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Spectral and spatial features in remotely sensed data play an irreplaceable role in classifying crop types
for precision agriculture. Despite the thriving establishment of the handcrafted features, designing or
selecting such features valid for specific crop types requires prior knowledge and thus remains an open
challenge. Convolutional neural networks (CNNs) can effectively overcome this issue with their advanced
ability to generate high-level features automatically but are still inadequate in mining spectral features
compared to mining spatial features. This study proposed an enhanced spectral feature called Stacked
Spectral Feature Space Patch (SSFSP) for CNN-based crop classification. SSFSP is a stack of two-
dimensional (2D) gridded spectral feature images that record various crop types’ spatial and intensity
distribution characteristics in a 2D feature space consisting of two spectral bands. SSFSP can be input into
2D-CNNs to support the simultaneous mining of spectral and spatial features, as the spectral features are
successfully converted to 2D images that can be processed by CNN. We tested the performance of SSFSP
by using it as the input to seven CNN models and one multilayer perceptron model for crop type classi-
fication compared to using conventional spectral features as input. Using high spatial resolution hyper-
spectral datasets at three sites, the comparative study demonstrated that SSFSP outperforms
conventional spectral features regarding classification accuracy, robustness, and training efficiency. The
theoretical analysis summarizes three reasons for its excellent performance. First, SSFSP mines the spec-
tral interrelationship with feature generality, which reduces the required number of training samples.
Second, the intra-class variance can be largely reduced by grid partitioning. Third, SSFSP is a highly sparse
feature, which reduces the dependence on the CNN model structure and enables early and fast conver-
gence in model training. In conclusion, SSFSP has great potential for practical crop classification in pre-
cision agriculture.
� 2022 2022 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Accurate and timely crop mapping is fundamental to precision
agriculture. Compared with conventional time-consuming and
labour-intensive in situ surveys [1], remotely sensed (RS) data
has been widely adopted as an irreplaceable data source for map-
ping crop types and monitoring their dynamics [2–4]. This is
because RS data contain rich spectral features that characterize
crop leaf pigment, leaf water content and canopy structure [5],
and spatial features that reflect crop planting morphology and tex-
ture, particularly when high spatial resolution images are consid-
ered [6,7].

To reflect the unique characteristics of particular crop types for
mapping, efforts have been made to design features based on prior
knowledge or statistical analysis, thus called handcrafted features.
In terms of spectral features, spectral similarity [8] and spectral
indices [9] have been designed to maximize the differences among
different crop types as well as other land cover types, and have
been successfully applied to classification. In terms of spatial fea-
tures, a typical way is to generate grey-level co-occurrence matrix
(GLCM) texture so that the neighbouring pixels are taken into
account and contribute to distinguishing crops with similar spectra
but different spatial properties [6,10,11]. Furthermore, spectral and
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spatial features can be integrated, e.g., by employing high spatial
resolution hyperspectral data [12–15] or combining high spatial
resolution unmanned aerial vehicle (UAV) images with high spec-
tral resolution Sentinel-2 satellite images [16]. However, despite
the well-established handcrafted features, designing or selecting
such features valid for specific crop types requires prior knowledge
and thus remains an open challenge.

In the last decade, convolutional neural networks (CNNs) have
shown superiority over feature handcrafting [17,18] because of
their advanced ability to automatically extract high-level
domain-oriented features from input data that are discriminative
enough for classification [19–21]. Nevertheless, different types of
CNNs, using 1D, 2D or 3D convolution, have their trade-off in fea-
ture extraction. In general, 1D-CNNs can extract spectral features
but do not utilize spatial information [22,23]. By contrast, 2D-
CNNs can perform convolutional operations in spatial dimensions
to fully mine spatial features but are insufficient in mining spectral
features [24,25]. Although 3D-CNNs can integrate both spatial and
spectral dimensions [26], they require a larger sample size and the
training of a large number of parameters, which significantly
increases the computational burden [27]. In recent years, new
strategies have been introduced, such as multi-scale input [28],
multi-temporal input with attention mechanism [29] and model-
ing the relationship between low-level and high-level crop types
[30]. However, the same training challenge lies in these CNNs with
sophisticated structures besides 3D convolution, owing to the gen-
eral trade-off between model complexity and the difficulty of
training. Moreover, selecting an appropriate CNN poses challenges
to users with less deep-learning experience, such as farmers and
crop scientists who expect to apply the techniques to crop map-
ping. It would be more beneficial to them if simple CNNs can
achieve similar results as complex CNNs in terms of feature extrac-
tion and final classification.

Recently, several studies have achieved satisfactory classifica-
tion accuracy using handcrafted features, instead of raw data, as
input to CNNs, even for the ones with simple structures [31–33].
For example, in the land cover classification task [34], a hand-
crafted spatial feature called Multiscale Covariance Maps (MCM)
was used as the input of a 2D-CNN model, resulting in better clas-
sification results than using raw data. Two other handcrafted spa-
tial features, the extended morphological profiles (EMP) and the
Gabor features, were also successfully combined with CNNs [35–
37]. These successful attempts suggest that combining handcrafted
spatial features with the 2D-CNNs that automatically extract high-
level spatial features is a practical classification strategy. Unfortu-
nately, combining handcrafted spectral features with 2D-CNNs to
exploit spatial and spectral features simultaneously has not been
widely explored yet.

In this study, we developed an enhanced spectral feature called
Stacked Spectral Feature Space Patch (SSFSP) as the input for 2D-
CNN-based crop classifiers, by which the shortcomings of 2D-
CNN in the mining of spectral features can be significantly
addressed. Our aim is to better utilize spatial and spectral features
simultaneously, reduce the dependence of feature extraction on
CNNs, accelerate the training process, and eventually improve crop
classification.
2. Methodology

2.1. Stacked spectral feature space patch (SSFSP)

2.1.1. Main idea
In remote sensing, features can be defined in terms of the mea-

surable properties of a phenomenon observed in RS data [38],
which mainly include spectral and spatial properties. These fea-
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tures can be incorporated into a classification system, and each
class has its unique feature pattern. The feature vector VFS, usually
called the feature space, can be expressed as a multi-dimensional
coordinate system:

VFS ¼ f 1; f 2; � � � ; f nf g ð1Þ
Take the 2D spectral feature space as an example. Two spectral

bands (Fig. 1a) are transformed collectively into a spectral space
f f 1; f 2ð Þg, where the two axes mark the original spectral values.
The new feature space is composed of two spectral bands, and thus
the space mainly shows the spectral distribution characteristics of
various land cover types in this two-band feature space. Accord-
ingly, the pixels of different crop types in RS data can be projected
to the new spectral feature space to show the spectral distribution
characteristics of crop types (Fig. 1b): (1) different crop types are
distributed in relatively fixed areas with their clusters and (2)
within these clusters, the density of points also varies spatially.
These two characteristics can be regarded as describable features
in the new spectral feature space, the former is referred to as the
spatial-distribution feature and the latter as the intensity-
distribution feature. The new spectral feature space can be com-
bined with a 2D-CNN to support simultaneous mining of these
two describable features if that spectral feature space can be con-
verted to a 2D image that the CNN can process.

For making this type of spectral feature space directly usable by
CNNs, the 2D spectral feature space is required to be converted into
a grid image (called gridded spectral feature image hereafter) so
that the spatial-distribution feature and intensity-distribution fea-
ture can be represented explicitly. The spatial-distribution feature
can be described by the locations of pixels at the grids of the new
gridded spectral feature space (Fig. 1c). Note that in the gridded
spectral feature space, there are multiple points in some grids
(Fig. 1c) because many pixels hold similar values in both spectral
bands. This phenomenon corresponds to the frequency of the point
distribution, namely the intensity distribution that we wish to
exploit. Accordingly, we calculate the frequency of the points
within each grid as the grid values, forming the final gridded spec-
tral feature image (Fig. 1d).

Such a transformation can be performed for any two spectral
bands to generate a new set of 2D gridded spectral feature images
and form a Stacked Spectral Feature Space (SSFS) VSSFS as:

VSSFS ¼ f 1; f 2ð Þ; f 1; f 3ð Þ; � � � ; f n�1; f nð Þf g ð2Þ
SSFS forms a patch at the local scale. It can be used in the patch-

based classification process and the pixel-based classification pro-
cess if focusing on the central pixel of the patch (one patch corre-
sponding to a moving window). In this way, the spectral
information is not only further exploited in CNN with its powerful
spatial feature mining capability, but the neighbourhood informa-
tion within a patch is also taken into consideration.
2.1.2. Procedure for generating SSFSP
In a standard CNN-based pixel-wise classification framework

(Fig. 2), the patch input is obtained by cropping the neighbouring
pixels with a regular geometric shape from the image (referred
to as the traditional feature patch (TFP)). In our approach, TFP is
further transformed into a stack of gridded spectral feature images,
which is referred to as the SSFS patch (SSFSP). The detailed proce-
dures to generate SSFSP are given below.

Band reduction: Since hyperspectral imagery (HSI) may suffer
from high collinearity and redundant information [39], band
reduction is usually needed to obtain the optimal set of input
bands. There are many methods to achieve this goal, e.g., principal
component analysis (PCA). Accordingly, the complete satellite

image Z 2 Ri�j�c is reduced to its subset image X 2 Ri�j�c0 , where



Fig. 1. Schematic diagram of converting a two-band image into a gridded spectral feature image.

Fig. 2. Flowchart of generating Stacked Spectral Feature Space patch (SSFSP) from traditional feature patch (TFP) cropped from remotely sensed (RS) image for convolutional
neural network (CNN)-based classification.
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i and j represent the size of an image (height and width), c and c’
are the band numbers of Z and X with c’ smaller than c.

Generating TFP: TFP 2 XW�W�c0 is generated by cropping X with
a user-defined parameter window size W. The class of its central
pixel labels the class of a TFP, and the training and testing datasets
are generated with TFPs with the labelled central pixels. To make
spectral values comparable between bands, X is standardized by
the global maximum max and the minimum min in this step.

Xstand ¼ S Xð Þ ¼ X �min
max�min

ð3Þ

Generating SSFSP: SSFSP is generated from all the combinations
of any two bands of TFP. The coordinate of the mth pixel of TFP in
one gridded spectral feature image (one band of SSFSP) is:

coordSSFSPðmÞ ¼ Round R ITFa mð Þ; ITFb mð Þ
� �� �

; ð4Þ

where ITFa mð Þ and ITFb mð Þ are the standardized values of themth pixel
of TFP at bands a and b. R is a scaling factor that decides the coor-
dinate ranges in each gridded spectral feature image of SSFSP, such
as 10 in Fig. 1c. Round () is the rounding function to convert decimal
numbers into their nearest integers. Here, coupled with the R and
the rounding function, SSFSP can significantly reduce intra-class
variability. After that, the number of points that fall in the same grid
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is summarized and assigned to the value of that grid. All the gridded

spectral feature images constitute SSFSP 2 XR�R�c
0 0
with the band

number of c0 0 =
c
0 � c

0 �1ð Þ
2 .

The rest of the proposed classification framework is the same as
a typical CNN, namely that a proper CNNmodel is selected. SSFSP is
used as the model input to extract high-level features for
classification.
2.2. Adopted CNN models

Seven typical CNN models and a simple multilayer perceptron
model (MLP) were used in our study to test the effectiveness of
SSFSP, including Multi-OCNN [40] (Fig. 3), DeepNet [24], 3DCNN
[27], and four pre-trained versions of the Resnet family (Resnet-
18, -34, -50 and -101) [41]. The detailed topologies of the first three
and the last models are listed in Table S1. Multi-OCNN is proposed
for object-based classification [40], and we adopted its main archi-
tecture except that we used a patch input strategy to classify at the
pixel level instead of the prior image segmentation. The present
study was based on this benchmark model unless otherwise stated.
The logarithmic form of Softmax (Log-Softmax) was used on all
models as it showed a better performance than Softmax [42].
The same training settings were adopted for all models. The



Fig. 3. The architecture of the benchmark model (Multi-OCNN). Conv, MP and FC mean the convolutional layer, max-pooling layer, and fully-connection layer, respectively,
and the numbers indicate the size of kernels of Convs and MPs or the nodes number of FCs.
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cross-entropy loss function and Adam optimizer [43] with a batch
size of 64 and weight decay of 0.0008 (other parameters of Adam
referred to [43]) were used to update the parameters of models.
The training epoch for all the eight models was set to 100 epochs,
and the learning rate was changed to half every 40 epochs.
2.3. Evaluation metrics

The classification accuracies in the following experiments were
evaluated by three commonly used metrics, namely the overall
accuracy (OA), the average accuracy (AA), and the Cohen’s Kappa
coefficient (Kappa) [44–46]. OA represents the proportion of the
correctly classified samples to the total samples. It measures the
model’s ability to classify overall samples. However, it does not
reflect the classification accuracy of each class. AA is the average
of the classification accuracies (proportion of samples in a class
that are correctly classified) of all classes and measures how good
the model can distinguish between classes. Kappa measures the
classification agreement beyond the chance agreement, which is
not considered by OA [47], and is another commonly used metric
in a multi-class classification task.
3. Data and experiment

3.1. Experiment data

We used two publicly available HSI datasets (Salinas (SA) and
WHU-Hi dataset) to test the accuracy of crop classification of SSFSP
as crops predominate in both datasets (Fig. 4). The SA [48] with
224 contiguous spectral bands across wavelengths from 0.4 to
2.5 lm was collected at a plot of farmland with 16 crop types in
the Salinas Valley in California, USA. The image size of SA in pixels
is 512 � 217 and has a high spatial resolution of 3.7 m. The WHU-
Hi dataset was captured by a UAV with a Headwall Nano-
Hyperspec imaging sensor with 270 bands ranging from 0.4 to
1.0 lm [24,49]. The Honghu and Longkou sub-datasets of WHU-
Hi dataset were chosen. The Honghu dataset was collected in Hon-
ghu of Hubei province, China, consisting of 940� 475 pixels and 22
land cover types, while the Longkou dataset was collected in Long-
kou Town of Hubei province, China, consisting of 550 � 400 pixels
and 9 land cover types. The spatial resolution of the Honghu and
Longkou datasets is 0.043 m and 0.463 m, respectively. In this
study, the Longkou dataset was used as supplementary experimen-
tal data because of the length limit, and its experimental results are
shown in Table S2 and Fig. S1. Only 5% of the labelled samples were
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randomly selected as the training set due to the strong prediction
capacity of the CNNs.

3.2. Experimental design

The proposed SSFSP-based classification framework was com-
pared to the TFP-based framework, and they are denoted as
SSFSP-CNN and TFP-CNN, respectively. To make operation easier
and ensure generality in the step of band reduction, unless other-
wise stated, we selected only five bands with the same central
wavelength as in the Landsat 8 OLI sensor (Table S3) as input, con-
sidering that these bands are available for most sensors. This sim-
ple band reduction strategy is referred to as ORI. Three
experiments were carried out for comprehensive evaluation as
described below.

3.3. Experiment I: The benchmark in various scenes

The first experiment aims to compare the two inputs (SSFSP and
TFP) for the benchmark CNN classifier in different scenes with the
evaluation metrics. To compare their computational efficiencies,
the dynamics of the accuracy and loss in their CNN training pro-
cesses were also investigated.

3.4. Experiment II: Robustness against model selection

The second experiment aims to evaluate the robustness of the
SSFSP against the selection of CNN models. As numerous CNN
models with various architectures have been proposed, it is chal-
lenging for users to choose the most suitable model for their mis-
sions. The SSFSP is thus expected to mitigate the effect of model
selection on classification accuracy. Therefore, this experiment
adopted all the aforementioned CNN models and MLP and com-
pared the accuracy variations of the two inputs (SSFSP and TFP)
given different classifiers.

3.5. Experiment III: Comparison to other handcrafted features with
refinement

Since both pre-processing and post-processing are expected to
improve classification accuracy, it is interesting to compare SSFSP
to the combinations of other handcrafted features and pre/post-
processing techniques to see whether the proposed SSFSP input
still yields the best results. In this experiment, SSFSP was com-
pared with the two typical handcrafted features mentioned in
the introduction, MCM and Gabor [34,50]. The window sizes W



Fig. 4. Hyperspectral datasets. (a) Salinas. (b) WHU-Hi-Honghu. (c) WHU-Hi-Longkou. Each dataset is demonstrated with a false-color composite image and ground-truth
map.

H. Chen, Yue’an Qiu, D. Yin et al. The Crop Journal 10 (2022) 1460–1469
of all the features were set to 15. Gabor filtering was performed in
four directions on each of the five selected bands (see Table S3),
resulting in 20 input bands in total. For MCM, the input bands were
also set to 20 as in Gabor, namely 20 scales for obtaining the neigh-
bouring vectors. As for pre-processing, data augmentation was car-
ried out using horizontal flip, vertical flip, and random angle
rotation. As for post-processing, the typical conditional random
field (CRF) was adopted, which refined object boundaries in classi-
fication maps. Their different combinations were compared using
the Honghu dataset and the benchmark CNN model. To avoid the
effect of sample imbalance and highlight the effects of pre-
processing and post-processing, small and balanced samples (100
samples per crop type) were used as training samples, different
from Experiments I and II.
3.6. Parameter settings

As described in Section 2, the SSFSP is transformed from the
TFP, so the three parameters, the window size W, the scaling factor
R, and the reduced band number c’, need to be specified in advance.
W should be determined based on the landscape complexity.
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Although a larger W incorporates more neighbour information, it
can also introduce undesired noise that is more likely to happen
in scenes with heterogeneous landscapes. Therefore, it was empir-
ically set to 15 for both the SA and the Honghu datasets. As for R, it
is less sensitive to the landscape and was empirically set to 25 for
the two datasets, indicating that the size of the gridded feature
image is 25 � 25. As for the reduced band number c’, it was set
to 5, meaning only five bands were used in experiments. The sen-
sitivity for these three parameters was analyzed in Section 5.2.
4. Results

4.1. Results for experiment I

4.1.1. Results for the Honghu dataset
In the Honghu dataset, all crop types showed promising and

better classification results in SSFSP-CNN than TFP-CNN (Fig. 5).
For crop types with much fewer labelled samples (pakchoi, celtuce,
carrot, and broad bean), SSFSP-CNN was more efficient to distin-
guish the land cover, and its accuracy was much higher than that
of TFP-CNN (Table S4). In addition, the salt-and-pepper appeared



Fig. 5. Classification maps and accuracies for the SA and Honghu datasets. (a) False-color composite image. (b) Ground truth. (c) TFP-CNN. (d) SSFSP-CNN.
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in the TFP-CNN result but was significantly reduced in the
SSFSP-CNN result.

4.1.2. Results for the SA dataset
In the SA dataset, the OA, AA and Kappa of TFP-CNN are signif-

icantly lower than those of SSFSP-CNN (Fig. 5). The accuracies of
nearly all crop types are above 99% by SSFSP-CNN, whereas several
crop types have poor classification accuracy by TFP-CNN, such as
Fallow (68.57%) and Grapes-untrained (76.23%) (Table S5). Notice-
ably, Grapes-untrained and Vinyard-untrained (highlighted by the
blue polygons in Fig. 5) are largely misclassified by TFP-CNN. In
contrast, despite their similar spectra, SSFSP-CNN still classifies
them excellently (Fig. 5).

4.1.3. Dynamics of accuracy and loss
The dynamics of the classification accuracies and losses of

SSFSP-CNN and TFP-CNN during model training is shown in
Fig. 6. SSFSP-CNN reaches the highest accuracy after a few itera-
tions in both datasets, and the curves are smooth in the subsequent
iterations without a large magnitude of change. In contrast, the
accuracy curves of TFP-CNN have more significant variation and
reach the peaks only in the later stage of training. Similarly, the
loss values of SSFSP-CNN decrease rapidly and become stable at
the early stage, while TFP-CNN does not converge until the later
stage. The results highlight the robustness of SSFSP and its benefit
to the acceleration in model training.

4.1.4. Results for experiment II
The accuracy variations using SSFSP and TFP as input for var-

ious CNN models and MLP are demonstrated in Fig. 7 (see
Table S6 for detailed statistics and Figs. S2 and S3 for mapping
results). Under the seven CNN models, the OA, AA, and Kappa
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values for SSFSP do not significantly differ from those under the
benchmark model, and satisfactory accuracy is achieved even
with the MLP model (corresponding to the outliers in the box
plots). In contrast, TFP shows significant variations in OA, AA
and Kappa values under the seven CNN models. Such variations
indicate a strong dependence of TFP on the choice of CNN models,
which usually requires extensive experience in practical
applications. In short, SSFSP relies less on the selection of CNN
models, which significantly saves the time required in selecting
and tuning the models.

4.1.5. Results for experiment III
The results are shown in Table 1. According to original works

[34,35], which firstly used MCM and Gabor as input of CNN, PCA
was used to generate MCM, and ORI was used as band reduction
method for SSFSP, TFP and Gabor in the study. In addition, 100
samples per crop type were used as training samples to avoid
the effect of sample imbalance, which is different from Experi-
ments I and II. All the three features provide further accuracy
improvements compared to TFP, with SSFSP the most pronounced
improvements and Gabor slightly better than MCM. When using
the data augmentation strategy, the accuracies for the Honghu
dataset with Gabor, MCM and TFP all improved, while there is no
significant effect (or even a slight decrease) for SSFSP. This is
because these augmented and original samples obtain completely
similar SSFSP, resulting in minor accuracy improvement before
and after data augmentation. However, it can still be observed that
SSFSP yields the highest accuracy. After being post-processed by
CRF, they all further improved, with SSFSP reaching an impressive
99.51% OA and ranking first. Therefore, there is no need to perform
data augmentation on SSFSP, and we recommend post-processing
for SSFSP by using CRF if possible.



Fig. 6. Accuracy and loss curves of SSFSP-CNN and TFP-CNN during training. (a) Accuracy curves of SSFSP-CNN and TFP-CNN for Honghu. (b) Accuracy curves of SSFSP-CNN
and TFP-CNN for SA. (c) Loss curves of SSFSP-CNN and TFP-CNN for Honghu. (d) Loss curves of SSFSP-CNN and TFP-CNN for SA.
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5. Discussion

5.1. The superiority of SSFSP

The experiments demonstrated that the proposed feature SSFSP
yielded better results than TFP in accuracy, robustness and training
efficiency. Its outperformance can be attributed to two aspects.

SSFSP is a more advanced representation of spectral informa-
tion of crop types in comparison to TFP. To generate SSFSP, the
spectral information is transformed from the 1D spectral vector
into the 2D gridded spectral feature image. During the transforma-
tion process, not only the spectral values of a pixel in any two
bands are retained within the coordinates of the gridded feature
image, but also the interrelationship between any two bands is
expressed through the 2D gridded spectral feature image. Never-
theless, such information is not available in common CNN inputs.
Accordingly, SSFSP makes full use of the spectral information by
generating it and using the powerful spatial feature mining capa-
bility of CNN. Furthermore, SSFSP includes spatial neighbour infor-
mation uniquely. Given a set of pixel observations, the image
patches with many possible spatial arrangements are transformed
into an identical SSFSP regardless of their spatial distribution and
the geometric transformations (e.g., rotation and flip) (Fig. 8a).
Thus, one SSFSP naturally can correspond to several TFPs with dif-
ferent possible spatial arrangements if they share similar spectral
characteristics. This advantage allows a classifier to focus on spec-
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tral differences, thus reducing the need for training samples with
different spatial arrangements. In contrast, traditional CNN inputs
require rotation and flipping operations to add samples of different
spatial arrangements. As a result, for the crop types with limited
samples (e.g., Pakchoi, Celtuce, Carrot, and Broad bean in the Hon-
ghu dataset), their TFP-based classification accuracies are largely
lower than the others with enough samples, which is commonly
known as the issue of sample imbalance. By contrast, SSFSP-
based classification accuracies are significantly better because the
problem is alleviated by SSFSP (Tables S4, S5). Although data aug-
mentation should help TFP against sample imbalance, the training
cost also increases and the improvement can be limited (Table 1).

Second, the reduction of intra-class variance by SSFSP also ben-
efits the classification performance. A preferred classification fea-
ture should generally increase inter-class variance and reduce
the intra-class variance because larger intra-class variance can
bring uncertainty to the classification. In SSFSP, the intra-class
variance is effectively reduced by adaptively smoothing the spec-
tral details with the scaling factor R. As demonstrated in Fig. 8b,
with a moderate R, the intra-class variance is smoothed out, which
contributes to the final classification accuracy. Thus, compared
with TFP, the intra-class variance is retained in a finite number
of points on the class spectral curve resulting from flattening the
SSFSP to a one-dimensional vector, and other points on the class
spectral curve are shown to have zero values, which can be
regarded as feature sparsity (Fig. 8c). The spectral sparsity of SSFSP



Fig. 7. Accuracy variations using SSFSP and TFP with different CNN models and MLP. AA, average accuracy; OA, overall accuracy; Kappa, Cohen’s Kappa coefficient.

Table 1
Comparison of classification accuracies with data pre- and post-processing.

Processing Accuracy metrics (%) Feature

TFP MCM Gabor SSFSP

Non Aug, non CRF AA 88.91 87.73 88.07 96.01
OA 87.14 87.74 88.18 95.38
Kappa 84.09 84.72 85.30 94.19

Aug only AA 90.22 88.15 88.19 96.15
OA 89.39 88.51 90.55 95.19
Kappa 86.76 85.45 88.19 93.96

Both Aug and CRF AA 95.56 93.64 93.63 98.86
OA 93.94 92.91 94.04 99.51
Kappa 92.41 91.13 92.01 99.38

‘Aug’ and ‘CRF’ represent ‘data augmentation’ and ‘conditional random field’ respectively.
AA, average accuracy; OA, overall accuracy; Kappa, Cohen’s Kappa coefficient.
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benefits the CNNmodel in terms of noise exclusion and finding key
features [51–53]. Hence, the need for complex networks is elimi-
nated (Fig. 7), and higher training accuracy can be obtained in
the early training stage (Fig. 6).
5.2. Suggestion for SSFSP users

Three parameters are available for users to determine when
using SSFSP, namely, c0 , R, and W. We conducted the sensitivity
analysis for the three parameters, of which results can be found
in Fig. S4, Fig. S5 and Table S7. Accordingly, we recommend using
ORI as the band reduction method for SSFS and setting c0 to 4, con-
sidering the trade-off between accuracy and computational effi-
ciency. When the spectral differences of crop types are
prominent, R can be set to a small value, such as 15. When the
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spectra of crop types are very similar, a larger R (e.g., 20 or 25) is
needed to increase the spectral differences for classification.
5.3. Limitation and future work

The major limitation of SSFSP is currently low computational
efficiency when using a larger number of spectral bands, especially
for pixel-wise classification. We consider developing the current
SSFSP into a version suitable for fully end-to-end crop classification
to improve computational efficiency [54]. Recently, the Spectral
AttentionModule has received much attention in the deep learning
community [54]. The proposed SSFSP mines the interrelationship
between any two original spectral bands, while SAM mines the
interdependencies between feature maps obtained from former
convolutional layers. Therefore, SSFSP and SAM are in different



Fig. 8. Beneficial properties of SSFSP. (a) Advanced representation of spectral information. (b) Reduction of intra-class variance. The SSFSPs in (b) are generated from a TFP
with R ranging from 10 to 25. The spectral-like curves in (c) are the average of flattened TFP and SSFSP for one class in the AS dataset.
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stages in the classification framework, but they are not mutually
exclusive. As they enhance the spectral features at different stages,
we plan to combine SSFS and SAM in the future to obtain better
classification results.
6. Conclusions

A promising spectral feature (SSFSP) for CNN-based crop classi-
fication is proposed in this paper. SSFSP is a set of two-dimensional
(2D) gridded spectral feature images that record the spatial and
intensity distribution characteristics of various crop types in a
two-dimensional feature space consisting of any two spectral
bands. SSFSP can be combined with 2D-CNN to support simultane-
ous mining of spectral and spatial features, as the spectral features
are successfully converted to 2D images that can be processed by
CNN. The comparative study using high spatial resolution hyper-
spectral datasets at three sites showed that SSFSP outperforms
conventional spectral features in terms of accuracy, robustness,
and training efficiency. Its excellent performance can be attributed
to three aspects. First, SSFSP mines the spectral interrelationship
with feature generality, which reduces the required number of
training samples. Second, the intra-class variance can be largely
reduced in the form of grid partitioning. Third, SSFSP is a highly
sparse feature, which reduces the dependence on CNN model
structure and enables early and fast convergence of model training.
All three unique characteristics of SSFSP are connected by convert-
ing 1D spectral information into 2D information for convolution
operation. As a corresponding guideline, we recommend users
adopt SSFSP in precision agriculture applications, especially when
spectral features are more important than spatial features in dis-
tinguishing crop types while paying attention to selecting several
key parameters of SSFSP.
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