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Abstract: High temporal resolution and spatially complete (seamless) land surface temperature 
(LST) play a crucial role in numerous geoscientific aspects. This paper proposes a data fusion 
method for producing hourly seamless LST from Himawari-8 Advanced Himawari Imager (AHI) 
data. First, the high-quality hourly clear-sky LST was retrieved from AHI data by an improved tem-
perature and emissivity separation algorithm; then, the hourly spatially complete China Land Data 
Assimilation System (CLDAS) LST was calibrated by a bias correction method. Finally, the strengths 
of the retrieved AHI LST and bias-corrected CLDAS LST were combined by the multiresolution 
Kalman filter (MKF) algorithm to generate hourly seamless LST at different spatial scales. Valida-
tion results showed the bias and root mean square error (RMSE) of the fused LST at a finer scale 
(0.02°) were −0.65 K and 3.38 K under cloudy sky conditions, the values were −0.55 K and 3.03 K for 
all sky conditions, respectively. The bias and RMSE of the fused LST at the coarse scale (0.06°) are -
0.46 K and 3.11 K, respectively. This accuracy is comparable to the accuracy of all-weather LST de-
rived by various methods reported in the published literature. In addition, we obtained the con-
sistent LST images across different scales. The seamless finer LST data over East Asia can not only 
reflect the spatial distribution characteristics of LST during different seasons, but also exactly pre-
sent the diurnal variation of the LST. With the proposed method, we have produced a 0.02° seamless 
LST dataset from 2016 through 2021 that is freely available at the National Tibetan Plateau Data 
Center. It is the first time that we can obtain the hourly seamless LST data from AHI. 
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1. Introduction 
Land surface temperature (LST) is a key parameter controlling the energy exchange 

between the atmosphere and the surface in land surface processes [1–3] and has been 
widely used in various disciplines, such as climate change [4,5], evapotranspiration [6], 
agriculture [7], hydrology [8] and urban climate studies [9,10]. 

Typically, LST is obtained from ground measurements, satellite remote sensing and 
land surface modeling [11]. Among them, ground measurements can monitor LST with a 
high temporal continuity in the small footprint of the sparsely distributed ground sites 
[12]. Thermal-infrared (TIR) remote sensing is an effective tool for obtaining LST at a large 
scale. TIR observations from polar-orbiting satellites, such as the MODerate resolution 
Imaging Spectroradiometer (MODIS) and Landsat series [13,14], and geostationary satel-
lites, such as Fengyun-4A, Himawari-8 and Meteosat Second Generation (MSG) [15–17] 
have already been explored to generate LST products. Specifically, polar-orbiting satel-
lites provide TIR observations with relatively fine spatial resolution and coarse temporal 
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resolution, which hinders the application of LST in numerous fields, such as soil 
freeze/thaw status discrimination [18], diurnal variation in Earth-atmosphere system pa-
rameters modeling [19] and land surface hydrological process simulation [8]. Geostation-
ary satellites can achieve a temporal resolution up to 2.5 min, which can compensate for 
the deficiencies in the temporal continuity of polar-orbiting satellites. However, the TIR 
observations of both polar-orbiting satellites and geostationary satellites are spatially in-
complete because TIR signals cannot penetrate clouds and obtain LST information under-
neath clouds. Microwave (MW) remote sensing can obtain cloudy sky LST [20]. Unfortu-
nately, both the accuracy and spatial resolution of MW LST under clear-sky conditions 
are inferior to TIR LST thus far. 

Recently, a large number of methods for estimating cloudy-sky LST have been pro-
posed and significant progress has been achieved. These methods can be roughly catego-
rized as spatial interpolation methods, surface energy balance (SEB) methods, machine 
learning methods and spatiotemporal data fusion methods. Spatial interpolation methods 
[21–24], such as inverse distance weighting (IDW) and kriging interpolation, rely on the 
correlations of neighboring pixels by treating these neighboring pixels as reference data. 
Therefore, it may be inappropriate for images with a large amount of missing data. Jin 
and Dickinson [25] proposed the method of obtaining the LST of cloudy pixels via its 
neighboring pixels (NP) based on SEB theory. Lu et al. [26] then expanded the application 
of NP to geostationary satellite data by capitalizing the information on the temporal do-
main, but the accuracy was not as excellent as expected. Notwithstanding, the SEB method 
is physics-based for both polar-orbiting satellites and geostationary satellites, while spa-
tially NP or temporally NP may be invalid in large cloud coverage areas or long cloud 
cover times. Recently, machine learning presented an excellent ability to reconstruct miss-
ing remote sensing data [27–29]. Shwetha and Kumar [30] formulated the relationship be-
tween LST and the microwave polarization difference index (MPDI) via an artificial neural 
network (ANN) model to utilize it to estimate cloudy-sky LST for different land cover 
classes. Compared with physical-based methods, machine learning methods are data 
driven and the output of machine learning methods is commonly hard to interpret [31]. 
Some pitfalls associated with the primary characteristics of machine learning, for example, 
the risk of sampling biases, ignorance of other factors and excessive reliance on input data, 
should be avoided using prior knowledge. The spatiotemporal data fusion methods be-
come a practical method of obtaining all weather LST [32,33]. For example, the enhanced 
spatial and temporal adaptive reflectance fusion model (ESTARFM) [34] was employed 
to generate 1 km MODIS-like LST under all weather conditions by fusing the China Land 
Data Assimilation System (CLDAS) LST and MODIS LST [35]. However, most of these 
methods were developed for the polar-orbiting satellites by virtue of extra assumptions 
and empirical relationships, the utility of which remains unknown for geostationary sat-
ellites. For example, spatial interpolation methods and ESTARFM estimated the cloudy-
sky LST considering the relationships with the LST of adjacent pixels, and it is doubtful 
whether LST can be expressed by the adjacent pixels due to its dramatic variability. Mean-
while, the spatial resolution of geostationary satellites is relatively coarser than that of 
polar-orbiting satellites, and spatially adjacent pixels determined by a certain rule may 
actually be quite far away from the target pixel in distance, which are less representative. 
Therefore, it is crucial to explore the way of obtaining seamless hourly LST from the geo-
stationary satellite observations, which will certainly benefit many fields, such as summer 
high-temperature heat wave monitoring [36] and soil freeze/thaw status discrimination 
[18]. 

Land surface models (LSMs) are incorporated into the many land data assimilation 
systems, such as the China Land Data Assimilation System (CLDAS) [37], global land data 
assimilation system (GLDAS) [38] and North American Land Data Assimilation System 
(NLDAS) [39,40], which offer new possibilities to obtain LST with high temporal resolu-
tion and spatiotemporal continuity. However, the spatial resolution of the LSM-simulated 
LST is quite coarse. For example, the spatial resolutions of CLDAS LST, NLDAS LST and 
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GLDAS LST are 0.0625°, 0.125° and 0.25°, respectively. Meanwhile, a large deviation exists 
in the LSM-simulated LST, compared with the remotely sensed LST [41–43]. It is essential 
to improve the quality of LSM LST before exploring its strengths. 

It is a promising field to combine geostationary satellite-derived LST and the LSM-
simulated LST to generate high spatial-temporal resolution seamless LST. However, few 
studies have been conducted to combine these two LSTs to generate high temporal reso-
lution seamless LSTs due to the large differences in spatial resolution, spatial complete-
ness and accuracy [44,45]. The purpose of this study is to propose a data fusion method 
that can effectively fuse geostationary satellite-derived high-quality hourly clear-sky LST 
and hourly spatial continuous LSM LST and generate hourly seamless LST data, in which 
the CLDAS LST was first calibrated by the AHI/Himawari-8 LST. Then, these two distinc-
tive LSTs were fused by the multiresolution Kalman filter (MKF) algorithm, which has 
been successfully applied to fuse land surface variables at different spatial scales [46]. The 
paper is structured as follows. Section 2 describes the employed data and proposed meth-
odology. The results and discussions are presented in Section 3 and Section 4, respectively, 
and finally, the conclusions are provided in Section 5. 

2. Data and Methodology 
2.1. Data 

As shown in Table 1, three types of datasets were employed in this paper, including 
satellite data, CLDAS LST data and ground measurements. The AHI/Himawari-8 full disk 
data were used to retrieve the clear-sky LST, in conjunction with the auxiliary data, such 
as the Modern-Era Retrospective analysis for Research and Applications version 2 
(MERRA-2) [47], MODIS series products (including NDVI product [48], snow cover prod-
uct [49] and land cover product [50]) and the Combined ASTER and MODIS Emissivity 
for Land (CAMEL) product [51,52]. The CLDAS LST data were employed as an input of 
the MKF algorithm. The ground-measured surface longwave downward radiation and 
surface longwave upward radiation collected from the Heihe Watershed Allied Telemetry 
Experimental Research (HiWATER) network were used to derive in situ LST and validate 
the fused LST at finer and coarse scales. 

Table 1. Details of the data and material used in this study. 

Source Dataset Spatial Resolution Temporal Resolution 

Satellite Data 

AHI full disk data 0.02° × 0.02° 10 min 
AHI cloud product 0.02° × 0.02° 10 min 

MERRA-2 0.5° × 0.625° 6 h 
MYD13A2  1 km × 1 km 16 days 
MOD10C1 0.05° × 0.05° 1 day 
MCD12Q1 0.05° × 0.05° 1 year 

CAMEL 0.05° × 0.05° 1 month 
CLDAS LST data - 0.0625° × 0.0625° 1 h 

Ground measurements - - 10 min 

2.1.1. Satellite Data 
The Himawari-8 geostationary meteorological satellite entered the operational phase 

on 7 July 2015. Located at approximately 140°E, Himawari-8 can cover East Asia and 
Western Pacific regions (60°N~60°S, 80°E~160°W). Compared with its predecessor MTSat-
2 (Himawari-7), Himawari-8 makes significant advances and can complete continuous 
full-disk observations every 10 min. There are 16 bands for the Advanced Himawari Im-
ager (AHI) onboard Himawari-8, 6 of which are thermal infrared bands with a spatial 
resolution of 0.02° at nadir [53]. 



Remote Sens. 2022, 14, 5170 18 of 24 
 

 

In this study, TIR band 11 (8.5 μm), band 13 (10.31 μm), band 14 (11.2 μm) and band 
15 (12.3 μm) are employed to retrieve the LST, since band 12 (9.61 μm) and band 16 (13.3 
μm) are located in the spectral region with strong ozone and carbon dioxide absorption 
[15]. The AHI cloud product is employed to distinguish clear-sky pixels and cloud sky 
pixels. During the retrieval of the clear-sky AHI LST, the MERRA-2 reanalysis data [47] 
were employed for the atmospheric correction. In this study, inst6_3d_ana_Np data, 
which contain the air temperature, geopotential height, and specific humidity for 42 pres-
sure levels (from 1000 hPa to 0.1 hPa) every 6 h from 00:00 to 24:00 UTC with a spatial 
resolution of 0.5° × 0.625°, were selected, and the product (netCDF-4 format) was available 
from https://search.earthdata.nasa.gov (accessed on 1 July 2021). 

Three MODIS products, i.e., MYD13A2, MOD10C1, and MCD12Q1, were selected in 
this study. MYD13A2 provides the NDVI dataset every 16 days with a spatial resolution 
of 1 km. MOD10C1 indicates global daily snow cover conditions, the value of which rep-
resents the percentage of snow cover in the corresponding grid. MCD12Q1 divides the 
global land surface into 17 classes according to the International Geosphere-Biosphere 
Programme (IGBP) system and provides land cover data accordingly. All the employed 
MODIS products can be freely accessed from https://search.earthdata.nasa.gov (accessed 
on 1 July 2021). 

The CAMEL product is the synthetic emissivity product from the ASTER GED4 da-
taset and MODIS infrared emissivity dataset with spatial and temporal resolutions of 0.05° 
and 1 month, respectively. Here, it was chosen as the background emissivity value for 
AHI LST retrieval. Detailed information about the CAMEL dataset can refer to 
https://lpdaac.usgs.gov/products/cam5k30emv002 (accessed on 1 July 2021). 

2.1.2. CLDAS LST Data 
The CLDAS (CMA Land Data Assimilation System) was developed by the National 

Meteorological Information Center. Based on the STMAS (Space-Time Multiscale Analy-
sis System) assimilation algorithm, the CLDAS atmosphere forcing data were established 
using multisource data, including ground measurements, ECMWF numerical analy-
sis/forecast product, GFS numerical analysis/forecast product and satellite data. Subse-
quently, the forcing data was used to derive six LSMs (CLM 3.5, CoLM and Noah-MP 1–
4) to produce simulated LSTs, from which the CLDAS LST was generated by averaging 
six LSM LSTs [37]. Compared to other land data assimilation systems, such as GLDAS [38] 
and NLDAS [39,40], CLDAS has a higher spatial resolution (0.0625° × 0.0625°) and tem-
poral resolution (1 h). More detailed information can be found in http://data.cma.cn/ (ac-
cessed on 1 July 2021). Before being imported into the MKF algorithm, the CLDAS LST 
was resampled to a 0.06° × 0.06° spatial resolution and calibrated by a bias correction 
method. 

2.1.3. Ground Measurements 
To validate the LST estimated by the proposed data fusion method, ground-meas-

ured surface longwave radiation at six flux sites in the HiWATER network was employed 
(http://data.tpdc.ac.cn/zh-hans/ (accessed on 1 July 2021)) [54,55]. Detailed information re-
garding the sites is shown in Table 2. 

Table 2. Details of the selected sites from the HiWATER network. 

Site Name Location (°N, °E) Land Cover Data Interval Instrument Climatic Type * 

A’Rou (AR) (38.047, 100.464) 
Savanna and 

grassland 10 min CNR1 temperate continental climate 

Daman (DM) (38.856, 100.372) Maize 10 min CNR1 temperate continental climate 

Dashalong (DSL) (38.840, 98.941) Marsh alpine 
meadow 

10 min CNR1 temperate continental climate 

Huangmo (HM) (42.114, 100.987) Bare soil 10 min CNR1 temperate continental climate 
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Huazhaizi (HZZ) (38.765, 100.319) Bare soil 10 min CNR1 temperate continental climate 
Sidaoqiao (SDQ) (42.001, 101.137) Tamarix 10 min CNR1 temperate continental climate 

* Koppen climate classification system. 

In situ LSTs were calculated from the ground-measured surface longwave upward 
and downward radiation according to Stefan–Boltzmann’s law: 𝑇௦ = (𝐿↑ − (1 − 𝜀௕)𝐿↓𝜀௕𝜎 )ଵ/ସ (1) 

where 𝑇ௌ is the in situ LST, 𝐿↑ is the surface longwave upward radiation, 𝐿↓ is the sur-
face longwave downward radiation, 𝜀௕ is the surface broadband emissivity (BBE) and 𝜎 
is Stefan–Boltzmann’s constant (5.67 × 10−8 W/m2/K4). Here, the broadband emissivity was 
obtained from the Global LAnd Surface Satellite (GLASS) BBE product, whose spatial res-
olution is 1 km and temporal resolution is 8 days [56–58]. 

The measurement accuracy of CNR1 net radiometers was approximately −8 W/m2 
and 3 W/m2 in daytime and nighttime, respectively [59], which resulted in the uncertainty 
of the LST calculated using Equation (1) being 1.62 K and 0.37 K in daytime and nighttime, 
respectively [15]. 

As shown in Table 3, supposing that the field of view (FOV) of the flux towers is 170°, 
the footprint of the six sites in diameter ranges from 114 m to 274 m, which is much coarser 
than the spatial resolution of AHI. Therefore, it is doubtful whether the tower measure-
ments are representative within the corresponding pixels of the AHI LST and the CLDAS 
LST. The high spatial resolution (90 m) ASTER LST product (AST_08) was collected to 
assess the spatial thermal homogeneity of the six sites [60]. In addition, the standard de-
viations (STDs) of the ASTER LST data from 2014 to 2019 were calculated for 23 × 23 pixel 
and 69 × 69 pixel windows, corresponding to the spatial resolutions of the AHI LST and 
CLDAS LST, respectively. The details of the median, minimum and maximum LST STDs 
are provided in Figure 1. The median STDs of 23 × 23 ASTER LST subsets were less than 
2 K for all six sites, which is acceptable for LST validation. Meanwhile, the CLDAS LST 
exhibits a slightly lower spatial homogeneity with the highest STD of 2.73 K (AR site), 
which is caused by the fact that the spatial resolution of CLDAS LST is three times lower 
than that of AHI LST. 

  
Figure 1. Standard deviation of ASTER LST subsets centered around each HiWATER site. (a) 23 × 
23 window; (b) 69 × 69 window. In the boxplots, the lines in the middle of the boxes represent the 
median, and the upper and lower whiskers indicate the maximum and minimum, respectively. The 
lower and upper edges of the blue box are lower quartile and upper quartile, while the red ‘+’ rep-
resents outliers.  

Table 3. The height and footprint of each flux tower in the HiWATER network. 

Site Name AR DM DSL HM HZZ SDQ 
Height (m) 5 12 6 6 6 10 
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Footprint in diameter (m) 114 274 142 142 142 229 

2.2. Methodology 
As reported in the Introduction section, geostationary satellite-derived clear-sky LST 

has high accuracy and temporal resolution, but it is spatially incomplete, whereas the 
LSM-simulated LST is spatially continuous but has coarse spatial resolution and lower 
accuracy. Fusing these two distinctive complementary LSTs can effectively combine their 
respective advantages and is a promising solution to generate hourly seamless LST data. 

The MKF algorithm is capable of filling the gaps of remote sensing products and re-
ducing the inconsistency across different scales [46,61–63]. It can significantly improve the 
accuracy of coarse-scale data and improve the accuracy of finer-scale data to some extent. 

As indicated by the evaluation results of LSM LSTs [41–43], there is a systematic de-
viation between LSM LST and remotely sensed LST due to the imperfect model mecha-
nism or driven force. Thus, CLDAS LST should be calibrated by the more reliable AHI 
LST. Then, the calibrated CLDAS LST and clear-sky AHI LST are integrated by the MKF 
algorithm. 

The flowchart for generating the hourly seamless LST is shown in Figure 2, which 
includes three steps: (1) retrieval of the clear-sky AHI LST via the iTES algorithm; (2) bias 
correction of the CLDAS LST to reduce the systematic deviation; and (3) fusion of the two 
scale LSTs with the MKF algorithm. 

 
Figure 2. Flowchart of the proposed method for generating hourly seamless LST. 
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2.2.1. Clear-Sky AHI LST Retrieval 
Due to the lack of official AHI LST products, a couple of split-window (SW) algo-

rithms have been developed [64–66]. The SW algorithm assumed that the land surface 
emissivity (LSE) was known in advance, yet accurate LSE was extremely hard to obtain. 
Zhou and Cheng [15] proposed an improved temperature and emissivity separation 
(iTES) algorithm to simultaneously retrieve LST&E from AHI data. The iTES algorithm 
avoids determining the LSE before LST inversion and realizes accurate inversion of LST 
and LSE. Two core improvements were put forward in their study, i.e., a modified water 
vapor scaling method (WVS) [67] and a recalibrated empirical relationship over the vege-
tated surfaces. Compared with the original TES algorithm, the modified WVS broadens 
the application area for all land cover with a comparable accuracy, and the recalibrated 
empirical relationship improved the LST retrieval accuracy over the vegetated surface. 
According to the validation results using ground measurements from the HiWATER net-
work and New Zealand flux tower network (OzFlux), the biases (RMSEs) of the retrieved 
AHI LST are 0.19 K (2.93 K) and −0.43 K (1.95 K) in the daytime and nighttime, respec-
tively. Hence, the iTES algorithm was employed to retrieve clear-sky AHI LST in this 
study. 

2.2.2. Calibration of CLDAS LST 
Land surface models (LSMs) can simulate the spatiotemporally continuous LST 

based on its inner physical processes and dynamic mechanisms [68]. However, limitations 
still exist in LSM simulations, for example, land surface features, such as land surface het-
erogeneity, soil property variation and land cover diversity, cannot be accurately charac-
terized by simple parameterization schemes of geophysical variables and land surface pa-
rameters [69]. As a result, systematic deviations inevitably arise when comparing the sim-
ulated LST to remotely sensed LST, which is the direct LST information of the true state 
instantaneously [68,70]. 

The bias correction method has been proven to be an effective approach in removing 
the systematic deviation between two LST products [71]. In this paper, the retrieved 
hourly AHI LST is treated as the reference data for its high accuracy and matched tem-
poral resolution. The bias correction method was executed through the following proce-
dures: 
(1) Aggregate the AHI LST from 0.02° to 0.06° spatially in a 3 × 3 window. The aggre-

gated AHI LST was defined as the mean value of the AHI LST within the 3 × 3 win-
dow only when the number of clear-sky pixels within a CLDAS pixel (0.06° × 0.06°) 
was larger than 60%. For the spatial aggregation strategy, since the mean value of 
multiple small pixels is used as the value of the large pixel, the random deviation of 
the aggregated LST will be relatively reduced [72]. 

(2) The CLDAS LST was corrected via a linear regression relationship. 𝐿𝑆𝑇஺ுூ_௔௚௚௥௘௥௔௧௘ௗ = 𝑎 · 𝐿𝑆𝑇஼௅஽஺ௌ  +  𝑏 (2)

where the 𝐿𝑆𝑇஺ுூ_௔௚௚௥௘௥௔௧௘ௗ  is the AHI LST after aggregation, 𝐿𝑆𝑇஼௅஽஺ௌ  is the CLDAS 
LST, the 𝑎 and 𝑏 are the fitting coefficients of the linear regression model. For a certain 
point or pixel, one-year LST data were used to fit the coefficients in Equation (2), which 
means that the coefficients of a certain point or pixel at different times are correspondingly 
identical within one year. 

2.2.3. The MKF Algorithm 
The MKF algorithm was initially developed by Chou et al. [73] to estimate the ran-

dom process of a signal. Due to the superior algorithm performance and computational 
efficiency of MKF, it was applied to fuse multiscale remote sensing data, for example, soil 
moisture [63], land surface albedo [61], broadband emissivity [46], and fraction of ab-
sorbed photosynthetically active radiation [62]. These studies showed that the MKF 
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algorithm is effective in mitigating the inconsistency between different scales and gener-
ating spatially complete remote sensing products. 

The idea of MKF is based on Kalman filtering [74]. Different from the regular Kalman 
filtering, which predicts the variables in the temporal domain, the MKF algorithm treats 
the data of different scales as the different temporal dimensions of Kalman filtering, as-
suming that the different-scale data are autoregressive and can be organized into a tree 
structure. Two critical steps successively implemented in the MKF algorithm are Kalman 
filtering from finer scale to coarse scale and Kalman smoothing from coarse scale to finer 
scale, the major purposes of which are to fill the gaps and obtain the optimal estimate at 
different scales, respectively. After the Kalman smoothing process, the data became gap-
less and consistent across different scales. 

The tree structure of the MKF algorithm can be represented by a tree-node model 
with different scales (Figure 3). The nodes at each scale can be treated as the pixels within 
the corresponding spatial resolution. Coarse resolution data serve as root nodes, and the 
fine resolution data serve as leaf nodes. Note that the spatial extent of all the nodes of each 
scale is the same. In the MKF algorithm, the relationship between node 𝑥(𝑠) and its par-
ent node 𝑥(𝑝𝑠) (called the state model) can be described as the linear dynamic model: 𝑥(𝑠) = 𝐴𝑥(𝑝𝑠) + 𝐵(𝑠)𝑊(𝑠) (3)

where 𝑥(𝑠) and 𝑥(𝑝𝑠) are the state estimates at scale 𝑠 and its parent scale 𝑝𝑠, respec-
tively. 𝐴 is the state transition matrix to obtain the variable from its parent scale and is 
generally assigned to an identity matrix. 𝑊(𝑠)~𝑁(0, 1) is the white noise independent of 
the state. 

 
Figure 3. The tree structure of the MKF algorithm. 

In addition, the predictor can be linked with the observations by: 𝑦(𝑠) = 𝐶𝑥(𝑠) + 𝑉(𝑠) (4)

where 𝐶  is the observation matrix and 𝑉(𝑠)  is the measurement noise, where 𝑉(𝑠)~𝑁 (0, 𝑅(𝑠)). Before the MKF, the prior background variance can be obtained from 
root to leaves by: 𝑃௞(𝑠) = 𝐴𝑃௞(𝑝𝑠)𝐴் + 𝑄(𝑠) (5)

where 𝑄(𝑠) is the process variance obtained by the variance in the corresponding child 
nodes. 

The MKF process involves two procedures: Kalman filtering and Kalman smoothing. 
In the Kalman filtering, the optimal estimator 𝑥ො(𝑠|𝑠)  at scale 𝑠 can be updated by Kal-
man filter with the observations at scale 𝑠: 
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𝑥ො(𝑠|𝑠) = 𝑥ො(𝑠) + 𝐾(𝑠)(𝑦(𝑠) − 𝐶𝑥ො(𝑠)) (6)𝑃(𝑠|𝑠) = (𝐼 − 𝐾(𝑠)𝐶)𝑃(𝑠) (7)

where 𝐾(𝑠) is the Kalman gain obtained by 𝐾(𝑠) = 𝑃(𝑠)𝐶𝑉ିଵ(𝑠) (8)𝑉(𝑠) = 𝐶𝑃(𝑠)𝐶் + 𝑅(𝑠) (9)

Then, the predictors of scale 𝑝𝑠 can be obtained by the mentioned state model with 
the optimal estimator 𝑥ො(𝑠|𝑠): 𝑥ො(𝑝𝑠|𝑠) = 𝐹(𝑠)𝑥ො(𝑠|𝑠) (10)𝑃(𝑝𝑠|𝑠) = 𝐹(𝑠)𝑃(𝑠|𝑠)𝐹்(𝑠) + 𝑄(𝑠) (11)𝐹(𝑠) = 𝑃௞(𝑝𝑠)𝐴(𝑠)𝑃௞(𝑠) (12)

While all the child nodes have been predicted into a parent node, they should be 
blended based on their respective variance. The value of the parent node is a weighted 
average result with the reciprocal of the variance as the weighting factor. 

𝑥ො(𝑝𝑠) = 𝑃(𝑝𝑠) ෍ 𝑃ିଵ(𝑝𝑠|𝑠௜)𝑥ො(𝑝𝑠|𝑠௜)ு(௦)
௜ୀଵ  (13)

𝑃(𝑝𝑠) = (൫1 − 𝐻(𝑠)൯𝑃௄ି ଵ(𝑠) + ෍ 𝑃ିଵ(𝑝𝑠|𝑠௜)ு(௦)
௜ୀଵ )ିଵ (14)

where 𝐻(𝑠) is the number of child nodes corresponding to a parent node. 
Once the Kalman filtering has reached the root node, the final predicted value can be 

obtained via the Kalman smoothing step, following Equations (15) and (16). 𝐽(𝑠) = 𝑃(𝑠|𝑠)𝐹்(𝑠)𝑃ିଵ(𝑝𝑠|𝑠) (15)𝑥ො(𝑠) = 𝑥ො(𝑠|𝑠) + 𝐽(𝑠)(𝑥ො(𝑝𝑠) − 𝑥ො(𝑝𝑠|𝑠)) (16)

where 𝐽(𝑠) is the weighting coefficient. 
In addition, the AHI LST and CLDAS LST were detrended before fusing because of 

the zero-mean assumption in the MKF, following the equations below: 𝑥ௗ = (𝑅஼𝑦஺ + 𝑅஺𝑦஼)/(𝑅஼ + 𝑅஺) (17)𝑥௧௥௘௡ௗ = 𝑥ௗ + 𝑚𝑒𝑎𝑛(𝑦 − 𝑥ௗ) (18)𝑃௞∗(𝑠) = (𝑅஺ି ଵ + 𝑅஼ି ଵ)ିଵ (19)

where 𝑦஼ and 𝑦஺ are the CLDAS LST and AHI LST, respectively. 𝑅஼ and 𝑅஺ are the er-
ror variances of the CLDAS LST and AHI LST, respectively. Additionally, 𝑅஺ was calcu-
lated by Zhou and Cheng [15], whereas 𝑅஼ was obtained by the CLDAS LST and the ag-
gregated AHI LST. 𝑃௞∗(𝑠) is the background error variance. 

The employed tree structure in the MKF algorithm is shown in Table 4. The bias-
corrected CLDAS LST and the AHI LST were set to scale 7 and scale 8, respectively. 

Table 4. The adopted tree structure in the MKF algorithm 

Scale Spatial Resolution Pixel Number Input Data 
1 60° × 60° 1  
2 30° × 30° 2 × 2  
3 6° × 6° 10 × 10  
4 3° × 3° 20 × 20  
5 0.6° × 0.6° 100 × 100  
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6 0.3°× 0.3° 200 × 200  
7 0.06° × 0.06° 1000 × 1000 The bias-corrected CLDAS LST 
8 0.02° × 0.02° 3000 × 3000 The AHI LST 

3. Results 
3.1. Validation 

The calculated in situ LST in 2016 was used to validate the fused LSTs at a finer scale 
(0.02°). The outliers in the samples were removed using the “3σ-Hempel identifier” [75] 
before validation. As shown in Figure 4, the fused LSTs at a finer scale are consistent with 
the in situ LSTs, and the samples are distributed around the diagonal line. The bias and 
root mean square error (RMSE) are −0.43 K and 2.59 K under clear-sky conditions, respec-
tively, and the determination coefficient (R2) is 0.96, whereas the bias and RMSE are −0.65 
K and 3.38 K under cloudy sky conditions, respectively, and the R2 is 0.98. The bias and 
RMSE are −0.55 K and 3.03 K under all sky conditions. To assess the extent of accuracy 
improvement through MKF, the original clear-sky AHI LST was also evaluated by the 
same in situ LSTs. The evaluation results are shown in Figure 5. The bias, RMSE and R2 
are −0.52 K, 2.75 K and 0.98, respectively. These validation results of finer LST and original 
clear-sky AHI LST are consistent with the validation results in Zhou and Cheng [15]. Ac-
cording to Figures 4 and 5, the finer scale LST is slightly improved over the original clear-
sky AHI LST. 

  
Figure 4. Validation results for the fused LSTs at a finer scale under clear-sky (a) and cloudy sky (b) 
conditions. 

 
Figure 5. Validation results of the retrieved clear-sky AHI LST. 

The statistical results in the daytime and nighttime are listed in Table 5. During the 
daytime, the biases are 0.34 K and −0.16 K, the RMSEs are 3.23 K and 3.77 K, and the 
determination coefficients are 0.95 and 0.93 under clear-sky and cloudy sky conditions, 
respectively. Regarding the nighttime, the biases are −0.89 K and −1.08 K, the RMSEs are 
2.14 K and 2.99 K, and the determination coefficients are 0.98 and 0.96 under clear-sky and 
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cloudy sky conditions, respectively. The RMSE of finer-scale LST is lower during 
nighttime than during daytime because the heterogeneity of the surface during nighttime 
is weaker than that during daytime. 

Table 5. Validation results of the finer-scale LST during nighttime and daytime, respectively. 

Accuracy 
Daytime Nighttime 

Clear-Sky Cloudy Sky Clear-Sky Cloudy Sky 
R2 0.95 0.93 0.98 0.96 

Bias (K) 0.34 −0.16 −0.89 −1.08 
RMSE (K) 3.23 3.77 2.14 2.99 

To illustrate the efficacy of the MKF algorithm on improving the accuracy of coarse-
scale LST, we also evaluate the accuracy of the CLDAS LST, the bias-corrected CLDAS 
LST and the fused LST at a coarse scale (0.06°). The validation results are shown in Figure 
6. As shown in Figure 6a,b, the bias correction method effectively improved the quality of 
the CLDAS LST, in terms of both visual effect and statistical indices. The samples were 
more concentrated on the 1:1 line, and the bias was reduced from 1.76 K to −0.44 K and 
the RMSE was reduced from 4.01 K to 3.54 K. After the MKF fusion, the RMSE was further 
reduced from 3.54 K to 3.11 K. The variations in R2 and bias remain almost unchanged. 

  

 
Figure 6. Validation results of (a) CLDAS LST, (b) bias-corrected CLDAS LST and (c) fused LST at 
the coarse scale. 

According to the validation results mentioned above, the MKF algorithm effectively 
improved the quality of both finer-scale LST and coarse-scale LST. Although the degree 
of quality improvement is distinct, the improvement is smaller for finer-scale LSTs than 
for coarse-scale LSTs. The reasonable explanation relied on the fact that the coarse-scale 
LST was combined with the contributions of higher-quality AHI LST and tended to be 
close to the finer-scale LST under clear-sky conditions. However, there is no additional 
more accurate information involved for the finer-scale LST. 
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3.2. Spatial-Temporal Variations 
3.2.1. Spatial Consistency between the Finer-Scale LST and Coarse-Scale LST 

Figure 7 shows the image pairs of the AHI LST and CLDAS LST before and after 
MKF fusion. Due to the cloud contamination, there are many missing pixels in the AHI 
LST, whereas the bias-corrected CLDAS LST is spatially complete. However, the two LST 
images are remarkable inconsistent, especially in the Tibetan Plateau (the red rectangle in 
Figure 7a,b), which is a climate change-sensitive area. After MKF fusion, the missing val-
ues in the AHI LST image are all filled with reasonable values, and the consistency in 
spatial pattern between the finer and coarse LST images is greatly improved, as clearly 
shown in the red rectangle of Figure 7c,d. 

  

  

 
Figure 7. LST images at 00:00 UTC on the 15 July 2016. (a) The AHI LST; (b) the bias-corrected 
CLDAS LST; (c) the fused LSTs at a finer scale; (d) the fused LSTs at a coarse scale. 
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3.2.2. Temporal Variability in the Fused LST 
Figure 8 shows the fused finer-scale LST images at 00:00 UTC on the 15th day of each 

month over East Asia in 2016. The LST images are not only spatially complete but also 
accurately reflect the spatial distribution characteristics of LST over East Asia during dif-
ferent seasons. The LST shows an increasing trend from January to July, whereas the LST 
drops gradually from August to December, with the highest LST appearing in the summer 
(June, July and August) of the Northern Hemisphere. 

To illustrate the efficacy of the proposed data fusion method, Figure 9 shows the time 
series of the AHI LST, the bias-corrected CLDAS LST, the fused LSTs at finer and coarse 
scales, and in situ LST. In general, the LSTs evolve according to a standard diurnal varia-
tion curve, i.e., the cosine function curve during daytime and the exponential function 
curve during nighttime [76]. 

As shown in Figure 9a–f, both the finer-scale LST (red circles) and the AHI LST (blue 
circles) were consistent with the in situ LST (black squares). The finer-scale LST was more 
complete than the AHI LST and changed very little, compared to the retrieved clear-sky 
AHI LST. However, when the AHI LST was missing, the values of fused finer-scale LST 
under cloudy sky conditions mainly came from the bias-corrected CLDAS LST (blue tri-
angles in Figure 9), for example, finer-scale LST from 01:00 to 06:00 at the AR site (Figure 
9a). The bias-corrected CLDAS LST showed worse consistency with the in situ LST than 
the AHI LST, and the consistency was greatly improved by MKF fusion through the ad-
justment toward the high-quality clear-sky AHI LST. The result indicated the same con-
clusion as Section 3.1 that the MKF algorithm was capable of generating consistent gapless 
LSTs across different scales and improving the quality of both finer-scale LST and coarse-
scale LST.



Remote Sens. 2022, 14, 5170 17 of 24 
 

 

    

    

    
Figure 8. The produced 0.02° seamless LST at 00:00 UTC on the 15th day of each month in 2016. 
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Figure 9. Comparison of the temporal variations (DOY: 291) of the AHI LST, the bias-corrected CLDAS LST, the finer-scale LST, the coarse-scale LST and in situ 
LST at six sites from the HiWATER network. 
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4. Discussion 
4.1. The Choice of the Bias Correction Method 

In the correction of the CLDAS LST, we assumed that the relationship between the 
CLDAS LST and AHI LST under clear-sky conditions can be applied to cloudy sky condi-
tions. To test the reasonability of this assumption, we compared the CLDAS LST before 
and after bias correction. The comparison results are shown in Figure 10. Under clear-sky 
conditions, the bias and RMSE of CLDAS LST were 2.00 K and 4.25 K, the values were 
decreased to −0.28 K and 3.59 K after bias correction, respectively. Regarding cloudy sky 
conditions, the bias and RMSE of CLDAS LST were 1.53 K and 3.77 K, and the values were 
reduced to −0.58 K and 3.49 K after bias correction, respectively. The R2 did not change. 
These results indicated that the bias correction is reliable for addressing the systematic 
deviation between the AHI LST and CLDAS LST. 

  

  
Figure 10. Validation results for the CLDAS LST and the bias-corrected CLDAS LST. (a) clear-sky 
CLDAS LST; (b) bias-corrected CLDAS LST under clear-sky conditions, (c) cloudy-sky CLDAS LST, 
(d) bias-corrected CLDAS LST under cloudy sky conditions. 

Additionally, the samples were more concentrated on the 1:1 line, and a few outliers 
were removed after bias correction. Clearly, the bias correction can greatly reduce the bias 
between the AHI LST and CLDAS LST and improve the quality of the CLDAS LST under 
both clear-sky and cloudy sky conditions, but the improvement under cloudy sky condi-
tions is weaker than that under clear-sky conditions. 

MODIS LST data are also high-quality data that can be used to correct the CLDAS 
LST data. Here, we test the performance of MODIS LST (MOD11A1 and MYD11A1) in 
bias correction. The CLDAS LST was temporally interpolated to the MODIS overpass time 
before the bias correction. The MODIS LST was aggregated to the spatial resolution of the 
CLDAS LST. A linear bias correction equation was established as: 𝐿𝑆𝑇ெை஽ூௌ_஺௚௚௥௘௥௔௧௘ௗ = 𝑎 · 𝐿𝑆𝑇஼௅஽஺ௌ  +  𝑏 (20)

where the 𝐿𝑆𝑇ெை஽ூௌ_஺௚௚௥௘௥௔௧௘ௗ is the aggregated MODIS LST, 𝐿𝑆𝑇஼௅஽஺ௌ is the CLDAS LST 
and 𝑎 and 𝑏 are the fitting coefficients. Here, only the MODIS LST pixels obeying the 
following rules were selected: 
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(1) The view angle is constrained to be less than 45° to avoid the angular effect [77,78]. 
(2) It is marked as ‘Good quality’ in the corresponding quality control (QC) band. 

The cumulative distribution function (CDF) matching method is also capable of re-
moving the systematic bias between two datasets [79]. CDF matching establishes the 
piecewise–linear relationship between the CDFs of the target data and reference data and 
adjusts the CDF of the target data using the established relationship. Here, the AHI LST 
and the CLDAS LST were treated as the reference dataset and the target dataset, respec-
tively. In addition, similar to the AHI LST-based method, the CDF method involves time 
series data at a single point. 

Figure 11 shows the validation results of the finer-scale LST outputted by the MKF 
algorithm using the CLDAS LST corrected by different methods as input, i.e., the AHI 
LST-based bias correction method, MODIS LST-based bias correction method and CDF 
method. Under clear-sky conditions, the performance of the three methods is very similar, 
the samples are evenly distributed around the 1:1 line, the biases and RMSEs are very 
close and the determination coefficients are all 0.98. Regarding cloudy sky conditions, the 
samples for the AHI LST-based bias correction method are more reasonable than those of 
the remaining methods. The AHI LST-based bias correction method has the highest de-
termination coefficient (0.96), lowest RMSE (3.38 K) and a modest bias (−0.65 K). Com-
pared to the MODIS LST-based bias correction method and CDF method, whose RMSEs 
are 3.75 K and 3.58 K, the improvement of the AHI LST-based correction method is 0.37 K 
and 0.20 K, respectively. 
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Figure 11. Validation results for the finer-scale LSTs by using CLDAS LST corrected by different 
methods as input. The first (a,b), second (c,d) and third (e,f) rows represent the AHI LST-based bias 
correction method, the MODIS LST-based bias correction method and the CDF method, respec-
tively. The first (a,c,e) and second (b,d,f) columns represent the fused finer-scale LSTs under clear 
sky and cloudy sky conditions, respectively. 

We tested the effects of different bias correction methods on the estimation of coarse 
resolution LST. The test results are shown in Figure 12. For the bias-corrected CLDAS LST, 
the AHI LST-based bias correction method has the most reasonable scatter distribution 
with the lowest RMSE of 3.54 K, a modest bias of −0.44 K and the highest R2 of 0.96, show-
ing better performance than the MODIS LST-based bias correction method and the CDF 
method, with the RMSE of 4.00 K and 3.70 K, respectively. Considering the fused coarse-
scale LST, the AHI LST-based bias correction method also has the lowest RMSE of 3.11 K, 
compared to the MODIS LST-based bias correction method and the CDF method, the 
RMSEs of which are 3.24 K and 3.29 K, respectively. In conclusion, the performance of the 
AHI LST-based bias correction method is slightly better than that of the CDF method, 
while the MODIS LST-based bias correction method presented the worst results. The ex-
planations relied on the fact that the MODIS LST product can only provide observations 
no more than four times per day in low and mid latitudes. Limited observations of MODIS 
lead to the CLDAS LST, needing temporal interpolation to match the overpass time of 
TERRA/MODIS and AQUA/MODIS, as a result, precision will be more or less lost. 
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Figure 12. Validation results for the fused coarse-scale LST and bias-corrected CLDAS LST corrected 
by different bias correction methods. The first (a,b), second (c,d) and third (e,f) rows represent the 
AHI LST-based bias correction method, the MODIS LST-based bias correction method and the CDF 
method, respectively. The first (a,c,e) and second (b,d,f) columns represent the fused coarse-scale 
LST and bias-corrected CLDAS LST, respectively. 

Additionally, apart from the better in situ validation, the AHI LST-based bias correc-
tion method is evidently more intuitive and convenient than the CDF method. Compared 
to the MODIS LST-based method, only the CLDAS LST and the AHI LST were utilized in 
the AHI LST-based bias correction method, which greatly avoids introducing extraordi-
nary errors from other LST products. 

4.2. The Pros and Cons of the Proposed Data Fusion Method 
The exploration of generating hourly seamless LST from geostationary satellites is 

rarely available. Lu, Venus, Skidmore, Wang and Luo [26] proposed a temporal NP ap-
proach to reconstruct LST under clouds for geostationary satellites. However, the perfor-
mance of the approach is not acceptable. The RMSE of the retrieved cloudy-sky LST was 
larger than 5 K at the two field sites. Moreover, the employed meteorological data were 
from field experiments, and it is ambiguous whether the algorithm can be expanded to 
generate seamless LST products at regional or global scales. Martins et al. [80] presented 
an all-weather LST product from the Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) on MSG. The reported RMSE of cloudy-sky LST is 3.8 K, although it cannot cover 
East Asia. The cloudy-sky LST was derived via SEB theory, employing the Land Surface 
Analysis Satellite Application Facility (LSA-SAF) MSG evapotranspiration (ET) product, 
whereas Himawari-8 has not developed the corresponding ET product. Therefore, this 
method cannot be fully duplicated to AHI/Himawari-8. Therefore, we proposed an effec-
tive data fusion method to obtain high-quality hourly seamless LST from AHI/Himawari-
8 data and the product was freely released to the public (http://data.tpdc.ac.cn, accessed 
on 15 October 2022). 

The incorporation of the bias correction method in the data fusion method signifi-
cantly improved the quality of the CLDAS LST, which guaranteed the quality of the input 
of the MKF algorithm, which not only filled the missing data at a finer scale but also re-
duced the inconsistency between different scales. Regarding the validation accuracy of 
the fused LSTs at the finer and coarse scales, the accuracy of the coarse-scale LST was 
greatly improved, whereas the accuracy of the finer-scale LST was slightly improved. This 
is consistent with the conclusion of previous studies that employed the MKF algorithm 
[61–63,81]. Compared to the existing studies that estimate all-weather LST from polar or-
bit satellites [35,44,81], the accuracy of the all-weather (seamless) LST is comparable, but 
the temporal resolution of the derived all-weather LST is hourly. In short, the proposed 
data fusion method provides a practical and universal way to generate hourly seamless 
LST. 

Similarly, there are some shortcomings in this study. The bias correction method is a 
data-driven statistical method that relies on the quality of the reference dataset. Similar to 
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the study of Xu and Cheng [81] and Zhang et al. [82], even the assumption that the estab-
lished empirical relationship under clear-sky conditions can be applied to cloudy skies, 
according to the limited test, may be unreasonable elsewhere. The MKF algorithm is es-
sentially an optimal estimation algorithm that does not theoretically involve the radiative 
transfer process. The zero-mean assumption in the MKF algorithm may be inappropriate 
for land surface variables. The abundant temporal information contained in the geosta-
tionary satellite-derived LST is not explored in the current MKF algorithm, which de-
serves to be mined by incorporating the annual temperature cycle (ATC) [83,84] and the 
diurnal temperature cycle (DTC) models [19,85]. 

According to previous studies, a phase-lag exists between two LST datasets [86–88]. 
This phenomenon was not considered in the MKF fusion of AHI LST and bias-corrected 
CLDAS LST. It is worth exploring in the following research. In addition, satellite-retrieved 
TIR LST represents the temperature of several micrometers in depth, while CLDAS LST 
is skin temperature. The representative depths of two LSTs need to be considered but are 
not considered in this paper. 

5. Conclusions 
Hourly seamless LST datasets are extremely crucial in many disciplines, such as the 

discrimination of soil freeze/thaw status, diurnal variation in earth–atmosphere system 
parameters modeling and land surface hydrological process simulation. This study pro-
posed a data fusion method to generate hourly seamless LST from Himawari-8 AHI data. 
In the method, high-quality hourly clear-sky AHI LST was first retrieved by an improved 
temperature and emissivity separation algorithm, and then a bias correction method was 
employed to remove the systematic bias between the matched CLDAS LST and AHI LST. 
Finally, the high-quality AHI LST and the bias-corrected spatially complete CLDAS LST 
were fused by the MKF algorithm, which is not only capable of filling the missing values 
at a finer scale and improving the data quality at both finer and coarse resolutions but also 
reduces the inconsistency across different scales. 

According to in situ validation, the bias and RMSE of the fused LST at a finer scale 
(0.02°) are −0.65 K and 3.38 K under cloudy sky conditions, whereas the values are −0.43 
K and 2.59 K under clear-sky conditions, respectively. The accuracy of clear-sky finer-scale 
LST is slightly better than the retrieved AHI LST. Under all-sky conditions, the bias and 
RMSE are −0.55 K and 3.03 K, accordingly. The bias and RMSE of coarse-scale (0.06°) LST 
are −0.46 K and 3.11 K, which is superior to the CLDAS LST, whose bias and RMSE are 
1.76 K and 4.01 K, respectively. After the MKF fusion, the missing values in the AHI LST 
are all filled by reasonable values, and the consistency between the fused LSTs at finer 
and coarse scales is greatly improved. The seamless finer-scale LST data can not only re-
flect the spatial distribution characteristics of LST during different seasons but also exactly 
present the diurnal variation of the LST. 

Conclusively, the proposed method in this paper makes full use of the strengths of 
the geostationary satellite-derived LST and the LSM-simulated LST and provides a prac-
tical method to generate an hourly seamless LST dataset. The generated hourly seamless 
LST dataset from 2016 through 2021 has been released to the public at the National Tibetan 
Plateau Data Center [89] (http://data.tpdc.ac.cn, accessed on 15 October 2022) and is ex-
pected to benefit many geoscientific studies. This method can be easily adapted to other 
geostationary satellites to generate hourly seamless full disk and regional (60°S~60°N) LST 
data, provided that regional and global LSM LST data are available. 

Author Contributions: Conceptualization and methodology, J.C.; software, S.D.; validation, S.D.; 
formal analysis, S.D.; resources, C.S., S.S. and W.L.; data curation, S.D. and W.L.; writing—original 
draft preparation, S.D.; writing—review and editing, J.C., J.S. and C.S.; visualization, S.D.; supervi-
sion, J.C.; project administration, J.C.; funding acquisition, J.C. All authors have read and agreed to 
the published version of the manuscript. 



Remote Sens. 2022, 14, 5170 24 of 24 
 

 

Funding: This work was supported in part by the Second Tibetan Plateau Scientific Expedition and 
Research Program (STEP) under Grant 2019QZKK0206 and in part by the National Natural Science 
Foundation of China under Grants 42071308, 42192581, 42192580 and 42090012. 

Data Availability Statement: The generated 0.02° hourly seamless LST dataset from 2016 to 2021 
has been released to the public at the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, 
accessed on 15 October 2022). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. 

Remote Sens. 1996, 34, 892–905. 
2. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: 

Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. 
3. Cheng, J.; Liang, S.; Wang, J.; Li, X. A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral 

Thermal Infrared Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. 
4. Ma, Y.; Ma, W.; Zhong, L.; Hu, Z.; Li, M.; Zhu, Z.; Han, C.; Wang, B.; Liu, X. Monitoring and Modeling the Tibetan Plateau's 

climate system and its impact on East Asia. Sci. Rep. 2017, 7, 44574. 
5. Jin, M.; Dickinson, R.E. New observational evidence for global warming from satellite. Geophys. Res. Lett. 2002, 29, 39-31–39-34. 
6. Cheng, J.; Kustas, W. Using Very High Resolution Thermal Infrared Imagery for More Accurate Determination of the Impact of 

Land Cover Differences on Evapotranspiration in an Irrigated Agricultural Area. Remote Sens. 2019, 11, 613. 
7. Goldberg, A.; Panov, N.; Gutman, G.G.; Imhoff, M.L.; Anderson, M.; Pinker, R.T.; Agam, N.; Karnieli, A. Use of NDVI and Land 

Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. 
8. Qi, J.; Wang, L.; Zhou, J.; Song, L.; Li, X.; Zeng, T. Coupled Snow and Frozen Ground Physics Improves Cold Region 

Hydrological Simulations: An Evaluation at the upper Yangtze River Basin (Tibetan Plateau). J. Geophys. Res.-Atmos. 2019, 124, 
12985–13004. 

9. Zhang, Y.; Cheng, J. Spatio-Temporal Analysis of Urban Heat Island Using Multisource Remote Sensing Data: A Case Study in 
Hangzhou, China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 3317–3326. 

10. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. 
ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. 

11. Ouyang, X.; Chen, D.; Lei, Y. A Generalized Evaluation Scheme for Comparing Temperature Products from Satellite 
Observations, Numerical Weather Model, and Ground Measurements Over the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 
2018, 56, 3876–3894. 

12. Ma, J.; Zhou, J.; Liu, S.; Göttsche, F.-M.; Zhang, X.; Wang, S.; Li, M. Continuous evaluation of the spatial representativeness of 
land surface temperature validation sites. Remote Sens. Environ. 2021, 265, 112669. 

13. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. 
Environ. 2014, 140, 36–45. 

14. Cheng, J.; Meng, X.; Dong, S.; Liang, S. Generating the 30-m land surface temperature product over continental China and USA 
from landsat 5/7/8 data. Sci. Remote Sens. 2021, 4, 100032. 

15. Zhou, S.; Cheng, J. An Improved Temperature and Emissivity Separation Algorithm for the Advanced Himawari Imager. IEEE 
Trans. Geosci. Remote Sens. 2020, 58, 7105–7124. 

16. Liu, W.; Shi, J.; Liang, S.; Zhou, S.; Cheng, J. Simultaneous Retrieval of Land Surface Temperature and Emissivity from the 
Fengyun-4A Advanced Geosynchronous Radiation Imager. Int. J. Digit. Earth 2022, 15, 198–225. 

17. Niclòs, R.; Galve, J.M.; Valiente, J.A.; Estrela, M.J.; Coll, C. Accuracy assessment of land surface temperature retrievals from 
MSG2-SEVIRI data. Remote Sens. Environ. 2011, 115, 2126–2140. 

18. Zhao, T.; Shi, J.; Hu, T.; Zhao, L.; Zou, D.; Wang, T.; Ji, D.; Li, R.; Wang, P. Estimation of high-resolution near-surface freeze/thaw 
state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau. Earth Space Sci. 2017, 4, 
472–484. 

19. Duan, S.-B.; Li, Z.-L.; Wang, N.; Wu, H.; Tang, B.-H. Evaluation of six land-surface diurnal temperature cycle models using 
clear-sky in situ and satellite data. Remote Sens. Environ. 2012, 124, 15–25. 

20. Hagan, D.F.T.; Wang, G.J.; Parinussa, R.M.; Shi, X. Inter-comparing and improving land surface temperature estimates from 
passive microwaves over the Jiangsu province of the People’s Republic of China. Int. J. Remote Sens. 2019, 40, 5563–5584. 

21. Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface 
temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. 

22. Xu, Y.; Shen, Y. Reconstruction of the land surface temperature time series using harmonic analysis. Comput. Geosci. 2013, 61, 
126–132. 

23. Neteler, M. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. 
Remote Sens. 2010, 2, 333–351. 



Remote Sens. 2022, 14, 5170 25 of 24 
 

 

24. Westermann, S.; Langer, M.; Boike, J. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on 
Svalbard—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ. 2011, 115, 908–922. 

25. Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared 
radiances. J. Geophys. Res.-Atmos. 2000, 105, 27037–27047. 

26. Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature under clouds using MSG/SEVIRI 
observations. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 265–276. 

27. Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–
Temporal–Spectral Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4274–4288. 

28. Malek, S.; Melgani, F.; Bazi, Y.; Alajlan, N. Reconstructing Cloud-Contaminated Multispectral Images With Contextualized 
Autoencoder Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2270–2282. 

29. Wu, P.; Yin, Z.; Zeng, C.; Duan, S.; Göttsche; Ma, X.; Li, X.; Yang, H.; Shen, H. Spatially Continuous and High-Resolution Land 
Surface Temperature Product Generation: A review of reconstruction and spatiotemporal fusion techniques. IEEE Trans. Geosci. 
Remote Sens. Mag. 2021, 9, 112–137. 

30. Shwetha, H.R.; Kumar, D.N. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions 
using microwave vegetation index and ANN. ISPRS J. Photogramm. Remote Sens. 2016, 117, 40–55. 

31. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process 
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. 

32. Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. 
Remote Sens. Environ. 2014, 145, 55–67. 

33. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote 
Sens. 2012, 4, 3287–3319. 

34. Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex 
heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. 

35. Long, D.; Yan, L.; Bai, L.; Zhang, C.; Li, X.; Lei, H.; Yang, H.; Tian, F.; Zeng, C.; Meng, X.; et al. Generation of MODIS-like land 
surface temperatures under all-weather conditions based on a data fusion approach. Remote Sens. Environ. 2020, 246, 111863. 

36. Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. 
Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res.-Atmos. 2014, 119, 
12501–12512. 

37. Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing 
data. Sci. China-Earth Sci. 2011, 54, 1430–1440. 

38. Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; 
Bosilovich, M.; et al.The Global Land Data Assimilation System. Bull. Amer. Meteorol. Soc. 2004, 85, 381–394. 

39. Xia, Y.; Mitchell, K.; Ek, M.; Cosgrove, B.; Sheffield, J.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; Livneh, B.; et al. Continental-scale 
water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 
2. Validation of model-simulated streamflow. J. Geophys. Res. 2012, 117. https://doi.org/10.1029/2011JD016051. 

40. Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale 
water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-
2): 1. Intercomparison and application of model products. J. Geophys. Res. 2012, 117. https://doi.org/10.1029/2011JD016048. 

41. Chen, Y.-y.; Shi, J.-c.; Du, J.-y.; Jiang, L.-m. Numerical experiments of surface energy balance over China area based on GLDAS. 
Adv. Water Sci. 2009, 20, 25–31. 

42. Mitchell, K.E. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP 
products and partners in a continental distributed hydrological modeling system. J. Geophys. Res.-Atmos. 2004, 109, D07S90. 

43. Sun, S.; Shi, C.; Liang, X.; Han, S.; Jiang, Z.; Zhang, T. Assessment of Ground Temperature Simulation in China by Different 
Land Surface Models Based on Station Observations. J. Appl. Meteor. 2017, 28, 737–749. 

44. Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) 
method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. 

45. Zhang, Q.; Cheng, J.; Wang, N. Fusion of All-Weather Land Surface Temperature From AMSR-E and MODIS Data Using 
Random Forest Regression. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. 

46. Shi, L.; Liang, S.; Cheng, J.; Zhang, Q. Integrating ASTER and GLASS broadband emissivity products using a multi-resolution 
Kalman filter. Int. J. Digit. Earth 2016, 9, 1098–1116. 

47. Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, 
R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–
5454. 

48. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical 
performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. 

49. Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote 
Sens. Environ. 2004, 89, 351–360. 

50. Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; 
Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–
302. 



Remote Sens. 2022, 14, 5170 26 of 24 
 

 

51. Borbas, E.; Hulley, G.; Feltz, M.; Knuteson, R.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: 
Methodology and High Spectral Resolution Application. Remote Sens. 2018, 10, 643. 

52. Feltz, M.; Borbas, E.; Knuteson, R.; Hulley, G.; Hook, S. The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: 
Uncertainty and Validation. Remote Sens. 2018, 10, 664. 

53. Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An 
Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 
151–183. 

54. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry 
Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. 

55. Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: 
A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 180072. 

56. Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface 
Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. 

57. Cheng, J.; Liang, S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo 
product. J. Geophys. Res.-Atmos. 2014, 119, 614–634. 

58. Cheng, J.; Liang, S.; Verhoef, W.; Shi, L.; Liu, Q. Estimating the Hemispherical Broadband Longwave Emissivity of Global 
Vegetated Surfaces Using a Radiative Transfer Model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 905–917. 

59. Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy flux measurement 
systems used during the HiWATER-MUSOEXE. J. Geophys. Res.-Atmos. 2013, 118, 13–140. 

60. Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.; Bork-Unkelbach, A.; Martin, M. Long Term Validation of Land Surface Temperature 
Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016, 8, 410. 

61. He, T.; Liang, S.; Wang, D.; Shuai, Y.; Yu, Y. Fusion of Satellite Land Surface Albedo Products Across Scales Using a 
Multiresolution Tree Method in the North Central United States. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3428–3439. 

62. Tao, X.; Liang, S.; Wang, D.; He, T.; Huang, C. Improving Satellite Estimates of the Fraction of Absorbed Photosynthetically 
Active Radiation Through Data Integration: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2107–2118. 

63. Parada, L.M. Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. 
Res.-Atmos. 2004, 109, D24109. 

64. Choi, Y.-Y.; Suh, M.-S. Development of Himawari-8/Advanced Himawari Imager (AHI) Land Surface Temperature Retrieval 
Algorithm. Remote Sens. 2018, 10, 2013. 

65. Yamamoto, Y.; Ishikawa, H.; Oku, Y.; Hu, Z. An Algorithm for Land Surface Temperature Retrieval Using Three Thermal 
Infrared Bands of Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 59–76. 

66. Li, R.; Li, H.; Sun, L.; Yang, Y.; Hu, T.; Bian, Z.; Cao, B.; Du, Y.; Liu, Q. An Operational Split-Window Algorithm for Retrieving 
Land Surface Temperature from Geostationary Satellite Data: A Case Study on Himawari-8 AHI Data. Remote Sens. 2020, 12, 
2613. 

67. Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. 
Remote Sens. 2005, 43, 2778–2792. 

68. Li, X.; Huang, C.; Che, T.; Jin, R.; Wang, S.; Wang, J.; Gao, F.; Zhang, S.; Qiu, C.; Wang, C. Development of a Chinese land data 
assimilation system: Its progress and prospects. Prog. Nat. Sci. 2007, 17, 881–892. 

69. Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin temperature with 
remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res.-Atmos. 2015, 120, 12096–12111. 

70. Orth, R.; Dutra, E.; Trigo, I.F.; Balsamo, G. Advancing land surface model development with satellite-based Earth observations. 
Hydrol. Earth Syst. Sci. 2017, 21, 2483–2495. 

71. Crosson, W.L.; Al-Hamdan, M.Z.; Hemmings, S.N.J.; Wade, G.M. A daily merged MODIS Aqua–Terra land surface temperature 
data set for the conterminous United States. Remote Sens. Environ. 2012, 119, 315–324. 

72. Ermida, S.L.; DaCamara, C.C.; Trigo, I.F.; Pires, A.C.; Ghent, D.; Remedios, J. Modelling directional effects on remotely sensed 
land surface temperature. Remote Sens. Environ. 2017, 190, 56–69. 

73. Chou, K.C.; Willsky, A.S.; Benveniste, A. Multiscale recursive estimation, data fusion, and regularization. IEEE Trans. Autom. 
Control 1994, 39, 464–478. 

74. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. 
75. Göttsche, F.-M.; Olesen, F.-S.; Bork-Unkelbach, A. Validation of land surface temperature derived from MSG/SEVIRI with in 

situ measurements at Gobabeb, Namibia. Int. J. Remote Sens. 2012, 34, 3069–3083. 
76. Jiang, G.-M.; Li, Z.-L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of 

MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326–340. 
77. Ren, H.; Yan, G.; Chen, L.; Li, Z. Angular effect of MODIS emissivity products and its application to the split-window algorithm. 

ISPRS J. Photogramm. Remote Sens. 2011, 66, 498–507. 
78. Cao, B.; Liu, Q.; Du, Y.; Roujean, J.-L.; Gastellu-Etchegorry, J.-P.; Trigo, I.F.; Zhan, W.; Yu, Y.; Cheng, J.; Jacob, F.; et al. A review 

of earth surface thermal radiation directionality observing and modeling: Historical development, current status and 
perspectives. Remote Sens. Environ. 2019, 232, 111304. 



Remote Sens. 2022, 14, 5170 27 of 24 
 

 

79. Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing 
an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 
2011, 15, 425–436. 

80. Martins, J.P.A.; Trigo, I.F.; Ghilain, N.; Jimenez, C.; Göttsche, F.-M.; Ermida, S.L.; Olesen, F.-S.; Gellens-Meulenberghs, F.; 
Arboleda, A. An All-Weather Land Surface Temperature Product Based on MSG/SEVIRI Observations. Remote Sens. 2019, 11, 
3044. 

81. Xu, S.; Cheng, J. A new land surface temperature fusion strategy based on cumulative distribution function matching and 
multiresolution Kalman fltering. Remote Sens. Environ. 2021, 254, 112256. 

82. Zhang, X.; Zhou, J.; Gottsche, F.-M.; Zhan, W.; Liu, S.; Cao, R. A Method Based on Temporal Component Decomposition for 
Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave 
Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. 

83. Bechtel, B. Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes. IEEE Geosci. Remote Sens. 
Lett. 2012, 9, 876–880. 

84. Zhan, W.; Zhou, J.; Ju, W.; Li, M.; Sandholt, I.; Voogt, J.; Yu, C. Remotely sensed soil temperatures beneath snow-free skin-
surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model. Remote Sens. 
Environ. 2014, 143, 1–14. 

85. Göttsche, F.-M.; Olesen, F.S. Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote 
Sens. Environ. 2001, 76, 337–348. 

86. Holmes, T.R.H.; Crow, W.T.; Hain, C. Spatial patterns in timing of the diurnal temperature cycle. Hydrol. Earth Syst. Sci. 2013, 
17, 3695–3706. 

87. Holmes, T.R.H.; Owe, M.; De Jeu, R.A.M.; Kooi, H. Estimating the soil temperature profile from a single depth observation: A 
simple empirical heatflow solution. Water Resour. Res. 2008, 44, W02412. 

88. Parinussa, R.M.; Holmes, T.R.H.; Yilmaz, M.T.; Crow, W.T. The impact of land surface temperature on soil moisture anomaly 
detection from passive microwave observations. Hydrol. Earth Syst. Sci. 2011, 15, 3135–3151. 

89. Cheng, J.; Dong, S.; Shi, J. 0.02° seamless hourly land surface temperature dataset over East Asia (2016–2021). A Big Earth Data 
Platf. Three Poles 2022. https://doi.org/10.11888/Cryos.tpdc.272511. 

 


