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Abstract—Photorealistic stylization aims to transfer the style of a reference photo onto a content photo in a natural fashion, such that

the stylized image looks like a real photo taken by a camera. State-of-the-art methods stylize the image locally within each matched

semantic region and are prone to global color inconsistency across semantic objects/parts, making the stylized image less

photorealistic. To tackle the challenging issues, we propose a non-local representation scheme, constrained with a mutual affine-

transfer network (NL-MAT). Through a dictionary-based decomposition, NL-MAT is able to successfully decouple matched non-local

representations and color information of the image pair, such that the context correspondence between the image pair is incorporated

naturally, which largely facilitates local style transfer in a global-consistent fashion. To the best of our knowledge, this is the first attempt

to address the photorealistic stylization problem with a non-local representation scheme, such that no additional models or steps for

semantic matching are required during stylization. Experimental results demonstrate that, the proposed method is able to generate

photorealistic results with local style transfer while preserving both the spatial structure and global color consistency of the content

image.

Index Terms—Photorealistic stylization, non-local representation, mutual information, affine-transfer

Ç

1 INTRODUCTION

THE objective of photorealistic style transfer is to change
the style of a content photo to that of a reference photo

as shown in Fig. 1. By choosing different reference photos,
one could make the content photo look as if, for example, it
was taken under different illuminations, at different time of
the day or season of the year [1], [2], [3]. It is worth mention-
ing that photorealistic style transfer is different from the
general stylization approaches [4], [5],which tend to gener-
ate the painting-like photos with artistic textures and dis-
torted structures. As emphasized in previous works [1], [2],
[3], [6], a successful photorealistic stylization method
should be able to transfer sophisticated matched styles with
local color changes while at the same time preserve the spatial
(or structural) information as well as global color consistency
of the content photo naturally, such that the resulting image
looks like a real photo taken by a camera.

Existing approaches generally perform photorealistic styli-
zation either in a global or a local way. Global-based meth-
ods [7], [8] transfer the style of a photowith spatially invariant
functions. Although they perform well for global color shift-
ing, they usually could not stylize images effectively within

local areas. For example, to stylize the content photo in Fig. 1b
according to the style photo in Fig. 1a, the bright day sky of
Fig. 1b should become dark night sky, while the light of the
buildings should be preserved. However, as shown in Fig. 1c,
the global-based method turns both light and the day sky to
dark. Local-based methods [1], [2], [3], [6], [9], [10], [11] are
generally carried out in three major steps, including 1) extrac-
tion of high-level features from the content and style image
pair with pre-trained models on large datasets, 2) semantic
context matching of the image pair, and 3) local context-based
stylization on the extracted features. For most approaches,
post-processing has to be performed to preserve the structure
of the stylized image, due to the information loss in high-level
features [6]. However, as shown in Fig. 1d, post-processing
may not be effective in some scenarios. By way of the context
correspondence between the content and style images, the local-
based approaches could transfer local styles successfully.
Nonetheless, the extracted features with pre-trained models
generally could not indicate the context matching information
of the image pair directly. Thus, the stability of the style trans-
fer relies heavily on the context correspondence estimated
from additional supervised segmentation or classification
models. Such supervised models may fail if the given image
has complex or unknownobjects, or hasmore than three chan-
nels. The failure of the models may lead to the failure of
stylization. More importantly, these approaches perform
stylization locally within each context area, thus tending to
ignore the global consistency within or across objects. As
shown in Fig. 1e, abrupt color changes across context regions
can be easily introduced with the resulting image being less
photorealistic.

There are, in general, three key challenging issues with the cur-
rent stylization approaches, namely, 1) how to match the context
correspondence of the image pairs without additional segmenta-
tion or classification models? 2) how to perform context-based

� Ying Qu and Hairong Qi are with the Advanced Imaging and Collabora-
tive Information Processing Group, Department of Electrical Engineering
and Computer Science, University of Tennessee, Knoxville, TN 37996
USA. E-mail: yqu3@vols.utk.edu, hqi@utk.edu.

� Zhenzhou Shao is with the Beijing Key Laboratory of Light-weight Indus-
trial Robot and Safety Verification, College of Information Engineering,
Capital Normal University, Beijing 100048, China. E-mail: zshao@cnu.
edu.cn.

Manuscript received 26 Mar. 2020; revised 2 June 2021; accepted 2 July 2021.
Date of publication 14 July 2021; date of current version 9 Sept. 2022.
(Corresponding author: Zhenzhou Shao.)
Recommended for acceptance by E. Shechtman.
Digital Object Identifier no. 10.1109/TPAMI.2021.3095948

7046 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

0162-8828 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on February 27,2023 at 06:10:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4613-8625
https://orcid.org/0000-0002-4613-8625
https://orcid.org/0000-0002-4613-8625
https://orcid.org/0000-0002-4613-8625
https://orcid.org/0000-0002-4613-8625
https://orcid.org/0000-0002-9166-9468
https://orcid.org/0000-0002-9166-9468
https://orcid.org/0000-0002-9166-9468
https://orcid.org/0000-0002-9166-9468
https://orcid.org/0000-0002-9166-9468
https://orcid.org/0000-0002-2693-5520
https://orcid.org/0000-0002-2693-5520
https://orcid.org/0000-0002-2693-5520
https://orcid.org/0000-0002-2693-5520
https://orcid.org/0000-0002-2693-5520
mailto:yqu3@vols.utk.edu
mailto:hqi@utk.edu
mailto:zshao@cnu.edu.cn
mailto:zshao@cnu.edu.cn


local style transfer in a globally consistent fashion, i.e., without
introducing abrupt changes/artifacts within or across semantic
regions? and 3) how to preserve the structure information of the
stylized image naturally?

To addressing the challenges, we exploit the potential of
“non-local” features that would effectively indicate the con-
text information of images and break the barrier between
local style transfer and global consistency. We argue that
“context” should not be kept as a local feature, as shown in
Fig. 2, where the similar context regions, e.g., the trees, usu-
ally share similar color but may scatter at disjoint locations
across the image. Since such non-local similarities could not
be readily captured by the current approaches, a new repre-
sentation scheme should be developed to overcome the chal-
lenges above.

In this paper, we propose a non-local representation
scheme through dictionary-based image decomposition to
address the challenges of photorealistic style transfer. In this
scheme, each pixel (as a 3-D vector) can be decoupled into a
linear combination of a set of color bases with the correspond-
ing coefficients serving as the “representation” of the pixel.
The physical implication of this representation is how much
each color basis contributes to the color formation of that pixel.
This representation thus needs to satisfy two physical con-
straints, i.e., the sum-to-one constraint and the non-negative
constraint. Since the entire image shares the same set of color
bases, the representations (i.e., the coefficients of color bases)
for similar context would be similar regardless of their spatial
location in the image. Thus, the proposed representation
scheme can successfully capture the non-local similarities over
the entire image, and has the potential to distinguish context
according to the coefficients/proportions of the color bases.
From this perspective, we consider the extracted representa-
tion to be context-correlated. Since such decoupling procedure is
done at the pixel level, it preserves the structure information of

the images well. In addition, the color bases of the content and
style images hold an affine relationship such that the colors of
the content image can be transferred to those of the style image
without structure distortion. By enforcing the extracted represen-
tations to be sparse, for each context region, only the dominant
color bases with non-zero representations would take effect in
the global-affine transfer. Since the dominant color bases are
generally different for different contexts, it allows for diverse
local transfer in a global-consistent fashion. Finally, to transfer the
correct color for each context, mutual information is employed
tomatch the context correspondence of the representations for the
image pair.

The proposed method is referred to as the non-local
representation based mutual affine-transfer network, or
NL-MAT. The contribution of this work is three-fold, per-
taining to the three major components of the proposed NL-
MAT network:

� First, a non-local representation scheme is realized
which projects the images from the three-dimen-
sional RGB color space to a k-dimensional represen-
tation space with each of the k elements reflecting
the proportion of a certain color basis in making up
the RGB color. This way, the context information is
embedded naturally without adopting any addi-
tional models. The representation is extracted with a
stick-breaking encoder to enforce the two physical
constraints of the proportions, without losing images’
spatial information.

� Second, an affine-transfer decoder is constructed that
embeds the shared color bases of the content and
style images, such that the potential transfer relation-
ship between the image pair can be learned without
structure distortion. By enforcing the sparsity of the
non-local representations, we are able to perform
local style transfer using the decoder, while preserv-
ing global consistency.

� Third, in order to match the colors of similar objects
(or parts) in the image pairs for affine style transfer,
we design a mutual discriminative network to
extract the context-correspondence representations
from the image pairs by maximizing the mutual
information (MI) between the representations and
their own RGB inputs. The statistic transformation is
adopted to enforce the matched representations to
have similar statistical characteristics, which further
improves the photorealistic-stylization capacity of
the proposed method.

Fig. 1. Given a reference style photo taken at night, the content image is
stylized as if it was taken at night. (a) Style image. (b) Content image.
Photorealistic-stylized images with (c) global-based method [7] without
local color changes, (d) PhotoWCT [3] with structure distortion, (e)
WCT2 [6] with abrupt color changes between sky and buildings, and (f)
our method (NL-MAT) with global consistency. (g-k) Sub-images of (b)-
(f), respectively.

Fig. 2. The non-local nature of context. For example, the similar context
regions, the trees, although possess similar color, are scattered at dis-
joint regions across the image.
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The proposed representation scheme can naturally match
the context correspondence between the image pair and real-
ize diverse local style transfer in a global-consistent fashion.
This is fundamentally different from existing representation
schemes that require additional segmentationmodels or steps
to match the correspondence. To the best of our knowledge,
this work is the first effort that performs photorealistic style
transferwith a non-local representationmodel.

The rest of the paper is organized as follows. Section 2
provides an overview of the state-of-the-art photorealistic
style transfer approaches. Section 3 formulates the photore-
alistic style transfer problem. Section 4 elaborates and ana-
lyzes the proposed NL-MAT method. Section 5 performs
comprehensive evaluations of the proposed approach. Con-
clusions are drawn in Section 6.

2 RELATED WORK

Classical style transfer methods stylize an image in a global
fashion with spatial-invariant transfer functions [1], [7], [8],
[13], [14], [15]. These methods can handle global color shifts
well, but they are limited in matching sophisticated styles
with color changes [1], [3], as shown in Fig. 1c.

Recent photorealistic approaches can be generally catego-
rized into patch-based and context-based, which perform the
stylization in a local fashion. Patch-based approaches stylize
images according to the patch similarity on high-level features
extracted with the supervised pre-trained CNN. Liao et al.
[10] transferred images by finding dense correspondences
between the high-level patch features of the content and style
images, with nearest-neighbor field search. A weighted least
squares filter (WLS) [16] was adopted as a post-processing
step to refine the structures of the resulting images. He et al.
[11] further improved the stylization results by generating a
guidance image based on the strategy of [10], where local style
transfer can be guided in the image domain according to the
guidance image, to avoid structure distortion.

Context-based approaches perform the style transfer
based on the high-level features extracted from the super-
vised pre-trained CNN model and semantic matching
obtained from the supervised pre-trained segmentation
model. Luan et al. [1] preserved the structure of the content
image by adopting a color-affine-transfer constraint and
color transfer is performed according to the semantic
regions generated using the pre-trained DeepLab segmenta-
tion model [17]. Mechrez et al. [2] proposed to maintain the
fidelity of the stylized image with a post-processing step
based on the screened poisson equation (SPE). Li et al. [3]

improved the spatial consistency of the output image by
adopting the manifold ranking algorithm as the post-proc-
essing step. LST [9] concatenated a linear propagation mod-
ule after the stylization network to preserve the structure
information of the resulting image. To address the blurry
artifact caused by post-processing, WCT2 [6] was proposed,
which introduces a wavelet module in the network to pre-
serve the structure information of the stylized image with-
out post-processing.

Although these methods could transfer the local styles
well, the effectiveness of the stylization relies heavily on the
semantic correspondence estimated from additional super-
vised segmentation models pre-trained on a different data-
set. Segmentation itself is a non-trivial task, and the failure
of which may lead to the failure of stylization. Moreover,
since stylization is performed within each context region,
the light and color changes of different parts and materials
across the entire image may not be smooth or natural. See
Figs. 10, 11, and 12 for a comparison later. Recently, Photo-
NAS [12] was proposed to perform smooth stylization by
applying WCT [5] on the stacked multi-level features
extracted from pre-trained models and the normalized skip
links. However, since the context information is not consid-
ered during the optimization, the stylization is not dramatic
within local areas. See Fig. 13 for a comparison later.

Based on the discussions above, Table 1 summarizes,
from five aspects, the pros and cons of some state-of-the-art
photorealistic stylization approaches, including preserving
the spatial structure of the content image, realizing local
style transfer while maintaining global consistency, trans-
ferring styles based on context or semantic correspondence
between the content and the style images, and needing no
additional models from supervised classification or segmen-
tation. In the following, we elaborate on how the proposed
approach tackles the challenges brought from each aspect.

3 PROBLEM FORMULATION

As discussed in Section 1, the key issue in obtaining a context-
correspondence and high-quality photorealistic style transfer
is the realization of a new representation scheme that extracts
the matched non-local representations from the image pair.
Such scheme is designed according to the theory of dictio-
nary-based image decomposition, where natural images can
be represented by a set of color bases with its coefficient vec-
tors (i.e., representations) [18], [19], [20]. In this paper, the
decomposition is learned through neural network by mini-
mizing the reconstruction error of the image pair.

TABLE 1
Capabilities of the State-of-the-Art Photorealistic Stylization Approaches

Global-based Context-based Patch-based SOTA Proposed

Capabilities Reinhard[7] Pitie[8] Luan[1] Li[3] LST [9] WCT2 [6] Liao[10] He[11] PhotoNAS[12] NL-MAT

Structure preservation @ @ • @ • @ • @ @ @

Local style transfer • • @ @ @ @ @ @ • @

Context-correspondence transfer • • @ @ @ @ @ @ • @

Global consistency @ • • • • • • • @ @

No additional models @ @ • • • • • • • @
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Given a content image, Ic 2 Rm�n�l, where m, n, and l
denote its width, height, and number of channels, respec-
tively, and a style image, Is 2 RM�N�l, where M, N , and l
denote its width, height, and number of channels, respec-
tively, the goal is to generate the image Ics 2 Rm�n�l with its
content coming from Ic but using the style from Is. For each
image, to capture the non-local similarities, the entire image
is enforced to share the same set of color bases. That is, a sin-
gle pixel in the content and style images can be expressed as
Eqs. (1) and (2), respectively.

ic ¼ scDc (1)

is ¼ ssDs; (2)

where ic 2 R1�l and is 2 R1�l denote a single pixel of the
content image and the style image, respectively. Dc 2 Rk�l

and Ds 2 Rk�l are two matrices with each row of which
denoting the color basis that preserves the color information
of the entire content and style images, respectively. sc 2
R1�k and ss 2 R1�k denote the corresponding coefficients
for each of the k color bases of the content and style image,
respectively. Note that, in our case, we have k � l. That is,
the number of color bases is much larger than the dimen-
sion of the input pixels.

Taking the content image as an example, the decomposi-
tion is illustrated in Fig. 3. For an individual pixel ic, Eq. (1)
can be written as

ic ¼ scDc ¼ ½s1; . . . ; si; . . . ; sk�½d1; . . . ;di; . . . ;dk�T ;

where the transpose of di 2 Rl�1 denotes a row vector of
Dc carrying one color basis, and si, the ith component of sc,
indicates the proportion (representation) of the color basis,
di, in making up the color of the given pixel, and i ¼
1; . . . ; k. With all the sc’s for each pixel, we obtain the repre-
sentation Sc 2 Rm�n�k for the entire image, where the ith
slice (or plane) of the representation, Sfig

c 2 Rm�n, indicates
the proportions of the ith color basis, di, for all the pixels in
the image. Based on the physical properties of the propor-
tions, the non-negative and sum-to-one constraints are
enforced on the representation Sc to extract the desired color
bases. With such settings, similar contexts, although scatter
across the image in disjoint locations, would have similar
representations, thus the scheme is able to capture the non-
local context-correlated information by nature.

The goal of the photorealistic style transfer is to transfer
the colors of the content image to that of the style image. To

find the potential transfer without structure distortion, we
enforce the color bases of the image pair Dc and Ds to have
an affine relationship. As analyzed in Section 1, by further
enforcing the representations to be sparse, only the domi-
nant color bases (e.g., d2 in Fig. 3) with larger representa-
tions (e.g., s2 in Fig. 3) would be transferred effectively in
the global affine transfer. On the other hand, since different
objects or parts consist of different dominant color bases,
the extracted representations are context-sensitive with dis-
criminative capacity, i.e., the objects or parts with different
colors can be easily identified by their representations. To
transfer the correct colors for different contexts, the repre-
sentations between the content and style images are
matched through mutual information. In the next section,
we elaborate on how these constraints are enforced to real-
ize the proposed photorealistic style transfer.

4 PROPOSED METHOD

We propose a non-local representation based mutual affine-
transfer network (NL-MAT) architecture that mainly con-
sists of three unique structures: 1) a shared stick-breaking
encoder for the decoupling of non-local representations and
color information of both the content and style images, 2) a
sparse entropy function with affine-transfer decoder for the
local style transfer in a global-consistent fashion, and 3) a
mutual discriminative network to enforce the correspon-
dence of context-sensitive representations with statistical
matching between the content-style image pair. The stylized
image is generated by performing both the color transfer
with bases, as well as statistic matching on the correspond-
ing representations with WCT. The unique architecture is
shown in Fig. 4.

4.1 Overview of Network Architecture

As shown in Fig. 4, the inputs of the network are the content
and style images G ¼ fIc; Isg with l channels (l ¼ 3 for RGB
color images), and the outputs of the network are their
reconstructed images Ĝ ¼ fÎc; Îsg. The network decomposes
both the content image Ic and the style image Is by learning
a shared encoder structure, Ef, and an affine-transfer
decoder structure, Dc. The representation domain in the
hidden layer is denoted as S ¼ fSc; Ssg. The encoder of the
network, Ef : G ! S, maps the input data to high-dimen-
sional representations (latent variables on the hidden layer),
i.e., pfðSjGÞ, and the affine transfer decoder, Dc : S ! Ĝ,
reconstructs the images from the representations, i.e.,
pcðĜjSÞ. The representation S contains the coefficients that

Fig. 3. Dictionary-based image decomposition. Note: The darker the
shades, the larger the proportions.

Fig. 4. Flowchart of the proposed NL-MAT.
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reflect the local contribution of different color bases, and the
weights of the decoders T tðBuÞ and T kðBuÞ [to be explained
in Eqs. (4) and (5)] serve as color bases Dc and Ds in Eqs. (1)
and (2), respectively. The representation layer is built with
the stick-breaking structure to naturally enforce the non-
negative and sum-to-one physical properties of the propor-
tions. This will be further elaborated in Section 4.2.

To encourage local style transfer, the sparsity constraint
defined by the entropy function LHðfÞ is applied to the
representation domain. Both the inputs, Ic; Is, and the repre-
sentations, Sc; Ss, are fed into the mutual discriminator T w

with weights w to enforce the context correspondence
between Sc and Ss for a context-correspondence style trans-
fer. The network is constructed with only fully connected
layers, which are optimized according to the reconstruction
error and regularized by the physical constraints incorpo-
rated. This will be further elaborated in Section 4.3.

In the stylization procedure, as shown in the lower-right
part of Fig. 4, the distribution of Sc is matched with that of Ss

using the whitening and coloring transformation (WCT) [5].
The transferred Ssc is then fed into the style’s affine-transfer
decoder T kðBuÞ, to generate the stylized image Ics. Note that
the dashed lines in Fig. 4 show the path of back-propagation
whichwill be further elaborated in Section 4.4.

4.2 Non-Local Representation and Color
Information Decoupling

As elaborated in Section 3, both the content and style images
can be decoupled to the representations (indicating propor-
tion coefficients ) and color bases (indicating color composi-
tion). However, for different images, such representations
or color bases have diverse statistic distributions. To facili-
tate the style transfer, we construct a network with a shared
stick-breaking encoder for the extraction of representations,
and an affine-transfer decoder carrying transferred color
information. Since the arrangement of adjacent pixels are
untouched, this decoupling mechanism effectively pre-
serves spatial/structural distribution of the content image
while performing color transfer based on the style image.
The detailed structure is shown in Fig. 5.

4.2.1 Representation Extraction With Shared Stick-

Breaking Encoder

As discussed in Section 3, pixels in natural images can be
represented as a linear combination of a set of color bases
with the coefficients satisfying two physical constraints, i.e.,
sum-to-one and non-negativity. In order to guarantee the
constraints are met, in the network design, we adopt a
shared stick-breaking encoder to naturally incorporate the

physical constraints. The detailed network structure of the
shared stick-breaking encoder is shown in the left part of
Fig. 5, where each rectangle block denotes a fully-connected
layer with neurons.

The stick-breaking process can be illustrated as breaking a
unit-length stick into k pieces, where the length of each piece
follows the Dirichlet distribution [21]. Samples collected from
the Dirichlet distribution naturally satisfy the sum-to-one and
non-negativity constraints. Here, we follow the work of [22],
[23], which draw the samples of representation S from the
Kumaraswamy distribution [24]. Assuming that the row vec-
tor of representations for a single pixel is denoted as s! ¼
fsig1�i�k, we have 0 � si � 1, and

Pk
i¼1 si ¼ 1, where k is the

number of color bases. Each variable si can be defined as

si ¼
v1 for i ¼ 1
vi
Q

t< ið1� vtÞ for i > 1;

�
(3)

where vi � 1� ð1� u
1
bi
i Þ is drawn from the inverse transform

of the Kumaraswamy distribution. Both parameters ui and bi

are learned through the network for each row vector, as illus-
trated in Fig. 5. Since bi > 0, a softplus is adopted as the acti-
vation function [25] at the bb layer. Similarly, a sigmoid [26] is
used to map u into the (0, 1) range at the u layer. The input of
the encoder has three neurons carrying the color information
of the RGB channels of each pixel in the images, and it is
densely connected to all the subsequent layers by stacking the
layers together to increase the representation power of the net-
work, as shown in the left block of Fig. 5. More details are
described in Section 1 of the supplementary file, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/TPAMI.2021.3095948.

4.2.2 Color Information Extraction with Affine-Transfer

Decoder

As analyzed in Sections 1 and 3, to transfer the colors of the
content image to those of the style image without structure
distortion, we enforce the color bases of the content image,
Dc, and the style image, Ds, to hold an affine relationship
with the proposed affine transfer decoder. Such decoder not
only carries the color information of both images but also
their transfer information. The network structure of the
affine-transfer decoder is shown in the right part of Fig. 5.

The transfer between the color bases could be modeled as
Ds ¼ aDc þ b. To improve the flexibility and the representa-
tive power of the network so as to facilitate decoupling,
instead of relating Dc and Ds with an affine transformation
modeled by a and b, we express Dc and Ds as affine trans-
formation of a shared basis weights Bu, with T tðBuÞ and
T kðBuÞ, respectively, as

T tðBuÞ ¼ atBu þ bt (4)

T kðBuÞ ¼ akBu þ bk; (5)

where Bu, at , bt and ak, bk are the network structure con-
sisting of weights fu; t; kg. T tðBuÞ and T kðBuÞ correspond to
Dc and Ds in Eq. (1) and Eq. (2), respectively, and share the
same basis weights Bu. The bases of the content and style

Fig. 5. Network structure of the shared stick-breaking encoder and the
affine-transfer decoder.
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images still hold an affine relationship T tðBuÞ ¼ aT kðBuÞ þ
b, where

a ¼ aka
�1
t (6)

b ¼ bk � aka
�1
t bt; (7)

In this way, both the color information of the contentDc and
style images Ds and their transfer information fa;bg are
encoded into the network.

With the stick-breaking encoder and the affine-transfer
decoder, the proposed scheme is able to decouple the non-local
representations and their color bases of both the content and
style images successfully. Since the color bases are shared for
the entire image, the representations are context-correlated,
enabling the capture of the non-local similarities in the image.

4.3 Context-Correspondence Local Style Transfer

4.3.1 Local Style Transfer With Entropy Function

For each context, its representation, extracted by the encoder of
the network, indicates the proportion of each color basis in
making up the given context. To enforce the local style transfer,
we encourage the representations to be sparse, such that each
context is mainly constructed by a few dominant color bases
determined by the corresponding representations. From color
transformation perspective, the color transfer for each context
is mainly related to a few dominant color bases with large rep-
resentations. In this way, we are able to perform local style
transfer smoothly in a global consistent fashion due to the non-
local characteristic of the representation scheme. With sparse
constraint, the representation itself is more discriminative.
That is, the contextswith different colors are easier to be distin-
guished. From this perspective, we say that the proposed non-
local representation scheme is context-sensitive that would
enable local style transfer.

The traditional widely used l1 regularization or Kullback-
Leibler divergence [27] regularizes the sparsity of the net-
work by reducing the summation of the representations.
However, they cannot be used here to measure the sparsity
as the representations are equal to one almost surely, due to
the stick-breaking structure. Instead, we adopt the normalized

entropy function [28], defined in Eq. (8), which decreases
monotonically when the data become sparse. For example, if
the representation for the ith pixel has two dimensions (i.e.,
two color bases) with s1 þ s2 ¼ 1, the local minimum only
occurs at the boundaries of the quadrants, i.e., either s1 or s2 is
zero. This nice property guarantees the sparsity of arbitrary
data even under the condition that the data need to sum-to-
one.

Hpðs!Þ ¼ �
Xnum
i¼1

ksi!kp

ksi!kpp
log

ksi!kp

ksi!kpp
; (8)

In Eq. (8), num denotes the total number of pixels of the
image. For the content image num ¼ m� n, and for the
style image, num ¼ M �N . We choose p ¼ 1 for efficiency.
The objective function for sparse loss can then be defined as

LHðfÞ ¼ H1ðEfðIcÞÞ þ H1ðEfðIsÞÞ: (9)

Let’s examine a toy example for an intuitive illustration of
the effectiveness of the proposed representation scheme.
Fig. 6 shows a pair of content-style images and the representa-
tion slices of the content and the style images, respectively.
Note that each representation slice corresponds to the coeffi-
cients of a certain color basis in constructing the original con-
tent/style image at each spatial location; therefore, the
representation slice related to a color basis is an image itself
with pixel values ranging from 0 to 1. Take the content image
as an example, Figs. 6b, 6c, 6d, and 6e show the representation
slices of the first four color bases, respectively.We can observe
that, the dominant color basis of the sky is the first color basis
because the sky is mostly highlighted in the first representa-
tion slice Sf1g

c , i.e., the proportion value of the first color basis
is higher for the “sky” object than for other objects in the
image, as shown in Fig. 6b. Similarly, the dominant color basis
of the tree is the third color basis, as shown in Fig. 6d. This
simple example clearly illustrates that the proposed scheme is
able to capture the non-local and context-sensitive representa-
tions, where objects (or parts) with different colors are able to
be differentiated by such representations. When we transfer
the representations of the entire image, different components

Fig. 6. The representations extracted with NL-MAT from the content image (top) and style image (bottom). Ten color bases are assumed and the rep-
resentations of the top four most contributing color bases are shown. Brighter color indicates higher proportion (or coefficient) value. Columns 2–5
show the representation slices of the content (top) and style (bottom) images corresponding to the proportions of their corresponding color bases.
With the sparsity constraint, different objects have different dominant color bases, thus the representation is context-sensitive. With the mutual dis-
criminative network, the extracted representations of the content and style images are encouraged to be matched with each other, i.e., tree-to-tree,
sky-to-sky.

QU ETAL.: NON-LOCAL REPRESENTATION BASED MUTUAL AFFINE-TRANSFER NETWORK FOR PHOTOREALISTIC STYLIZATION 7051

Authorized licensed use limited to: Beijing Normal University. Downloaded on February 27,2023 at 06:10:28 UTC from IEEE Xplore.  Restrictions apply. 



of the transfer function would be activated according to the
representations of the context, which means the network is
able to perform diverse local style transfer in a global consis-
tency fashion. That is, contexts that share the same color will
be transferred in the same way even though they are not spa-
tially adjacent.

4.3.2 Context-Sensitive Transfer Through Mutual

Discriminative Network

In addition to the ability of extracting context-sensitive repre-
sentations and performing local transfer in a global-consistent
fashion, for a context-correspondence (or semantically accu-
rate) color transfer, the proposed scheme also needs to find
the correct color matching according to the context correspon-
dence of the objects. This will be achieved by the representa-
tionmatching.

With the affine-transfer decoder, the affine relationship is
learnt between the color bases of the content image, Dc, and
the color bases of the style image, Ds, as shown in Fig. 7. As
analyzed in the previous section, with the sparse constraint,
each context is mainly constructed by a few dominant color
bases with large representation values. Let us go back to the
same toy example as shown in Figs. 6 and 7. For the content
image, the representation indicates the third color basis is the
dominant basis of the tree, denoted as dtree

c . dtree
c is transferred

to the third color basis of the style image as shown in Fig. 7.
For a context-correspondence transfer, the third color basis of
the style image should also be the dominant basis of the tree,
dtree
s , i.e., the proportion of dtree

s is higher for the “tree” object
than for other objects in the third representation slice Sf3g

s as
shown in Fig. 6i. This would then imply that the representa-
tions of the content and style image should be matched. Let’s
take anothermore intuitive example: Saywe take two pictures
of the same object under two different lighting conditions, the
color of the object would then look different, so do the corre-
sponding color bases. However, how the color bases are com-
bined to form the color of the object, i.e., the proportions,
would remain the same for the object.

In essence, to perform semantically-accurate color trans-
fer, the distributions of the representations extracted from
the same context should be similar in both the content and
style images. Such correspondence can be encouraged by
maximizing the dependency between Sc and Ss. Since our
encoder is non-linear, traditional constraints like correlation
may not catch such dependency. Instead, we maximize the
dependency by maximizing their mutual information.

We propose a mutual discriminative network based on
mutual information to enforce the correspondence of the
extracted representations. The network structure is shown in
Fig. 8.

Mutual information (MI) has been widely used for multi-
modality registrations [29], [30]. It is a Shannon-entropy
based measurement of mutual independence between two

random variables, e.g., Sc and Ss. The mutual information
IðSc;SsÞ measures how much uncertainty of one variable
(Sc or Ss) is reduced given the other variable (Ss or Sc).
Mathematically, it is defined as

IðSc;SsÞ ¼ HðScÞ �HðScjSsÞ

¼
Z
Sc�Ss

log
PScSs

PSc 	 PSs

dPScSs ;
(10)

where H indicates the Shannon entropy, HðScjSsÞ is the con-
ditional entropy of Sc given Ss. PScSs is the joint probability
distribution, and PSc 	 PSs denotes the product ofmarginals.

In our problem, since Sc ¼ EfðIcÞ and Ss ¼ EfðIsÞ, their
MI can also be expressed as IðEfðIcÞ;EfðIsÞÞ. However, it is
difficult to maximize their dependency by maximizing their
MI through MI estimator directly, because the resolution of
the content and style images might be different. Instead, we
maximize the average MI between the representations and
their own inputs, i.e., IðIc;EfðIcÞÞ and IðIs;EfðIsÞÞ, simulta-
neously, through the same discriminative network T w. Note
that, in the representation space, Sc and Ss are context-sensi-
tive, so their distributions are related to the distributions of
objects in their images, not their color information. When
we maximize the MI with the same T w, the dependency
between Ic and EfðIcÞ would be similar to that of Is and
EfðIsÞ, i.e., the slices of EfðIcÞ and EfðIsÞ, which carry the
context distribution information, are encouraged to be simi-
lar if they possess similar objects.

Let’s take IðIc;EfðIcÞÞ as an example. It is equivalent to
Kullback-Leibler (KL) divergence [31] between the joint dis-
tribution PIcEfðIcÞ and the product of the marginals PIc 	
PEfðIcÞ. Such MI can be maximized by maximizing the KL-
divergence’s lower bound based on the Donsker-Varadhan
(DV) representation [32]. Since we do not need to calculate
the exact MI, we introduce an alternative lower bound
based on Jensen-Shannon which works more stable than
DV-based objective function [33].

The mutual discriminative network, Iw : G � S ! R, is
constructed by fully-connected layers with weights w. The
raw image and its extracted representations are stacked and
fed into the network as shown in Fig. 8.

The MI estimator can be defined as

If;wðIc;EfðIcÞÞ ¼ EP½�spð�T f;wðIc;EfðIcÞÞÞ�
� EP�~P½spðT f;wðI 0c;EfðIcÞÞÞ�;

(11)

where spðxÞ ¼ log ð1þ exÞ and I 0c is an input sampled from
~P ¼ P by randomly shuffling the input data. The term carry-
ing the shuffling data is called the negative sample. Combined
with theMI of Is, our objective function is defined as

Fig. 7. The affine relationship between the bases of the content image
and the style image with representation matching, i.e.,Ds ¼ aDc þ b.

Fig. 8. Structure of the mutual discriminative network.
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LIðf; wÞ ¼ If;wðIc;EfðIcÞÞ þ If;wðIs;EfðIsÞÞ (12)

BymaximizingLIðf; wÞ, we could extract optimized repre-
sentations Sc and Ss that can best represent Ic and Is, and the
slices of Sc and Ss are ordered in a similar way as shown in
Fig. 6. For example, the third slice of Sc carries the spatial dis-
tribution information of the tree, and the third slice of Ss also
carries the distribution of the tree object in the style image.
Hence Sc and Ss have been encouraged to be matched seman-
tically, achieving context-sensitive representation.

4.4 Style Transfer and Implementation Details

4.4.1 Style Transfer With WCT and Affine-Transfer

Decoder

As analyzed in Section 4.3, the learned color bases embed
the transfer information between the content and style
images, thus we can achieve preliminary style transfer
results by feeding the representation of the content image to
the affine-transfer decoder of the style image.

In the ideal case, the distributions of the matched repre-
sentations Sc and Ss would be similar for the same type of
context. Depending on the similarity between the content
and the style images, the matching, however, might not be
perfect due to content differences between the content and
the style images. In order to further match the statistic char-
acteristics of Sc to that of Ss, we adopt the classical signal
whitening and coloring transforms (WCTs) approach [5],
which changes the covariance of Sc to that of Ss. The toy
example in Fig. 15 demonstrates that WCT could move the
representations in Sc to the matched representations in Ss

effectively. Then the transferred representations Scs is fed
into the style decoder to generate the stylization image Ics.
The style transfer procedure is illustrated in Fig. 9, and it
will be further demonstrated using a proposed visualization
mechanism in Section 5.3.

4.4.2 Implementation Details

In order to extract better color bases, we adopt the l2;1 norm
[34] instead of the traditional l2 norm for reconstruction
loss. The objective function for l2;1 loss is defined as

L2;1ðf;cÞ ¼kDcðEfðIcÞÞ � Ick2;1
þ kDcðEfðIsÞÞ � Isk2;1;

(13)

where kXk2;1 ¼
Pm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 X

2
i;j

q
. l2;1 can be treated as first

applying l2 norm on each pixel, then applying l1 norm to
enforce the reconstruction errors on the entire image to be
sparse. In this way, it will enforce most of the reconstruction
errors of individual pixels to be zero. That is, the network is
designed to learn individual pixels as accurate as possible,

which would extract better color bases to further facilitate
the style transfer.

The objective function of the proposed network architec-
ture can then be expressed as:

Lðf;c; wÞ ¼ L2;1ðf;cÞ þ aLHðfÞ � �LIðf; wÞ; (14)

where a and � are the parameters that balance the trade-off
among the reconstruction error, the sparse loss, and the neg-
ative of mutual information. The network is optimized with
back-propagation as illustrated in Fig. 4 with red-dashed
lines. More details of the WCT transfer and network struc-
ture are described in Section 1 of the supplementary file,
available online.

5 EXPERIMENTAL RESULTS

The stylization results of the proposed NL-MAT on various
types of photos in two datasets from [1] and [12] are com-
pared with those from the state-of-the-art methods, includ-
ing two patch-similarity based methods [10], [11], four
context-based methods [1], [3], [6], [9], and PhotoNAS [12].
For the methods we compare to, we either use the published
results provided by the authors or generate the results from
published pre-trained models. Both visual comparisons
(Section 5.1) and user study results (Section 5.2) are pro-
vided to evaluate the effectiveness of the proposed method
both qualitatively and quantitatively. Experiments are also
conducted to show the important role of the non-local repre-
sentation scheme (Section 5.3) as well as its contributing
components, i.e., the affine-transfer decoder (Section 5.4)
and the mutual-discriminative network (Section 5.5). The
effect of the number of color bases is discussed in Section 5.6.
Computational efficiency and some failure cases are dis-
cussed and analyzed in Sections 2 and 3 of the supplemen-
tary file, available online, respectively.

5.1 Visual Comparison

Fig. 10 shows visual results of the proposed method as
compared to the patch-based photorealistic stylization
methods, i.e., Liao et al. [10] and He et al. [11]. We can
observe that patch-based methods are able to perform local
style transfer on the content image successfully, because
they could find the correspondence between the image pairs
according to the patch similarity measured with the help of
the pre-trained VGG-net. However, although post-process-
ing is applied to smooth the reconstructed result, Liao et al.
[10] still suffers from abrupt color changes within or across
objects, as shown in Fig. 10. For example, the mountain in
the 2nd row, the building in the 3rd row, the background in
the 4th four, the floor in the 6th row, and the tree in the 7th
row do not have smooth color transitions. This is because
patch-based methods mainly focus on style transfer in the
local area while neglecting the global consistency within or
across objects. He et al. [11] transfers style better than Liao
et al. [10] because it optimizes a local linear model for color
transfer satisfying both local and global constraints. How-
ever, due to patch-similarity, the style of one patch from
one object may be matched to similar patches belonging to
other objects. For example, in the 4th row, the background
of the car is transferred with the same color as the car, and

Fig. 9. Flowchart of the style transfer procedure.
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its windshield has abrupt color changes. In the 6th row, the
floor is transferred with the same color of the furniture. In the
8th row, the sky is transferred with the color of the tree. As a
comparison, the proposedmethod is able to generate photore-
alistic results without color inconsistency caused by patch
mismatch. This is largely due to the realization of the pro-
posed representations scheme, which can capture the non-
local representations with matched context information that
facilitates the local style transfer with global consistency.

Figs. 11 and 12 show visual results of the proposedmethod
as compared to the context-based photorealistic stylization
methods, i.e., Luan et al. [1], Li et al. [3], LST [9], and
WCT2 [6]. The generated results from Luan et al. [1] and
LST [9] can preserve the spatial structure well with the local
color affine transfer constraint/filter. However, they tend to
cause color inconsistency, especially in homogeneous areas,
as shown in the 3rd column of Figs. 11 and 12. With the post-
processing smoothing step, Li et al. [3] generates better
results. However, the results have some blurry artifacts

introduced by the post-processing. WCT2 [6] produces
smoother resultswith less artifacts due to the adoptedwavelet
module, as shown in the 4th column of Fig. 12. Thesemethods
can successfully transfer the color style to the content image in
most scenarios, based on the pre-trained segmentationmodel.
However, they tend to fail when the contexts are mismatched
or not recognized by the pre-trained segmentationmodel. For
example, observe the style-content image pair in the 3rd to the
last row of Fig. 11, where the red umbrella is in the semantic
label of the style image but not in that of the content image,
the red color is transferred, by both Luan et al. [1] and Li et al.
[3] methods, to the content image at around the same spatial
location as it appears in the style image even though semanti-
cally, there is no additional object at that location in the con-
tent image. Another example is shown in the 2nd row of
Fig. 12, where the shadow of the flowers cannot be recognized
by the pre-trainedmodel, thus the methods fail to transfer the
correct style. In addition to the problem caused by pre-trained
segmentation model, all these methods still exhibit abrupt

Fig. 10. Visual comparison with patch-based photorealistic methods. 1st column: reference style image. 2nd column: content image. 3rd column:
Liao et al. [10]. 4th column: He et al. [11]. 5th column: proposed NL-MAT.
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color changes between different semantic regions. This is
because theyperform region-based transferwithin the seman-
tic regions of the content and style imageswithout adequately
considering the global consistency.

On the contrary, the images generated by the proposed
method can not only transfer the color style correctly but also
preserve the natural color transitions among neighborhood
pixels, especially the transitions between different contexts.
The key contribution to the performance gain is that, instead
of relying on additional segmentation models, the proposed
representation scheme is able to extract matched context-sen-
sitive non-local representations based on the characteristics of
the context with the sparse constraint andmutual-discrimina-
tive network. With this scheme, we are able to transfer the
style locally with WCT and affine-transfer decoder in a glob-
ally consistent fashion to produce more photorealistic photos
with desired styles.

To further evaluate the capability of the proposed scheme
in conducting local transfer with global consistency, we con-
duct experiments on high-resolution images and compare the
resultswith that of the state-of-the-artmethodPhotoNAS [12].
From Fig. 13, we can observe that PhotoNAS is able to pre-
serve the consistency very well in most cases, because it per-
forms the stylization globally on stacked multi-level features
extracted from pre-trained models. However, it tends to
ignore the context information thus could not transfer dra-
matic color changeswithin local areas, as shown in the 3rd col-
umn of Fig. 13. On the other hand, the proposed scheme can

not only perform local style transfer according to their con-
texts, but also preserve the color consistency of the images.
Thus it is able to generate more photorealistic images with
very fine details.

5.2 User Study

Since the evaluation of photorealistic style transfer tends to be
subjective, we conduct two user studies to further validate the
proposed method quantitatively. One study asks users to
select the result that better carries the style of the reference
style image. The other one asks users to select the result that
looks more like a real photo without artifacts. We choose 30
images of different scenes from the benchmark dataset offered
by Luan et al. [1] and PhotoNAS [12] and collect responses
from Amazon Mechanical Turk (AMT) platform for both
studies. The proposed method is compared with photorealis-
tic stylization methods including patch-based (Liao et al. [10]
and He et al. [11]), context-based (Luan et al. [1], Li et al. [3],
LST [9], WCT2 [6]), and PhotoNAS [12]. For each study, there
are totally 210 questions. For each question, we show the
AMTworkers a pair of content and style images and the result
of our method and one other method. Each question is
answered by 30 different workers. Thus the evaluation is
based on 6,300 responses for each study. The feedback is sum-
marized in Table 2. We can observe that, compared to the
other photorealistic transfer methods, our method can not
only stylize the image well but also generate more photoreal-
istic images. Note that our method only need one pair of data,

Fig. 11. Visual comparison with context-based photorealistic methods. 1st column: reference style image. 2nd column: content image. 3rd column:
Luan et al. [1]. 4th column: Li et al. [3]. 5th column: proposed NL-MAT.
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Fig. 12. Visual comparison with context-based photorealistic methods. 1st column: reference style image. 2nd column: content image. 3rd column:
LST et al. [9]. 4th column: WCT2 et al. [6]. 5th column: proposed NL-MAT.

Fig. 13. Visual comparison with PhotoNAS. 1st column: reference style image. 2nd column: content image. 3rd column: PhotoNAS [12]. 4th column:
proposed NL-MAT.
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i.e., the content and style image without any additional seg-
mentation or classificationmodels, to generate such results.

5.3 Effect of Non-Local Representation Scheme

The key to the success of NL-MAT lies in the capability of
decoupling the color bases from the matched context-sensitive
non-local representations, where the discriminative capacity
of the representations reflects the effectiveness of the local style
transfer and the correct representation matching indicates the
correct color transfer. To better demonstrate the capability of
the proposed scheme, we develop a representation visualiza-
tion mechanism to show the reasoning of the scheme and how
the representations arematched after decoupling.

5.3.1 Visualization Mechanism for Representation

As described in Section 4, the representation vector of a single
pixel, s! ¼ fsig1�i�k indicates the proportion of each of the k
color basis in making up the given pixel. By introducing the
sparse constraint, the representations are more discrimina-
tive, which allows for diverse local transfer in a global consis-
tent fashion. Since the transfer of each context is mainly
determined by dominant color bases that have larger repre-
sentation values, the visualization mechanism is designed
based on such dominant bases, which is referred to as the
“major color index map (MCIM).” The MCIM of each image
is constructed by the “index” of the largest representation of
each pixel, which indicates the most important color basis for
that given pixel.Mathematically, it can be expressed as

t ¼ argmax
j

fs1; . . . ; sj; . . . ; skg; (15)

where k is the number of color bases. With the indices of the
largest representation of all the pixels, we are able to define
the MCIM of the entire image.

The MCIMs of toy examples are shown in Fig. 14, where
each pseudo-color indicates a single index. Note that, since
some objects may have more than one major color basis, the
index map only roughly segments the image. Nonetheless,
MCIM allows us to perform in-depth visual inspection on how
the proposed method works in different scenarios. From
Fig. 14, we can observe that, the extracted representations from
similar objects or parts in the image pairs are context-sensitive
and matched in different scenarios, even if the matched
objects/parts are with different colors. This is the main reason
whyNL-MAT can realize local transfer while preserving global
consistency, as shown in Figs. 10, 11, 12, and 13. It is worth

mentioning that, the proposed NL-MAT is unsupervised and
does not need any additional models or steps for segmentation
to perform photorealistic stylization. As a comparison, even
though the segmentation method adopted by Luan et al. [1] is
trained in a supervised way, it may not handle unknown
objects or objects with complex components as shown in
Fig. 14, which may affect the stylization performance.

5.3.2 Reasoning of Scheme

Since the style transfer problem can be explained as map-
ping the distribution of the content image to that of the style
image [8], the stylized result should have similar distribu-
tion to that of the style image. To further illustrate why the
proposed scheme works, we draw the distributions of inter-
mediate results as well as each context, by way of MCIM, to
visualize the effect of stylization in Fig. 15.

The distributions are visualized by projecting the raw
image (Ic, Is) or representations (Sc, Ss) onto a two-dimen-
sional space using the singular value decomposition (SVD)
method. Fig. 15g shows the distributions of both the raw con-
tent and style images before stylization. The projected pixels
are colored according to the contexts identified by MCIM,
with circles indicating those from the content image and trian-
gles for those from the style image. For example, the blue and
red circles denote the pixels from the mountain area (Ic C1)
and the sky area (Ic C3) of the content image, respectively. We
can observe from Fig. 15g that, the blue circles (Ic C1) and
blue triangles (Is C1), although indicating the same context
(i.e., the mountain), belong to the two different blue clusters.
This indicates that the distributions of the raw image pair are
quite different from each other. Fig. 15h presents the distribu-
tions of the representations Sc and Ss for the content and style
images, respectively. We can observe that the same context of
the Sc and Ss, e.g., the blue circles (Sc C1) and blue triangles
(Ss C1), overlap into one blue cluster. This indicates that when
we project the raw image onto the representation space with
the stick-breaking encoder, affine-transfer decoder, sparse
constraint and mutual discriminative network, the represen-
tations of the same context in the content and style images
reveal similar characteristics. This is in consistent with the
previous analysis and thematching contexts in theMCIM.

By feeding the extracted representations Sc to the affine-
transfer decoder, we can achieve preliminary stylized result
I 0cs as shown in Fig. 15e. From Fig. 15j, we can observe that
the distribution of I 0cs is closer to that of the style image, as
compared to that of the content image. Nonetheless, there
are still two apparent blue clusters in the distribution plot.
To further match the representations, we conduct WCT on
Sc and show their distributions in Fig. 15i. We observe that
the same contexts of Sc move closer to that of the Ss, pre-
senting one dense blue cluster. Therefore, with the WCT on
Sc, the distribution of the generated result Ics (e.g., the blue
circle cluster) is quite similar to that of the style image Is
(e.g., the blue triangle cluster) as shown in Fig. 15k. As a
result, the transferred image shown in Fig. 15f carries the
style of Fig. 15a better than I 0cs.

Due to the complexity of real applications, the context of
the content and style images may not be matched perfectly.
For example, from Fig. 15d, the content MCIM shows a con-
text area marked in green that does not have any matching

TABLE 2
User Study

Methods Better Stylization Photorealistic

Liao et al. [10]/ours 43.76%/56.24% 39.44%/60.56%
He et al. [11]/ours 37.67%/62.33% 31.89%/68.11%

Luan et al. [1]/ours 30.33%/69.67% 21.17%/78.83%
Li [3]/ours 32.83%/67.17% 24.0%/76.0%
LST [9]/ours 38.56%/61.44% 31.22%/68.78%
WCT2 [6]/ours 25.74%/74.26% 22.22%/77.78%

PhotoNAS [12]/ours 26.11%/73.89% 21.56%/78.44%

(x%/y% indicates that for each evaluation, x% users think the other method is
better and y% users think the proposed NL-MAT is better.)
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areas in the style MCIM. Nonetheless, from Fig. 15g, we
observe this green area denoted by green circles (Ic C2) is
closer to the red circles indicating the sky (Ic C3). From
Fig. 15h, we see that the extracted representations of C2 (green
circles Sc C2) are also close to that of C3 in the content image
(sky red circles). When WCT is performed on the representa-
tions of C2, the green cluster stay close to that of the C3 of the
style image (red triangle, Is C3). Hence the C2 area of the styl-
ized image looks still natural as shown in Fig. 15f.

5.4 Ablation Study on Affine-Transfer Decoder

One of the contributing factors to the effectiveness of the
non-local representation scheme is the proposed affine-
transfer decoder, which allows the network to learn the
color bases of both the content and style images as well as
the transfer between them. This decoder, along with the
mutual-discriminative network and the sparse constraint,
allows the network to match representations of similar con-
texts regardless of their actual color content.

To demonstrate the importance of the affine-transfer
decoder, we replace it with a generic fully-connected decoder
and show the results in Fig. 16.We observe that, with a shared
generic decoder for both the content and style images, the net-
work could not match the representations of the image pair
well even with the enforced constraints. For example, we can
observe from Fig. 16d that the extracted representations of the

“grass” from the content image, blue circles (Sc C1), are far
away from that of the same context from the style image, red
triangles (Ss C3).This scattered distribution indicates the
extracted representations are not matched well. On the con-
trary, as shown in Fig. 16j, with the affine transfer decoder, the
representations of the “grass” from the content image (blue
circles Sc C1) and the style image (blue triangles Ss C1) are
much closer to each other as compared to the distribution in
Fig. 16d, showing a better match of similar contexts between
the content and style images. Thus, whenWCT is applied, the
distributions of the representations from the affine-transfer
decoder are closer as compared to those from the generic
decoder, as shown in Figs. 16k and 16e, respectively. As a
result, the proposed method is able to obtain more photoreal-
istic image carrying more natural styles as compared to the
onewith the generic decoder.

5.5 Ablation Study on Context-Sensitive Local
Color Transfer

In addition to the affine-transfer decoder evaluated in Sec-
tion 5.4, the two other important components of the proposed
method are the sparse constraint, used to increase the discrim-
inative capacity of local-color transfer, and the mutual dis-
criminative network, used to enforce the representations of
the content and style images to have context correspondence.
To evaluate the contribution of these two components, we

Fig. 14. Major color index map (MCIM) of the decoupled representations from the proposed NL-MAT. The first column of each group shows the con-
tent (top) and style (bottom) images, respectively. The second column of each group shows the segmentation maps of the content and style images
from the method of Luan [1]. The third column of each group shows the MCIM of the content and style images from the proposed method, respec-
tively. Note that the pseudo-colors in the MCIMs are arbitrarily selected to represent the indices of the largest color basis. Thus the color itself is not
important. It is the matching between the content MCIM and the style MCIM that matters.

Fig. 15. Reasoning of the proposed NL-MATusing MCIM and the distribution plots masked by MCIM. The raw images (Ic, Is) and representations (Sc,
Ss) are projected onto a two-dimensional space using SVD. Different colors indicate different context of the MCIM. C# denotes the index of the color
bases for the corresponding context. Circles and triangles denote the pixels or representations belonging to the content and style images, respec-
tively. The distribution of the stylized image is similar to that of the style image with the affine-transfer, and it became closer with WCT. Note that for
each MCIM masked region (or context), we vectorize pixels in that region into a column vector and pick every 1000th element of the vector for display
purpose, so that the density change of the distribution is more easily observed.
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perform ablation study by changing the weight parameters, a
on sparsity constraint and � on mutual information as in
Eq. (14). The evaluation results are demonstrated in Fig. 17.

We can observe that, when both a and � are zero, i.e., no
sparsity or mutual information loss is considered, the pro-
posed method could still generate reasonably good stylized

Fig. 16. The effect of affine-transfer decoder.

Fig. 17. Effects of including the sparsity constraint and the mutual discriminative network by adjusting the parameters a and �, respectively. (b)-(e):
stylized images with � ¼ 0 and a changed from f0; 0:0001; 0:01; 0:1g, respectively. Top: MCIM of the content image. Middle: MCIM of the style image.
Bottom: stylized images. (g)-(j): stylized images with a ¼ 0:01 and � changed from f0:0001; 0:01; 1; 5g. Note mainly the color changes of the tree, sky,
and grass in the stylized image as the parameters are adjusted.
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images with spatial structure well preserved, showing the
effectiveness of the non-local representation. However, the
color was not adequately transferred, as can be seen from the
color of the tree and the grass in Fig. 17b. When we gradually
increase the sparse parameter a, the discriminative capacity is
increased as can be observed from the MCIMs (Figs. 17c, 17d,
and 17e) with more subtle segments. Also with such sparsity,
we observe local colors start to change drastically but with
global consistency. However, since the network does not
encourage the correspondence between the representations of
the content and style images as � ¼ 0, the color may not be
transferred adequately when the representations do not
match. When we increase the parameter � to include the
mutual information loss, the extracted representations are
more correlatedwith each other, resulting in amore photoreal-
istic local style transfer, as shown in Figs. 17g, 17h, 17i, and 17j.
We observe that the color of the trees starts showing the snowy
effect and the color of grass is mostly white. The color transfer
even affects the reflection of the trees in the water, as shown in
Figs. 17i and 17j.

5.6 How to Choose the Number of Color Bases

Generally speaking, to extract accurate color bases, the num-
ber of bases k should be large enough to encompass the differ-
ent contexts so as to reconstruct the RGB images with high
fidelity. Large k also allows more flexible local color transfer
for different contexts. In general, k ¼ 10 works well for both
datasets adopted in this paper. However, if there is less num-
ber of colors in the image pair and the sparse constraint is set
to a small value, e.g., a ¼ 0:001, we find that the stylization is
more effective when k is smaller, as shown in Fig. 18. In this
toy example, the number of colors in the image pair is small,

thus, k ¼ 5 is sufficient to extract a set of effective color bases,
as shown in Fig. 18d. However, as we gradually increase the k
value with a fixed at 0.001, the extracted representations start
losing the discriminative power and the matching between
representations of the content and style images start to deteri-
orate, as shown in Fig. 18f. This is because for images with
only a few different colors, if k is set to a large value, without
effective sparse constraints, it tends to learn duplicated color
bases. Thus, the representations will not be context-sensitive,
which would affect the style transfer. Therefore, in this case,
we can either increase a or decrease k for an effective transfer.
It is worth mentioning that, even with k ¼ 15, the stylized
results from the proposed method is still more effective than
that from the global-basedmethod, as shown in Fig. 18c.

6 CONCLUSION AND FUTURE WORK

To tackle the problem of photorealistic style transfer, we pro-
posed a non-local representation scheme realized with a
mutual affine-transfer network (NL-MAT). To the best of our
knowledge, this work represents the first attempt to address
the photorealistic style transfer problem through a non-local
representation model. The proposed scheme successfully
decouples the image pairs into non-local representations and
color information, with a stick-breaking encoder and an
affine-transfer decoder. By enforcing the sparsity with the
entropy function and representation correspondence with the
mutual discriminative network, the method is able to extract
context-sensitive and matched representations. This largely
facilitates context-correspondent local style transfer in a
global-consistent fashion. Experimental results demonstrated
that the proposed NL-MAT is able to generate photorealistic
photos without abrupt color changes or needing any addi-
tionalmodels for segmentation or classification.

The proposed scheme works well in most scenarios, even
when there are some mismatches between the content and
style images, as discussed in Section 5.3. Nonetheless, NL-
MAT does have its limitations and may fail on some challeng-
ing image pairs. For example, if the distributions of the objects
in the content and style images are verydifferent, it could result
in large semantic mismatching. Another type of typical failure
cases may occur when different semantic contexts in the image
actually possess very similar color. The failure cases are further
discussed in the supplementary file, available online (Section
3). In our futurework,wewill exploit the usage of prior knowl-
edge serving as additional physical constraints to regulate the
learning process and enforce semanticmatching.

ACKNOWLEDGMENTS

The authors would like to thank all the developers of the
evaluated methods who kindly offer their codes or results,
and the anonymous reviewers who have helped them
greatly in improving the quality of this paper. This work
was supported in part by Gonzalez Family Professorship,
and in part by the Beijing Nova Program of Science and
Technology under Grant 191100001119075.

REFERENCES

[1] F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo style
transfer,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 4990–4998.

Fig. 18. Stylized images with different numbers of color bases k with and
small sparse constraint a ¼ 0:001. In (d), (e), and (f), from left to right:
MCIM of the content (left) and style (middle) images, and the resulting
stylized image with the corresponding k value.

7060 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Beijing Normal University. Downloaded on February 27,2023 at 06:10:28 UTC from IEEE Xplore.  Restrictions apply. 



[2] R. Mechrez, E. Shechtman, and L. Zelnik-Manor , “Photorealistic
style transfer with screened poisson equation,” in Proc. Brit.
Mach. Vis. Conf., 2017, pp. 153.1–153.12.

[3] Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, “A closed-form
solution to photorealistic image stylization,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 453–468.

[4] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 2414–2423.

[5] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang,
“Universal style transfer via feature transforms,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 386–396.

[6] J. Yoo, Y. Uh, S. Chun, B. Kang, and J.-W. Ha, “Photorealistic style
transfer via wavelet transforms,” in Proc. IEEE Int. Conf. Comput.
Vis., 2019, pp. 9036–9045.

[7] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color
transfer between images,” IEEE Comput. Graph. Appl., vol. 21,
no. 5, pp. 34–41, Jul./Aug. 2001.

[8] F. Pitie, A. C. Kokaram, and R. Dahyot, “N-dimensional probabil-
ity density function transfer and its application to color transfer,”
in Proc. 10th IEEE Int. Conf. Comput. Vis., 2005, pp. 1434–1439.

[9] X. Li, S. Liu, J. Kautz, and M.-H. Yang, “Learning linear transfor-
mations for fast arbitrary style transfer,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 3809–3817.

[10] J. Liao, Y. Yao, L. Yuan, G. Hua, and S. B. Kang, “Visual attri-
bute transfer through deep image analogy,” ACM Trans.
Graph., vol. 36, no. 4, 2017, Art no. 120.

[11] M. He, J. Liao, D. Chen, L. Yuan, and P. V. Sander, “Progressive
color transfer with dense semantic correspondences,” ACM Trans.
Graph., vol. 38, no. 2, 2019, Art. no. 13.

[12] J. An, H. Xiong, J. Huan, and J. Luo, “Ultrafast photorealistic style
transfer via neural architecture search,” in Proc. AAAI Conf. Artif.
Intell., vol. 34, no. 07, pp. 10443–10450, 2020.

[13] S. Bae, S. Paris, and F. Durand, “Two-scale tone management for pho-
tographic look,” ACM Trans. on Graph., vol. 25, no. 3, pp. 637–645,
2006.

[14] F. Piti�e, A. C. Kokaram, and R. Dahyot, “Automated colour grad-
ing using colour distribution transfer,” Comput. Vis. Image Under-
standing, vol. 107, no. 1/2, pp. 123–137, 2007.

[15] D. Freedman and P. Kisilev, “Object-to-object color transfer: Opti-
mal flows and SMSP transformations,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 287–294.

[16] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-pre-
serving decompositions for multi-scale tone and detail manipula-
tion,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–10, 2008.

[17] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “DeepLab: Semantic image segmentationwith deep convolu-
tional nets, atrous convolution, and fully connected CRFs,” IEEE
Trans. Pattern Anal.Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[18] I. Omer and M. Werman, “Color lines: Image specific color repre-
sentation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2004, pp. 946–953.

[19] P.-Y. Laffont, A. Bousseau, S. Paris, F. Durand, and G. Drettakis,
“Coherent intrinsic images from photo collections,” ACM Trans.
Graph., vol. 31, no. 6, pp. 1–11, 2012.

[20] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-
local sparse models for image restoration,” in Proc. IEEE 12th Int.
Conf. Comput. Vis., 2010, pp. 2272–2279.

[21] J. Sethuraman, “A constructive definition of dirichlet priors,” Sta-
tistica Sinica, vol. 4, pp. 639–650, 1994.

[22] E. Nalisnick and P. Smyth, “Deep generative models with stick-
breaking priors,” in Proc. 5th Int. Conf. Learn. Representations, 2017.

[23] Y. Qu, H. Qi, and C. Kwan, “Unsupervised sparse Dirichlet-net
for hyperspectral image super-resolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2511–2520.

[24] P. Kumaraswamy, “A generalized probability density function for
double-bounded random processes,” J. Hydrol., vol. 46, no. 1/2,
pp. 79–88, 1980.

[25] C. Dugas, Y. Bengio, F. B�elisle, C. Nadeau, and R. Garcia,
“Incorporating second-order functional knowledge for better option
pricing,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2001, pp. 472–478.

[26] J. Han and C. Moraga, “The influence of the sigmoid function
parameters on the speed of backpropagation learning,” in Proc.
Int. Workshop Artif. Neural Netw. Natural Artif. Neural Comput.,
1995, pp. 195–201.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org

[28] S. Huang and T. D. Tran, “Sparse signal recovery via generalized
entropy functions minimization,” IEEE Trans. Signal Proc., vol. 67,
no. 5, pp. 1322–1337, 2019.

[29] B. Zitova and J. Flusser, “Image registration methods: A survey,”
Image Vis. Comput., vol. 21, no. 11, pp. 977–1000, 2003.

[30] J. Woo, M. Stone, and J. L. Prince, “Multimodal registration via
mutual information incorporating geometric and spatial context,”
IEEE Trans. Image Process., vol. 24, no. 2, pp. 757–769, Feb. 2015.

[31] M. I. Belghazi, et al., “Mine: Mutual information neural
estimation,” Proc. 35th Int. Conf. Mach. Learn., Mach. Learn. Res.,
2018, vol. 80, pp. 531–540. [Online]. Available: http://
proceedings.mlr.press/v80/belghazi18a.html

[32] M. D. Donsker and S. S. Varadhan, “Asymptotic evaluation of cer-
tain markov process expectations for large time. IV,” Commun.
Pure Appl. Math., vol. 36, no. 2, pp. 183–212, 1983.

[33] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon , K. Grewal, A.
Trischler, and Y. Bengio, “Learning deep representations by mutual
information estimation and maximization,” in Proc. Int. Conf. Learn.
Representations, 2018.

[34] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust
feature selection via joint 2, 1-norms minimization,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2010, pp. 1813–1821.

YingQu (Member, IEEE) received the BS degree in
automatics and the MS degree in pattern recogni-
tion & artificial intelligence from Northeastern Uni-
versity, Shenyang, China, in 2008 and 2010,
respectively, and the PhD degree in computer engi-
neering from the University of Tennessee, Knoxville.
She is currently working as a research associate
with the Department of Electrical Engineering and
Computer Science, University of Tennessee, Knox-
ville. She was the recipient of the IEEE MIKIO
Takagi Student Prize (best student paper awards) at

the International Geoscience and Remote Sensing Symposium (IGARSS)
in 2016. Her research interests include computer vision, remote sensing
and artificial intelligence.

Zhenzhou Shao (IEEE Member) received the BE
and ME degrees in the Department of Information
Engineering at Northeastern University, China, in
2007 and 2009, respectively, and the PhD degree in
mechanical engineering at the University of Tennes-
see, Knoxville, in 2013. He is currently an associate
professor with the College of Information Engineer-
ing at Capital Normal University, China. His
research interests include computer vision, machine
learning and human-robot interaction.

Hairong Qi (Fellow, IEEE) received the BS and MS
degrees in computer science from Northern Jiao-
Tong University, Beijing, China in 1992 and 1995,
respectively, and the PhD degree in computer engi-
neering from North Carolina State University,
Raleigh, in 1999. She is currently the Gonzalez
Family professor with the Department of Electrical
Engineering and Computer Science, University of
Tennessee, Knoxville. Her current research interests
include advanced imaging and collaborative proc-
essing in resource-constrained distributed environ-

ment, hyperspectral image analysis, and automatic target recognition. Her
research is supported by National Science Foundation (NSF), DARPA,
Office of Naval Research (ONR), Department of Homeland Security (DHS),
U.S. Army Space and Missile Defense Command, and U.S. Army Medical
Research and Materiel Command. She is the recipient of the NSF CAREER
Award. She also received the best paper awards at the 18th International
Conference on Pattern Recognition (ICPR) in 2006, the 3rd ACM/IEEE Inter-
national Conference on Distributed Smart Cameras (ICDSC) in 2009, and
IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution
in Remote Sensor (WHISPERS) in 2015. She is awarded the Highest Impact
Paper from the IEEEGeoscience and Remote Sensing Society in 2012.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

QU ETAL.: NON-LOCAL REPRESENTATION BASED MUTUAL AFFINE-TRANSFER NETWORK FOR PHOTOREALISTIC STYLIZATION 7061

Authorized licensed use limited to: Beijing Normal University. Downloaded on February 27,2023 at 06:10:28 UTC from IEEE Xplore.  Restrictions apply. 

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://proceedings.mlr.press/v80/belghazi18a.html
http://proceedings.mlr.press/v80/belghazi18a.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


