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A B S T R A C T   

The monitoring of agricultural fields from remote sensing imagery allows for the effective management of 
agricultural resources at large spatial scales. Deep learning-based methods have shown great potential in the 
extraction of individual arable fields (IAF) from high-resolution imagery; however, accurate boundary locali
zation and collection of adequate training samples remain a challenge. This study proposes a novel deep learning 
network (FieldSeg-DA) to extract IAFs from Chinese high-resolution satellite imagery (Gaofen-2). FieldSeg-DA 
adopts a parallel network structure consisting of two branch networks (UNet and DeepNetV3+) to indepen
dently extract the boundary and extent of IAFs. A post-processing module, connecting boundaries and filling field 
(CB-FF), was used to integrate the extracted boundary and extent and promote the integrity of each extracted 
IAF. The parallel network coupled with CB-FF improved the boundary and extent accuracy of IAF extraction. 
Moreover, we used fine-grain adversarial domain adaption (FADA) in the training stage to promote the trans
ferability of the trained network from source domains with labeled samples to target domains without any 
labeled samples. We found that FieldSeg-DA outperformed IAFRes, a state-of-the-art method for IAF extraction, 
in both the source and target domains, with improvements of 0.016 and 0.069 in the F1-score, respectively. 
Therefore, the proposed FieldSeg-DA method has the potential to extract IAFs accurately across diverse farming 
areas without training samples.   

1. Introduction 

An individual arable field (IAF)—also known as a crop plot or crop 
parcel—is the basic spatial unit of crop farming that is demarcated by 
ridges, paths, and ditches, and is usually planted with one crop per 
growing season (Persello et al., 2019; Yan and Roy, 2014). The spatial 
information (location and area) of IAFs is not only relevant to deter
mining ownership of croplands but is also required when planning 
cooperative farming activities, such as irrigation, fertilization, and 
harvesting. Moreover, it is the basic unit of crop mapping (Matton et al., 
2015; Waldner and Diakogiannis 2020). 

Although the traditional method of obtaining the spatial distribution 
of IAFs is by field survey, it is ineffective in analyzing large areas (Blaes 
et al., 2005; De Wit and Clevers, 2004). Remote sensing techniques, used 
to generate detailed geometric information for large areas from satellite 
images, have emerged as efficient alternatives (De Wit and Clevers 
2004). With the increasing availability of high-resolution satellite 

imagery, various remote sensing-based methods have been developed 
for the analysis of IAFs. Visual interpretation is a common practical 
approach for remote sensing techniques. However, at regional or na
tional scales, this approach is impractical (Garcia-Pedrero et al., 2017; 
Rahman et al., 2019; Turker and Kok, 2013), which is why researchers 
have opted for the automatic extraction of IAFs from remotely sensed 
images. 

Automatic IAF extraction, as a typical application of image seg
mentation techniques, has received increasing attention recently (Belgiu 
and Csillik 2018). Similar to image segmentation, automatic IAF 
extraction methods can be classified into graphical operator- and deep 
learning-based approaches based on different feature extractors. 

Graphical operator based approaches are based on edge or region 
detection. Edge detection methods, such as the Canny operator, χ al
gorithm, and Gaussian edge filter, use convolution kernels to identify 
linear ground objects (e.g., ridges, paths, and ditches) (Xi and Zhang 
2012; Belgiu and Csillik 2018; Liu et al., 2010; Verrelst et al., 2014). The 
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role of the kernel is to distinguish between linear ground objects and 
other neighboring objects. The region detection method uses the ho
mogeneous spectral features of an image to identify the spatial extent of 
the IAFs (Segl and Kaufmann 2001; Da Costa et al., 2007). These texture- 
based heterogeneity characteristics derived from high-resolution 
remotely sensed images were used to identify the IAFs. Unfortunately, 
image noise heavily influences the application of most methods, 
resulting in incomplete or fragmented boundaries (Yan et al., 2015; 
Zhou et al., 1989). More importantly, the features and parameters 
associated with model performance rely heavily on experience, which 
may not be consistent across users and study regions, thus reducing the 
robustness of the algorithms (Aquino et al., 2010). 

Deep learning-based methods reduce this reliance on expert knowl
edge owing to their automated feature extraction capabilities. These 
methods employ convolutional neural networks (CNN)—a set of con
volutional operators—to obtain spatial and spectral features (also called 
dense features) at different spatial scales for semantic segmentation of 
IAFs (Long et al., 2015; Huang et al., 2020; Persello et al., 2019; Gao 
et al., 2020; Rabbi et al., 2020; Meyer et al., 2020; Waldner and Dia
kogiannis, 2020; Ma et al., 2019). For example, Huang et al. (2020) used 
a UNet model with a “U-shaped” encoder-decoder structure. Persello 
et al. (2019) proposed a contour delineation technique based on deep, 
fully convolutional networks to extract IAFs of various sizes. Gao et al. 
(2020) proposed a multi-scale feature fusion module robust UNet 
(MMUUNet), an improved UNet model that eliminates adhesion in the 
extracted IAFs. Considering that the CNN-based approach is not suffi
ciently accurate to extract the boundary of IAFs, Rabbi et al. (2020) used 
super-resolution generative adversarial networks to upsample remotely 
sensed images for edge enhancement and improved performance of se
mantic segmentation. Meyer et al. (2020) proposed a mask R-CNN-based 
model for delineating IAF boundaries over large areas. Yang et al. (2020) 
extracted IAF boundaries by training a “Snakes” algorithm that con
siders geometric and topological constraints. Waldner and Diakogiannis 
(2020) proposed a multitasking network called IAFRes to extract both 
boundaries and extents with a post-processing module combining Otsu’s 
thresholding algorithm and the watershed segmentation approach. 
However, there could be a trade-off between rich context information 
extraction and accurate boundary localization for a single network (Ma 
et al., 2019; Peng et al., 2022). Therefore, simultaneously improving the 
extent and boundary accuracy of IAFs remains challenging. 

Another pressing challenge of deep learning-based IAF extraction 
methods is the transferability of CNN models across study areas, also 
known as the “domain transfer problem” (Yoo et al., 2016). In general, 
the transferability of CNN models depends on the similarity in data 
distribution between an area with model training (source domain) and 
another area without (target domain) (Li et al., 2020; Matasci et al., 
2015). The differences between areas, such as size, shape, and spectral 
characteristics, may decrease the accuracy of the trained semantic seg
mentation network in recognizing the objects of interest in non-trained 
areas. An effective technique to address the issue is so-called “fine- 
tuning,” which adapts the parameters of a pre-trained model from the 
source domain to the target domain with only a small number of samples 
in the target domain (Liu et al., 2018; Nogueira et al., 2017). However, 
the fine-tuning technique cannot be applied to study areas without 
labeled samples. The zero-shot domain adaptation techniques were 
developed for tasks without target domain samples. These techniques 
align the image features extracted from the target domain to those of the 
source domain in terms of statistical distribution through adversarial 
learning, thereby guaranteeing transferability in trained models (Duan 
et al., 2012; Matasci et al., 2015; Yoo et al., 2016). Recently, category 
information was used in domain transfer to improve the alignment of 
conditional class distributions, thus enhancing the transferability of 
classification tasks. Although these techniques have shown some success 
in many computer vision tasks, they have not been tested in IAF 
extraction for different study areas. 

This study aims to propose an IAF extraction deep learning network 

to address the two challenges mentioned above: difficulty in simulta
neously improving the extent and boundary extraction accuracy of IAFs 
and the limited transferability of CNN models for IAF extraction across 
different study areas. In the novel network, two independent networks 
were coupled in a parallel network structure to identify IAF extent and 
boundary simultaneously; and an adversarial learning-based domain 
adaption technique was introduced to guarantee the transferability of 
the proposed network. 

2. Method 

This study proposed a field segmentation network named FieldSeg- 
DA to automatically extract IAFs from Chinese Gaofen-2 (Gaofen-2) 
images. The technical flow of the proposed FieldSeg-DA is illustrated in 
Fig. 1. Firstly, FieldSeg-DA integrated two branch networks, UNet 
(Persello et al., 2019) and DeepLabV3+ (Yan and Roy 2014), to identify 
the IAF extent and boundary, respectively, with an extent-boundary 
parallel network (EBPN) structure. Subsequently, a typical domain 
adaption method, fine-grain adversarial domain adaption (FADA), was 
employed in the training stage to guarantee the robust performance of 
both branch networks over the target domain without labeled samples to 
enhance the transferability of the deep learning networks trained from 
the source domain. Finally, a post-processing procedure consisting of 
several morphological image operators, called connecting boundaries 
and filling field (CB-FF), was proposed to eliminate the fragmented ex
tents and boundaries and consistently integrate the extent and boundary 
extracted by the two branch networks. 

2.1. IAF extent and boundary extraction with the parallel deep 
convolutional neural network 

2.1.1. UNet and DeepLabV3+
DeepLabV3+ and UNet are semantic segmentation networks that 

provide dense pixel-based predictions. These networks typically operate 
with an encoder-decoder structure to maintain consistent dimensions 
between the input and output (Fig. 2). Notably, as the number of con
volutions increases, encoder-derived features are obtained from a larger 
receptive field; thus, features with few convolutions (low-level convo
lution features) represent the image texture at the local scale and fea
tures with more convolutions (high-level convolution features) 
represent abstract context over a larger spatial neighborhood. 

Besides the shared network characteristics mentioned above, Deep
LabV3+ and UNet have different preferences in identifying “face” and 
“line” objects, respectively (Hosseinpour et al., 2022; Mosinska et al., 
2018; Peng et al., 2022). UNet delivers low-level convolutional features 
directly to the decoder with a “skip connection” (brown lines in Fig. 2a), 
which enables the effective recognition of line-like objects (e.g., crop
land boundaries). In contrast, DeepLabV3+ employs limited “skip con
nections” and introduces a dilated convolution kernel to enlarge the 
receptive field; thus, its applications are more focused on high-level 
convolutional features and recognition of face-like objects (e.g., the 
spatial extent of a single IAF). We used UNet to estimate the IAF 
boundary by training it with samples of a 1-pixel buffer of the IAF 
boundary vector; thus, UNet was focused more on boundary connec
tivity than extent area. On the other hand, DeepLabV3+ was trained 
with the “face” object (i.e., IAF extent), with a greater focus on IAF 
location than boundary accuracy. 

2.1.2. Training and inference 
Owing to limited GPU memory size, we created subsets of the images 

with dimensions of 256 × 256 pixels as input for UNet and DeepLabV3+
in the training stage. To avoid degradation in the segmentation accuracy 
of pixels near the image edges, we used overlapping inference windows 
with a stride of 128 pixels. This is a commonly used approach for large 
land cover classification that guarantees the incorporation of neigh
borhood information for each pixel (Waldner et al., 2017). We replaced 
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the cross-entropy loss function in the original UNet and DeepLabV3+
models with the Tonimoto loss function (Diakogiannis et al., 2020) to 
address sample imbalance, which is especially important for boundary 
extraction. 

2.2. Fine-grained domain adaptation 

We used the DA framework (Yoo et al., 2016)—a typical zero-shot 
domain adaptation technique—to simultaneously train a feature 
extractor and discriminator, which learn the discriminative features for 
the classification task from the source domain and align the indiscrim
inative features between the source and target domains, respectively. 

However, the original DA framework lacks categorical semantic infor
mation, which limits the expressiveness of the DA model. Therefore, we 
used an improved version of the DA framework, FADA (Wang et al., 
2020), which aligns features according to category information, in the 
training of both the UNet and DeepLabV3+ models to guarantee robust 
extent and boundary extraction performance in the target domain 
(Fig. 3). 

2.2.1. Domain adaptation framework 
Labeled sample data in the source domain and unlabeled sample data 

in the target domain can be tagged as follows: 

Fig. 1. Workflow of FieldSeg-DA analysis.  
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Source = {Img(S), L(S) } (1)  

Target = {Img(T) } (2)  

where Img(S) and Img(T) represent the image samples (256 × 256 
pixels) within the source domain S and target domain T, respectively, 
and L(S) denotes the class labels (i.e., “field” and “non-field”) assigned 
to the pixels in Img(S). 

DA uses the output features of the target and source domains from 
the feature extractors (F) of the network as the discriminator (D) input. 
The discriminator indicates the probability of features being extracted 
from the target or source domains. A cross-entropy loss function (Eq. 3) 
based on the probability is formulated to train the discriminator as 
follows: 

LD = −
∑ns

i=1
(1 − d)logP(d = 0|fi) −

∑nt

j=1
dlogP(d = 1

⃒
⃒fj
)

(3)  

where fi and fj are the features extracted by F from source samples i and 
target sample j. P(d = 0) and P(d = 1) are the predicted probabilities of 
belonging to the source (0) and target (1) domains, respectively, based 
on the output by the discriminator. The loss function represents the 
discriminator’s ability to determine features belonging to the source or 

target domain, with smaller values indicating higher domain discrimi
nating accuracy. After training the discriminator, the feature extractor is 
trained by minimizing the combined loss function Lfea of segmentation 
loss (Lseg) and adversarial loss (Ladv) to obtain domain features that are 
discriminated by segmentation tasks but not by the discriminator D: 

Ladv = −
∑ns

i=1
logP(d = 0|fi) (4)  

Lfea = Lseg + λLadv (5)  

where Lseg is the cross-entropy used to minimize the segmentation dif
ference between the ground truth and prediction, and λ is the empirical 
weight used to balance segmentation and adversarial losses. Therefore, 
by alternately minimizing the loss functions (Eq. (3) and Eq. (5)), the 
modified feature extractors would produce features from the target 
domains that are similar to those extracted from the source domains. 

2.2.2. FADA learning framework 
The alignment of features in the same class between different do

mains is vital for improving classification accuracy. The FADA learning 
framework was improved from the DA framework by replacing the 
domain discriminator with a class-domain discriminator (Wang et al., 

Fig. 2. The parameters of the UNet (a) and DeepLabV3+ (b) models for satellite image segmentation.  
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2020). The loss function of the class-domain discriminator is formulated 
by additionally considering class label: 

LD = −
∑ns

i=1
ailogP(d = 0, c = 0|fi) −

∑ns

i=1
ailogP(d = 0, c = 1|fi)

−
∑ns

j=1
ajlogP(d = 1, c = 0

⃒
⃒fj
)
−
∑ns

j=1
ajlogP(d = 1, c = 1

⃒
⃒fj
)

(6)  

where d denotes the domain label (as in Eq. 3), and c is the field label 
extracted from classifier C (c = 0 refers to the IAF extent or boundary, 
and c = 1 refers to the non-extent or non-boundary). P is the discrimi
nator’s predicted probability of belonging to a different category of 
different domains, and ai and aj are the probabilities of the class soft 
label for the source domain’s ith sample and the target domain’s jth 
sample, respectively. Here, the probability was produced by classifier C 
trained from the source domain data because of the lack of ground-truth 
labels in the target domain. 

The feature loss function Lfea was minimized to obtain the features 
for the segmentation task. Here, adversarial loss (Ladv) is different from 
that in Eq. 4 and encourages F to generate domain and class invariant 
features by the class information as follows: 

Ladv = −
∑ns

i=1
ailogP(d = 0, c = 0|fi) −

∑ns

i=1
ailogP(d = 0, c = 1|fi) (7)  

2.2.3. Training and inference 
The FADA is implemented by alternatively optimizing feature 

extractor F, classifier C, and discriminator D in two steps until the 
Training converges. 

In step one, the parameters of the already-trained feature extractor F 
and claissifier Cwere fixed, and the output soft labels in the target and 
source domains were then used to train the discriminator by minimizing 
the discrimination loss (Eq. 6). In step two, the parameters of discrimi
nator D were fixed, and the source domain data with labels and the 
target domain data without labels were used to train the feature 
extractor F and classifier C by minimizing both segmentation and 
adversarial loss (Eq. 7). During the inference process, discriminator D in 
the FADA was removed, and only the trained feature extractors F and 
classifier C were used to predict the segmentation results. 

2.3. Connecting boundaries and filling field (CB-FF) 

Owing to the inevitable misidentification of IAF extent and boundary 
by UNet and DeepLabV3+, the extracted boundary and extent were 
often too fragmented and aggregative, respectively, and thus incom
patible. We used CB-FF to polish the extracted boundary and extent 
outputs (Fig. 4). 

The first step of CB-FF is connecting boundaries (CB) with break
points. We used a sequence of morphological operations, “skeletoniza
tion” (Zhang and Suen 1984), “ dilation”, “skeletonization” and 
“dilation” operations, to connect most of the small breakpoints in the 
extracted boundaries (Fig. 4c). The first “skeletonization” operation 
reduced the extracted boundary regions into a centerline with one-pixel 
width, which helps to exhibit the breakpoints. The following “dilation” 
operation with a 5 × 5 square kernel connected the boundary’s break
point to its nearest boundary with a distance of less than 5 pixels. 
However, the thickness of the boundaries became uneven after the 
“dilation” operation (Fig. 4d). Thus, the second “skeletonize” operation 
was executed again to extract centerlines with connected breakpoints 
(Fig. 4e). As the IAF boundaries (ridges, paths, and ditches) are 
commonly wider than one pixel in high-resolution images, a “dilation” 
operation with a 3 × 3 square kernel was executed to dilate the too thin 
centerlines (Fig. 4 f). The dilated boundary image was then merged with 
the original UNet produced boundary to retain as many of the boundary 
pixels as possible and create a polished boundary. 

The second step involves fusing the boundary and extent images with 
a filling-field (FF) operation. The extent image was firstly clipped using 
the polished boundary (Fig. 4i); then, a morphological “closing” oper
ation (i.e., to dilate an image and then erode the dilated image) with a 3 
× 3 square kernel was used to fill each clipped IAF patch (Fig. 4j). 
Finally, the closed IAF patches were merged again to generate complete 
IAF map (Fig. 4k). With the CB-FF operation, we effectively eliminated 
the over-fragmented boundaries and split the over-aggregative extents 
in the original IAF boundary and extent images produced by UNet and 
DeeplabV3 +. 

3. Study areas 

We selected four farming areas (Fig. 5) around the cities of Funan 
(FN), Chengdu (CD), Heihe (HH), and Ruian (RA), China, which are 
characterized by different climates, crop types, and landscapes, 

Fig. 3. Overview of the fine-grained adversarial domain adaptive framework (FADA) for field extraction.  
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including the Koppen–Geiger climate type Cfa (humid subtropical 
climate, FN and RA), Dwb (monsoon-influenced warm summer humid 
continental climate, CD), and Dwc (monsoon-influenced subarctic 
climate, HH). These climates are associated with different crop types (e. 
g., maize, cotton, and soybeans) and cropping cycles. Landscape het
erogeneity between the sites caused considerable variation in the size 
and shape of their respective IAFs. For instance, RA farmlands exhibited 
more fragmentation than those in CD, FN, and HH, which was related to 
complex river networks and mountainous terrain. We selected FN as the 
source domain based on the adequate number of labeled samples at this 
site. The transferability of the trained model was therefore assessed 
using CD, HH, and RA as the target domains. 

3.1. Datasets 

3.1.1. Images and preprocessing 
We acquired four Gaofen-2 imageries in the four experimental areas. 

The four images were respectively captured in different seasons because 
of the limited revisiting frequency for the high-resolution data (Table 1). 
To obtain surface reflectance images, we performed orthorectification, 
radiometric calibration, and atmospheric correction (Table 1), which 
can reduce the radiometric inconsistency caused by varying topo
graphical and atmospheric conditions. To maximize the use of spectral 
and spatial information from Gaofen-2 image data, the Gram-Schmidt 
Adaptive (GSA) was used to fuse the coarse spatial resolution (4 m) 
multispectral band image with the corresponding high spatial resolution 

(1 m) panchromatic band image. The surface reflectance images ac
quired had four multispectral bands at a spatial resolution of 1 m (see 
Table 2). 

3.1.2. Training and validation samples 
We digitized the sharpened Gaofen-2 images by marking the image 

pixels with IAF boundaries and extents (Fig. 6). The labels of the extents 
were created by manually digitizing all subareas. We applied a buffer of 
1 m to the labels of the extent to create single-line vector data as 
boundary labels. These vector polygons were converted into a binary 
raster at a resolution of 1 m (Fig. 7). The source domain images and 
labels were split into small patches (256 × 256 pixels), and two-thirds of 
the patches were assigned to the training and validation sets, and the 
remaining one-third was assigned to the testing sets. For the target 
domain images, one-third of the patches randomly selected from the 
unlabeled dataset was used to adjust the training model by FADA, and 
the patches with labels were used for testing. 

3.1.3. Data augmentation 
The CNN can integrate spatial information but does not consider 

rotation invariance (Goodfellow et al., 2016). To model rotationally 
invariant features and enhance their generalizability across areas, we 
augmented the training samples with geometric transformations, 
including horizontal, vertical, and diagonal flips. 

Fig. 4. Workflow of CB-FF post-processing module. The red circles represent examples of breakpoints connecting in the extracted boundary; the yellow patch 
represents an example of Filling-field for one IAF patch. 
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3.2. Accuracy assessment 

We assessed the accuracy of IAF segmentation using the “precision- 
recall” framework (Martin et al., 2004). Precision and recall are derived 
from a confusion matrix with four elements of “true positive” (TF), “false 
positive” (Asefpour Vakilian and Saradjian), “false negative” (FN), and 
“true negative” (TN): 

Precision =
TP

TP + FP
(7)  

Recall =
TP

TP + FN
(8) 

The F1-score is commonly used to evaluate classification accuracy as 

Fig. 5. Geographic locations of the experimental areas and the respective Gaofen-2 images. The red star represents the location of the source domain, and the blue 
stars represent the locations of the target domains. All images use red-greenblue as RGB. 

Table 1 
Description of the main sites.  

Domain Site Location Climate type Main characteristics Main crops Acquisition 
date 

Source Funan (FN) 32◦36 N, 115◦24E Arid to humid continental 
climate 

Mostly flat Soybean, maize, and wheat 2020/7/29 

Target Chengdu 
(CD) 

31◦2′N, 104◦0′E Monsoon climate Flat plains to mountainous Wheat, barley, canola, and legume 
crops 

2018/4/21 

Heihe (HH) 45◦11′N, 126◦0′E Temperate climate Flat Rice, wheat, sunflower, and soybean 2017/7/31 
Ruian (RA) 27◦46′N, 

120◦34′E 
Subtropical monsoon climate Gently undulating 

landscape 
Rice, maize, barley, potatoes, and 
soybean 

2021/1/17  

Table 2 
The acquisition times and band settings of the Gaofen-2 images.   

Band number Spectral Range (μm) Resolution (m) 

Panchromatic 1 0.45–0.90 1  

Multispectral 2 0.45–0.52 4 
3 0.52–0.59 
4 0.63–0.69 
5 0.77–0.89  
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follows: 

F1 - score = 2 ×
Precision× Recall
Precision+ Recall

(9) 

We also used the Matthews correlation coefficient (MCC) (Matthews, 
1975)—an indicator representing both “Precision” and “Recall” infor
mation—to evaluate the IAF extraction accuracy as follows: 

MCC =
TP× TN - FP× FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP) × (TP+ FN) × (TN + FN) × (TN + FP)

√ (10) 

We used MCC to select an optimal IAF segmentation model by 
assessing the training and validation losses of different models in the 
validation stage. We used the eccentricity coefficient (ε, Eq. 11) to 
evaluate the differences in IAF geometric characteristics (size and shape) 
between the extracted and reference IAF objects (Persello and Bruzzone 

Fig. 6. Ground truth data of the extents and boundaries from the training and test images sampled at different sites (the red, green, and blue bands are the RGB 
composite in these images). 

Fig. 7. IAF extraction in three subareas of Ruian (RA, Subareas 1–3) based on (a) ground truth labels (reference), (b). DeepLabV3+ (orange), (c) IAFRes (green), and 
(d) FieldSeg-DA (blue). The different colors within each map are used to illustrate different IAF patches. 
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2009): 

ε = 1
N

∑N

i=0

⃦
⃦Eccentricityip/Eccentricityir

⃦
⃦ (11) 

where Eccentricityr relates to the reference instance, and Eccentricityp 
relates to the prediction results. 

4. Results 

4.1. Results of source domain images 

The IAF extents extracted using FieldSeg-DA (Fig. 7d) were generally 
consistent with the ground truth label (Fig. 7a). We compared our results 
with those generated by IAFRes, a state-of-the-art method for IAF 
extraction, and DeepLabV3+, the branch network used for extracting 
IAF extent in our proposed model. Compared to FieldSeg-DA, Deep
LabV3+ and IAFRes tended to mistakenly merge multiple distinct IAFs 
(red circle in Fig. 7c-d) because the boundaries were not well recog
nized. The FieldSeg-DA model also achieved higher accuracy metrics (i. 
e., F1-score, MCC, and Eccentricity) than IAFRes and DeepLabV3+ in all 
three subareas (Table 3). 

The introduction of parallel network structure (EBPN) and CB-FF 
post-processing are essential enhancements to the FieldSeg-DA model 
over previous networks. To further demonstrate the effectiveness of the 
parallel network structure, we specifically analyzed how these modules 
improve boundary accuracy. The boundary of the IAF extent extracted 
by DeepLabV3+ (Fig. 8b and Table 4), which was obtained using a 
buffer function from the extracted extent, omitted many boundaries 
compared to the ground truth boundary label (Fig. 8a). The UNet 
branch, which was specifically trained for extracting boundaries, better 
recognized most IAF boundaries but showed fragmented results 
(Fig. 8c). After CB-FF processing, the extracted boundaries showed the 
highest consistency with the ground truth labels (Fig. 8d). The quanti
tative accuracy also illustrates the improvement of EBPN and CB-FF for 
the boundary extraction. The FieldSeg-DA model generated boundary 
achieved the highest accuracy, followed by the UNet branch and 
DeeplabV3+ branch (Table 4). These results illustrate that the EBPN and 
CB-FF modules improved boundary identification and thus IAF 
extraction. 

4.2. Results of target domain images 

Regarding the target domain images without labeled samples, 
FieldSeg-DA still produced an IAF extent with good consistency to the 
reference map (Fig. 9a and d). In contrast, IAFRes omitted many IAF 
extents (red circle in Fig. 9b). The FieldSeg-DA model showed an 
improvement of nearly 9% for all three accuracy metrics compared with 
the IAFRes model (Table 5). The difference in accuracy between the 
FieldSeg-DA and IAFRes method was even more pronounced in the 

target than the source domain because of the differences in spectral and 
morphological characteristics of the IAFs. 

To validate the effect of the FADA module, we compared the per
formance of the FieldSeg-DA model to one without the FADA module 
(FieldSeg) in the target domain. Although it performed slightly better 
than IAFRes, the FieldSeg model performed much worse than the 
FieldSeg-DA. These results confirm the role of the FADA module in 
enhancing the transferability of the FieldSeg-DA model. 

5. Discussion 

5.1. The superiority of the parallel model structure 

The parallel structure in FieldSeg-DA allowed the network to 
simultaneously estimate the extents and boundaries of IAFs, which is 
considered fundamental for IAF extraction (Waldner and Diakogiannis 
2020). IAFRes uses a multitask head model, which could increase 
training difficulty because of variation in the classified features. In 
comparison, parallel networks in the FieldSeg-DA model were trained 
independently, allowing different feature extractors for the two tasks. 
This parallel structure also allows for flexibility in the use of alternative 
semantic segmentation models. We compared the accuracies and effi
ciencies of several popular semantic segmentation models and found 
that FPN model had the highest final segmentation accuracy (F1-score =
0.9209) for extent extraction among all available networks (Table 6). 
DeepLabV3+ ranked second, though it performed more efficiently than 
the FPN. Therefore, we propose that DeepLabV3+ and FPN model are 
the optimal extent extraction branches, depending on the user’s need for 
accuracy and efficiency. 

Compared with the alternatives for boundary extraction, the UNet 
model achieved the second-best final accuracy and highest efficiency 
(1.32 min, Table 7). Although Manet achieved the highest accuracy on 
the test dataset (F1-score of 0.9158), the difference between the training 
and validation loss was relatively large (0.0485), suggesting a high 
“generalization gap” (Hoffer et al., 2017). Therefore, UNet is the rec
ommended boundary extraction branch owing to its excellent compu
tational efficiency and segmentation accuracy. 

5.2. Effectiveness of domain adaptation 

FADA is an essential part of the FieldSeg-DA model, which improves 
the extraction of classification features from the feature extractor of 
FieldSeg-DA in the target domain. To illustrate the efficacy of this 
approach, we used the T-SNE method to show the distribution of fea
tures in a 2-D space (Van der Maaten and Hinton 2008). The extent 
(boundary) and non-extent (non-boundary) feature extracted by Field
Seg without FADA exhibited poor separability (Fig. 10). These two types 
of features extracted from the CD and RA regions almost overlapped in 
the feature space, leading to poor performance (F1-score: 0.68) in 
extracting the IAF. In contrast, FieldSeg-DA adaptively adjusts the 
feature extractor, allowing for good separability between these features 
in the target domain, similar to that in the source domain (Fig. 10). Thus, 
the FieldSeg-DA model performed robustly in extracting IAFs over 
varying target domains without additional training samples, which 
effectively enhances its applicability in diverse regions. 

6. Perspectives and limitations 

Our results confirmed the effectiveness of the FADA module in 
enhancing the transferability of FieldSeg-DA to the target domain 
without additional training samples. However, the performance of 
FieldSeg-DA degraded from the source domain to the target domain 
(Tables 3 and 5). The degradation of FieldSeg-DA is different in different 
regions, depending on the feature similarity between the target and the 
source domains (Fig. 10). The feature similarity could be related to the 
differences in the agricultural characteristics (e.g., crop system, climate 

Table 3 
Assessment of the IAF accuracy in the source domain using different methods.  

Area Sub 
Area1 

Sub 
Area2 

Sub 
Area3 

Overall 

F1-score DeepLabV3+ 0.8639 0.8314 0.8416 0.8456 
IAFRes 0.8741 0.8966 0.8832 0.8846 
FieldSeg-DA 0.9041 0.907 0.8916 0.9009  

MCC DeepLabV3þ 0.8782 0.8627 0.8543 0.8651 
IAFRes 0.8537 0.8621 0.8194 0.8451 
FieldSeg-DA 0.8933 0.8864 0.8603 0.88  

Eccentricity 
(ε) 

DeepLabV3þ 0.6927 0.7352 0.7123 0.7134 
IAFRes 0.8317 0.8286 0.8287 0.8297 
FieldSeg-DA 0.8511 0.8737 0.8668 0.8639  
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type, topography, IAF size, and shape), as well as the difference in the 
image acquisition season (Table. 1) between the target and the source 
domains. Particularly, the difference in the acquisition season between 

target and source domains was the most important factor affecting the 
model generalizability in our experiment. As shown in Table 5, all the 
compared models achieved the lowest accuracy in the RA site because 
the image in the RA site was acquired in the winter season, whereas the 
image in the source domain (FN site) was acquired in the summer season 
(Table 1). 

Supervised domain alignment with additional training samples may 
improve the efficiency of FADA and the overall performance of the 
FieldSeg-DA model. Although precise samples are difficult to obtain, 
rough samples with relatively large uncertainties may be helpful for 
feature alignment. For example, recently developed land cover products 
at coarser resolution, such as GlobeLand30 (Chen et al., 2015), ESRI 
Global Land Cover (Karra et al., 2021), Dynamic World Land Cover 
(Brown et al., 2022), could provide rough samples for supervised 
domain alignment and, improve the transferability of FieldSeg-DA. 

Another shortcoming of FieldSeg-DA is the CB-FF post-processing 
module. As a traditional image processing method, a sequence of 
morphological operations are designed based on empirical experience, 
of which the operational sequence and relevant parameters (e.g., kernel 
size) might need careful adjusting according to the different target do
mains. In future work, establishing an end-to-end framework for 
combing the two branch networks without empirical post-processing 
would be crucial to reducing the reliance on expert interactions. 

Fig. 8. IAF extraction in Ruian (RA). (a) Actual Gaofen-2 image; (b) IAF boundaries obtained by the 1-pixel buffer function of IAF extent produced by DeepLabV3+; 
(c) IAF boundary predicted by UNet; (d) final IAF boundary generated by FieldSeg-DA. The three red rectangles in the top-left inset indicate the locations of the three 
subareas (Subareas 1–3) of the source domain. 

Table 4 
Assessment of the boundary accuracy of source domain experiments.  

Area Sub 
Area1 

Sub 
Area2 

Sub 
Area3 

Overall 

F1-score Ex- 
Boundary 

0.7717 0.7879 0.6287 0.7372 

UNet 0.7834 0.7962 0.6913 0.757 
FieldSeg- 
DA 

0.8152 0.8303 0.8164 0.8206  

MCC Ex- 
Boundary 

0.7109 0.6917 0.6609 0.6891 

UNet 0.7296 0.6915 0.6661 0.6957 
FieldSeg- 
DA 

0.7881 0.8144 0.7659 0.7895  

Eccentricity 
(ε) 

Ex- 
Boundary 

0. 3144 0.3569 0.2839 0.3226 

UNet 0.3174 0.3691 0.2959 0.3275 
FieldSeg- 
DA 

0.4383 0.4724 0.4342 0.4483  
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7. Conclusions 

This study proposes a novel FieldSeg-DA network for automatically 
extracting IAFs from high-spatial-resolution satellite imagery. We pre
sent the problem as semantic segmentation and domain-shift tasks. The 
EBPN parallel network structure and CB-FF post-processing module 

improved the prediction of the IAF extent and boundary by combining 
different branch networks with different preferences in identifying 
“face” and “line” objects in remote sensing images. FADA enhanced 
domain transferability between study areas without labeled samples. 
The proposed FieldSeg-DA model outperformed other state-of-the-art 
methods in both the source and target domains, confirming its effec
tiveness in extracting IAFs across diverse areas without training samples. 
Finally, owing to the flexibility of replacing the branch network in the 
FieldSeg-DA, the performance of the model should continue to improve 
with the development of better semantic segmentation models. 
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Fig. 9. IAF extraction from the target domains using the IAFRes, FieldSeg (red dashed box), and FieldSeg-DA model (blue dashed box).  

Table 5 
Assessment of the accuracy of target domain experiments.  

Training mode CD HH RA Overall 

F1-score IAFRes 0.7034 0.6783 0.6109 0.6642 
FieldSeg 0.7233 0.6853 0.6371 0.6819 
FieldSeg-DA 0.8012 0.7643 0.6881 0.7512  

MCC IAFRes 0.6854 0.6387 0.5529 0.6257 
FieldSeg 0.696 0.6419 0.5761 0.638 
FieldSeg-DA 0.7712 0.7188 0.626 0.7054  

Eccentricity (ε) IAFRes 0.7132 0.6652 0.5392 0.6392 
FieldSeg 0.7546 0.7061 0.5496 0.6701 
FieldSeg-DA 0.8224 0.7757 0.5962 0.7314  

Table 6 
Assessment of IAF extent extraction between different semantic segmentation 
models.  

Training 
mode 

Training 
loss 

Validation 
loss 

Test Efficiency 
F1- 
score 

Execution Time per 
scene (min) 

UNet  0.1083  0.1237  0.8287  1.4300 
UNetþþ 0.1224  0.1176  0.7979  1.5100 
Manet  0.1342  0.1271  0.8287  2.1200 
LinkNet  0.1052  0.0981  0.8772  1.8700 
FPN  0.1203  0.1344  0.9209  2.3100 
PSPNet  0.1464  0.1659  0.8268  2.5600 
DeepLabV3  0.1031  0.1197  0.8679  1.7300 
DeepLabV3þ 0.0972  0.1034  0.8926  1.8700  

Table 7 
Assessment of IAF boundary extraction between different semantic segmenta
tion models.  

Training 
mode 

Training 
loss 

Validation 
loss 

Test Efficiency 
F1- 
score 

Execution Time per 
scene (min) 

UNet  0.1095  0.131  0.9149  1.320 
UNetþþ 0.1118  0.1326  0.9117  1.570 
Manet  0.0801  0.1285  0.9158  2.310 
LinkNet  0.0947  0.1344  0.9091  2.110 
FPN  0.1119  0.1369  0.9009  1.820 
PSPNet  0.1017  0.1339  0.9086  3.120 
DeepLabV3  0.0979  0.1326  0.9099  2.170 
DeepLabV3þ 0.0912  0.1316  0.9117  2.340  
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