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A B S T R A C T   

Crop phenology provides important information for crop growth management and yield estimations. The popular 
shape model fitting (SMF) method detects crop phenology from vegetation index (VI) time-series data, but it has 
two limitations. First, SMF assumes the same “relative position” of phenological stages for the pixels of the same 
crop type. This assumption is valid only if all target pixels, relative to the shape model, display a synchronized 
increase (or decrease) in length between any two phenological stages, which is uncommon in practice. Second, 
the variance in the resulting phenology estimates for a particular phenological stage is related to the stage itself; 
this makes it challenging to simulate spatial and temporal variations in crop phenology using SMF. Here, we 
address both limitations by developing the shape model fitting by the Separate phenological stage method 
(“SMF-S"). SMF-S uses a modified fitting function and an iterative procedure to match the shape model with the 
VI time series for each phenological stage in an adaptive local window. Comparisons between SMF-S and SMF in 
simulation experiments show the superior performance of SMF-S in different scenarios, regardless of noise. 
Comparisons involving winter wheat field observations from the North China Plain showed that the RMSE values 
averaged over nine phenological stages were smaller for SMF-S (RMSE = 9.5 d) than for SMF (RMSE = 13.4 d) 
and one variant of SMF (the shape model with accumulated growing degree days (SM-AGDD); RMSE=33.6 d). 
Moreover, SMF-S better described the spatial variations (i.e., variance) in the results and captured the temporal 
shifts in multiple phenological stages. In the derived regional phenology maps of winter wheat on the North 
China Plain, SMF-S generated more reasonable spatial patterns, whereas SMF underestimated (overestimated) 
the variance in the early (late) phenological stages. We expect that the improved crop phenology estimates 
obtained with SMF-S could benefit various agricultural activities.   

1. Introduction 

The phenological stages of crops, as a calendar of seasonal crop 
growth dynamics, provide important information for agricultural ac-
tivities such as fertilizer management, irrigation scheduling, disease 
prevention, and crop type classification (Gao and Zhang, 2021; Saka-
moto et al., 2010; Zhong et al., 2016). Understanding crop phenology is 
also essential for obtaining crop yield estimates (Bolton and Friedl, 
2013; Brown et al., 2012); for example, the occurrence of environmental 
stress in some phenological stages may greatly reduce the crop yield 
(Wang et al., 2020). Currently, regional-scale crop phenology informa-
tion can be obtained from satellite-based remotely sensed data. A few 
methods have been proposed to estimate this information from time 

series of synthetic aperture radar data or optical vegetation indices (VIs) 
(Bhogapurapu et al., 2021; Gao et al., 2020; Schlund and Erasmi, 2020; 
Yang et al., 2021; Zhang et al., 2020). 

Threshold-based and function-fitting methods are two traditional 
approaches used to detect vegetation phenology. In threshold-based 
methods, phenology is determined to be the date when the VI reaches 
a fixed value (absolute threshold) or a given amplitude of the seasonal 
changes in VI values (relative threshold) (see review by Zeng et al., 
2020). For example, Boschetti et al. (2009) estimated the key phenology 
information for rice in Italy from the normalized difference vegetation 
index (NDVI) time series data provided by the MODerate-resolution 
Imaging Spectroradiometer (MODIS). The start of the season (emer-
gence) was defined as the date when the NDVI first increased to 10% of 
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the difference between the left-minimum NDVI value and the maximum 
NDVI value, and the growth peak (heading) was defined as the date 
corresponding to the midpoint between the right 90% and left 90% 
values of the NDVI curve. Function-fitting methods have been designed 
to simulate VI time-series data using mathematical functions such as 
logistic functions, the Savitzky–Golay filter, and wavelet filters (Beck 
et al., 2006; Cao et al., 2018b; Sakamoto et al., 2005; Wardlow et al., 
2006; Zhang et al., 2003). Phenological events are identified as the dates 
when the fitted curve exhibits specific mathematical features. Zhang 
et al. (2003) used a piecewise logistic function to fit MODIS VI time- 
series data and determined four phenological events (i.e., green-up, 
maturity, senescence, and dormancy) to be the timing of four inflec-
tion points (i.e., changes in the rate of curvature) in the fitted curve. 
Their logistic method was used to generate the MODIS phenology 
product MCD12Q2 v5, which was also used for estimating crop 
phenology (Bolton and Friedl, 2013). In addition, Manfron et al. (2017) 
defined the timing of the peak and minimum values in smoothed VI 
time-series data of winter wheat as the heading and sowing dates. 
Sakamoto et al. (2005) used the timing of feature points in smoothed VI 
time series (e.g., the minimum, maximum, and inflection points) as the 
phenological stages of rice. Yang et al. (2020) determined the pheno-
logical stages of various crops from feature points (e.g., the peaks of the 
first and second derivations of the VI time series). Diao (2019) innova-
tively used a complex network to resolve the transition dates of spectral 
reflectance time series to obtain the maturity stage of maize and the leaf- 
drop stage of soybean. In fact, the feature points estimated from fitted VI 
time series normally indicate the transition dates of vegetation green-
ness changes, which are somewhat different from the crop phenology 
definitions used in agriculture; thus, these feature points may be difficult 
to associate with the agronomic stages of various crops (Guo et al., 2016; 
Sakamoto, 2018). For example, the flowering date of soybean, a key 
phenological stage related to yield, may be difficult to detect from 
feature points due to the lack of distinctive features in VI time-series data 
(Zeng et al., 2016). Such challenges also exist with regard to the 
phenological stages of other crop types, such as the jointing stage of 
winter wheat. 

To estimate crop phenology, Sakamoto et al. (2010) proposed a novel 
method based on the concept of shape model fitting (SMF), which has 
shown considerable potential for detecting phenological information in 
multiple crops (Sakamoto, 2018; Sakamoto et al., 2010; Zeng et al., 
2016, 2020; Zhang et al., 2020; Zhou et al., 2020). The SMF method uses 
a shape model (referred to as g(x)), which can be a VI time series with 
corresponding ground phenology observations, to match the seasonal VI 
time series of the same crop type (referred to as h(x)) based on linear 
shift and scaling steps, expressed as: 

ĝ(x) = yscale× [g(xscale×(x+ tshift) )+ bias ] − bias (1)  

where bias is a fixed value for each crop type and is determined by the 
background VI value, xscale and yscale are the scaling factors in the two 
dimensions (i.e., time and the VI value), and tshift is the time shift factor. 
These three factors are determined by minimizing the root mean square 
error (RMSE) between h(x) and ĝ(x). In SMF, it is assumed that the 
phenological stages in the target VI curve have the same “relative po-
sition” as those in the reference VI curve; thus, all phenological stages in 
h(x) (expressed as pest

i , i = 1, …n)can be estimated from the corre-
sponding stages in g(x) (expressed as p0

i , i = 1, …n) using xscale and tshift 
as follows: 

pi
est =

1
xscale

× pi
0 − tshift, i = 1,…n (2) 

Eq. 2 has corrected errors in SMF-derived phenology estimation 
equations in previous studies (see Appendix A for the corrigendum). 
SMF does not focus on mathematical feature points but uses a geomet-
rical pattern to associate VI time series with the specific agronomic 
stages observed in the field. The shape model concept has two obvious 

strengths. First, the model combines ground agronomic observations 
with specific positions in the curves of VI time series data; thus, any prior 
phenological information available for a particular crop type can be 
easily incorporated into the shape model (Sakamoto et al., 2010). Sec-
ond, the model avoids the use of predefined mathematical functions to 
simulate the annual crop growth trajectory, as VI time series may 
deviate from a predefined function due to the regulation of vegetation 
growth by various factors (Cao et al., 2015). The SMF method has been 
shown to be more accurate than methods that utilize predefined math-
ematical features to obtain maize and soybean phenology estimations, 
with smaller RMSE values, ranging from 2.9 to 7.0 d (Sakamoto et al., 
2010). Subsequent studies have continued to improve the shape model 
used in the SMF method. These studies mainly challenged the assump-
tion in SMF that the shape model can be linearly scaled to match the VI 
time-series data of the target pixels due to the large variations in crop 
growth patterns among sites and years. To reduce such variations, Zeng 
et al. (2016) incorporated a crop growth model into the SMF method by 
employing the accumulated temperature and photoperiod (i.e., the 
accumulated photothermal time (APTT)) to simulate the crop growth 
progress. Thus, the calendar time on the x-axis of the VI time series is 
replaced by the APTT. The SMF-APTT method was shown to reduce 
errors when analyzing maize and soybean phenology in eastern 
Nebraska, USA. Under the same methodological framework, Zhou et al. 
(2020) proposed using accumulated growing degree days (AGDDs) to 
simulate the crop growth progress. The SM-AGDD method was shown to 
achieve an improved accuracy when estimating wheat phenology at one 
local site in China. Sakamoto (2018) expanded the SMF method by using 
a new procedure to calibrate shape models corresponding to 36 crop 
development stages of eight crop types in the USA. This calibration 
procedure requires a crop phenology report for each US state but does 
not require ground phenology observations at individual sites, thus 
simplifying the associated data requirements. Recently, the shape model 
concept was further extended for use in spatiotemporal data fusion ap-
plications (Sun et al., 2021; Zhang et al., 2020). For example, Sun et al. 
(2021) defined a shape model for a particular crop type using MODIS 
time-series data and used this model to fit cloud-free Landsat or 
Harmonized Landsat and Sentinel-2 observations to generate 30-m 
NDVI time-series data. 

Although the SMF method offers promise for obtaining crop 
phenology estimations, it does have two inherent limitations that need 
to be addressed. First, SMF uses a shape model to match the entire 
growing season of the target VI time series through linear shifts and 
scaling. This global matching strategy could lead to synchronized 
changes in the lengths between two phenological stages, which can be 
formulated as: 

pi
est − pj

est =
1

xscale
×
(
pi

0 − pj
0
)

i ∕= j ∈ {1,…n} (3) 

In other words, relative to the shape model, target pixels can undergo 
synchronized increases (or decreases) in length between any two 
phenological stages. This condition is difficult to satisfy, particularly for 
crop types with long growing seasons (Zeng et al., 2016). If synchro-
nized changes are assumed, it is impossible to investigate the relation-
ships among multiple phenological stages. For example, there is a 
proportional relationship between the early phenological period (e.g., 
pest

i − pest
i− 1) and the late phenological period (e.g., pest

i+1 − pest
i ) for all 

target pixels (i.e., (pest
i − pest

i− 1)/(pest
i+1 − pest

i )=(p0
i − p0

i− 1)/(p0
i+1 − p0

i )). 
Second, the scaling factor in the SMF function is related to the pheno-
logical stages (see Eq. 2), and this leads to the dependence of the vari-
ance in the phenology estimates for a particular phenological stage on 
the stage itself (see section 2 for the corresponding derivations). Since 
the shape model is stretched from the left endpoint, phenology estimates 
by SMF usually have larger variance in the later stages than in the earlier 
stages in practice. The underestimation of the variance in the earlier 
stages may further lead to small temporal trends in these stages. The 
spatial patterns and temporal changes in phenology are two primary foci 
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in phenological research, but they may be misinterpreted when SMF- 
derived phenology estimates are used. 

Therefore, we developed a new crop phenology detection method, 
called SMF by separate phenological stages (SMF-S). The SMF-S method 
modifies the fitting function to correct for the dependence of the 
phenological variance on the phenological stage. To address the un-
synchronized phenological changes throughout the entire growing sea-
son, SMF-S uses an iterative procedure to match the shape model with 
the target VI curve in each phenological stage in an adaptive local 
window. We tested the performance of SMF-S using simulation experi-
ments, field phenology observations, and regional satellite data. 

2. SMF-S method 

The SMF-S method was developed from the SMF framework to 
address the aforementioned limitations in the SMF process. SMF-S per-
forms shape model fitting in each phenological stage by using a modified 
fitting function and adaptive local windows (Fig. 1). The key improve-
ments made in the SMF-S method are detailed below. 

2.1. Using the modified fitting function for each phenological stage 

In SMF, all phenological stages in the target curve h(x) (pest
i , i = 1, … 

n) can be estimated from the corresponding stages in the shape model g 
(x) (p0

i , i = 1, …n) according to Eq. 2. Thus, the variance in pest
i can be 

expressed as follows: 

D
(
pi

est

)
= D

(
1

xscale
× pi

0 − tshift
)

(4)  

where D(⋅) indicates the variance function. Eq. 4 represents the variance 
in the sum of “ 1

xscale× pi
0” and “− tshift”. By using an expansion function 

for the sum of the variance (i.e., D(X + Y) = D(X) + 2COV(X,Y) + D(Y)), 

Eq. 4 can be reformulated as follows: 

D
(
pi

est

)
= D

(

pi
0

1
xscale

)

+ 2COV
(

pi
0

1
xscale

, − tshift
)

+D( − tshift)

=
(
pi

0

)2D
(

1
xscale

)

+ 2pi
0COV

(
1

xscale
, − tshift

)

+D( − tshift) (5)  

where COV(⋅) indicates the covariance function. Since xscale and tshift 
are acquired by nonlinear optimization, it is difficult to further simplify 
this equation. However, it is clear that D(pest

i )is related to p0
i with an 

upward quadratic function. In practice, by using simulated data and 
regional satellite-derived data, we observed an increase in D(pest

i ) with 
p0

i ,that is inconsistent with the real trends in field phenology observa-
tions (see section 4). To correct for the dependence of D(pest

i ) on p0
i , in 

the SMF-S method, a shape model is fit for each phenological stage. The 
SMF fitting function is modified as follows: 

ĝ
(
x, pi

0

)
= g

(
xscalei × x+(1 − xscalei)× pi

0 + xscalei × tshifti
)
, i = 1,…n

(6) 

There are two main differences between the SMF-S and SMF fitting 
functions (cf. Eq. 6 and Eq. 1). First, the SMF-S function removes the 
yscale and bias parameters because phenology estimates are controlled 
by the time dimension, whereas these two parameters account for the VI 
value differences between g(x) and ĝ(x) (i.e., the VI value dimension). 
Reducing the number of parameters can strengthen the nonlinear 
parameter optimization process and improve the computational effi-
ciency (see discussion section 5.2). Second, to match a particular 
phenology stage p0

i , it may be optimal to perform the stretch and shift 
around the position of p0

i . However, the applied change in xscale in the 
SMF fitting function (i.e., xscalei × x in Eq. 1) induces stretching from the 
left endpoint (Fig. 2). To induce stretching at both sides around the 
position of p0

i , we introduce the term (1 − xscalei)?—pi
0 into the SMF-S 

fitting function, which compensates for the time shift caused by 
stretching (Fig. 2). For phenological stage p0

i in g(x), SMF-S estimates the 
corresponding phenological stages in ĝ(x) as: 

xscalei × pest
i + (1 − xscalei) × p0

i + xscalei × tshifti=p0
i , i = 1, …n 

pi
est = pi

0 − tshifti, i = 1,…n (7) 

Eq. 7 suggests that SMF-S stretches in the local segment of the VI time 
series centered at p0

i (Fig. 2). 

Fig. 1. Flowchart of the SMF-S method.  

Fig. 2. Influence of stretch operations on the shape model functions of SMF 
(blue) and SMF-S (orange). In the SMF method, stretching is performed from 
the left endpoint, leading to a time shift of (1 − xscalei) × p0

i in phenological 
stage p0

i . 
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2.2. Determining adaptive local windows 

The SMF-S function provides the opportunity to more accurately 
match the local segment of the VI time series centered at p0

i . In this 
process, the two parameters in Eq. 6 are estimated by maximizing the 
correlation coefficient between ̂g

(
x, pi

0
)

and h(x) in a local VI time-series 
segment as follows: 

tshifti, xscalei = argmax
tshifti ,xscalei

R
(

ĝ
(
x, pi

0

)
, h(x)

)
, i = 1,…n  

x ∈
(
pi

0 − tshifti − w, pi
0 − tshifti +w

)
(8)  

where w is the half-window width of the local segment of the VI time 
series. Logically, w should be determined by considering both the local 
curve features in a particular phenological stage and the data noise 
levels. Therefore, SMF-S determines an adaptive window by using the 
look-up table strategy. Taking the application of SMF-S in a region as an 
example, we generate the look-up table in three steps. 

In the first step, we use the Savitzky–Golay (SG) filter to smooth all 
the VI time-series data and further generate a number of smoothed VI 
time-series sample curves for a given crop type by aggregating the VI 
time series of the same crop type within each 3 × 3 spatial window. 
Pixels exhibiting extremely large differences between the original and 
filtered VI time series (> 3 times the standard deviation of the differ-
ence) are excluded from the generation; these pixels account for less 
than 0.5% of all pixels. We randomly select 100 sample curves. Based on 
a reference shape model, SMF-S is employed to detect the phenological 
information corresponding to these sample curves with a relatively 
small w value of 30 d. Using a small window is reasonable because the 
generated sample curves are fairly smooth and have shapes similar to 
that of the shape model. The estimates are regarded as the true pheno-
logical states of the sample curves. 

In the second step, we simulate random negative noise in the sample 
curves as follows: 

VIj noise = VIj −

⃒
⃒
⃒N(μ = 0, σ)j

⃒
⃒
⃒×VIj, j = 1,…46 (9)  

where j indicates the jth VI value in the time series. Normally distributed 
random noise is generated with a mean value of zero and a standard 
deviation of σ. We consider different noise levels by varying σ from 5% 
to 40% in increments of 5% (for a total of eight noise levels). At each 
noise level, we conduct 100 simulations for each sample curve; thus, a 
total of 10000 simulations (100 simulations × 100 sample curves) are 
performed. 

In the third step, we estimate the phenological information on the 
SG-filtered sample curves by varying w from 30 to 180 d in increments of 
15 d. The optimal w value at each noise level for a given phenological 
stage is determined as the value that yields the smallest difference be-
tween the estimate and the reference phenology for the sample curves. 
Therefore, one lookup table (with noise level columns and optimal w 
rows) can be generated for each phenological stage. In practical appli-
cations, however, the noise levels of target pixels are unknown. There-
fore, we used a noise level surrogate represented as the RMSE value 
derived from the local VI time series between the noise-simulated and 
SG-filtered sample curves. Here, the local range of the ith phenological 
stage is determined as [p0

i − 45, p0
i + 45]. Normally, VI time series with 

high noise levels have large RMSE values between the original and SG- 
filtered VI time series. The w value at any noise level, as indicated by the 
RMSE, can be determined by linearly interpolating the look-up table. 

SMF-S uses an iterative program to determine tshifti and xscalei in the 
shape model fitting. Specifically, with an initial xscalei value of 1.0, we 
first change tshifti from − 45 to 45 d at a step of 1 d and determine the 
optimal tshifti value as that when the objection function is maximized 
(with Eq. 8). Next, we fix the initially determined tshifti value and esti-
mate an optimal xscalei value in a similar way by changing the xscalei 

value from 0.8 to 1.2 in increments of 0.01. This process is repeated, and 
the iteration is terminated when tshifti no longer changes. In practice, 
SMF-S provides stable tshifti values within four iterations for more than 
99% of pixels when mapping winter wheat phenology on the North 
China Plain. In some cases, the shape model and target VI time series 
may not be so similar owing to extremely high noise or incorrect crop 
type identification. We remove the corresponding final phenology esti-
mates if their correlation coefficients (based on Eq. 8) are <0.8 (Fig. 1). 
The removed pixels account for less than 1.0% of all winter wheat pixels 
in the North China Plain area. 

3. Data and experiments 

The performance of SMF-S was assessed by conducting simulation 
experiments and deriving winter wheat phenology estimates. We 
compared the SMF-S method with the SMF and SM-AGDD methods 
(Zhou et al., 2020). Because SM-AGDD requires temperature data as an 
input, this method was excluded from the simulation experiments. 

3.1. Assessments using simulation experiments 

First, we conducted simulation experiments to test the performance 
of SMF-S. Specifically, we followed the method outlined by Zhang et al. 
(2003) to simulate annual VI time-series data by using two piecewise 
logistic functions (i.e., the rising phase from the green-up stage to the 
time of peak VI and the descending phase from the peak VI timing to the 
dormancy stage). Each phase was simulated by the following four- 
parameter logistic function: 

VI(t) =
c

eb(t− t0)
+ d (10)  

where the parameters c and d represent the amplitude and the back-
ground VI value, respectively; t0 represents the date when VI(t) reaches 
50% of its amplitude; and b describes the rate of change of VI(t) at t0. In 
the simulations, we generated 10000 annual VI time series by randomly 
determining the four parameters within the given ranges. The values of c 
and d were within [0.5, 0.7] and [0, 0.2], respectively. The values of t0 
and b were randomly determined within [80, 120] and [− 0.08, − 0.05] 
for the rising phase and within [240, 280] and [0.05, 0.08] for the 
descending phase. The four key phenological stages were defined based 
on the simulated VI time series data according to the following formu-
lations proposed by Shang et al. (2017): 

greenup = t0 +
ln
(
5 + 2

̅̅̅
6

√ )

brising  

maturity = t0 −
ln
(
5 + 2

̅̅̅
6

√ )

brising  

senescence = t0 −
ln
(
5 + 2

̅̅̅
6

√ )

bdescending  

dormancy = t0 +
ln
(
5 + 2

̅̅̅
6

√ )

bdescending
(11)  

where brising and bdescending indicate b for the rising and descending pha-
ses. We compared SMF-S with SMF in both a no-noise scenario and a 
scenario with different noise levels. Random negative noise ranging 
from 0% to 30% was added to the simulated annual VI time-series data. 
To ensure a fair comparison, both the SMF-S and SMF methods used the 
same shape model (Fig. 3), in which each parameter value in the logistic 
function was determined to be the median value of the corresponding 
simulation range. 
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3.2. Assessments for estimating winter wheat phenology 

3.2.1. Winter wheat on the North China Plain 
We tested the SMF-S method in the detection of winter wheat 

phenology on the North China Plain (29◦–42◦N, 105◦–122◦E; Fig. 4). 
Winter wheat there accounts for 60% of wheat production in China 
(Dong et al., 2020). Other crops include summer maize, soybean, and 
rice, which are rotated with winter wheat (Cao et al., 2018a). In this 
area, winter wheat is sown mainly after September and is harvested 
before the following July, in a relatively complex annual VI time series 
with two growth stages (Fig. 5). Nine winter wheat phenological stages 
can be defined according to the field phenological records provided by 
the National Meteorological Information Center, China Meteorological 

Administration (Table 1). Fig. 5 shows the annual VI time-series data for 
winter wheat with the nine corresponding phenological stages. The 
emergence stage, which is defined as the occurrence of the first green 
leaflet from the coleoptile, is near the point corresponding to the mini-
mum EVI value in the annual VI time-series data. The tillering and 
overwintering stages occur on the two sides of the first local maximum 
EVI value. The green-up stage describes the date on which the leaf 
sheaths begin to lengthen, which approximately corresponds to the 
point when the EVI value starts to increase in spring. When the tip of the 
ear is exposed from the sheath of the flag leaf, winter wheat is consid-
ered to have reached the heading stage; this stage occurs in conjunction 
with the maximum EVI value. The maturity stage is defined as the time 
at which green plant tissues brown; this stage occurs near the local 
minimum EVI value after June. For comprehensive information about 

Fig. 3. Reference curves with corresponding reference phenology (i.e., the 
shape model) used in the simulation experiment. 

Fig. 4. Spatial distribution of winter wheat on the North China Plain (shown in insert). Data from the training stations were used to generate the shape model for 
winter wheat. 

Fig. 5. EVI time series of winter wheat with the corresponding phenolog-
ical stages. 
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all nine phenological stages, please refer to Table 1. 
We calculated enhanced vegetation index (EVI) time-series data 

during the 2008–2016 period from the MOD09A1 reflectance product 
(https://lpdaac.usgs.gov/tools/). The data had an 8-d temporal resolu-
tion and a 500-m spatial resolution. We first replaced cloud- 
contaminated values in the EVI time-series data by a linear interpola-
tion process and then smoothed the time-series with the SG filter (Chen 
et al., 2004). Winter wheat classification maps representing the 
2008–2016 period were generated from the EVI time-series data using 
the method described by Qiu et al. (2017). 

3.2.2. Assessments with the winter wheat phenology observations collected 
at ground stations 

We compared the phenological estimates derived using SMF-S, SMF, 
and SM-AGDD with field phenology observations. The number of 
observation stations varied between 90 and 130 from 2008 to 2016. To 
reduce uncertainty, we adopted the following criteria to screen unsuit-
able stations and crop phenology observations. First, to ensure a rela-
tively stable distribution of winter wheat in our analyses, we preserved 
only those pixels that were identified as winter wheat in all 9 years 
(Fig. 4). Second, we removed those stations at which the winter wheat 
pixel percentages were <20% of the total pixels within the 20 km × 20 
km expanse centered at the station location. The numbers of remaining 
ground stations for each stage in each year are summarized in Table 2. 
Because the specific field phenology observation dimensions at each 
station are not provided, we averaged the winter wheat EVI time-series 
data within an area of 20 km × 20 km by assuming little variation in the 
climate conditions in each small area. The winter wheat phenological 
information was estimated from the averaged EVI time series by using 
different methods, and the resulting estimates were compared with the 
corresponding field phenology observations. We recognize that uncer-
tainty may still exist due to the different spatial scales between the field 
observations and satellite data. To address this difference, we estimated 

the winter wheat phenological stage from the averaged EVI time series 
data in smaller areas (e.g., 10 km × 10 km and 5 km × 5 km). The 
phenology estimates obtained at different spatial scales for SMF and 
SMF-S exhibited small differences (< 2 d) without outliers (Fig. S1). The 
slightly larger differences between different spatial scales for SM-AGDD 
are caused by the extremely large phenology estimation errors for this 
method (see section 4.2 for explanations). The results of this investiga-
tion suggest that the field observation comparisons are less affected by 
spatial scales within the range of 5–20 km. We further quantified the 
spatial phenological heterogeneity by calculating the standard deviation 
(SD) of the phenology estimates for winter wheat pixels within a 20 km 
× 20 km area around each station. The results showed that the SD values 
averaged over all stations are much smaller than the RMSE values of the 
phenological estimates (Fig. S2). Thus, comparisons between remotely- 
sensed phenology and field observations are expected to be acceptable at 
these ground stations. 

Next, we determined the shape models (i.e., reference curves with 
reference phenology) for SMF-S, SMF, and SM-AGDD (Fig. 6). For SMF-S 
and SMF, the reference curve was generated by averaging the multiyear 
EVI time-series data at the central five training stations (denoted as ● in 
Fig. 4). The reference phenology was defined as the mean of the corre-
sponding phenology observations at the five stations (refer to Sakamoto 
et al., 2010). Following the method of Zhou et al. (2020), the SM-AGDD 
reference curve was generated as follows. We first fit the AGDD-VI time- 
series curves using the double logistic function. Then, each fitted curve 
was normalized using the maximum and minimum values on the curve. 
Finally, the SM-AGDD reference curve was determined by averaging the 
curves over the five central stations. In the SM-AGDD method, a fixed 
base temperature of 3 ◦C was used for accumulating temperature. On the 
North China Plain, however, the average temperature is normally lower 
than 3 ◦C before spring. These early phenological stages are thus rela-
tively concentrated in the shape model of SM-AGDD (Fig. 6b). According 
to Sakamoto et al. (2010), the VI values of the reference curve outside 
the growth period should be replaced by fixed values. On the North 
China Plain, there are normally two crop cycles within a year. Due to this 
multiple cropping scheme, the minimum VI values (i.e., the background 
VI values) differ between the two sides of the maximum VI value on the 
annual curve (i.e., from August 1 in the previous year to the current 
year). We thus used two different fixed values for the two sides of the 
reference curve (see the dashed line in Fig. 6). The bias parameter in SMF 
(Eq. 1) was determined to be the mean value of the two fixed values. We 
noticed that Sakamoto (2018) determined an identical fixed VI value (i. 
e., the bias parameter used in SMF) as the minimum VI value at the point 
backward from the maximum point. We also tested an identical fixed VI 
value but found that the RMSE values of the phenology estimates ob-
tained with SMF decreased substantially (cf. Fig. S3a and Fig. 9a); this 
may have been due to the alterations made to the phenological char-
acteristics in the shape model. In subsequent applications, the VI time- 
series curves of the target pixels were preprocessed using a similar 
procedure as that used for the shape model. 

Table 1 
The nine phenological stages of winter wheat.  

Phenological stages Description 

Sowing Seeds are sown 
Emergence The first green leaflet emerges from the coleoptile, 

approximately 2.0 cm long 
Tillering The tip of the first tiller exposed in the leaf sheath is 

approximately 0.5 to 1.0 cm 
Start of overwintering 

period 
Plants with adequate tillers are needed before winter 
dormancy to ensure the maximum yield potential 

Spring green-up Winter wheat resumes growth, and the heart leaves grow 
1.0–2.0 cm. 

Jointing date First node of the stem becomes visible as a result of 
internode elongation 

Heading date The tip of the ear is exposed from the sheath of the flag leaf 
Milky ripe The kernels in the middle of the ear (naked oats, oat tops) 

reach normal size and are yellow–green 
Maturity date More than 80% of the grains turn yellow, the glumes and 

stems turn yellow, and only the first and second nodes in 
the upper part are still slightly green  

Table 2 
Number of stations that recorded available winter wheat phenological stage information each year.  

Phenological stages 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total 

Sowing 19 19 18 21 19 31 34 35 33 229 
Emergence 19 19 20 18 20 33 34 35 34 232 
Tillering 19 19 21 20 18 31 32 36 31 216 
Spring green-up 10 13 14 15 13 17 27 22 29 160 
Overwintering 12 12 13 12 12 21 23 28 26 159 
Jointing date 16 18 19 20 17 34 34 35 38 231 
Heading date 18 19 20 20 20 33 34 33 38 235 
Milky ripe 19 21 21 18 21 32 34 33 37 236 
Maturity date 19 20 21 19 20 33 34 32 36 234 

Note: Not all nine phenological stages were recorded at each station. 
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3.2.3. Assessment of winter wheat phenology mapping on the North China 
Plain 

We further compared the SMF-S and SMF methods with regard to the 
ability of these methods to map regional winter wheat phenology. The 
SM-AGDD method was excluded from this regional mapping process 
because it exhibited substantially large errors when the results were 
compared with the field phenological observations (see Fig. 9 and the 
corresponding explanation of performance in the Discussion section 
5.1). The SMF-S and SMF methods used the same shape model (as shown 
in Fig. 6A). We investigated the differences in the regional phenology 
maps derived with SMF-S and SMF. 

4. Results 

4.1. Comparisons in simulation experiments 

We first conducted quantitative assessments using simulation ex-
periments in the no-noise scenario (Fig. 7a-b). SMF-S performed better 
than SMF, obtaining smaller RMSE values and higher correlations be-
tween the phenology estimates and the true values; for example, when 
estimating the green-up date, the RMSE derived by SMF-S was 0.69 d, 
while that obtained by SMF was 4.42 d. These results suggest that SMF-S 
can better capture phenological metrics on EVI time-series data than 
SMF can. The analytic expression (Eq. 5) reveals the inherent limitation 
of SMF; the variance in the phenology estimates is related to the 
phenological stages themselves. Here, we calculated the standard devi-
ation (SD) of phenology estimates derived using SMF and found that the 
SD increased with the phenological stage and was underestimated for 

early stages (e.g., the green-up date; Fig. 7c). In contrast, the SD of 
phenology estimates derived using SMF-S is more consistent with the 
true SD. 

We next investigated the effect of noise in the EVI time series on the 
resulting phenology estimates (Fig. 8). We show only the changes in the 
green-up date and maturity date estimates considering the noise levels 
because of the similarity of the results between the green-up date and 
the dormancy date and between the maturity date and the senescence 
date. SMF-S performed better than SMF at all noise levels, although the 
accuracy of both methods decreased as the noise level increased. The 
better performance of SMF-S, particularly at high noise levels, can be 
partially attributed to its use of adaptive local windows. To confirm this 
explanation, we tested SMF-S using randomly determined w values 
(half-width of the window) ranging from 30 to 180 d and calculated the 
mean phenology estimates (referred to as the “Mean SMF-S" results; see 
the black dashed lines in Fig. 8a, b, d, e). Without using the adaptive 
local windows, the phenology estimation errors of SMF-S indeed 
increased and became even larger than those of SMF with regard to the 
maturity date at 20% noise (Fig. 8d). We examined the average w values 
used in SMF-S at different data noise levels and found that w increased 
with noise levels for the maturity date but varied little for the green-up 
date (Fig. 8c, f). At the green-up date, the EVI values are small; thus, the 
relative negative noise added in the time series does not dramatically 
decrease the time series values. When w increases, however, the increase 
in VI noise outside the local range of the green-up date may greatly affect 
the performance of shape model fitting. This VI noise trade-off inside 
and outside the local range of the green-up date may account for the 
small variations in w observed at this stage. 

Fig. 6. Reference curves with corresponding reference phenology (color points) for different methods for winter wheat phenology estimations on the North China 
Plain: (a) SMF-S and SMF; (b) SM-AGDD. The black dashed line in panel (a) indicates the replacement of the VI values outside of the winter wheat growing season. 
The red dashed line in panel (b) represents the changes in the AGDD over time (see the right Y axis). 

Fig. 7. Performance of the (a) SMF and (b) SMF-S methods in the no-noise scenario. (c) SD of phenology estimates derived using the SMF and SMF-S methods for four 
phenological stages. 
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4.2. Comparisons of winter wheat phenological estimates at ground 
stations 

We quantitatively compared the SMF-S method to the SMF and SM- 
AGDD methods regarding the ability of these methods to estimate winter 
wheat phenology at ground-based phenological observation stations. To 
implement the SM-AGDD method, we used the corresponding air tem-
perature data recorded at the associated meteorological stations. In 
general, SMF-S achieved smaller phenology estimation errors than the 
other two methods. The RMSE values of SMF-S, SMF, and SM-AGDD 
averaged over the nine phenological stages were 9.5, 13.4, and 33.6 d, 
respectively (Figs. 9a-c; each panel also includes the RMSE value cor-
responding to each phenological stage). The worst SM-AGDD perfor-
mance was mainly due to the obviously larger estimation errors 
obtained for the first five phenological stages, which is discussed in 
depth in section 5.1. Thus, we did not include SM-AGDD in further an-
alyses or subsequent experiments due to its large estimation errors. 
Regarding the SMF method, there was little variation in the phenology 
estimates derived by SMF for the early phenological stages (bottom left 
of Fig. 9a). SMF-derived estimates seem to be negatively correlated with 
field-observed phenology at these early stages (e.g., tillering and over-
wintering). Explanations for this unusual pattern are provided in dis-
cussion section 5.1. 

SMF underestimated the SD in the early phenological stages but 
overestimated the SD in the late stages, which is opposite to the true 
pattern of change of SD with phenological stage (cf. the blue and black 
dashed lines in Fig. 10). It is interesting to observe that the relationship 
between the SMF-derived SD and phenological stages is almost a 
perfectly straight line; this seems to differ somewhat from the nonlinear 
quadric relationship derived from Eq. 5. To determine the reason for this 
linear result, we investigated the values of the two parameters xscale and 
tshift. We found that tshift had much smaller values (Fig. S4), suggesting 
that the last two terms in Eq. 5 are also very small and can be omitted (i. 
e., D

(
pi

est
)
=

(
pi

0
)2D
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)
). The SMF-derived SD was thus reduced to: 
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The above equation shows the approximately linear relationship 
between SD(pest

i ) and p0
i derived using SMF for ground-based phenology 

station experiments (Fig. 10). The small tshift values may be partially 
attributed to the difficulties experienced in SMF parameterization, 
which are discussed in depth in section 5.2. 

We further investigated whether the SMF and SMF-S methods could 
capture temporal changes in crop phenology. Fig. 11 shows the corre-
lation coefficients between the multiyear field phenology observations 

Fig. 8. (a, d) RMSE, (b, e) R2, and (c, f) determined w of (a–c) the green-up date (GUD) and (e–f) maturity date (MD) with increasing noise levels in the two methods.  

Fig. 9. Relationship between field-observed phenology and the phenology 
estimated by the (a) SMF, (b) SMF-S, and (c) SM-AGDD methods. 
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and the corresponding estimates for each phenological stage. SMF-S 
achieved stronger correlations than SMF for all phenological stages, 
particularly in some early stages at which SMF even yielded negative 
correlations (Fig. 11). Such a pattern of negative correlations produced 
by SMF was due to unsynchronized changes in the length of the early 
and late phenological periods (see Fig. 14a; discussed in section 5.1). 

4.3. Comparisons of winter wheat phenology mapping on the North China 
Plain 

We compared the abilities of SMF-S and SMF to map winter wheat 
phenology on the North China Plain. The look-up table for the adaptive 
local windows in different winter wheat phenological stages is sum-
marized in Table S1. Fig. 12 shows the estimations for emergence, spring 
green-up, and maturity date in 2008 as an example. The SMF-derived 
emergence varied between 285 and 295 DOY in the previous year, 
whereas the SMF-S-derived emergence varied more widely (Fig. 12a and 
12b). At maturity, however, SMF yielded larger spatial variations. For 
example, SMF-derived maturity varied from as early as DOY 140 in the 
southwest area to DOY 170 in the northeast region (Fig. 12e). These 

spatial observations are consistent with the results from the ground 
stations, suggesting that the SMF underestimates (overestimates) the 
variations in early (late) phenological stages (Fig. 10). To further 
determine the reasons for their different performances, we drew histo-
grams of phenology estimation differences between the two methods (i. 
e., SMF − SMF-S). In particular, we focused on the pixels distributed at 
the two ends of the histograms with large differences (i.e., the left 10% 
and right 10%; Fig. 13a). We averaged the EVI time series of these pixels 
and plotted the averaged phenological estimates on the curves. We 
assumed that the same phenological stages should be detected at 
approximately the same relative positions on the EVI time series. For 
those pixels at the two ends, the phenology estimates derived by SMF for 
the same phenological stage are not consistently distributed at the same 
positions on the curves (cf. Fig. 13b and 13c). For example, the SMF- 
derived maturity dates (Fig. 12e) are obviously earlier than the SMF- 
S-derived maturity dates in the southwest region (Fig. 12f), which is 
unrealistic owing to the obvious incorrect position on the EVI time-series 
curve (the blue point in Fig. 13b). In contrast, the phenological estimates 
provided by SMF-S exhibited more consistent relative positions on the 
EVI curves. 

Fig. 10. Patterns of change in the phenology SD (standard deviation) versus the 
phenological stage. For the number of observations for each phenological stage, 
please refer to Table. 2. 

Fig. 11. Correlation coefficients between the multiyear field phenology ob-
servations and corresponding estimates for each phenological stage at each site. 
Each bar indicates the minimum, first quartile, median, third quartile, and 
maximum correlation coefficients. 

Fig. 12. Regional mapping results of (a, b) emergence (EMG), (c, d) the green- 
up date (GUD), and (e, f) the maturity (MD) date in 2008 obtained by the SMF 
and SMF-S methods. 
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5. Discussion 

5.1. Improvements in SMF-S 

The challenge in monitoring crop phenology is how to accurately 
associate agronomic stages with satellite VI time series (Gao and Zhang, 
2021). SMF is recognized as a promising method to address this chal-
lenge. In the SMF method, a reference curve containing the corre-
sponding crop phenological stages (called a shape model) is matched 
with each target VI curve based on the assumption that the crop 
phenological stages are distributed at the same relative positions on the 
two curves (Sakamoto et al., 2010). The SMF-S method was developed 
from the SMF method and inherits the strengths of the shape model 
concept, such as its ability to combine ground-based agronomic obser-
vations with positions on curves of VI data. Moreover, the SMF-S method 
addresses two limitations of SMF. 

First, SMF-S exhibits an improved ability to describe the relation-
ships between multiple phenological stages. SMF adopts a global 
matching strategy with identical linear scaling and time shift factors; 
theoretically, the relationship between the lengths of any two pheno-
logical stages for the target pixels equals that in the shape model (see Eq. 

3). To further illustrate this problem, we calculated the time intervals 
between the sowing and spring green-up stages and between the green- 
up and maturity stages by using winter wheat field phenology obser-
vations and corresponding phenology estimates derived using SMF and 
SMF-S. In actuality, the length of the early phenological period (i.e., 
green-up minus sowing) is significantly negatively correlated with the 
length of the late phenological period (i.e., maturity minus green-up) 
(Fig. 14a). Unfortunately, this negative correlation is incorrectly 
described as a positive proportional correlation when the phenological 
estimates are produced by SMF (Fig. 14b). In contrast, SMF-S can cap-
ture the negative correlation to some extent (Fig. 14c). 

Unsynchronized changes in the lengths of the early and late pheno-
logical periods (Fig. 14a) contradict the positive proportional correla-
tion estimated by SMF (Eq.3; Fig. 14 b). This suggests that it is 
impossible to match the shape model with all phenological stages well in 
this situation when using SMF. The objective of SMF is to minimize the 
RMSE between the geometrically transformed shape model and the 
NDVI time series. SMF tends to match the shape model with the late 
phenological stages of winter wheat because of the large NDVI values 
associated with these stages. Therefore, the early phenological stages 
may be poorly matched, and the matching performance in the late 

Fig. 13. (a) Histograms of the differences in phenology estimates between the SMF and SMF-S methods. The bin size of the histograms was set to 2 d. (b, c) Averaged 
EVI time series for the pixels at the two ends of the histograms. The colored points on the EVI curves reflect the averaged phenology estimates. 
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phenological stages is more or less affected by the asynchronous changes 
in the two lengths (Fig. 14a). These relations may explain the poor 
performance of SMF in most phenological stages, particularly the early 
phenological stages, with negative correlations shown in Fig. 9a and 
Fig. 11. To further evaluate this explanation, a schematic diagram with a 
numerical example is given in Fig. S5. In actuality, asynchronous 
changes in different phenological stages are found in both natural 
vegetation (Jeong et al., 2011; Sun et al., 2020) and crops (Wang et al., 
2021; Zhou et al., 2020). For example, changes in the length of the 
emergence period were opposite changes in the length of the tilling 
period for winter wheat between the two years considered (see 
Fig. Fig. 3 in Zhou et al., 2020). Thus, the improved ability of SMF-S to 
describe the relationships between phenological stages make it an 
excellent choice in many applications. 

Second, SMF-S improves the ability to describe the spatial and 
temporal variations in each phenological stage. In SMF, the variance in 
the estimates of a particular phenological stage depends on the stage 
itself (Eq. 5). Our experimental results based on both field phenology 
observations and regional mapping confirm that SMF underestimates 
these spatial variations in the early phenological stages and over-
estimates the variations in late stages (Figs. 10 and 12). This result is due 
to the shape model used in SMF being stretched from the left endpoint. 
SMF-S addresses this problem by introducing the phenological stage into 
the shape model (Eq. 6); thus, stretching can be performed around both 
sides of each stage. Compared to those for natural vegetation, greater 
uncertainty may arise in the spatial and temporal variations in crop 
phenology because crop phenology is affected by both climate condi-
tions and human activities (e.g., farmer practices and equipment avail-
ability) (He et al., 2015). The improved ability of SMF-S to simulate 
spatial and temporal variations in crop phenology could enhance the use 
of phenological information in crop growth management (Anderson 
et al., 2016). 

SM-AGDD performed the worst in the winter wheat phenology esti-
mation experiments (Fig. 9), with obviously larger estimation errors for 
the first five phenological stages. These results can be explained as fol-
lows. The early phenological stages are relatively concentrated in the VI- 
AGDD time series (Fig. 6B); thus, even a small matching error between 
the shape model and target curves can result in large phenology esti-
mation errors for these stages. Generally, it is more difficult to achieve 
good matching performance in larger areas because climate conditions 
(e.g., temperature and precipitation) and crop varieties may differ 
substantially in space. Therefore, it is challenging to apply SM-AGDD 
with an identical shape model to the North China Plain area, which 
spans more than 1000 km (Fig. 4). One may wonder whether the per-
formance can be improved when using SM-AGDD in local regions. To 
answer this question, we performed the winter wheat phenology 
detection experiment again but used a different shape model at each 
ground station. Specifically, the shape model at each ground station was 

generated by using the corresponding phenology observations in 2008 at 
the station. Winter wheat phenology from 2009–2016 at each station 
was thus detected using the shape model for the corresponding station. 
As we expected, the RMSE values averaged over all ground stations 
greatly decreased from 33.6 d to 17.0 d for SM-AGDD (Fig. S6). SMF-S 
still performed the best among the three methods in this additional 
experiment. 

5.2. Parameter optimization in the SMF and SMF-S methods 

Parameter optimization is an important step that may affect the 
performance of shape model fitting. For example, Zhou et al. (2020) 
suggested that the better performance of SM-AGDD than SM-APTT (Zeng 
et al., 2016) is partially due to the higher precision of scaling parameter 
optimization. SMF includes three parameters (tshift, xscale, and yscale) 
to be optimized. In our experiments, these parameters were originally 
optimized by using the nonlinear optimization procedure “L-BFGS-B" 
(Zhu et al., 1997) in the scipy-1.5.0 package of Python-3.8.3. To assess 
uncertainty in parameterization with SMF, one may adjust the param-
eter values and assess SMF performance when using different optimi-
zation procedures. To address this concern, we tested SMF by using the 
other four optimization procedures in the scipy-1.5.0 package. These 
procedures are called the “truncated Newton (TNC)” (Nash, 1984), 
“Powell” (Powell, 1964), “sequential least-squares programming 
(SLSQP)” (Kraft, 1988), and “Nelder–Mead” (Nelder and Mead, 1965) 
methods. In addition, we included the optimization procedure given by 
Sakamoto (2018) (“CONSTAINED_MIN” in the IDL program) in the tests. 
The results show that the RMSE values for SMF-derived phenology es-
timates obtained with all six optimization procedures are larger than the 
SMF-S RMSE values (cf. Fig. 9 and Fig. S7). We observed some differ-
ences in the parameter values when using different optimization pro-
cedures (Fig. S7). Two of the six optimization procedures (“TNC” and 
“Powell”) yield larger tshift values, and the other four procedures 
generated similar parameter patterns with much smaller tshift values. 
We further checked the objective function of SMF and found that all six 
optimization procedures achieved similar minimum values (Fig. S8), 
suggesting that all the procedures can be considered effective for opti-
mization. In SMF, the effect of tshift on the matching results can be offset 
to some extent by the effect of xscale. The six optimization procedures 
may utilize different rules to focus more on tshift or xscale, which may 
partially account for the different parameter values. Further mathe-
matical demonstrations of the six nonlinear optimization procedures are 
beyond the scope of this study. 

There are only two parameters to be optimized in the SMF-S shape 
model (i.e., tshifti and xscalei). These parameters can be determined by 
traversing the parameter space with a simple iterative program (see the 
Methods section for details). Regarding the computational efficiency, 
our experiments show that SMF-S takes approximately half the time 

Fig. 14. Relationships between the time intervals of the early (the green-up date minus the sowing date) and late (the maturity date minus the green-up date) growth 
stages. All linear fits were significant (the ** symbol indicates significance at the P < 0.01 level). 
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required by SMF to detect a single phenological stage. However, SMF-S 
requires parameters to be optimized at each stage. In addition, more 
time is required when parameters must be traversed in larger parameter 
spaces, such as in cases with large differences between the shape model 
and target pixels. 

5.3. Practical application of SMF-S 

The first step in applying SMF-S is generating the shape model. There 
are three ways to do this according to the availability of phenology 
observations. The first is based on in situ phenology observations, in 
which the VI time series with corresponding phenological observations 
are directly extracted from field observation sites (Sakamoto et al., 
2010). However, field observation sites may not be readily available in 
some applications. The second method is based on regional phenology 
reports (e.g., county-scale reports) (Sakamoto, 2018). First, the refer-
ence curve is generated by aggregating the regional VI time series for the 
same crop type. Then, the reference phenological stages are determined 
by minimizing the differences between the phenological estimates and 
regional-scale phenological reports. However, this method is charac-
terized by low computational efficiency. The third method is based on 
the synthesis of multiyear VI time series; this method can be employed 
when phenological observations are unavailable. It generates the 
reference curve for each pixel by averaging the multiyear VI time series 
of the pixel and determines the reference phenology on the reference 
curve by applying phenology detection methods (e.g., the inflection 
method) (Chen et al., 2016). This method avoids the need to obtain field 
phenology observations and allows a unique shape model to be deter-
mined for each pixel. However, it is difficult to define crop phenological 
stages using this method without obvious inflection features. In practical 
applications, SMF-S can incorporate any of these three options to 
generate shape models depending on the availability of field-recorded 
phenology observations. 

SMF-S uses an adaptive local window to reduce the influence of data 
noise on phenology detection. Our simulation experiments performed 
under the noise scenario confirmed the necessity of incorporating 
adaptive windows (Fig. 8). Because the range of noise levels in practical 
applications may not be as large as that in our simulation experiment, 
one may expect that a smaller-sized fixed window can be used for the 
objective of in-season phenology detection with SMF-S. Several recent 
studies have explored the detection of vegetation phenology within 
seasons (Gao et al., 2020; Gao and Zhang, 2021; Liu et al., 2018). Here, 
we estimated winter wheat phenology using fixed window sizes with w 
ranging from 30 to 120 d. Comparing the results with field phenology 
observations showed that the phenology estimates using any fixed 

window were worse than the estimates derived using adaptive local 
windows (Fig. 15). To detect crop phenology within a season based on 
SMF-S, a fixed window with a smaller size (e.g., w =30 d) may be used 
but will result in a certain decrease in the detection accuracy. In addi-
tion, the application of SMF-S within seasons has two requirements. 
First, crop type information is required when detecting crop phenology 
using SMF-S. Identifying crop types before the growing season may be 
possible only in agricultural areas with regular crop rotations, as the 
current-year crop types in these areas can be predicted from historical 
crop planting maps (Zhang et al., 2019). Recently, some studies have 
also conducted in-season crop classifications (e.g., Johnson and Mueller, 
2021). The impacts of in-season crop identification on in-season crop 
phenology detection are worth investigating in the future. Second, high- 
quality NDVI data are required for phenology detection based on limited 
NDVI time series within a season (Zhang et al., 2012). However, the 
quality of MODIS NDVI data may be unsatisfactory in some cloudy areas, 
where larger local windows are required in SMF-S to achieve reliable 
phenology estimates, thus decreasing the timeliness of phenology 
detection. For areas with heterogeneous croplands, NDVI series with 
high spatial resolutions (e.g., Sentinel-2) are necessary, but serious data 
gaps may exist in these series (Chen et al., 2021). One promising tech-
nique to solve this issue is the fusion of optical and synthetic aperture 
radar (SAR) time series, which has proven effective for dynamic crop 
monitoring (Zhao et al., 2020a). 

We tested the superiority of SMF-S to other methods in detecting 
winter wheat phenology on the North China Plain. Winter wheat has a 
long growing season with two growth peaks (Dong et al., 2020; Qiu 
et al., 2017). Multiple phenological stages in the growing season 
correspond to important tasks. For example, the tillering date and 
jointing stage affect irrigation management (Zhao et al., 2020b), and the 
sowing and harvest dates help yield estimations (Sun et al., 2007). 
Theoretically, SMF-S can be applied to other crop types (e.g., maize or 
soybean). The errors in the maize and soybean phenology estimates 
obtained by SMF were reported to be smaller than 5 d (Sakamoto, 2018; 
Zeng et al., 2016); these results may have been associated with the 
relatively short growing seasons of these crops. However, inherent 
limitations still exist in such estimates derived by SMF, such as the 
dependence of the phenological variance on the phenological stage. 

6. Conclusion 

Regional-scale crop phenology can be determined using satellite 
remote sensing data. In this study, we proposed the SMF-S method to 
estimate crop phenology from VI time series. The proposed method 
improves upon the SMF method, which has difficulty describing the 
relationships among multiple phenological stages and simulating the 
spatial variances in individual stages. The SMF-S method, in contrast, 
modifies the fitting function and adopts an iterative procedure to match 
the shape model with the VI time series for each stage in an adaptive 
local window. We tested the effectiveness of SMF-S using multisource 
data. SMF-S performed better than SMF, producing lower estimation 
errors under the no-noise scenario in the simulation experiments 
(average RMSE: 0.72 vs. 5.19 d). In the scenario in which different noise 
levels were considered, the SMF-S performance was also better than the 
SMF performance, thanks to the use of adaptive local windows. We 
further evaluated the SMF-S method by detecting the winter wheat 
phenology on the North China Plain. The SMF-S estimates were more 
consistent with the field phenology observations than were the results of 
SMF and SM-AGDD (average RMSEs: 9.5, 13.4 d and 33.6 d, respec-
tively). SMF-S also better described the spatial variations (i.e., variance) 
and captured the temporal shifts in multiple phenological stages. By 
analyzing the generated regional winter wheat phenology maps, we 
found that SMF underestimated the spatial variations in the early 
phenological stages and overestimated those in late stages. SMF-S 
addressed this problem and generated more reasonable regional 
phenology mapping results. The SMF-S code is available from the link: 

Fig. 15. Accuracy of winter wheat phenology estimates obtained with SMF-S 
using different fixed local window sizes. The two dashed lines indicate the 
RMSE value for SMF-S with adaptive local windows and SMF. 
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https://github.com/LicongLiu/SMF_S_Release. 
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Appendix A. Appendix 

Here, we provide the corrigendum to the phenology estimation equation used in the SMF method considering the mistakes made in previous 
studies (Sakamoto et al., 2010; Sakamoto, 2018).  

(1) The mistake and its correction 

In SMF, the geometrical fitting of the shape model on the target curves (i.e., Eq. 3 in Sakamoto, 2018) is expressed as follows: 

h(x) = yscale× [g(xscale×(x+ tshift) )+ bias ] − bias (A1)  

where g(x) represents the shape model and h(x) is the geometrically transformed shape model. After acquiring the two required parameters (i.e., xscale 
and tshift) through optimization, Sakamoto (2018) estimated the phenology of the target curve (Xest) by substituting the defined phenology (X0) into 
the following equation: 

Xest = xscale × (X0 + tshift) (A2) 

However, Eq. (A2) is incorrect. This may be due to confusion regarding the difference between the scaling and shifting of the function (i.e., g(x)) 
and a point (X0). For example, if tshift is positive and xscale is larger than 1.0, “g(xscale × (x + tshift))” in Eq. (A1) would suggest that g(x) is first moved 
left by tshift and then shrunken due to xscale. This operation is, however, opposite the “xscale × (X0 + tshift)” expression in Eq. (A2), in which the X0 
point in g(x) is first moved right by tshift and is then stretched by xscale. Because neither yscale nor bias in Eq. A1 affect the x (date) dimension, we 
assume they are 1.0 and 0.0, respectively. Thus, Eq. (A1) can be reduced to the following expression: 

h(x) = g(xscale×(x+ tshift) ) (A3) 

Xest in h(x) is estimated from X0 in g(x) by scaling and shifting. However, it should be noted that the xscale and tshift values determined in Eq. (A3) 
are the scaling and shifting factors for the g(x) function. Point X0 can be formulated as follows: 

xscale×(Xest + tshift) = X0 (A4) 

Therefore, Eq. (A2) should be corrected as follows: 

Xest =
1

xscale
X0 − tshift (A5)    

(2) A numerical test of Eq. (A5) 

For a shape model “g(x) = 0.5x − 1” (represented by the orange line in Fig. A1), the geometrically transformed shape model is formulated as 
follows: “h(x) = g(2 × (x + 1)) = x” (i.e., tshift=1 and xscale=2; see the blue dashed line in Fig. A1). Assuming that X0=6, Xest is estimated to be 14 
according to Eq. (A2), but this value is obviously incorrect. Based on Eq. (A6), we can achieve the correct Xest value of 2.

Fig. A1. Numerical test results for the shape model (orange line) and the geometrically transformed shape model (blue dashed line).  
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2022.113060. 
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