT dimensionless 0.35

Background reflectance in red band REDG dimensionless 0.1
Background reflectance in NIR band NIRG dimensionless 0.25
Observation geometry parameter

Solar zenith angle SZA degree 35
Relative azimuth angle PHI degree 0, 180

View zenith angle VZA degree
0, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60,

65, 70, 75, 80

As we can see from Table 2, there is no biomass of this option as input parameters for
the 4-scale model. Existing studies have shown that canopy height and crown diameter
are highly correlated with the variation in the forest biomass [58,59]; we can note that
these two parameters are in the input table of the 4-scale model. Therefore, we adopted
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an indirect strategy to analyze the sensitivity of the BRDF information on the variation of
forest biomass—we analyzed the relationship of the BRDF information with the canopy
height and crown diameter. Specifically, we used the EFAST method to quantitatively
evaluate the sensitivity of the BRDF information to the variation in canopy height and
crown diameter.

3.2. Methods
3.2.1. EFAST Global Sensitivity Analysis Method

We employed the EFAST global sensitivity analysis method to evaluate the importance
and apportioned the uncertainty of the input factors to the output factors of the model.
The EFAST method was developed from the classical Fourier amplitude sensitivity test
(FAST) method [60]. Compared with FAST, the new feature of EFAST is that it can compute
not only the first-order sensitivity index (first-order) but also the mutual sensitivity index
(high-order) and the total sensitivity index.

The sensitivity index of the EFAST method is calculated based on the predictions
variances of the model, which are shown as follows:

D =
n

∑
i=1

Di +
n

∑
i=1

n

∑
j = 1
j 6= i

Dij + . . . + D1,2,...n (4)

where Di, Dij and D1,2, . . . n are the variances in the output caused by the different dimen-
sions of the input parameter; D is the total variance of the output. For the main sensitivity
index (Si), also known as the first-order sensitivity index, characterizes a single input
parameter to the sensitivity of the output; its mathematical expression is as follows:

Si = Di/D (5)

The mutual sensitivity index, which describes the influence of the interactions between
one specific parameter and all other parameters in the output, is calculated as follows:

Si···k =
Dij + Di···j+1 . . . + Di···k

D
(j, k 6= i) (6)

Conducting a sum process for the main sensitivity index and mutual sensitivity index
can produce the total sensitivity index:

ST
i = Si +

n

∑
j = 1
j 6= i

Sij + · · ·+S1,2···n (7)

3.2.2. Assessment of Pixel Homogeneity

The field-based measurements of whether we can represent the real situation at pixel
scale is an unavoidable problem in remote sensing study fields, as well as in our study, as
we mentioned above. In relatively homogeneous pixels, field-based measurements can
usually represent the real state of the landcover of the pixel [47]. Therefore, evaluating
the homogeneity of pixels is key to carrying out remote sensing authenticity evaluation
experiments. Here, we employed a strategy based on a semivariogram function [48] to
assess the homogeneity of MODIS pixels corresponding to field observations. Specifically,
using Landsat-TM finer resolution images as an input for semivariogram functions, if the
output yields a sill value of less than 5.0 × 10−4, we considered the landcover of MODIS
pixels to be homogeneous; this conclusion was reached by the previous study [61]. We give
an example that shows our employed strategy to assess the homogeneity of MODIS pixels
(Figure 2): using a cloud-free Landsat surface reflectance product centered on a MODIS
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pixel as input for the semivariogram function. We obtained three different scales (i.e., 1 km,
1.5 km, and 2 km) of Landsat-TM subsets’ variogram estimators; the sill values of these
three spatial elements are 0.95 × 10−4, 2.25 × 10−4, and 2.95 × 10−4, respectively, which
are all less than 5.0 × 10−4. Therefore, we can reasonably consider that the observed targets
within this MODIS pixel are homogeneously distributed.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 2. (a,b) are examples of using the semivariogram function to assess the homogeneity of the 
MODIS pixel; (a) is view scope of our study site, which are composites of bands 7−4−2 of the Landsat 
surface ground reflectance product centered on a MODIS pixel (lat: 45.20°; lon: −68.74°); (b) is the 
assessment result, which indicates that the variogram estimator is fitted to a spherical model to 
derive spatial attributes, including range (i.e., a), sill (i.e., c + c0), nugget effect (i.e., c0), and sample 
variance (i.e., var). 

3.3. Accuracy Validation 
The ability of MODIS BRDF observations to retrieve forest AGB was evaluated by 

the reference datasets. Specifically, we employed ordinary least squares regression (OLS) 
and regression through the origin (RTO) analysis [62] to validate the accuracy; we addi-
tionally utilized three statistical indices; they were the mean bias, the coefficient of deter-
mination, and the root mean square error: 

( ) ( )
( )

22

2 1 1
2

1

n n

i i i
i i

n

i

V V V V
R

V V

= =

− − −
=

−

 


 

(8)

( )2
1

n

i i
i
V V

RMSE
n

=

−
=


 (9)

Figure 2. (a,b) are examples of using the semivariogram function to assess the homogeneity of the
MODIS pixel; (a) is view scope of our study site, which are composites of bands 7−4−2 of the Landsat
surface ground reflectance product centered on a MODIS pixel (lat: 45.20◦; lon: −68.74◦); (b) is the
assessment result, which indicates that the variogram estimator is fitted to a spherical model to derive
spatial attributes, including range (i.e., a), sill (i.e., c + c0), nugget effect (i.e., c0), and sample variance
(i.e., var).

3.3. Accuracy Validation

The ability of MODIS BRDF observations to retrieve forest AGB was evaluated by the
reference datasets. Specifically, we employed ordinary least squares regression (OLS) and
regression through the origin (RTO) analysis [62] to validate the accuracy; we additionally
utilized three statistical indices; they were the mean bias, the coefficient of determination,
and the root mean square error:
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R2 =

n
∑

i=1

(
Vi −V

)2 −
n
∑

i=1

(
Vi −Vi

)2

n
∑
1

(
Vi −V

)2
(8)

RMSE =

√√√√√ n
∑

i=1

(
Vi −Vi

)2

n
(9)

nRMSE =
RMSE

V
(10)

where Vi is the estimated value, Vi is the reference value, V is the average result of reference
values, and n is the used data amount.

4. Results and Analysis
4.1. Sensitivity Analysis of the BRDF Information to Forest Biomass

Here, we used the EFAST method to assess the sensitivity of the BRDF information
on the variation of the canopy height and crown diameter based on the simulations of the
4-scale model. Since the canopy height and crown diameter are closely related to AGB, this
section can indirectly help us to understand the feasibility of using BRDF data to estimate
the AGB.

4.1.1. Sensitivity Analysis of Typical-Angle Reflectances to Forest Biomass from Canopy
Height and Crown Diameter

Our results show that the reflectances obtained in the typically observed direction
in the red and NIR bands show a high sensitivity to the variation in crown diameter and
canopy height (Figure 3). For example, the total sensitivity index (ST

i ) of the hotspot from
the NIR band and darkspot from the red band both exceed 0.6 for the canopy height; in
terms of the crown diameter, every observed typical-angle reflectances’ total sensitivity
index (ST

i ) exceeds 0.7. Furthermore, it can be noted that this sensitivity degree performs
differently for red and NIR bands. The above results may relate to the formation mechanism
of the anisotropic pattern of BRDF—BRDF anisotropic patterns that are usually not only
determined by vegetation structure but also by spectral characteristics [57,63]. For a red
band, leaf transmittance activity is usually weak, which in turn leads to weak multiple
scattering effects within the canopy; in other words, the anisotropic pattern of the BRDF
performs strongly in the red band. For the NIR band, the results are exactly the opposite—
the spectral properties of the NIR band with a strong transmittance characteristic usually
caused strong multiple scattering effects, and thus exhibited relatively weak anisotropic
patterns. However, the main sensitivity index does not show much difference for the
darkspot in the red and NIR bands; this result occurs because the dependence of shading
on the spectrum is not very strong. In addition, it can be noted that the reflectances
observed from the nadir direction performed differently to the variation of crown diameter
and canopy height; although these reflectances showed sensitivity to both parameters, they
are more sensitive to a variation in the crown diameter.

Furthermore, our results show that the total sensitivity is not only affected by the main
sensitivity but also by the mutual sensitivity (Figure 3). For example, the mutual sensitivity
index of a hotspot in the NIR band contributes around 80% of the total sensitivity to the
variation in crown diameter and canopy height. Multiple scattering effects in the NIR band
should be the main reason leading to the mutual sensitivity—the multiple scattering effects
within the canopy describe the interactions in the forest canopy structure from the spectral
aspects; these interactions finally contributed to the mutual sensitivity index. Therefore,
we can reasonably consider that the BRDF anisotropic patterns for the NIR band are mostly
affected by common effects of various structural parameters.
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Figure 3. Sensitivity analysis of typical-angle reflectances (i.e., hotspot, nadir, and darkspot) of red
and NIR bands on forest biomass-related canopy structure parameters (i.e., canopy height and crown
diameter), of which 1 means the most sensitive; (a) is the result for canopy height, (b) is the result for
crown diameter.

Overall, the reflectances obtained from the typically observed directions are sensitive
to the variation in forest structure variables closely related to the forest biomass from the
perspective of sensitivity studies. Therefore, the multi-angle reflectances obtained from
typically observed directions should have the potential ability to estimate the forest AGB.

4.1.2. Sensitivity Analysis of BRDF Shape Indicators to Forest Biomass from Canopy
Height and Crown Diameter

Our results show that all of these selected BRDF shape indicators display high sen-
sitivity to variations in the canopy height and crown diameter (Figure 4), although these
indexes were not previously used for forest AGB estimation. Compared to the typical-angle
reflectances, the sensitivity of these indexes to variations in the forest canopy structure
mostly comes from mutual sensitivity. As shown in Table 1, all of these BRDF shape
indicators are derived from multi-angle reflectances in red and NIR bands. These multi-
angle reflectances result from the combination of geometrical optics scattering and volume
scattering. For our studies, volume scattering is in general multiple scattering caused
by randomly distributed components that form gaps within the canopy; the geometrical
optics scattering effects can be understood as a single scattering caused by the gap between
different canopies. In other words, these BRDF shape indicators are constructed based on
the multi-angle reflectances resulting from the coupling of various forest canopy structures,
such as canopy height, LAI distribution, and crown diameter. In general, the geometrical
optical effect in the red band is more pronounced than the volume scattering effects [23,42],
while in the NIR band, the multiple scattering effects are enhanced [64]. Previous studies
documented that the vegetation usually exhibits different anisotropic scattering patterns
due to differences in the canopy structure and main scattering types [65,66]. Therefore, the
forest canopy structure presented by the BRDF anisotropic pattern will behave differently
due to the variations in scattering type; this theory is consistent with our results—the main
and mutual sensitivities of the different BRDF shape indicators to the canopy structure
parameters behave differently. Overall, the above results indicate that these BRDF shape
indicators constructed from typical-angle reflectances have the potential to estimate the
forest AGB.
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Figure 4. Sensitivity analysis of BRDF shape indicators on forest biomass-related forest canopy
structure parameters (i.e., canopy height and crown diameter); all of these indexes are constructed by
typical-angle reflectances in red and NIR bands (i.e., hotspot, nadir, and darkspot), of which 1 is the
most sensitive; (a) is the result for canopy height, (b) is the result for crown diameter.

4.2. Performance of the MODIS BRDF Information on Forest Biomass Estimation
4.2.1. Performance of the MODIS Typical-Angle Reflectances on Forest Biomass Estimation

Linear regression results for estimating the forest AGB using MODIS typical-angle
reflectances based on 55 sets of field-based biomass data are summarized in Table 3. It is
obvious that there is an un-ideal correlation between MODIS typical-angle reflectances and
the forest AGB. For example, the hotspot reflectance of the NIR band can only explain 20%
of the forest AGB variation, when RMSE = 77 Mg/ha and nRMSE = 0.41, which is the best
performance of typical-angle reflectances. The above results indicated that the reflectances
of MODIS under typical observation directions were worthless for forest AGB estimation,
as they were completely inconsistent with our sensitivity analysis results.

Table 3. Regression results for estimating forest AGB using MODIS typical-angle reflectances based
on field-based forest biomass data.

Multi-Angle
Reflectances

Using All Field-Based Biomass Data Using Selected Field-Based Biomass Data
R2 RMSE (Mg/ha) nRMSE R2 RMSE (Mg/ha) nRMSE

Hotspot-NIR 0.20 77.18 0.41 0.63 54.28 0.31
Nadir-NIR 0.21 76.54 0.41 0.55 59.95 0.34

Darkspot-NIR 0.12 80.92 0.43 0.46 65.66 0.38
Hotspot-red 0.07 83.27 0.45 0.25 77.65 0.45
Nadir-red 0.02 85.59 0.46 0.21 79.44 0.46

Darkspot-red 0.001 86.33 0.46 0.06 86.82 0.50

As shown in Figure 5a, some of the sites measured in the field are in some heteroge-
neous MODIS pixels due to water bodies, bare land, and building land. Furthermore, we
counted the terrain slope information of the MODIS pixels where the ground measurement
sites were located; a total of 10 sites were located in rugged areas, that is, the terrain slope
was greater than 8 degrees (Figure 5b). The above evidence indicates two noteworthy issues
in our linear regression analysis: first is the representation issue—whether the field-based
forest AGB can represent the three-dimensional surface that characterizes the forest AGB
across the MODIS pixel; second is the rugged terrain’s influence on BRDF anisotropic
reflectances. These issues’ influence on remote sensing inversion and authenticity veri-
fication experiments has been widely reported [67–69]. We have a total of 19 sites with
the above issues. Once these sites were excluded from the regression analysis, the results
were significantly improved (Table 3). For example, the explanatory ability of the hotspot
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of the NIR band for the forest AGB increased from 20% to 63%, with an improved RMSE
from 77.18 Mg/ha to 54.28 Mg/ha; furthermore, the normalized RMSE improved from 0.41
to 0.31, indicating a better fitting model. The above results are also consistent with our
sensitivity analysis based on 4-scale model simulation data; that is, the hotspot reflectance
of the NIR band has the best performance among typical-angle reflectances for explaining
forest AGB variation. Although reflectances in the NIR band observed from the nadir and
darkspot direction are not as good as the hotspot for estimating AGB, they are still effective.
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Figure 5. The landcover and topography around the observation sites; (a) is three typical MODIS
pixel areas, and the red box indicates the field-measured area; (b) is the terrain slope information of
all field-measured sites.

The X-Y scatter plot of the linear regression shows that the MODIS typical-angle
reflectances in the NIR band yielded a positive correlation with the forest AGB variation,
while the parameters in the red band showed a negative correlation (Figure 6). Further-
more, the MODIS multi-angle reflectances in the NIR band can explain more forest AGB
variation than those in the red band. For the NIR band, it can be noted that multi-angle
reflectances with fewer shadowing parts (i.e., shadowed crown and shadowed ground)
can explain more forest AGB variation. Reflectances observed from the hotspot are better
than those observed from the nadir, and the reflectances observed from the nadir are better
than those observed from the darkspot (i.e., hotspot: R2 = 0.63, RMSE = 54.28 Mg/ha,
nRMSE = 0.31; nadir: R2 = 0.55, RMSE = 59.95 Mg/ha, nRMSE = 0.34; darkspot: R2 = 0.46,
RMSE = 65.66 Mg/ha, nRMSE = 0.38). The effect of shadow on the spectral signal has
drawn much attention in previous studies because of the links between shadow and forest
structure parameters [22,70,71]. Therefore, the forest AGB estimation using BRDF spectral
information seemed to be influenced by the shadowing effect.
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based on 36 selected sets of field-based forest biomass data; all used field-based biomass data are
shown in Appendix A Table A1; row (A) is the result of the NIR band; row (B) is the result of the
red band.

Although the X-Y scatter plot of the linear regression shows a strong correlation
between the hotspot reflectance of the NIR band and forest AGB, most of the scatters
are distributed on both sides of the fitted line. This result may be due to several reasons.
First, although we conducted a pixel heterogeneity analysis, all MODIS pixels’ tree cover
percentage we used was around 60% (Figure 7a); this means that the reflectance from
non-forest parts within the pixel, such as grass, will be contained in the total reflectance of
the MODIS pixel. Therefore, some biases will be involved and unavoidable when using
these reflectances to explain the forest structure. Second, the field-based forest AGB data,
which we used as the actual biomass value for the MODIS pixel, are collected from both the
live tree and the dead tree (Figure 7b); most of the biomass is contributed to by the live tree.
The spectral characteristics of live and dead trees are quite different during the growing
season, as red and NIR bands are sensitive to variations in green leaves within the canopy.
In other words, the BRDF anisotropy pattern in red and NIR bands performs differently for
the canopy with or without green leaves, which in turn will have a certain influence on
forest AGB estimation based on BRDF information.
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4.2.2. Performance of the MODIS BRDF Shape Indicators on Forest Biomass Estimation

We also evaluated the performance of some classical BRDF shape indicators con-
structed from typical-angle reflectances on the forest AGB estimation. We used the selected
field-based biomass data (Appendix A Table A1) as the reference forest biomass and these
study sites without the influence of terrain slope and pixel heterogeneity. From assessment
results, it is evident that the BRDF shape indicators NDVI-HD and NDVI-HS can capture
the variation in the forest AGB (Figure 8). These two parameters originally designed to
estimate the LAI achieved a good performance as the density of leaf elements of the canopy
is related to the AGB estimation to a certain extent. Among the two, the NDHD-HS per-
forms better than the NDVI-HD, which can explain 52% of the AGB variation, with RMSE
= 60.55 Mg/ha and nRMSE = 0.35. The NDHD-HS is an improved version of the parameter
NDVI-HD, where a new term (1-hotspotred) was introduced. This new term represents the
forest coverage to some extent because the hotspot reflectance in the red band is sensitive
to the hidden area of the ground which is greatly affected by the tall and dense canopy.
Therefore, introducing this new term can reduce the interference of non-forest elements
within the MODIS pixel to the forest AGB estimation, further improving the accuracy of
the forest AGB estimation.
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indicators, of which the field-based biomass data are from Appendix A Table A1; the BRDF shape
indicators of row (A) were originally used for landcover inversion, row (B) for CI, and row (C) for LAI.

4.3. Seasonal Effects of Using MODIS BRDF Information to Estimate Forest Biomass

The BRDF anisotropy effect usually varies over the seasons due to the solar angle
variation and land cover changes [66,72]; using BRDF information to derive the forest AGB
should therefore be influenced by this variation (i.e., seasonal effects). Here, we selected
the MODIS BRDF data observed from the summer (August) and winter (December) to
summarize BRDFs variation between seasons. It can be noted that the BRDFs show
differences in both the NIR band and the red band, of which the hotspot reflectance in the
NIR band, which is most sensitive to the forest AGB variation, performs very differently in
summer and winter (Figure 9). Furthermore, we quantitatively assessed this seasonal effect
based on BRDF data observed in winter and biomass data measured in summer (Figure 10).
The result indicated that the BRDF information showed limitations to reflecting the forest
AGB variation when the experimental results from ground and satellite observations were
not time-matched (a hotspot of the NIR band: RMSE = 54.77 Mg/ha vs. 76.84 Mg/ha,
nRMSE = 0.31 vs. 0.44; NDVI-HS: RMSE = 60.55 Mg/ha vs. 72.92 Mg/ha, nRMSE = 0.35 vs.
0.42), although the correlation still existed (a hotspot of the NIR band: R2 = 0.61 vs. 0.23;
NDVI-HS: R2 = 0.52 vs. 0.3). Therefore, this seasonal effect needs to be taken into account
when estimating the forest AGB based on BRDF information.
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Figure 10. Linear regression results of using (a) MODIS hotspot reflectance of NIR band to estimate
forest AGB, of which the MODIS BRDF data obtained in winter and (b) BRDF shape indicator
(NDVI-HS) to estimate forest AGB, of which MODIS BRDF data also obtained in winter.
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5. Discussion

The performance of MODIS multi-angle observations in estimating the forest AGB
has rarely been studied, in particular the typical directional reflectances in the hotspot,
nadir, and darkspot directions. However, BRDF anisotropic information to estimate forest
structure parameters has been widely employed, such as the CI, the canopy height, and the
LAI. For the above reason, we explored the feasibility of BRDF anisotropy information in
retrieving the forest AGB. The overall results show that BRDF anisotropic information can
estimate the forest AGB, especially the hotspot reflectance in the NIR band; however, some
potential questions of uncertainty require further discussion, as shown below.

5.1. Uncertainty Factors of This Study

Due to the limited ability of MODIS sensors sampling, some typical directional re-
flectances (e.g., hotspot and darkspot) are somewhat challenging to capture most of the time.
However, our results show that the accuracy of these reflectances, especially the hotspot
reflectances, is critical for estimating the forest AGB accurately. To address this issue, we
used a hotspot-revised kernel-driven BRDF model, RTCLSR [51], to reconstruct these typi-
cal directional reflectances. Although the multi-angle reflectances reconstructed based on
RTCLSR have been successfully used for the CI [25] and canopy height mapping [26], there
are still some potential uncertainties. For example, the RTCLSR model used two adjustable
hotspot parameters, C1 and C2, to accurately capture hotspot signatures; the optimized
values of the C1 and C2 for the red and NIR bands that we used were provided by the
previous study, which was derived from the polarization and directionality of the Earth’s
reflectances (POLDER) observations with wide-angle sampling capabilities, including the
hotspot direction. Clearly, the resolution is very different between the 6 × 7 km POLDER
and the 500 × 500 m MODIS, with the result that there is a scale effect when applying prior
knowledge derived from the POLDER directly to MODIS observations [73], which in turn
brings uncertainty to subsequent applications, such as the biomass estimation.

Another issue that needs attention is whether the field-based biomass data can rep-
resent the real situation of the MODIS pixel. Our ground surveys were carried out on a
1-hectare scale, which was smaller than the 500 m spatial resolution MODIS pixels. In this
study, we consider that the field-based data can represent the real situation of the MODIS
pixel when the MODIS pixel is homogeneous, which is consistent with the previous con-
clusions [47,74,75]. The homogeneity of the MODIS pixel is assessed by 30 m Landsat
surface reflectance data using the semivariance function. Although the strategy we adopted
has been widely used in pixel homogeneity evaluation, this strategy is largely based on
the spectral information provided by remote sensing images; some non-forest elements
within a pixel usually have similar spectral properties as a canopy, such as grassland, which
may lead to uncertainties for our biomass estimation results. In further research, we will
consider replacing the field-based measurements with almost continuous distributed lidar
data as the “true value” for MODIS pixels, which may avoid such representative problems
to a certain extent.

5.2. Prospects of Using BRDFs for Large-Scale AGB Mapping

The results of this study represent an important advance by providing an option for
mapping the forest AGB over large areas and at high temporal frequencies from space that
can complement the data analysis of orbital active remote sensing data. However, several
issues still need attention before large-scale mapping applications. First, our method does
not consider the effects of differences between tree species. Different tree species usually
have different canopy structures, which means that the biomass is closely related to tree
species. For example, allometric functions for biomass estimation are frequently given
separately for different tree species. In this study, we hoped to obtain a universal relation-
ship between the forest biomass and BRDF, which means that we hoped the differences in
canopy structure could be explained directly from BRDF information. The theoretical basis
for this claim is that BRDF observations contain not only spectral information, but also
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information about the canopy structure (i.e., BRDF anisotropic information) [23]. Although
our results prove that using BRDF information can directly carry out the biomass inversion,
in view of the limited observation capability of the canopy structure by passive remote
sensing, we think the effect of tree species differences in the inversion still exists; how this
affects the performance of estimating biomass using BRDFs needs to be further explored.

The second point is that our study results only focus on temperate forests, with the
consequence that our method’s performance in retrieving other forest types’ AGB, such
as tropical forests, needs to be explored. MODIS-derived anisotropy information has
been proven to have a strong correlation with tropical forest canopy roughness, even in
high biomass regions [18]. The canopy roughness usually has a close relationship with
variability in canopy heights; this variability leads to a variability in geometric scattering
components especially of NIR reflectance [63]—a key basis for our method to estimate the
AGB. The above evidence gives us confidence that our method has the potential to estimate
the AGB for tropical forests. One further point is that our method still requires more
evaluation before application because our method was developed in a specific land cover
environment. In other words, the generality of our method requires further verification,
such as conducting a comparison with widely used biomass estimation approaches. In
the next stage, we will investigate the performance of our method in mapping the AGB
of tropical forests and conduct cross-validation experiments; we will then combine them
with the results of this study to carry out a large-scale forest AGB mapping, such as on a
global scale.

6. Conclusions

MODIS observed anisotropy information has been acknowledged as an effective means
for the inversion of vegetation structure parameters in passive optical remote sensing areas;
however, the estimation of forest AGB is rarely reported. In this work, we explored the
value of MODIS BRDF anisotropy information for forest AGB estimation, especially from
the typical directional reflectances (i.e., reflectances observed from the hotspot, darkspot,
and nadir directions). Overall, the BRDF anisotropy information obtained from MODIS
observations has the potential to retrieve the forest biomass, and the obtained results are
as follows:

(i) The typical directional reflectances in the red and NIR bands and the constructed
BRDF shape indicators show sensitivity to capture the variation in biomass-related
canopy structure parameters (i.e., canopy height and crown diameter) in terms of the
sensitivity analysis using the 4-scale model simulations.

(ii) The MODIS typical directional reflectances in the NIR band show a good linear
relationship with the field-based forest AGB after filtering the influence of terrain
slope and pixel heterogeneity; in particular, the hotspot reflectance from the NIR band
can explain up to 62% of the biomass variations. It is also worth noting that the BRDF
shape indicators (i.e., NDVI-HD and NDVI-HS) that are constructed from MODIS
multi-angle observations and were originally designed for the inversion of LAI have
a good linear relationship with field-based forest AGB. In particular, NDVI-HD with
a ground vegetation cover index term yielded a better performance than NDVI-HS
and can explain up to 52% of the biomass variation.

(iii) Seasonal effects on biomass estimation using BRDF data are noteworthy. Seasonal
changes lead to changes in the spectral characteristics of the land cover and the
observed geometry at the corresponding locations; the above changes will eventually
influence the observed multi-angle anisotropic information, further affecting the
estimation accuracy of forest AGB. Therefore, it is necessary to ensure the consistency
of the ground observation and satellite observation time as fully as possible when
constructing a biomass inversion model based on BRDF data.
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Appendix A

Table A1. The field-measured sites selected in the Howland Forest (lat: 42.20◦, lon: −68.73◦),
Penobscot Forest (lat: 44.87◦, lon: −68.65◦), Bartlett Forest (lat: 44.04◦, lon: −71.16◦), Hubbard Brook
Forest (lat: 43.56◦, lon: −71.45◦), and Harvard Forest (lat: 42.53◦, lon: −72.17◦). Here, we provided
some property information for these sites, including site name, location information, measured
biomass, measured time, and the composition of measured biomass (i.e., dead tree counts (D) and
live tree counts (L)).

Site Plot_ID Latitude (◦) Longitude (◦) Biomass
(Mg ha−1)

Time
(yyyy-mm-dd) D/L

Bartlett 13L 44.053185 −71.310543 200.59 2009.7.11 75/648
Bartlett 21L 44.054021 −71.300303 229.44 2009.7.13 17/411
Bartlett 30N 44.054162 −71.289812 255.46 2009.7.12 82/800
Harvard PH1 42.534074 −72.182013 305.44 2009.6.25 179/936
Harvard PH10 42.536547 −72.175841 139.03 2009.7.24 55/785
Harvard PH2 42.538096 −72.177597 208.88 2009.7.27 63/753
Harvard PH3 42.536557 −72.172724 256.43 2009.7.23 24/475
Harvard PH4 42.536516 −72.179817 271.89 2009.7.14 27/551
Harvard PH5 42.540983 −72.170486 219.34 2009.7.28 66/702
Harvard PH6 42.540467 −72.183034 127.38 2009.7.16 61/817
Harvard PH7 42.539223 −72.187066 282.08 2009.7.17 70/834
Harvard PH8 42.551416 −72.176897 145.36 2009.7.26 22/359
Harvard SC1 42.480697 −72.174601 206.87 2009.7.25 83/763
Harvard SF2 42.508234 −72.250973 309.28 2009.7.27 77/612
Harvard TS2 42.512857 −72.205741 236.60 2009.7.25 20/520
Howland H2 45.22755 −68.725911 26.83 2009.8.20 12/242
Howland H3 45.225188 −68.724381 34.39 2009.8.24 26/629
Howland H5 45.222658 −68.716496 91.87 2009.8.25 42/571
Howland H6 45.214881 −68.735791 57.80 2009.8.24 18/432
Howland H8 45.214646 −68.709366 18.65 2009.8.26 0/148
Howland H9 45.210844 −68.737554 105.80 2009.8.19 14/541
Howland H12 45.203327 −68.741371 167.57 2009.8.19 76/1212
Howland H17 45.152076 −68.735178 131.73 2009.8.27 35/687
Howland H18 45.147732 −68.718229 122.98 2009.8.27 30/677
Hubbard
Brook 1 43.936143 −71.741518 267.26 2009.7.22 52/614

Hubbard
Brook 200 43.940344 −71.778636 261.25 2009.7.20 57/833

Hubbard
Brook 339 43.945148 −71.709622 257.82 2009.7.27 97/850

https://search.earthdata.nasa.gov/search
http://srtm.csi.cgiar.org/srtmdata/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1046


Remote Sens. 2022, 14, 5475 21 of 24

Table A1. Cont.

Site Plot_ID Latitude (◦) Longitude (◦) Biomass
(Mg ha−1)

Time
(yyyy-mm-dd) D/L

Hubbard
Brook 354 43.941246 −71.703841 246.54 2009.7.18 63/628

Hubbard
Brook 349–350 43.947527 −71.704189 213.38 2009.7.24 60/618

Penobscot P1 44.871236 −68.626076 233.43 2009.8.25 97/687
Penobscot P4 44.858001 −68.620421 44.76 2009.8.24 12/886
Penobscot P5 44.851611 −68.618074 124.65 2009.8.18 17/484
Penobscot P6 44.850592 −68.613788 51.60 2009.8.19 29/604
Penobscot P7 44.848417 −68.615501 122.27 2009.8.19 13/491
Penobscot P10 44.84406 −68.619475 120.84 2009.8.20 19/672
Penobscot P11 44.844779 −68.614519 93.37 2009.8.20 10/549
Penobscot P13 44.835663 −68.599269 199.65 2009.8.26 94/994
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