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A B S T R A C T   

Global warming potentially increases precipitation and intensifies water exchange, thereby accelerating the 
hydrological cycle. The Tibetan Plateau (TP) is an Asian water tower in which the water budget varies and its 
anomaly exerts stress on resource availability. Few studies have quantified long-term water budgets across TP 
owing to scarcity of ground-based observations and uncertainties in remote sensing data. In this study, water 
budget components (i.e., precipitation, glacial melting [GM], evapotranspiration [ET], runoff, and soil moisture 
[SM] state) in TP are synthetically estimated for the past three decades. The water budget estimation benefits 
from a GM-coupled hydrological ensemble modeling, which is forced by nine precipitation products with seven 
from satellite methods. The results show that the ensemble modeling effectively captures the dynamics of runoff, 
ET, and terrestrial water storage. The long-term average annual water input (sum of precipitation and GM) was 
approximately 438 mm, with ~4 % contribution from GM, for which the annual ET and runoff take away was 
approximately 263 and 173 mm, respectively. From 1984 to 2015, the four water fluxes significantly increased 
with varying rates (2.3 mm/yr, precipitation; 0.9 mm/yr, GM; 1.5 mm/yr, ET; 1.1 mm/yr, runoff), which sug-
gested an accelerating hydrological cycle. Particularly, increasing GM (~5.8 mm/yr) in the Nyainqentanglha 
Mountains in southern TP induced high-yield runoff (>800 mm). These estimations aid in yielding robust so-
lutions for water management in TP and neighboring regions. The accelerated hydrological cycle implies po-
tential flooding risk and vulnerability of the hydrological system under climate change.   

1. Introduction 

The Tibetan Plateau (TP) is known as the “Third Pole,” with an 
average altitude of over 4000 m. It is the source area of about ten major 
rivers, including the Yellow, Yangtze, Mekong, Salween, Brahmaputra, 
and Indus rivers. Runoff generated from TP provides valuable water 
resources for downstream regions. Precipitation and evapotranspiration 
(ET) dominate the land surface hydrological processes and connect 
processes in the hydrosphere, atmosphere, and biosphere on TP and 
surrounding areas (Zhang and Yang, 2010). Soil moisture (SM) acts as a 
distinct hydroclimatic factor characterizing land–atmosphere water and 
energy interchanges (Long et al., 2019; Yang et al., 2021). 

In recent decades, global climate has been experiencing significant 
alterations owing to the natural and anthropogenic forcing (Troch et al., 
2008). Climate change likely promotes increased precipitation and a 
higher frequency of extreme precipitation events (Silva et al., 2017), 
which is the main driver of ET and soil moisture dynamics. Conse-
quently, regional and global terrestrial hydrological processes may 
experience various accelerations (Allan and Zveryaev, 2011; Ji et al., 
2020; Liu and Curry, 2010). The acceleration of the hydrological cycle is 
also probably reflected in TP as the region has complex climatic con-
ditions and extensive cryospheric landforms (Ji et al., 2020; Xu et al., 
2008; Yang et al., 2011). Specifically, climate change has strengthened 
precipitation over the central TP, but has led to less water vapor 

* Corresponding author at: State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China. 
E-mail address: xianhong@bnu.edu.cn (X. Xie).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2022.128710 
Received 6 April 2022; Received in revised form 13 September 2022; Accepted 16 October 2022   

mailto:xianhong@bnu.edu.cn
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2022.128710
https://doi.org/10.1016/j.jhydrol.2022.128710
https://doi.org/10.1016/j.jhydrol.2022.128710
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2022.128710&domain=pdf


Journal of Hydrology 615 (2022) 128710

2

exchange in the southern and eastern regions (Yang et al., 2014). Glacier 
melting (GM) has also been enhanced due to the disappearance of fresh 
snow and a decline in albedo in a warming climate (Barnett et al., 2005), 
thereby increasing the water supply to downstream regions (Immerzeel 
et al., 2010). However, the intensified hydrological cycle on TP is un-
stable as the precipitation and GM changes may cause substantial vari-
ability to the water partition among ET, runoff, and soil moisture (SM) 
(Xie et al., 2006). Meanwhile, the water budget and its dynamics are 
strongly coupled with energy and biological cycles (Rodriguez-Iturbe, 
2000). Therefore, estimating long-term water budget components on TP 
is one of the most important issues under climate change and associated 
water resource management (Scott and Biederman, 2019). 

Most studies concerning the hydrological cycle on TP illustrated only 
a subset of water budget components. As the main water input, pre-
cipitation shows high spatial heterogeneity because of the complex 
monsoons and mountain blockages on TP. It exhibited an increasing 
trend on TP during the past two decades (Ouyang et al., 2017; Wang 
et al., 2020; Zhu et al., 2011). Other than that, glacier mass change, as a 
unique hydrological process on TP, provides substantial water to most 
watersheds on TP (e.g., the sources of Salween, Brahmaputra rivers). It 
can be the main contributor to the increasing runoff and related hy-
drological factors (Lutz et al., 2014; Zhang et al., 2013). Given the 
precipitation and glacier melting conditions, runoff and ET are charac-
terized by strong spatio-temporal variability (Goodrich et al., 2004; Li 
et al., 2014). However, few studies have attempted to provide a syn-
thesized, quantitative view of long-term water budget patterns or 
quantified the change patterns of the hydrological cycle on TP. Lutz and 
Immerzeel (2013) estimated the TP water budget by integrating ground 
and satellite observations in a distributed hydrological model, but only 
for a short duration (2008–2010). 

Moreover, estimating or modeling the water budget for TP is chal-
lenging owing to the scarcity of hydrometeorological observations and 
the extensive cryosphere. Given the sparse distribution of ground-based 
hydrological observations on TP, it is difficult to perform an acceptable 
hydrological modeling based on ground-based data alone (Maussion 
et al., 2014). Satellite products provide an encouraging alternative but 
have considerable discrepancies among different products, which may 
pose uncertainties in water budget analysis and hydrological modeling 
(Ullah et al., 2018; Wang et al., 2020). Ensemble method was proposed 
aiming to reduce subjectivity in hydrological modeling and to increase 
the level of confidence in simulations (Seiller et al., 2017). The method 
has been widely implemented and proved high performance worldwide, 
for example the application of ensemble precipitation forcing for 
streamflow simulations in the Pipiripau basin in Brazil (Strauch et al., 
2012), and the ensemble physical parameterizations for rainfall fore-
casting in the Fuping and Zijingguan basins in Northern China (Tian 
et al., 2019). However, ensemble methods may face uncertainties from 
ensemble members, and most studies only consider three or four mem-
bers in the ensemble method (Ma and Zhang, 2022; Strauch et al., 2012). 
Additionally, the glaciers faced variability from global climate change 
(Zhao et al., 2019), with obvious mass decrease in snow and/or glacier 
dominated regions (e.g., Alaska, Arctic Canada, Antarctic and Hima-
layas in TP) (Hugonnet et al., 2021; Yao et al., 2019). Glacier mass 
change can provide substantial water for runoff, and may regulate hy-
drological processes (Barnett et al., 2005). Thus, a long-term synthesis 
and quantitative assessment of the water budget is necessary on TP, and 
reasonable modeling methods are needed to consider uncertainties from 
the limited data and the impact of GM. 

In this study, we aimed to quantify the water budgets (including 
precipitation, GM, ET, runoff, and SM of the top 1 m thickness) and 
identify the dynamic pattern of the hydrological cycle on TP over the 
past 30 years. To consider the impact of GM on TP, we coupled a glacier 
melting algorithm with the Variable Infiltration Capacity (VIC) land 
surface model (hereinafter named as VIC-Glacier). And as for the un-
certainty from climate forcing, especially precipitation, we performed a 
hydrological ensemble modeling that is driven by nine precipitation 

products. The ensemble modeling of VIC-Glacier model would be eval-
uated regarding runoff, SM, ET, and water storage. After that, the spa-
tial–temporal dynamics and uncertainties of the water budgets were 
calculated from the nine ensemble members. Our work improved un-
derstanding of water balance patterns on TP, thereby has implications 
for water resource management for TP and downstream regions. 
Moreover, our work indicates that an ensemble method can be reference 
for data-sparse areas, and presents the importance of snow and glacier 
melting in water balance for alpine mountains. 

2. Study area and data 

2.1. Study area 

The TP region is situated in central Asia covering an area of 
approximately 2.5 million km2 (Fig. 1). It has complex climatic condi-
tions, including tropical humid, semi-humid, monsoon, and semi-arid 
climates. The average temperature ranges from 20 ◦C in the south-
eastern TP to approximately − 6 ◦C in the northwestern region. Influ-
enced by multiple sources of water vapor and mountain blockage, its 
precipitation presents evident spatial variability, with an average annual 
value ranging from 50 to 2000 mm. Moreover, TP is characterized by 
extensive snow and glacier coverage, with a total glacier area of 
approximately 50,000 km2 (Yao et al., 2007), especially in the Hima-
layas, Nyainqentanglha, and Tanggula mountains. Glaciers and precip-
itation promote a dense river network on TP, including headwaters of 
five major Asian rivers (the Yangtze, Yellow, Brahmaputra, Salween, 
and Mekong rivers). 

The TP region can be divided into eight subregions: Hexi, Qaidam, 
Inner, Upper Yellow (UYE), Upper Yangtze (UYA), Upper Salween (US), 
Upper Mekong (UM), and Upper Brahmaputra (UB) watershed (Fig. 1). 
The first three subregions, Hexi, Qaidam, and Inner, are situated in the 
northern and western parts of TP, which have relatively low precipita-
tion as the water vapor mainly comes from the mid-latitude westerlies. 
The other five are closed watersheds (UYE, UYA, US, UM, and UB) 
located in the eastern or southeastern parts of TP. In these watersheds, 
precipitation is relatively high because of the monsoons originating from 
the Arabian Sea, the South China Sea, and the Western Pacific. The eight 
subregions have varying glacier coverage, with the smallest area in the 
UYE (~134 km2), and the largest in the UB (~4225 km2) (Zhang et al., 
2013). 

2.2. Data availability and processing 

2.2.1. Precipitation datasets 
Precipitation is one of the most influential driving forces in hydro-

logical modeling. Based on previous studies on precipitation evaluation, 
we selected nine precipitation products (Table 1) for hydrological 
modeling. The nine products are all widely used, and their performance 
have been proved on TP (Beck et al., 2017; Kai et al., 2014; Wang et al., 
2020). Among the nine products, the CMA and CPC-Global products are 
gauge-based datasets, while the other seven products mainly rely on 
remote sensing retrieval and data fusion technologies. Notably, each 
precipitation product has its advantages and limitations, and it is diffi-
cult to establish a reliable bias correction method in places with scarce 
gauge observations, such as the western TP. Therefore, instead of bias 
correction for the precipitation products in this study, we adopted 
ensemble modeling to quantify the uncertainties of the simulated water 
budget components. 

The spatial resolutions of the nine precipitation products were be-
tween 0.05◦ and 1.0◦ and four of the products had a resolution of 0.25◦

(i.e., CMA, CMORPH-BLD, PERSIANN-CDR, TMPA). To simplify the 
modeling, all precipitation products were downscaled or upscaled to the 
same resolution of 0.25◦. Specifically, the products (i.e., CPC-Global, 
MSWEP, and GPCP-1DD) with a resolution coarser than 0.25◦ were 
subjected to bilinear interpolation, and the CHIRPS and CMFD products 
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with resolutions finer than 0.25◦ were averaged into a 0.25◦ resolution. 
Moreover, given the time span of these products and a three-year warm- 
up period for all hydrological simulations, the simulated water budget 
components were from three groups: 1984–2015 (CMA, CPC-Global, 
MSWEP, CHIRPS, CMFD), 1986–2015 (CMA, CPC-Global, MSWEP, 
CHIRPS, CMFD, PERSIANN-CDR), and 2001–2015 (CMA, CPC-Global, 
MSWEP, CHIRPS, CMFD, PERSIANN-CDR, CMORPH-BLD, GPCP-1DD, 
TMPA). The simulated water budget components during 1984–1985 
period corresponded to the mean values from five simulation re-
alizations (CMA, CPC-Global, MSWEP, CHIRPS, and CMFD); the 
PERSIANN-CDR-driven simulation realization was added during 
1986–2001 period, and after 2001, the simulated water budget com-
ponents were obtained from all the nine simulation realizations. 

2.2.2. Other model input data 
The model input data included topography, meteorological forcing, 

vegetation, and soil data (Table 2). The topographical data (i.e., the 
Digital Elevation Model [DEM]) obtained from the US Geological Survey 

website were used to delineate river networks and extract boundaries of 
subregions in TP. The meteorological forcing data included precipita-
tion, maximum and minimum air temperatures, wind speed, and relative 
humidity. The precipitation has been described above, and the other 
forcing variables were generated by interpolating 156 CMA stations. The 
data from the CMA stations have undergone strict quality control to 
eliminate evident anomaly values (e.g., precipitation less than 0 mm) 
(Kai et al., 2014). The interpolation was based on the inverse distance 
weighting method, considering a 6.5 ◦C/km decline rate to reflect the 
temperature dependence of altitude (Xie et al., 2015). 

The vegetation input includes a land-cover map for vegetation types 
and associated vegetation parameters. The land cover map was derived 
from the classification data for the year 2010 (Liu et al., 2010), and had a 

Fig. 1. Distribution of rivers and glaciers, locations of 
Soil Moisture and Temperature Measurement System 
(SMTMS) stations, streamflow stations, meteorolog-
ical stations, flux towers, and boundaries of Hexi, 
Qaidam, Inner, Upper Yellow (UYE), Upper Yangtze 
(UYA), Upper Salween (US), Upper Mekong (UM), and 
Upper Brahmaputra (UB) subregions, with topog-
raphy as the background. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Table 1 
Overview of the nine daily precipitation products used in this study.  

Precipitation product Short name Resolution Period 

China Meteorological 
Administration 

CMA  0.25◦ 1979.1-present 

Climate Prediction Center- 
Global 

CPC-Global  0.5◦ 1979.1-present 

Climate Hazards Group 
InfraRed Precipitation with 
Station data V2.0 

CHIRPS  0.05◦ 1981.1-present 

Multi-Source Weighted- 
Ensemble Precipitation V2.0 

MSWEP  0.5◦ 1979.1-present 

Climate Prediction Center 
MORPHing technique- gauge- 
satellite blended precipitation 
product 

CMORPH- 
BLD  

0.25◦ 1998.1–2018.11 

Global Precipitation 
Climatology Project one- 
degree daily precipitation 
analysis 

GPCP-1DD  1.0◦ 1996.10–2015.10 

Precipitation Estimation from 
Remotely Sensed Information 
using Artificial Neural 
Networks- Climate Data 
Record V1R1 

PERSIANN- 
CDR  

0.25◦ 1983.1-present 

Tropical Rainfall Measuring 
Mission Multi-Satellite 
Precipitation Analysis 3B42 

TMPA  0.25◦ 1998.1-present 

China Meteorological Forcing 
Dataset 

CMFD  0.1◦ 1998.1–2018.12  

Table 2 
Overview of model input and verification data.  

Data Data source Data usage 

Digital Elevation Model 
(DEM) 

U.S. Geological Survey 
(USGS) 

River networks 
delineation and data 
interpolation 

Meteorological forcing 
data* 

China meteorological 
administration (CMA) 

Model forcing 

Vegetation data Land cover map: Liu et al. 
(2010) 
Land cover parameters: Zhu 
et al. (2021) 

Model forcing 

Soil data Soil cover map: Zhu et al. 
(2020) 
Soil parameters: China soil 
dataset and Food and 
Agriculture Organization 

Model forcing 

Glacier distribution data Second Chinese Glacier 
Inventory 

Model setup 

Degree-Day Factor (DDF) Zhang et al. (2006) Model setup 
Hydrological stations Annual Hydrological Report 

for the P.R. China 
Model evaluation 

Eddy covariance towers https://data.tpdc.ac.cn/zh 
-hans/ 

Model evaluation 

Soil Moisture and 
Temperature 
Measurement System 
(SMTMS) 

Su et al. (2011) and Chen 
et al. (2013) 

Model evaluation 

Global Land Evaporation 
Amsterdam Model 
(GLEAM ET) 

https://www.gleam.eu/ Model evaluation 

Gravity Recovery and 
Climate Experiment 
(GRACE) product 

https://www2.csr.utexas. 
edu/grace/ 

Model evaluation 

*The meteorological forcing data include maximum and minimum air temperature, 
humidity, and wind speed. The precipitation data have been described in Table 1.  
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spatial resolution of 1 km and 12 land cover types. Vegetation param-
eters were obtained from Nijssen et al. (2001) (ftp://ftp.hydro.washin 
gton.edu/). The soil input includes a soil cover map and the associated 
soil parameters. The soil cover map was obtained based on a 30 × 30 arc- 
second resolution soil characteristics dataset (Zhu et al., 2020). Soil 
physical parameters such as field capacity and saturated hydraulic 
conductivity were derived from a China soil dataset (Dai et al., 2013), 
and other parameters (e.g., bubbling pressure and thermal damping 
depth) were defined according to the soil dataset from the Food and 
Agriculture Organization (Nijssen et al., 2001). 

The GM process simulation requires the glacier distribution and the 
Degree-Day Factor (DDF) parameter. The glacier distribution dataset 
used the second Chinese Glacier Inventory, it was generated based on 
remote sensing products and Google Earth images during 2004–2011 
(Guo et al., 2017). The glacier distribution dataset was downloaded from 
the National Tibetan Plateau/Third Pole Environment Data Center (htt 
ps://data.tpdc.ac.cn/zh-hans/) (Liu et al., 2012), and it has been 
widely used for glacier related studies (Chen et al., 2017; Su et al., 
2022). The glacier distribution dataset is in vector format, and it was 
transferred to grids with spatial resolution of 0.005◦ in computation. 
DDF parameter depends on the exposure of the glacier, and is calculated 
based on a linear correlation between ice melt (measured by ablation 
stakes from different glaciers) and the sum of daily mean temperatures 
above the melting point (Zhang et al., 2006). The DDFs have been widely 
and successfully applied in multiple researches, including GM calcula-
tion (Lai et al., 2020; Zhao et al., 2013) and streamflow simulation (Liu 
et al., 2016; Zhang et al., 2013). 

2.2.3. Data for model evaluation 
The hydrological ensemble modeling was evaluated with observa-

tions of runoff, ET, and SM, and compared with satellite-based products 
of ET and Terrestrial Water Storage (TWS). Streamflow data from five 
stations were converted to runoff by dividing the streamflow with the 
associated watershed area, which was used for model calibration and 
validation. The streamflow data generally have long time coverage 
(1970 to 2010 or after), thus all nine simulation realizations can be 
calibrated and validated. As shown in Fig. 1, the five stations are located 
at the outlets of the UYE, UYA, US, UM, and UB watersheds, which are 
distributed in the eastern and southern parts of TP with varying degrees 
of glacier coverage. 

The in-situ soil moisture observations were obtained from Soil 
Moisture and Temperature Measurement System (SMTMS) networks, 
containing 89 stations, with 25 stations in the Pali network and 64 
stations in the Naqu network (Chen et al., 2013; Su et al., 2011). The two 
networks located in mid-southern TP with high altitude (>4000 m) 
(Fig. 1), and provided SM data of 5, 10, 20, and 40 cm depth with daily 
time steps for the periods from August 2010 to December 2015 and 
August 2015 to December 2015, respectively. It worth noting that the 
observed SM only referred to liquid water, so the data may have un-
certainties in representing total water in frozen state (Chen et al., 2013). 

ET was evaluated using observations from four eddy covariance 
towers and a satellite-based ET product. The eddy covariance towers are 
located in the southern TP, namely Naqu, Zhufeng, Namucuo, and 
Maqu, with forest or grass vegetation types. As a reliable remote sensing 
product, The Global Land Evaporation Amsterdam Model (GLEAM ET) 
product was used as reference data in this study, because it has been 
successfully applied in TP for ET evaluation and water budget calcula-
tion (Abolafia-Rosenzweig et al., 2021; Li et al., 2019). The GLEAM ET 
has relatively long temporal coverage (1980–present), and a spatial 
resolution of 0.25◦. 

Satellite-based TWS data were obtained from the Gravity Recovery 
and Climate Experiment (GRACE). This product can measure the vari-
ations in gravity and provide monthly TWS anomalies with a spatial 
resolution of 0.25◦ (Adam, 2002). GRACE has extensive applications 
worldwide, including water balance and TWS calculation in TP (Li et al., 
2019; Liu et al., 2021; Meng et al., 2019). 

3. Methods 

3.1. Model description and setup 

The VIC model is a land surface scheme that uses a variable infil-
tration curve and a nonlinear formulation to simulate the baseflow and 
deep soil moisture movement. The model considers multiple vegetation 
types and one main soil layer within each calculation unit (Liang et al., 
1994; Liang et al., 1996), and it can capture the dynamics of water and 
energy balances. Moreover, the model calculates snow cover by dividing 
precipitation into rainfall and snowfall according to air temperature. 
Snow melt and accumulation are computed based on land surface energy 
balance. Thus, the VIC model has been successfully applied in studies at 
various scales (Cuo et al., 2013; Xie et al., 2015). In this study, we 
conducted the simulation with a spatial resolution of 0.25◦ and a tem-
poral resolution of 3-hour. 

However, the original VIC model did not consider the glacier melt 
process. Zhang et al. (2013) and Su et al. (2016) coupled a degree-day 
glacier algorithm with the VIC model (VIC-Glacier) to reflect the 
glacier hydrology. This study extends the application to estimate the 
water balance in TP. The total runoff calculated using this model is 
computed as follows: 

R(i) = f × Gi +(1 − f ) × Rvic, i (1)  

where R(i) is the total runoff depth (mm) in grid i, f is the glacier frac-
tion, which is calculated by dividing the glacier area with the area of the 
gird cell i, Rvic, i is the runoff depth (mm) in grid i calculated by the 
original VIC model, and Gi is the runoff from the glaciated area (mm), 
including liquid precipitation and glacier runoff (GMi) in grid i. GMi is 
calculated as follows: 

GMi =

{
DDF × Ti;Ti > 0

0; Ti ≤ 0 (2)  

where DDF is the degree-day factor (mm/(
◦C*day)), and is determined 

according to Zhang et al. (2006); Ti is daily mean temperature above 
glacier surface (◦C). A roughly estimate of Ti is assumed to be equal to 
the temperature of the modeling grid cell (in the size of 0.25◦ in the 
study) (Wang et al., 2021). But this may overestimate Ti, because gla-
ciers are generally located in mountains with high attitude and low 
temperature. We recalculated Ti for each glacier at a finer spatial reso-
lution (0.005◦) and considered the decrease of temperature with the 
increase of the glacier altitude (6.5 ◦C per 1 km). So, Ti for GMi calcu-
lation is lower than the grid-cell average temperature that is the forcing 
for other hydrological processes. 

The glacier volume affects the GM estimation, and determines the 
upper limit of annual GM. In this study, the glacier volume was calcu-
lated using the volume-area scaling relation method (Radić et al., 2007; 
Radić et al., 2008): 

V = 0.04 × S1.43 (3)  

where V is the glacier volume and S is the glacier area. Considering the 
glacier dynamics (Ragettlia et al., 2016; Yan et al., 2021), the glacier 
volume and area were updated every year using equation (3). This up-
date was repeated for all the VIC-Glacier simulation periods. Notably, 
snow is assumed to melt prior to the GM process, thus, the GM will be 
suspended if there is a snowpack on the glacier (Zhang et al., 2013). The 
snow calculation is consistent in non-glacier and glacier areas. 

3.2. Model calibration and evaluation method 

There are seven influential parameters for a VIC model simulation, 
namely the infiltration parameter (b inf), three baseflow parameters (Ds,

Ws, Dsmax), and the thicknesses of three soil layers (d1,d2,d3) (Liang and 
Xie, 2001; Zhu et al., 2020). The model was calibrated by observed 
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runoff from the five watersheds, and was validated regarding runoff, SM, 
ET and TWS. The observed runoff datasets were divided into two seg-
ments for model calibration and validation, respectively. The first 
segment covered approximately 20 years, and the latter one ranged 
between 5 and 10 years. For each simulation with one precipitation 
product, model calibration was conducted to adjust the seven parame-
ters to match the simulated runoff with the observations. Each ensemble 
member therefore may have different model parameters according to 
model calibration and validation. After adjusting the parameters in the 
five watersheds, the adjusted parameters were transferred to ungauged 
regions based on their climatic similarity, i.e., similar precipitation 
patterns or the same climate zones (Zhu et al., 2021). 

The simulated SM for the top layer will be validated with the 
observed SM at the depth of 10 cm from the SMTMS network. To avoid 
the scale difference between the simulations and the in-situ observa-
tions, the average SM values were calculated based on the multiple in- 
situ observations, and then they were used to validate the simulated 
SM of grid cells that contained the in-situ observations. 

The simulated ET values were validated with four eddy covariance 
towers and compared with the GLEAM ET. It worth noting that the 

spatial resolution of the VIC-Glacier simulations is 0.25◦, and each grid 
cell may contain a variety of vegetation types, while the eddy covariance 
towers can only capture small-scale ET information (<1 km). In order to 
relieve the mismatch of spatial scale between the two, the observed ET 
was used to evaluate the simulated ET with the same vegetation type in 
the corresponding grid. 

Moreover, the simulated TWS Change (TWSC) was compared with 
the GRACE estimates for the period 2003–2014 at a yearly scale. The 
missing data in GRACE were filled by linear interpolation based on the 
values corresponding to the previous and following months. The yearly 
TWSC from GRACE was calculated as the difference between the values 
of December and January, and the yearly TWSC from the ensemble 
modeling was equal to the difference between precipitation and water 
output (runoff and ET). In this study, we used the Nash-Sutcliffe effi-
ciency (NSE), correlation coefficient (R), and relative error (Er) to 
evaluate the performance of the nine simulation realizations. 

3.3. Ensemble method and uncertainty representation 

Given the nine precipitation products, we performed ensemble 

Fig. 2. Comparison of simulated monthly/annual runoff (a) and spring runoff (b) from nine simulation realizations (Sim mean) with observed runoff (Obs). The cyan 
areas correspond to the 95% confidence intervals of the simulation realizations. The dotted line in (a) divides the calibration and validation periods. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Y. Wang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 615 (2022) 128710

6

modeling with nine independent simulation realizations. The average 
values and 95 % confidence intervals (1.96 * standard deviation) of the 
nine simulation realizations were served as the values and fluctuation 
ranges of water budget components. Based on the knowledge of statistics 
and normal distribution, the average value of a dataset generally shows 
the highest occurrence probability, and the 95 % confidence interval can 
cover 95 % occurrence probability of a dataset (Anctil et al., 2009). 

The uncertainty mentioned in this study refers to the discrepancy in 
water budget components in the nine simulation realizations, and it is 
usually defined by a statistical method. According to Montanari (2007), 
the coefficient of variation (CV) was used to measure uncertainty. Thus, 
the CV is calculated with respect to the uncertainty of each water budget 
component based on the multi-year average results of the nine simula-
tion realizations. 

4. Results 

4.1. Model evaluation 

The nine VIC-Glacier simulation realizations were calibrated and 
validated using the streamflow data from the five watersheds. As shown 
in Fig. 2a and Table 3, the ensemble mean based on the nine simulation 
realizations agreed well with the observations as they present similar 
dynamic changes during both the calibrated and validated periods. The 
mean simulation realizations achieve NSEs generally higher than 0.6 
and R values over 0.8 during the calibrated period. However, the runoff 
simulations underestimated the observations to some degree, as the Ers 
were negative for the five watersheds, specifically, the Ers in the UM and 
UB watersheds were over − 20 %. Similar patterns were showed during 
the validation period, the NSE and R values were approximately 0.7 and 
0.9, respectively, with Ers ranging from − 25 % to –3%. 

Considering the absence of GM runoff observations, this study 
evaluated the model performance on spring runoff as the GM has a 
greater impact in this season (from March to May). The evaluation was 
conducted in UYE, UYA, UM, and UB watersheds. The US watershed was 
excluded as only yearly streamflow data were available there. As shown 
in Fig. 2b, the simulated spring runoff presented similar temporal dy-
namics compared to the observed data. The R values ranged between 0.5 
and 0.7, and the Ers were generally negative, which indicated that the 
spring runoff simulations generally underestimated to some degree. 
However, the absolute Ers were lower than 25 % in the four watersheds, 
demonstrating that the VIC-Glacier model presents acceptable perfor-
mance for the GM process. 

Fig. 3 shows the validation results of the SM. The average SM at 10 
cm obtained from the nine simulation realizations aligned with the 
SMTMS observations. The Er values of the Naqu and Pali networks were 
below 10 % and the R values were 0.88 and 0.85, respectively. The 
biases may be attributed to the input data, the simulation method and 
frozen soil. Notably, the simulations presented obvious overestimations 
during the winter season (from December to February in the following 
year). The frozen soil may be a major reason for the overestimation, as 
the SM observations can only represent liquid water rather than solid 
state, which may bring uncertainties in representing total water in 

winter season. 
The average ET achieved by the nine simulation realizations was 

evaluated by ground-based observations from the four eddy covariance 
towers, and was compared with GLEAM ET (Fig. 4). The Er values in the 
Naqu and Zhufeng towers were approximately − 41 % and 65 %, 
respectively. The large deviation may be attributed to the extensive 
glaciers and frozen soil cover in TP or the uncertainty within the ob-
servations. Despite the deviations, the simulated ET presented consistent 
daily dynamics with the observations, especially in the Maqu tower (R >
0.8) (Fig. 4a). In comparison with the spatial distribution and interan-
nual variation (Fig. 4b, c), the simulated ET exhibited a similar spatial 
distribution and monthly dynamics as the GLEAM ET, with Er and R 
values of − 13.4 % and 0.98, respectively. 

The simulated TWSC anomaly was further compared with the 
GRACE product on a yearly scale. As shown in Fig. 5, the average TWSC 
anomaly obtained from the nine simulation realizations were consistent 
with the GRACE data. The R values for the entire TP were approximately 
0.65. The simulations present relatively poor performance in the UYE 
watershed with R of approximately 0.40, however, the Rs for other 
subregions were generally higher than 0.6, especially for the UYA and 
UB subregions (R > 0.75). Given the validation in runoff, ET, SM, and 
TWSC, the ensemble modeling achieves an acceptable performance for 
the water budget component simulation. Therefore, the simulation re-
alizations can be used to identify the dynamics of the water balance 
components in TP. 

4.2. Spatial-temporal variability of the long-term water budgets 

The spatial distribution of the water budget components, that is, 
precipitation, runoff, GM, ET, SM, as well as their uncertainties, were 
quantified based on the nine simulation realizations. Here, SM was 
defined as the mean soil water content of the soil profile for the top 1 m 
thickness, as the SM of this thickness can characterize the seasonal cycle 
of soil water state without being affected by precipitation events. As 
shown in Fig. 6, the average annual precipitation exhibits a south-
east–northwest decreasing gradient over TP. It is >1500 mm in the 
southern Himalayas Mountains and less than 100 mm in the north-
western part of TP. The GM is mainly distributed in mountains with high 
altitudes, and is approximately 16 mm. However, the GM exceeded 200 
mm in the southeastern part of TP, especially in the Nyainqentanglha 
Mountains in Nyingchi and Changdu. Annual ET was consistent with the 
precipitation in terms of the spatial pattern, and ranged from below 50 
mm to over 500 mm. The annual total runoff showed significant dif-
ferences between the northwestern and southern TP. Specifically, it is 
less than 10 mm in the northwestern TP and over 800 mm in the 
southeastern TP. The long-term average SM ranges from 115 mm to 445 
mm in TP and is represented as wet in the southeastern (>180 mm) and 
dry in the western part of TP (~150 mm). 

The uncertainties of the five water budget components measured by 
the CV are shown in Fig. 7. For precipitation, the average CV was 
approximately 33 %, which was generally higher in the western and 
southern parts of TP, but it was below 20 % in the eastern TP. Large 
uncertainties showed in the runoff simulation, as the average CV was 
higher than 50 %. The CVs for ET, GM and SM were generally low (<25 
%). The estimates of the five water budget components have small un-
certainties in the eastern TP, but large in the southern and western 
regions. 

The water budget components generally exhibited increasing trends 
during the study period (Fig. 8). Precipitation increased at a rate of 2.3 
mm/yr for the entire TP, except for its decreasing trend in the south-
eastern Himalayas. GM increased with a value of approximately 0.9 
mm/yr and exhibited the highest increase in the Nyainqentanglha 
Mountains. ET and runoff also exhibited increasing trends for the whole 
TP (~1.5 and 1.1 mm/yr), but decreasing trends in the southeastern TP. 
Notably, affected by precipitation and GM, runoff exhibited more 
complicated patterns: it generally had a decreasing trend in the 

Table 3 
VIC-Glacier Model performance for the five watersheds.  

Watershed Station Calibration Validation 

NSE R Er (%) NSE R Er (%) 

UYE Tangnaihai 0.69  0.85  − 1.4 0.71  0.86  − 4.6 
UYA Zhimenda 0.75  0.87  − 12.3 0.71  0.87  − 21.7 
UM Changdu 0.73  0.89  − 20.3 0.69  0.89  − 24.9 
UB Nuxia 0.67  0.91  − 29.9 0.77  0.91  − 20.9 
US Jiayuqiao -a  0.92  − 13.4 - a  0.90  − 3.5 

a. NSE was not calculated for this watershed because of the data availability of 
the yearly scale streamflow. 
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Fig. 3. Comparison of the model simulated SM with the SMTMS station data for the top 10 cm of soil thickness.  

Fig. 4. Comparison of the model simulated ET with the observed data (a) and GLEAM ET (b,c).  
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southeastern Himalayas, but an increasing trend in Nyainqentanglha 
Mountains. The SM showed slight changes during the study period 
(~0.1 mm/yr), and it generally increases in the western TP, and de-
creases in the eastern region. 

4.3. Subregional-scale water budget closure 

Fig. 9 shows the water budgets over TP and the eight internal sub-
regions. We defined that the water input to the hydrological system in 
TP was mainly contributed by precipitation and GM. The average annual 
water input (sum of precipitation and GM) in TP was approximately 438 
mm during the period 1984–2015, with approximately 3.7 % contri-
bution from GM. Among the eight subregions, the annual water inputs in 
the Hexi, Qaidam, and Inner subregions were less than 250 mm, while 
the water inputs were higher than 390 mm in the other five watersheds. 
The largest GM contribution appeared in US (7.2 %) and Qaidam (4.4 %) 
subregions, but the values were less than 2 % in the UYA, UM, UYE, and 
Inner subregions. 

As for the water output, ET accounts for a large amount of TP, with 
an annual value of approximately 263 mm, followed by a runoff of 
approximately 173 mm. The ratio of ET to water output was generally 
higher in the northern TP and lower in the southern part of the region. 
Specifically, the ratios were>70 % in the Hexi, Qaidam, UYE, Inner, and 
UYA subregions, but less than 65 % in the southern watersheds of TP (i. 
e., the US and UB watersheds). As shown in Fig. 9, the soil water storage 
change (ΔS) was positive (2.4 mm) for TP during the 1984–2015 period. 

Among the eight subregions, the UB watershed exhibited the most 
obvious increase (~8.8 mm) for soil water storage, followed by the UM 
(1.2 mm) and UYA (0.9 mm) watersheds, while the Hexi, Qaidam, and 
UYE subregions presented negative ΔS, suggesting a slight decrease in 
soil water storage. Notably, ΔS was different from TWSC, which 
described in Subsection 3.3 and 4.1. Here, GM was regarded as a water 
input for the hydrological cycle, ΔS was therefore calculated as the 
difference between the water input (GM and precipitation) and water 
output (runoff and ET), while TWSC was equal to the difference between 
precipitation and water output (i.e., runoff and ET). 

The annual dynamics of the water budget are shown in Fig. 10 and 
Table 4. TP presented an acceleration of the hydrological cycle as all 
four water fluxes (precipitation, runoff, GM, and ET) showed increasing 
trends during 1984–2015. Particularly, precipitation over TP presented 
a sudden increase around the year of 1997, i.e., from 391 mm in the 
period of 1984–1997 to 439 mm during 1998–2015. However, it 
exhibited a slight increase of 0.5 and 0.1 mm/yr, respectively, during 
these two periods. The acceleration of the hydrological cycle was also 
demonstrated at the subregional scale, although the four water fluxes 
exhibited various trends. Precipitation in the Hexi subregion has the 
lowest increase of about 1.8 mm/yr, while the trends exceed 2.0 mm/yr 
in the other subregions, with the largest in the UYA, UM, and UB wa-
tersheds (~3.0 mm/yr). GM changed in the Hexi, Inner, and UM sub-
regions with rates varying from 0.3 to 0.5 mm/yr, and the largest glacier 
mass loss occurred in the US watershed with rate of 3.3 mm/yr. As to the 
output water fluxes, the runoff and ET showed increases in the 

Fig. 5. Comparison of the simulated terrestrial water storage change (TWSC) with the GRACE-derived TWSC.  
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Fig. 6. Spatial distribution of annual mean precipitation, GM, ET, runoff, and SM from the ensemble modeling.  

Fig. 7. Spatial distribution of coefficient of variation (CV) of precipitation, runoff, GM, ET, and SM.  
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subregions located in northern and eastern TP (i.e., Hexi, Qaidam, Inner, 
and UYE subregions) ranging between 0.7 and 1.0 mm/yr and 1.2–2.0 
mm/yr, respectively, but they have larger increases in the southern TP 
(i.e., US and UB subregions) with rates beyond 1.3 and 2.2 mm/yr, 
respectively. 

The fluctuation range of each water flux varies in TP. For the entire 
TP, the fluctuation ranges of the average annual precipitation, GM, 
runoff, and ET were within 315–529, 12–20, 108–239, and 219–306 
mm, respectively. The US and UB watersheds presented the largest 
precipitation (394–890 and 252–860 mm, respectively) and GM fluc-
tuation ranges (42–57 and 4–23 mm, respectively). Therefore, the two 
watersheds generally exhibited the largest fluctuation ranges for runoff 
and ET. However, the UYA subregion exhibited relatively smaller fluc-
tuation intervals of water budgets with values of ±24 mm for precipi-
tation, ±26 mm for ET, and less than ±10 mm for GM and runoff. 

4.4. Seasonal cycle of water budget components 

The four water budget components (i.e., precipitation, GM, ET, and 

runoff) have different seasonal cycles. As shown in Fig. 11 and Table 5, 
for the entire TP, approximately 58 % of the precipitation occurs in 
summer (from June to August), with only approximately 4 % in winter 
(from December to February). Glaciers also experience large losses 
during summer (>80 %), which leads to massive water exchanges dur-
ing this season (58 % of annual ET and 60 % of runoff). The eight sub-
regions presented similar patterns in TP: precipitation and GM were 
prominent in summer, which promoted abundant ET and runoff (58–65 
% for ET and 52–73 % for runoff). In particular, the UB watershed 
exhibited the highest percentage of summer precipitation (~65 %), and 
the US watershed had the largest summer GM (~44 mm). The seasonal 
cycle of SM was not shown in Fig. 11 because it was relatively stable in 
all four seasons (Table 5). 

Regarding the water output, ET generally consumes most of the 
water, approximately 60 % in TP, with the highest percentage in winter 
(~74 %) and the lowest in autumn (~57 %), although the peak ET of 
approximately 60 mm per month in July. For the eight subregions, the 
ratios of ET to the water output ranged between 56 and 79 %, and the 
ratios also exhibited seasonal dynamics. The highest ratios generally 

Fig. 8. Spatial distribution of annual trends of precipitation, runoff, GM, ET, and SM. The red and black rectangles represent the locations of the Nyainqentanglha 
Mountains and the southeastern Himalayas, respectively. The black dots indicate statistical significance (p less than 0.05). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Long-term average soil water storage change (ΔS) and water budgets for the period 1984–2015: (a) Spatial distribution of ΔS across TP, and (b) water budgets 
in TP and the eight subregions. Precipitation and GM are indicated as positive on the y-axis as they are water inputs for the hydrological system, and runoff and ET 
are indicated as negative because they are water outputs. 
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occurred in winter, and the low values happened in summer and autumn 
seasons. For instance, the ratio was approximately 65 % in winter and 
only about 55 % in the summer and autumn seasons in the US water-
shed. The low percentages of summer ET implied a relatively high 
summer runoff generation capability. Large precipitation and GM, as 
well as the high conversion ratio of runoff in summer, may together 
cause a relatively intensive summer runoff in TP, especially in the sub-
regions of the US and UB. 

The timing of the peak runoff differed in the subregions (Fig. 11). 
Generally, peak flow appears in July, but it can postpone to August in 
the Inner and UB subregions. Intriguingly, the UYE watershed seemed to 
present a double peak flow regime in July and September, approxi-
mately 29 mm and 25 mm per month, respectively. The timing of peak 
flow is largely determined by the climatological precipitation rhythm. 
For example, the double peak flow regime in the UYE was consistent 
with the climatological pattern of precipitation. 

4.5. Hotspot area with intensive runoff 

The ensemble modeling showed that the changes in the water budget 
components have evident spatial variability. In particular, intensive 
precipitation and GM appeared in the southeastern TP, which caused an 
average runoff of>800 mm. In this area, we take two subregions, i.e., the 
Nyainqentanglha mountains and the southeastern Himalayas, as hot-
spots and identify their runoff characteristics and the contributions of 

precipitation and GM. The locations of the two subregions are marked in 
Fig. 8. 

The two subregions demonstrated high runoff yield (Fig. 12), but 
exhibited contrasting trends during the 1984–2015 period: increased 
runoff in the Nyainqentanglha Mountains and decreased runoff in the 
southeastern Himalayas. Specifically, in the Nyainqentanglha Moun-
tains, the average annual runoff was approximately 810 mm with an 
increasing rate of 5.7 mm/yr. The GM runoff contributed to over 45 % of 
the total runoff with a significant increase of 5.8 mm/yr. The precipi-
tation runoff presented a decreasing change of approximately − 0.1 mm/ 
yr. In the southeastern Himalayas, however, precipitation runoff (837 
mm) contributed to approximately 98 % of the total runoff (~852 mm), 
and it exhibited a decreasing trend (~− 3.1 mm/yr), resulting in a 
decrease in total runoff at a rate of − 2.8 mm/yr. 

5. Discussion 

5.1. Benefit of the ensemble modeling 

The ensemble method can be established with multi-forcing 
modeling, multi-models and/or multi-parameter approaches, and it is 
inspired from modular frameworks, empirical model development, and 
multi-model applications (Seiller et al., 2017; Wei et al., 2020). The 
method benefits from extracting multiple information from the 
ensemble members and neutralizing the weakness of a single one, 

Fig. 10. Annual dynamics of water budget components in TP and the eight subregions. Precipitation and GM are indicated as positive on the y-axis as they are water 
inputs for the hydrological system, runoff and ET are indicated as negative because they are water outputs. 

Table 4 
Magnitude and the change of each water budget component in TP and the eight subregions for the period 1984–2015.  

Region Precipitation GM ET Runoff ΔS 

Mean ± std 
(mm) 

Trend 
(mm/yr) 

Mean ± std 
(mm) 

Trend* 
(mm/yr) 

Mean ± std 
(mm) 

Trend 
(mm/yr) 

Mean ± std 
(mm) 

Trend 
(mm/yr) 

Mean 
(mm) 

TP 422.2 ± 55  2.3 16.2 ± 2  0.9 262.7 ± 22  1.5 173.2 ± 33  1.1  2.4 
Hexi 231.4 ± 52  1.8 8.2 ± 1  0.3 181.0 ± 28  1.2 59.5 ± 25  0.7  − 0.9 
Qaidam 138.9 ± 30  2.2 6.5 ± 1  0.5 115.5 ± 20  1.7 30.7 ± 12  0.7  − 0.7 
UYE 535.9 ± 27  2.9 0.4 ± 0  0.7 390.0 ± 8  2.0 147.5 ± 23  1.0  − 1.2 
Inner 239.1 ± 31  2.5 4.1 ± 1  0.4 184.4 ± 17  1.6 58.6 ± 16  1.0  0.2 
UYA 386.0 ± 24  3.4 7.0 ± 1  1.0 305.4 ± 26  2.2 86.7 ± 9  1.6  0.9 
UM 621.1 ± 94  2.9 2.6 ± 1  0.4 422.0 ± 84  2.3 200.4 ± 29  0.9  1.2 
US 642.2 ± 127  2.6 49.5 ± 4  3.3 390.0 ± 80  2.2 301.1 ± 59  2.6  0.5 
UB 556.0 ± 155  3.1 13.6 ± 5  0.7 363.1 ± 109  2.4 197.7 ± 55  1.3  8.8 
*The trend of GM is calculated for the glacier covered area of each subregion  
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thereby increasing the credibility of the simulations (Henrik et al., 2014; 
Strauch et al., 2012). It has been increasingly used in addressing hy-
drological problems, and can be a key step to mitigate uncertainties 
(Granata, 2019; Ma and Zhang, 2022). The ensemble method has been 
applied worldwide, including TP (Qi et al., 2020), Pakistan (Waseem 
et al., 2015), U.S. (Sharma et al., 2019), Taiwan (Yang et al., 2020), and 
Canada (Velázquez et al., 2009). 

However, the spatiotemporal uncertainties associated with initial 
conditions of models and parameters may hinder the efficiency of the 
ensemble modelling, the method thereby is not always with acceptable 
performance (Velázquez et al., 2009; Yang et al., 2020). Our work 
selected high-performance precipitation products referring to Wang 
et al. (2020) before the ensemble modelling, rather than conducted the 
modelling directly. Moreover, our work employed more ensemble 
members (i.e., nine precipitation products) than most other studies 
thereby improving statistical significance, as more samples will likely 
achieve more reliable statistical estimation. The ensemble means in our 
work present satisfactory performance for runoff, ET, SM, and TWSC 
based on extensive evaluations. 

Lacking of accuracy is one of the primary motivations for using an 
ensemble approach. Considering the insufficient data in TP, and the 
importance of precipitation in hydrological modelling (Strauch et al., 
2012). The ensemble modelling regarding precipitation diversity may 
effectively improve the accuracy of water balance estimation in TP. This 
method is also applicable for water balance estimation in any data- 
sparse regions, partly because the satellite products are freely avail-
able for global scales. We further remind that the ensemble simulation 
strategies can be established with different situations, such as consid-
ering temperature diversity for energy balance simulation. Moreover, 
the ensemble modeling could provide a probabilistic assessment and 
uncertainties of simulations replacing the traditional method of a 
deterministic or single-model simulations (Velázquez et al., 2009). This 

study provided reliable probabilistic forecast, and confirmed the 
discrepancy of the nine precipitation products in TP and its influence on 
other water budget components. 

5.2. Estimates of long-term water budgets in TP 

Based on hydrological ensemble modeling, our study quantified the 
spatial patterns and seasonal cycles of the water balance components. 
The average annual precipitation exhibited a southeast-northwest 
decreasing gradient over TP, with the highest value in the southern 
Himalayan mountains (>1000 mm). Most of the precipitation occurred 
in summer (~58 %), with less than 4 % in winter. These patterns may 
come from multiple climatic conditions in TP as the southern region is 
dominated by the Indian and East Asian monsoons with high water 
vapor during the summer season, while the northern TP is dominated by 
mid-latitude westerlies with relatively low water vapor (Li et al., 2020; 
Zhu et al., 2011). The mean annual GM was approximately 16 mm in TP, 
and it exhibited significant seasonal dynamics, with over 80 % in the 
summer influenced by air temperature. It has been reported that the 
mean annual GM was about 48 mm (Wang et al., 2021), which may be 
an overestimation because the grid-cell average temperature was used to 
compute GM in equation (2). This study updated the temperature of the 
glacier surface by considering the elevation effect as described in sub-
section 3.1. Lutz et al. (2014) and Qi et al. (2022) also estimates GM in 
eastern TP, they showed that GM contributes approximately 16–20 % to 
discharge in UB watershed, which is much larger than our work. The 
difference likely stems from the boundary definition: the UB watershed 
included the Nyainqentanglha Mountains in Lutz et al. (2014) and Qi 
et al. (2022), but our work mainly focused on the upper watershed that 
excluded Nyainqentanglha Mountains. The Nyainqentanglha Mountains 
have extensive glacier cover and warm winds from the southern TP (Bay 
of Bengal, South China Sea, and the Western Pacific), resulting in a 

Fig. 11. Seasonal cycle of water fluxes in TP and the eight subregions during 1984–2015 period. Water fluxes include precipitation, GM, runoff, and ET, the latter 
two are presented as negative fluxes because they represent the water output. 

Y. Wang et al.                                                                                                                                                                                                                                   



Journal of Hydrology 615 (2022) 128710

13

massive glacier loss (~48.2 m/yr) (Bibi et al., 2018; Yao et al., 2012). 
Besides that, our work demonstrated the reliable GM estimation 
regarding the spring runoff evaluation, and similar GM contribution 
values in most watersheds (e.g., US, UYA, UM, and UYE) compared with 
Lutz et al. (2014) and Qi et al. (2022). 

Both the precipitation and GM input fluxes lead to high magnitudes 

of ET and runoff, especially in the summer season and the southern TP. 
Moreover, ET generally consumes approximately 60 % of the total water 
input over TP, with higher percentages in winter and the northern TP. 
Similar spatio-temporal pattern of ET has been observed by Yang et al. 
(2011) and Kuang and Jiao (2016), and also obtained by Li et al. (2019) 
in five source watersheds of TP, and by Zhang et al. (2018) in TP with 
point-scale estimation. The high ET percentage in winter may be 
because of the drizzle or scarce GM, which evapotranspired before being 
converted into runoff. The low ET percentage in the southern TP may be 
due to the high runoff generated from the steep mountains. We noticed 
Ma and Zhang (2022) used three precipitation products to drive a water- 
carbon coupled biophysical model, Penman-Monteith-Leuning Version 2 
(PML_V2), and estimated the mean annual ET up to 353 mm for 
1982–2016. This difference may result from the precipitation forcing 
and the modeling. Our study employed more precipitation forcing 
datasets to estimate water budgets in TP. 

In the southeastern TP, we identified a region of high-yield runoff of 
over 800 mm per year. This phenomenon is mainly attributed to the high 
magnitudes of precipitation and GM. The monsoons and the Himalayan 
mountains together create a humid subtropical climate zone in the 
southern Himalayas, promoting annual precipitation up to 1000 mm 
(Gao and Liu, 2012). Additionally, the Nyainqentanglha Mountains are 
experiencing a warming pattern (Chen et al., 2015; Ji et al., 2020), and 
massive glacier loss (Bibi et al., 2018; Yao et al., 2012). Thus, the 
intensive GM and precipitation result in a large magnitude and an 
increasing trend of runoff (~5.7 mm/yr). 

The uncertainties of the water budget components were calculated 
based on the discrepancy of the nine simulation realizations. The un-
certainty of precipitation was>30 %, and generally exhibited higher 
values in the western and southern parts of TP. One of the primary 
reasons might be the different precipitation estimation instruments (e.g., 
infrared and microwave) (Beck et al., 2017). The high uncertainties in 
the western and southern parts of TP may stem from the lack of post- 
processing (e.g., gauge data fusion) for the products owing to the com-
plex topography and limitations of observed data in the region (Kai 
et al., 2014; Wang et al., 2020). The uncertainties were transferred to the 
water budget estimation, the CV value for runoff was approximately 57 
%, and the values for ET, GM, and SM were lower than 25 %. The high 
CV of runoff estimates may also be attributed to insufficient model 
calibration in the western TP, and the fact that runoff is more sensitive to 
precipitation uncertainties than the other forcing variables in general 
(Qi et al., 2020). 

Table 5 
Annual and seasonal estimates of each water flux and state (mm) in TP and eight 
subregions for the period 1984–2015. The four seasons include spring (from 
March to May), summer (from June to August), autumn (from September to 
November), and winter (from December to February in the following year).  

Region Season Precipitation GM ET Runoff SM 

TP Spring  77.6  0.9  51.0  29.9  163.2 
Summer  245.3  13.4  153.4  103.6  164.2 
Autumn  82.2  1.8  49.2  36.5  164.3 
Winter  17.1  0.0  9.2  3.2  160.5 

Hexi Spring  42.5  0.2  37.3  8.5  151.2 
Summer  140.8  7.9  111.7  41.4  151.2 
Autumn  42.8  0.1  26.2  9.5  147.6 
Winter  5.3  0.0  5.7  0.1  150.1 

Qaidam Spring  26.4  0.1  23.9  3.8  133.7 
Summer  83.0  6.2  68.9  22.4  135.1 
Autumn  24.5  0.2  17.8  4.4  132.5 
Winter  5.0  0.0  4.9  0.2  133.4 

UYE Spring  107.0  0.0  84.1  27.4  200.1 
Summer  293.0  0.4  226.7  78.1  188.4 
Autumn  122.5  0.0  69.0  40.6  182.0 
Winter  13.4  0.0  10.1  1.5  193.5 

Inner Spring  32.7  0.1  30.4  7.1  148.5 
Summer  154.4  3.9  116.0  41.1  150.1 
Autumn  40.4  0.1  29.9  10.3  152.2 
Winter  11.6  0.0  8.2  0.1  146.8 

UYA Spring  57.0  0.1  49.5  9.5  189.8 
Summer  247.1  6.6  196.6  56.2  186.5 
Autumn  74.3  0.2  51.2  20.7  185.2 
Winter  7.6  0.0  8.1  0.3  188.6 

UM Spring  107.1  0.1  72.8  33.3  210.1 
Summer  369.8  2.4  260.2  110.9  205.9 
Autumn  130.8  0.2  80.3  51.7  206.9 
Winter  13.5  0.0  8.7  4.5  208.4 

US Spring  107.8  1.5  61.1  40.2  208.6 
Summer  388.8  44.0  244.6  192.5  207.8 
Autumn  130.8  4.0  75.0  63.3  207.6 
Winter  14.7  0.0  9.3  5.1  206.8 

UB Spring  76.5  0.7  54.3  20.0  184.3 
Summer  363.4  11.6  219.7  128.9  188.1 
Autumn  95.8  1.2  78.5  44.1  193.6 
Winter  20.4  0.0  10.6  4.8  182.1  

Fig. 12. Annual total runoff, GM runoff, and precipitation runoff in the two subregions: the Nyainqentanglha Mountains (a) and the southeastern Himalayas (b). The 
“Mean” is the long-term mean of each of the runoff in unit of mm, and the “Trend” is the linear change rate in unit of mm/yr. The double (**) and single (*) asterisks 
indicate significance at p less than 0.05, and p less than 0.10, respectively. 
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5.3. Acceleration of hydrological cycle in TP 

The simulated results illustrated that TP experienced an intensified 
hydrological cycle during the 1980–2015 period. All the water budgets 
exhibit increasing trends, that is, approximately 2.3 mm/yr for precip-
itation, 0.9 mm/yr for GM, 1.5 mm/yr for ET, 1.1 mm/yr for runoff, and 
0.1 mm/yr for SM. The increasing trends of one or several water budget 
components on TP have been partly evidenced in studies (Li et al., 2019; 
Lin et al., 2021; Lutz et al., 2014). For instance, Shi et al. (2016) found 
that SM increased significantly during 1980–2012, with an abrupt 
change in 2003. Yang et al. (2014) illustrated that precipitation, ET, 
runoff, and surface SM generally presented increasing trends during 
1984–2006, except for the southern Himalayan Mountains. Immerzeel 
et al. (2012) and Wang et al. (2019) demonstrated obvious glacier loss in 
TP influenced by global warming. However, our work has the advantage 
of synthetically mapping the long-term dynamics of the water budget of 
TP. 

The dynamic patterns may be largely attributed to the enhanced 
Asian summer monsoon and deep convection triggered by the thermal 
force. The Asian summer monsoon brings more water moisture, and 
deep convection exerts the troposphere stratosphere exchanges of water 
vapor (Fu et al., 2006). Moreover, global warming directly forces 
massive surface heating, thereby inducing intensive glacier loss over TP 
(Immerzeel et al., 2012; Sorg et al., 2012). The two result in a large 
amount of runoff and ET, especially in the southeastern TP (Lin et al., 
2021; Xu et al., 2020). However, the southeastern Himalayas exhibit a 
deceleration of the hydrological cycle with decreasing precipitation, as 
mentioned above. This process may be attributed to the weakened water 
vapor exchange between the Asian monsoon region and TP with wind 
stilling (Yang et al., 2014). 

5.4. Implications and limitations 

Climate change has attracted considerable attention because of its 
significant impact on the hydrological and atmospheric environments 
(Cuo et al., 2013; Hanittinan et al., 2019). TP, which is one of the most 
vulnerable regions, is subject to considerable impacts of climate change 
on the water fluxes and states regarding precipitation, GM, ET, runoff, 
and SM (Immerzeel et al., 2010; Lai et al., 2020). Moreover, the water 
exchange in TP will exert influence on regional climate, biological, and 
hydrological systems in Asia, and play an important role in atmospheric 
circulation over Europe and North America (Duan and Duan, 2020). 

The findings of this study have implications for understanding the 
acceleration of the hydrological cycle and its potential impacts on TP 
and surrounding regions under global warming. The long-term ensemble 
modeling illustrated that TP is undergoing increased water input, which 
forces higher runoff and ET, as well as a wetter condition (increasing 
SM) in general. ET and SM exert influence on atmospheric and biological 
phenomena (Peng et al., 2016; Ullah et al., 2018). For example, the 
increases in ET and SM may force more extensive vegetation areas, 
including forests and grasslands, and an overall improvement in the 
ecosystem and biological phenomena (Chen et al., 2015). Furthermore, 
runoff plays an important role in water availability, and it influences the 
economy and human lives regarding to floods or droughts (Immerzeel 
et al., 2020). Increasing runoff could promote water availability for the 
surrounding regions. While for the local scale of TP, the hydrological 
and ecological systems might tend to deteriorate. For instance, the re-
gion of the Nyainqentanglha Mountains is experiencing a large 
increasing trend in runoff (~5.7 mm/yr) owing to glacier mass loss 
(~5.8 mm/yr). The glacier area is projected to decline by>50 % at the 
end of the 21st century in the southern and eastern TP (Zhao et al., 
2019). Therefore, runoff may introduce a high flooding risk to the TP 
and surrounding regions. Water resources may face a decrease in the 
near future (Lutz et al., 2014; Sorg et al., 2012). Thus, relevant measures 
such as flood prevention and water diversion should be gradually 
implemented and enhanced. 

The uncertainty quantification for the water budget components 
implies the capability of the ensemble modeling method. The precipi-
tation estimation from the ensemble products is more reliable in the 
eastern TP because of the small CV, and it has the largest impact on 
runoff simulation among the hydrological forcing variables. The hy-
drological ensemble modeling used in this study is capable of quanti-
fying the uncertainties of water budgets, and estimating their fluctuation 
ranges (Table 4). Ensemble modeling, which extracts the benefit of 
available remote sensing products, could therefore provide an important 
reference for other studies, especially for areas with sparse ground-based 
observations. 

This study has limitations in estimation method and model forcing 
data, which may introduce potential uncertainties in water budget 
estimation. First, the melted glacier water and the rainfall on glacier 
area is assumed to directly convert to surface runoff, which may cause a 
relative overestimation of runoff. Moreover, the degree-day glacier al-
gorithm fails to consider glacier solidification or GM-ET conversion, 
probably leading to an overestimation of GM, and underestimation of 
ET. Second, the nine precipitation products were downscaled or 
upscaled for the same resolution, thus the scale change by interpolation 
or merging may bring additional uncertainties in precipitation and 
related water budget estimation. And our work only focused on un-
certainties from precipitation, the other datasets for model forcing (e.g., 
temperature, and wind speed) merit further investigation, especially for 
temperature in the glacier areas. Third, the glacier volume changes were 
not verified due to inadequate glacier data, while we evaluated spring 
runoff (Fig. 2) and compared with other studies to partly reflect the 
glacier change. And the ground-based observations for model calibra-
tion and validation are mainly in the eastern TP, which implies the 
higher uncertainties of water budget estimation in the western area 
because of insufficient calibration. Therefore, more ground-based ob-
servations and remote sensing data are needed for model forcing and 
evaluation. 

6. Conclusion 

This study identified the hydrological cycle based on hydrological 
ensemble modeling of long-term water budgets (1984–2015) on TP. 
Ensemble modeling featured the integration of multiple precipitation 
products (CMA, CPC-Global, MSWEP, CHIRPS, CMFD, PERSIANN-CDR, 
CMORPH-BLD, GPCP-1DD, TMPA), thereby estimating the water budget 
components and their uncertainties. Moreover, GM and its influence 
were quantified using a degree-day glacier algorithm in our study. The 
main results are summarized as follows. 

(1) The ensemble modeling method can fully utilize multiple remote 
sensing precipitation products and neutralize the weakness of a single 
forcing. It has great potential for long-term water budget estimation in 
areas with scarcity of ground observations. 

(2) The ensemble modeling revealed that the annual water input 
(precipitation and GM) of TP was approximately 438 mm during the 
study period, with approximately 3.7 % contributed by GM. Annual ET 
and runoff took away approximately 263 mm and 173 mm of water, 
respectively; thus, the soil water storage exhibited a slightly positive 
change each year (~2.4 mm/yr). Furthermore, precipitation and GM 
exhibited various seasonal dynamics with high percentages occurring in 
summer, over 58 % and 83 %, respectively, which drive massive water 
exchanges in this season (58 % of annual ET and 60 % of runoff). 

(3) The hydrological cycle exhibited an acceleration phenomenon, as 
evidenced by increasing precipitation (~2.3 mm/yr) and ET (~1.5 mm/ 
yr). The hydrological cycle was more intensive in the US watershed, 
which exhibited larger annual water input (~642 mm) and high 
increasing precipitation (2.6 mm/yr) and GM (3.3 mm/yr). The south-
ern TP presented a decreasing precipitation and runoff, but the Nyain-
qentanglha Mountains showed an acceleration of the hydrological cycle 
owing to the increasing GM. 

(4) The uncertainties (the CV values) of precipitation and runoff 
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were >30 % and the CV of ET was approximately 25 %, followed by GM 
and SM. The uncertainties of the components presented a dominating 
spatial distribution of higher CV values in the western and southern TP. 
This pattern indicates that precipitation products are generally more 
reliable in the eastern TP than in the other parts. And the uncertainties in 
precipitation have the strongest influence on runoff, followed by ET. 

This study has limitations regarding the modeling method and the 
forcing data. However, our work shows clear advantages in mapping the 
comprehensive water budget and identifying the acceleration of the 
hydrological cycle during the 1984–2015 period. The findings could 
provide a useful reference for ecological and environmental governance, 
and water management in TP and surrounding regions. Moreover, the 
ensemble method can be established in any other data-sparse regions, 
because more satellite products are freely available for global scale. To 
obtain more reliable water budget estimates, future studies should focus 
on ground-based observations of glacier dynamics, climatic and hydro-
logical fluxes and states at a fine scale. Furthermore, uncertainties can 
also emerge using only one hydrological model, thus it would be 
beneficial to integrate more hydrological models to establish a collective 
and multi-data source simulation framework. 
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